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SYSTEMS AND METHODS FOR CLASSIFYING IN-SITU SENSOR RESPONSE DATA
PATTERNS REPRESENTATIVE OF GRID PATHOLOGY SEVERITY

BACKGROUND

The performance of utilities grids — their reliability, safety, and efficiency — can be
drastically improved through sensing key parameters and using those results to direct the operations
and maintenance of the grid, by identifying faults, directing appropriate responses, and enabling
active management such as incorporating renewable sources into electrical grids while maintaining
power quality.

Sensor networks are often used to monitor utilities grids. These sensor networks may
include smart meters located at the ends of the grid, sensors at grid nodes, and sensors on or around
the utilities lines, these sensors measuring grid parameters such as flow rates in water grids, power
quality in electrical grids, or pressures in utilities grids. These sensors are transducers, usually
outputting analog signals representative of the measured properties. These outputs need to be
characterized to map to specific values of those properties, and/or classified so that they may
represent particular states of the world, such as a potential leak that requires investigation, or
identification of a difference in phases when incorporating a renewable resource into an electrical
grid. Characterization of sensors is usually done through bench testing, while the sensors may have
various interferences in the environment surrounding them; in-situ characterization of sensors on a
utility grid monitoring network would be preferred, but is difficult for the large numbers of sensors
used to monitor a utilities grid.

The trend in analyzing sensor data and directing responses is “big data,” which uses large
amounts of grid historical data to build models used for classification and direction of responses.
These big data models, however, are limited to correlations, as they mine historical data to build the
models, limiting their effectiveness for actively directing treatments or making fine adjustments.
Further, these big data models typically require large volumes of data that prevent highly granular
understandings of grid conditions at particular grid nodes or locations or that can only achieve such
granularity after long operations; some have applied machine learning techniques and improved
models to increase speed and granularity, but even these approaches continue to rely on correlations
from passively collected historical data.

Signal injections have been used to highlight grid faults, such as discovering nodes where
power is being illegally drawn from an AC power grid; these techniques rely on already-
characterized high-quality sensors such as “smart meters” and are occasional, grid-wide individual
actions, not coordinated to be conducted concurrently or sequentially. Signal injections have also

been used to test grid-wide response to large changes in high levels of the grid, such as at the HVDC
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distribution level. Those signal injections have been large, individual, and human mediated, not
susceptible to automation, smaller-scale local testing or concurrent or sequential implementation of
tests. Occasional, grid wide, and almost necessarily human-directed signal injections are poorly
suited for characterizing extensive networks of diverse sensors placed along the grid in a wide
variety of contexts, since they can only generate small sample sizes and cannot vary widely enough
to be tailored to individual conditions and idiosyncrasies of the sensor locations.

Utilities grid management would benefit greatly from real-time cause-and-effect
understanding of sensor responses to overcome the issues with big data smart grid approaches and
allow for real-time, granular, and fine-tuned grid monitoring and management to more fully
capitalize on the potential of smart grid to optimize grid parameters and responses, by enabling such

optimization to be done at more local levels across these highly variant systems.

SUMMARY OF THE INVENTION

The present invention is directed towards characterizing sensors and developing classifiers
for sensor responses on a utility grid, by implementing changes to grid parameters, computing the
spatial and temporal reach of those changes to grid parameters, observing the responses at grid
sensors, associating the responses at grid sensors with implemented changes to grid parameters
based on the time and location of the responses, and updating a model of grid response based on the
implemented changes and their associated responses.

Systems of the invention include signal injection directors, signal injection controllers, a
plurality of sensors collecting grid data, an association module, an analysis module, and a model
memory.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a flow diagram of the steps of a method of the invention.

Fig. 2 is a map of a utility grid, its associated network of sensors, and the spatial reaches of
signal injections on an example of the invention.

Fig. 3 is a system diagram of a system of the invention.

Fig. 4 is a data flow diagram of the flows of information among various components of a
system of the invention.

Fig. 5 is a flow diagram of an example method for associating sensor responses with signal
injections.

Fig. 6 is a flow diagram of an example method for updating a model of sensor response.

Fig. 7 is a diagram depicting the architecture of system embodiments and their interactions

with a utility grid.
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DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

Automated testing of sensor responses to specific inputs, and the resulting causal-knowledge
based characterization of sensors requires an automated means of associating sensor data with
particular signal injections which have been made concurrently and sequentially, and in close spatial
proximity to one another, especially on large networks where it is desirable to increase potential
sample size and quickly learn sensor and grid responses to the injected signals. These responses to
signal injections may be representative of grid events which are useful for management of the utility
grid, automation of grid response to particular conditions, improving efficiency, identifying and
remedying grid faults, or optimally scheduling required maintenance and reconditioning actions.
This association is needed to properly use sensor data collected in response to a signal injection to
improve models of sensor response used to convert raw sensor outputs into levels of a physical
variable or classifications of potential statuses at the sensor and thus improve the sensitivity and
discriminability of utility grid sensors, and to provide in-situ classification or characterization of the
sensor outputs based on highly temporally and spatially granular models of sensor response and grid
behavior.

Fig. 1 is a flow chart depicting an example of a method of the invention. One or more
signal injection are provided to the grid in step 100. The signal injections each have a spatial reach,
computed in step 102 and a temporal reach computed in step 104. Measurements of grid
characteristics are made in step 106. Some of these steps may be taken independent of one another
or be performed continuously, such as the measurements of step 106. The sensor data from step 106
is associated with particular signal injections in step 108, using spatial and temporal reaches
computed in steps 102 and 104. Data associated with signal injection in step 108 may be used to
characterize sensor responses or may be used to characterize the effects of the controls used to
implement signal injections into the grid. In embodiments characterizing sensor responses, the
associated data from step 108 then is used to update one or more models of sensor response in step
110. The updated models of sensor response may be used to detect and classify events at the sensors
based on their raw readings, leading to more accurate sensing and calibrating the sensors to detect
events of interest to grid operators against the baseline of their normal readings in the field. These
methods may be done iteratively to refine and regularly update the models of sensor response,
allowing regular in-situ calibration of grid sensors and accounting for changes in baseline conditions
or sensor response characteristics.

The signal injection 100 is a change effected on grid components to introduce a particular
condition into a utility grid, such as a water distribution grid, an electrical grid, or a gas distribution
grid. This may be done by manipulating existing grid controls, and selecting and implementing one
particular state within the range of permissible states for that grid control, for example selecting a
particular position for a load tap changer at a transformer, or the switch state of a capacitor bank in a

power distribution network. This signal injection 100 may be simple, manipulating one variable at
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one location, or complex and involving multiple variables and/or be implemented at multiple
locations. An example of a simple signal injection 100 in a water grid may be increasing flow
through a valve at a location. An example of a complex signal injection of step 100 in a gas grid
may be increasing the pressure at one point while closing a valve immediately following that point
to direct most of the pressure increase down one particular path. An example of a complex signal
injection of step 100 in an electrical grid may be bringing on multiple renewable sources on line in a
particular order and with specific timing, such as connecting the inverters for distributed
photovoltaic generation sources and adjusting load tap changers at nearby substations minutes later.

The signal injection of step 100 may be implemented through automatic or human-mediated
means. The signal injections are controlled changes in grid parameters, for example, electrical
signal injections in electrical grids such as increases or decreases in current, voltage, or power factor
caused by actuating grid controls. The signal injections may be coordinated to be separated in their
spatial and temporal reaches. In gas grids, the signals may be injected through, for example,
changing the routing of gas through pipes to increase or decrease the pressure at certain points. The
responses to these signals may be the increase or decrease in the number and/or severity of leaks
detected by a sensor network surrounding the grid pipes, or changes in downstream pressures
connected to the areas being driven to high or low pressure. These signal injections may be
accomplished in human-mediated cases through the manual adjustment of various valves and
switches at the direction of a schedule distributed to maintenance personnel who perform these
adjustment; these schedules may take various forms, such as maintenance queues, additional tasks,
and may be distributed through a variety of electronic means such as email, text message, calendar
reminders on a computer, tablet, smart phone or other portable computing device. In these human-
mediated cases, the times of these adjustments may be audited by having the maintenance personnel
check in using a networked device to record the time the changes are actually implemented, for use
in the processing of subsequent data generated as a result of these signal injections. In fully
machine-to-machine implemented embodiments of signal injection on gas grids, the switches and
valves are operated by actuators coupled to the system through a wired or wireless communications
network, and responding to signals sent by the system or acting in accordance with instructions or
schedules distributed to the controllers for those actuators by the system. Machine-to-machine
implementations allow for more closely coordinated tests as there will be less variance in the time of
implementation, and the improved timing allows more sophisticated trials to be conducted. In these
implementations, monitoring of the sensor conditions and actuator states may be constantly
correlated to create a real-time understanding of relationships among spatially and temporally
distributed influences, enabling changes in relationships as well as local sensor states to be detected
and characterized, for example through factorial isolation of detected changes.

In electrical grids, human-mediated methods involve manual switching of power flow,

activating or deactivating power sources connected to the grid, changing load tap changer positions,
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switching capacitor banks on and off, activating or deactivating heavy industrial equipment (such as
arc furnaces) or other major manually-controlled power loads on the grid. In these examples, the
changes are made by the maintenance personnel at the direction of a schedule distributed to them;
these schedules may take various forms, such as maintenance queues, additional tasks, and may be
distributed through a variety of electronic means such as email, text message, calendar reminders on
a computer, tablet, smart phone or other portable computing device. In these human-mediated cases,
the times of these adjustments may be audited by having the maintenance personnel check in using a
networked device to record the time the changes are actually implemented, for use in the processing
of subsequent data generated as a result of these signal injections. These human-mediated methods
may alter measurable factors such as power quality, line temperature, line sag, available power
levels, and other factors, which may be captured by sensor networks observing those measurable
grid factors.

In electrical grids, machine-to-machine methods offer a greater measure of control, and can
inject signals through a variety of automated means. This includes automation of the types of
switching and maintenance behaviors that may be used in human-mediated examples such as
changing the position of load tap changers, or switching capacitor banks, and additionally M2M
methods of signal injection may capitalize on greater precision and breadth of control to include
actions such as coordinating use of devices such as appliances at end locations to create coordinated
demand and loading at consumer locations, or to implement complex coordination of combinations
of multiple types of grid-influencing actions to generate more complex conditions, or introducing
changes into the automatic power factor correction units. These combinatoric possibilities are very
difficult to address through big-data approaches, since even large volumes of data may only have
limited sample sizes reflecting particular combinations, and the sheer number of combinatoric
possibilities makes big data solutions to these problems nearly intractable. These may be initiated
through automatic control of the associated grid components and networked devices, including
power generation, switches, voltage regulation equipment, smart meters and smart appliances
receiving power from the grid, and other grid components susceptible to remote control by the
system. These may take advantage of millisecond-level control capabilities to manipulate power
quality variables such as the integration of new sources or immediate responses to new loads or the
specific operation of automatic power factor correction units, as well as further increasing the ability
to test combinatorics of grid actions or conditions involving those highly time-sensitive variables.

The injected signals may be simple, directing one individual grid action such as opening a
valve in a water or gas grid, or bringing one particular renewable source online or altering the output
voltage from one substation in electrical grid examples to change the grid conditions, or they may be
complex, composed of multiple grid actions coordinated such that their individual spatial and
temporal reaches overlap to produce a multi-factor treatment at areas within the overlapping reaches.

One example of a complex grid action may be to vary both load tap changer positions and capacitor
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bank switching simultancously to provide more fine-grained control over reactive power in an
electrical grid. This multi-factor treatment may include variances of multiple different grid
parameters, for example to explore combinatoric effects of those parameters, or may be used to
produce multiple instances of similar variations of a particular grid parameter, for example to use
additive effects to increase the magnitude of a particular variance of a grid parameter at one or more
specific locations on the grid while protecting more sensitive neighboring parts of the grid by
keeping them within narrower or different operational ranges by exposing those parts to only a
component of the overall signal injection; for example, the power levels at sensitive nodes around a
more robust node may each be given an increase that has a predicted spatial reach that includes the
more robust node, but not other sensitive nodes, and these multiple sensitive nodes may each
provide a power increase within their narrower operational ranges to produce a combined increase in
power at the robust node that exceeds the individual increases at each sensitive node.

For complex signals, the temporal and spatial reaches are predicted based on treating the
complex signal’s effects on the system as a whole, composed set. For those complex signals, while
individual grid actions will have overlapping spatial and temporal reaches, the defined set of grid
actions that make up the complex signal is instead treated as one signal injection, with the overall
spatial and temporal reach of the combination of the defined set of grid actions used to determine the
areas of space and periods of time where no other signals may be injected into the grid, to maintain
the orthogonality of the complex signal injection from other grid signal injections.

Complex signals may be input into the system having already been defined as the set of grid
actions to be done together and the times and locations of those grid actions, after being derived by
other systems or selected by grid personnel, or may be derived by systems selecting multiple grid
actions from the set of grid actions as directed by, for example, a Partially Observable Markov
Decision Process (POMDP) model exploring combinatorics or operating within constraints on
operational conditions that vary from location to location across the grid.

Signal injections exploring grid responses may be composed by searching for waveforms
that have a spatial-temporal regularity with any controlled grid activity, which are co-occurring in
immediate or regular delayed fashion, through for example, Principal Component or Fourier
analysis. These statistical regularities in waveforms or component waveforms (for example, the
frequency, voltage, and/or current) link grid actions with changes in grid conditions to provide the
set of available options for manipulating grid conditions based on active control of grid actions and
data on the observed times and locations of these waveform components relative to the grid actions
may be used to determine spatial and temporal reaches for particular signal injections.

A processor is used to compute the signal injection’s spatial reach in step 102 and the signal
injection’s temporal reach in step 104. The spatial reach is the area over which sensors will show
response to that signal based on the location and nature of that injected signal. The spatial reach can

be computed by predicting, to a high confidence interval, the furthest sensor that would show a
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response to the injected signal and preventing any other trial from being conducted if it is likely to
produce a response in the region of spatial uncertainty during the period of spatial uncertainty for the
current trial. Temporal reach is the period over which the sensor network will be observing events
related to the injected signal. This includes the duration of the signal itself, and the duration of the
expected sensor response to the signal, for example a prediction based on historical data associating
waveform components with particular grid actions that implement the signal injection. This
temporal reach may be determined by using the expected time at a high confidence interval of the
sensor response being completed, and using that as the duration for relevant data and a period from
which to exclude other trials having a common spatial reach. The spatial and temporal reaches for
these injected signals may be based on current models of the grid based on the nature and magnitude
of the injected signal, the components and connections and/or the current data on grid responses to
perturbations. For example, for a signal injection made by switching a capacitor bank on a
distribution network, the spatial reach may be the downstream portion of the distribution network,
and an example of the temporal reach may be the time it takes for transients introduced by the
switching of the capacitor bank to settle. One particular method for calculating these reaches is a
Bayesian Causal Network, which starts by discovering correlations through data mining then
directly tests causality and directionality within those identified correlations. In gas grids, for
example, the spatial reach of a pressure increase may be determined based on a map of the grid
components, such as the branches of pipes and the volumes of the pipes and the behavior of the gas
under pressure, particularly the segments of the grid downstream from the increased pressure and
the magnitude of the pressure increase; the temporal reach may be the duration at which the
increased pressure is maintained, plus a time lag for the effects of the pressure increase to fade at the
furthest-out points at which the pressure is expected to have observable effects, again relying on the
known characteristics of the utility and the grid, such as the branches and volumes of pipes and
pressure characteristics of a gas grid. Historical data for the spatial and temporal reaches may be
generated actively generated by conducting consistent signal injections while varying the temporal
and spatial reaches over which data is associated with the signal injection, and finding the temporal
and spatial reaches that capture the fullest extent of the signal injection without growing so large as
to become confounded; this may be determined by finding the spatial and temporal reach values that
produce the peak measured response to the signal injection.

Measurements are taken at a plurality of sensors distributed across the utility grid 106. The
sensor measurements are typically continuous. The sensors may be, for example, for water grids
flow meters whose response is based on the speed of water flow through a pipe, for gas grids
methane detectors whose response is based on methane concentration, and for electrical grids cabled
sensor terminations providing voltage and current wave forms at the termination. The sensor data
also includes metadata or other indications of the time at which the data was collected and the

specific sensor or the location where the data was collected.
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The measurements taken across the grid in step 106 are then associated with a signal
injection in step 108. The association made in step 108 is based on the spatial and temporal reaches
computed in steps 102 and 104, which describe the time and space over which signal injections are
likely to have effects captured by the sensors. The sensor data collected in step 106 is parsed by the
time of the sensor measurements and the location of the sensors or of the data, using metadata
accompanying the sensor data to provide the time and location information. The parsing assigns the
sensor data to specific signal injections that could influence the readings at a particular time and
location; some sensor data may be collected that lies outside the temporal or spatial reaches of the
signal injections to the grid; this data is not associated with a particular signal injection. This allows
multiple signal injections to be made concurrently along the grid while still attributing particular
sensor responses with specific signal injections, improving the efficiency of automated signal
injection methods for characterizing grid sensors.

An example method for the association of signal injections and sensor data of step 108 is
detailed in Fig. 5. A signal injection is selected in step 500, reach data for that signal injection is
received in step 502, sensor data is parsed by time in step 504, sensor data is then parsed by location
in step 506, sensor data identified in the parsing steps is associated with the signal injection in step
508, and additional signal injections are checked for and the process iterated for those signal
injections in step 510.

A signal injection is selected in step 500. The signal injection is selected from the set of
signal injections that have not yet had grid sensor data associated with them. Then, the reach data for
that signal injection is received in step 502. The reach data is the particular spatial and temporal
reach of the selected signal injection, which is computed based on the nature of the signal injection
and stored in memory. Combined with the actual time and location of the signal injection, this data
defines a region of space and period of time where the signal injection was likely to have an effect
on a utility grid, detected by sensors on or near the grid.

The sensor data is parsed by time in step 504. Sensor data has timestamps associated with
samples or ranges of time from which continuous measurements are taken. For individual, time-
stamped samples, the parsing by time is a comparison of the time at which the sample was taken
against a range of times during which sensor data could be associated with the signal injection,
based on the time of the signal injection and the temporal reach of the signal injection, creating a
span starting at the time of the signal injection and having a duration of the temporal reach, during
which data may be associated with the signal injection.

The sensor data is parsed by location in step 506. Sensor data also includes the location of
the sensor, either directly as coordinates or indirectly, such as an identifier of the sensor that
collected the data, which has a known location. The data is parsed by location by determining the
arca over which sensor data is associated with the signal injection, by using the spatial reach of the

signal injection and the location of that signal injection. Coordinates or sensor locations are
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compared against that area and sensor data within that area may be associated with the signal
injection. In this example, the parsing by location is done on data already parsed by time and
determined to possibly be associated with the signal injection, meaning that data that may still be
associated with the signal injection following this step will be associated with the signal injection in
step 508. While this example has the data first being parsed by time and then location, the parsing
steps may be done in reverse order, or done simultaneously and the results combined; in these
examples, data is to be associated with a signal injection where the data was collected at a sensor
within the spatial reach of the signal injection, and at a time within the temporal reach of the signal
inection.

The parsed data is then associated with the signal injection in step 508. The data within the
spatial and temporal reaches of the time and location of the signal injection, identified in the parsing
steps is associated with the signal injection. This association may be done by adding the association
to the sensor data as metadata, tags, a segment of the data itself, or other means of identifying that
the data is associated with a particular signal injection. Optionally, during this association stage,
confounded data may be identified if it already is associated with another signal injection, but was
identified as being associable with the current signal injection based on the parsing by time and
location. In these situations, the data point may be flagged, discarded, or its associations may be
cleared so that it is not associated with any data point due to uncertainty about the signal injection or
injections that influenced that data point.

Additional signal injections that have not yet had data associated with them are checked for
in step 510 and these steps may be iterated for any signal injections that have not yet had data
associated with them, for example by having each signal injection include a category of metadata
indicating whether or not it has already been associated with data and changing that metadata from a
0 to a 1 during the association step. In that example, the metadata is checked for the signal
injections, determining whether any signal injections still have a 0 representing their association
with sensor data. When all current signal injections have been associated with sensor data, the
association process ends.

Returning to Fig. 1, updating a model of sensor response is done in step 110 based on the
associated sensor data from step 108 and data concerning the signal injection and the sensors, as
well as the currently-existing model of sensor response. The model of sensor response may be one
of a variety of models that map the sensor output to levels of a variable or the presence or likelihood
of a particular grid condition at the sensor; it may also be a plurality of alternative models that link
the sensor outputs to particular values of a variable or states surrounding the sensor. The particular
updating process depends on the particular model or models selected to assign meaning to sensor
outputs.

Updating the model may be used to improve the characterization of a sensor response. In

these embodiments, the sensor response data may be used to falsify belief states in a Partially
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Observable Markov Decision Process or similar technique, where the belief states are a number of
alternative models that characterize the sensor data; the falsification of belief states eliminates poor
models, converging on the use of the best models as the method for mapping the sensor response to
a level of a measured variable or the presence of a condition of interest at or near the sensor and
improving the sensitivity and accuracy of the sensor by using updated models based on data from
signal injections reaching that sensor, to process its outputs.

The updating of a model of sensor response may be the refinements of classifiers or
probability estimates used to identify when sensor outputs are indicative of particular conditions.
Classifiers determine that a state of the world or event is indicated by particular sensor output,
because they map that sensor output data to a category. Probability estimates similarly map the
sensor output to a state of the world or event, but do so as a range of probabilities of states or events
that are possible for the given sensor output. An example of a classifier for a gas grid condition may
be, for example, that signals indicative of methane levels elevated to twice the baseline level from 3
adjacent sensors on a sensor network is a high-priority potential leak event. An example of a
classifier for an electrical grid condition is discovery of an association between a particular power
source or load and a specific observable impact on power quality, found, for example through
Fourier or wavelet transform analysis. One specific example of updating a classifier may be, in the
grid example, identifying a signal that degrades power quality within the impact of integrating a
solar source into the grid through Fourier analysis of the waveform data associated with bringing the
solar source on-line, and identifying that component as a result of that renewable source integration.

The model of sensor response may be based on data from a particular window of time,
which may be adjusted when the model is updated, and may be a pre-defined period, or one
determined dynamically. For an example of a pre-defined period, models of sensor response may be
based on data only from the past 30 days, in which case the updating process includes removing data
that is older than that, in addition to incorporating the newly collected data. The period from which
data is used in the model of sensor response may also be adjusted dynamically. For example, a
trigger may be set so that where the addition of the current sensor data causes a shift in the mean
values or confidence intervals for established relationships of signal injections and sensor outputs
that are greater than a certain threshold indicative of a change in system response behavior,
historical data may be discarded and data collection for determining relationships between signal
injections and sensor outputs started over to accurately discover and reflect this change in system
response behavior.

One particular example method for updating a model of sensor response using sensor data
associated with particular signal injections is detailed in Fig. 6. In this example, the associated
sensor data is used to update a database of knowledge regarding the effects of the signal injection
600. This process includes receiving data associated with a signal injection 602, updating signal

injection response data 604, and updating means and confidence intervals for the signal injection
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response data 606. The knowledge database updated in 600 is used to validate models of sensor
response 608. This process includes selecting a model of sensor response 610, using the model of
sensor response to compute a predicted response to the signal injection 612, comparing the
prediction to the means and confidence intervals for the effects of the signal injection 614, and if the
predicted response lies outside the confidence intervals, invalid models are discarded 616. This is
iterated for additional models of sensor response until all sensor models have been tested against the
updated knowledge of the effects of the signal injection 618, and when the models have been tested,
the process ends 620.

Data associated with a signal injection is received in step 602. The data is sensor data,
which has been associated with a signal injection made into a utility grid, and associated based on
the time and location of the data collection and the time, location and spatial and temporal reaches of
the signal injection.

The data received in step 602 is used to update a signal injection response data in step 604.
The signal injection response data may be stored as a table of inferential statistics relating the effect
of the signal injection on the response of the sensor. This table describes the relationship between a
particular signal injection and its effects on sensor responses. Sensor data associated with the signal
injection described in the table is selected and added to the database. In step 606 this updated
database is then used to compute an updated mean and updated confidence intervals for the
relationship between the signal injection and the sensor response.

The now-updated knowledge of the relationship between the signal injection and the sensor
response is used to test and validate models of sensor response 608. First, a model of sensor
response is selected 610 from the set of models of sensor response. The selection may be random,
or progressing through a set list, or selected based on estimates of its validity, for example through a
Bayesian Causal Network where the model of sensor response is a belief state. The selected model
of sensor response is used to compute the expected response to the signal injection 612. This
computation uses the time, location, and nature of the signal injection and the model of sensor
response to create an estimate of the sensor response to that particular signal injection. This
expected response is compared to the current means and confidence intervals in step 614. In this
step, the expected response according to the model of sensor response is compared to the sensor
response data associated with the signal injection. If the expected response is within the confidence
intervals of the current signal injection response data, the model remains valid. If the expected
response falls outside the confidence intervals for the response of the sensor to the signal injection,
the model is determined to be invalid and the model is discarded 616. The valid models are used to
evaluate incoming sensor data.

The process is iterated by checking for models of sensor response that have not yet been
tested against the current database of sensor response to signal injections in step 618. This may be

determined, for example, by having a time-stamp for both the last time the database was updated and
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the last time the model was updated, and checking the model update timestamps against the database
update timestamp. When all models are current, the process ends 620. |

The updated sensor model or models may then be used to interpret sensor results, improving
the capability of the sensor to detect and report various states of the world or events through the
falsification of incorrect aspects of the sensor response model or models. This updated sensor
model can be used to trigger responses such as alarms for particular leak severities on gas grids, or
deviations in power quality or drops in voltage requiring remedial actions on electrical grids. The
updated sensor model is generated with the sensor already placed in the field, allowing automatic
calibration of the sensor and adjustment to its local environment and baseline conditions, improving
the accuracy and reliability of sensor readings and refining its ability to inform grid operators of
particular grid conditions.

Fig. 2 shows one particular example of a utility grid, its associated sensors, and the reach of
several signal injections that are made to the grid at close to the same time to illustrate the
association of data from different sensors with different signal injections across a grid where there
are multiple concurrent signal injections, maximizing the efficiency of such in-situ, automatic
calibration without compromising the accuracy of a particular calibration due to confounds from
signal injections that overlap in time and space. The utility grid 200 is a set of lines connecting
sources of a utility (e.g. electricity, gas, or water) with various utility consumers. The sensor
network includes sensors which are situated at locations 202, 204, 206, 208 and 210. Signal
injections are made at locations 212, 214, and 216. The signal injection at 212 has a spatial reach
represented by the reach area 218. The signal injection at 214 has a spatial reach represented by the
reach area 220. The signal injection at 216 has a spatial reach represented by reach area 222. The
spatial reach areas 218, 220, and 222 do not overlap, ensuring that the signal injections do not
confound one another despite being deployed during the same time. The spatial reach areas 218,
220, and 222 all differ in size; this may result from differences in the nature (e.g. bringing a source
online vs. switching selection of carrier lines in an electrical grid) or magnitude of the signal
injection (e.g. the increase in pressure in psi of a signal injection to a gas grid), or of the predicted
reach of the effects based on differences in the grid around the particular location of the signal
injection (e.g. the volume of water lines branching from a particular node where flow is being
increased in a water grid). The sensor at sensor location 202, being located in spatial reach area 218,
has its sensor data collected during the temporal reach of signal injection 212 associated with that
signal injection 212. The sensors at sensor locations 204 and 206, being located in spatial reach area
220, have the sensor data collected at those sensors during the temporal reach of signal injection 214
associated with that signal injection 214. The sensor located at sensor location 208, being located in
spatial reach area 222, has its sensor data collected during the temporal reach of signal injection 216
associated with that signal injection 216. The sensor located at sensor location 210, lying outside all

of the spatial reach areas during this period, does not have data associated with any of the signal
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injections 212, 214, or 216. These associations of data may then be used to update models of sensor
response and grid conditions in accordance with step 110 of the method, enabling the sensors to be
automatically calibrated in their locations on the grid, and refining the ability of those sensors to
detect and report events or world states.

Fig. 3 is a diagram of an embodiment of the invention as a coordinated utility grid system.
Memories may be known computer storage means such as flash memory, hard disk drives using
magnetic media, or other methods for data storage that can store the data and be accessed frequently
and regularly. Processors may be configured to make the calculations through software instructions.
Connections among the components may be hard-wired, use of common processors for multiple
steps, or networked through wired or wireless means such as the various 802.11 protocols, ZigBee
or Bluetooth standards, Ethernet, or other known means for transmitting data among the separate
sensors, processors, memories and modules. The sensors, memories, processors, and modules may
be distributed across locations, including at the sensors themselves, or co-located in intermediate or
central locations.

The signal injection memory 300 is a memory configured to store signal injection
characteristics, including the time, location, and nature of signal injections to be made on the grid.
The nature of the signal injection is the changes made to the grid conditions to effect the signal
injection, such as the particular valves actuated in a water or gas grid, for example. Where the
action may have variable magnitude, such as the amount of power supplied to the electrical grid by a
turbine, the magnitude is also included in the data stored in this memory. The time and location are
the time and location of the particular actions identified in the nature of the injection.

The grid characteristic memory 302 stores data on the grid components and their layout and
connections, and the locations of sensors along the utility grid. This data may be stored in a number
of forms, such as models of the grid including graphical, stochastic, or Markov chain models of grid
component behavior, or databases of components, their locations, connections and/or their basic
response characteristics.

The reach processor 304 is a processor configured to compute spatial and temporal reaches
using signal injection and grid characteristic data, and optionally may also use historical data on past
signal injections to compute these reaches by predicting the space and time where a signal injection
is likely to impact sensor readings, by processing variables concerning the signal injection such as
its nature, magnitude, and location, and the grid characteristics and past responses. The reach
processor 304 preferably applies a Bayesian Causal Network to compute the reaches from signal
injection and utility grid properties that are received as inputs.

The sensor network 306 is a plurality of sensors, the network sensors 314, 316, and 318,
which are situated at various positions along the utility grid. These sensors may be on, in, or near
the utility grid they monitor, and may monitor properties of the grid, the utility itself, or the effects

of the utility grid on surrounding conditions. For example, on gas grids, the sensor network may
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include pressure sensors inside gas lines and/or methane sensors situated near gas lines. On water
grids, sensors may be, for example, flow sensors inside pipes on the line. On electrical grids, the
sensors may be, for example, sensored cable terminations, smart meters, voltage meters located at
substations, line sag meters, and/or line temperature sensors. The sensors output electrical wave-
forms based on their transduction of the sensed variable. These sensors may be networked with one
another, and are networked with the other components of the system; this may be through a variety
of known wired and/or wireless means for communication of signals among devices.

Association processor 308 parses sensor data by the time and location of the sensor outputs
and the temporal and spatial reaches of the signal injection. The processor receives information on
the time and location of signal injections into the grid, and the temporal and spatial reaches of the
signal injection. This data creates periods of time and space which are used to parse sensor output
data by time and location of the sensor reading to ensure that the output of sensor network 306 at
particular times and locations is associated with the proper signal injections to ensure that models of
the sensor response can be accurately and efficiently updated using unconfounded data regarding
response to known signal injections.

Model Memory 310 is a memory storing the characterization and/or classification models
currently used by the grid to evaluate the sensor outputs. These models may be classifiers,
probability estimates, or functions, which may be used to process sensor outputs. Multiple such
models may be stored for each characterization or classification of data from sensors on the network,
as the system tests and falsifies various models to converge on the best model or models for
understanding sensor outputs through the systematic implementation of signal injections to test these
models. These models also may be accessed and used to interpret sensor data to detect events or
characterize conditions on a utility grid, for example by classifying sensor outputs as indicative or
not indicative of a particular event, or using the model to convert a sensor output into measurements
of a sensed metric.

Model update processor 312 is a processor configured to receive a current set of
characterization and/or classification models and compute and implement updates to those models
based on received sensor outputs and conditions associated with those outputs. One example of the
model update processor 312°s function is receiving sensor outputs associated with a signal injection,
receiving the nature and magnitude of the signal injection, and the current models of sensor
response, predicting sensor responses to the signal injection using the models of sensor response,
and comparing the predicted responses with the actual sensor data from the signal injection, and,
using a Partially Observable Markov Decision Process, adjusting belief states by, for example,
rejecting models whose predictions deviate from the actual measured value by more than an error
threshold amount. Updated models may be sent back to the Model Memory 310, where they may be

used to interpret sensor outputs to detect events or characterize conditions along a utility grid.
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Fig. 4 is a data flow diagram showing the exchange of information among the components
of an embodiment of the invention as a coordinated utility grid system. Signal injection
characteristics 400 are the magnitude, nature, and the time and location at which a signal injection is
introduced into the utility grid. This data is stored in signal injection memory 402. The data is
transferred from the signal injection memory 402 to the reach processor 404 to be used in computing
the reach data 412, and is transferred from the signal injection memory 402 to the model update
processor 406 where it is used to generate predictions in the current models that are subsequently
used to falsify some of those models. The signal injection characteristics 400 may optionally be
provided to the association processor 408, which may use the data to parse sensor data 418 and
associate it with particular signal injections.

Grid information 410 is the layout of the grid and its components, and may optionally
include historical data on grid states and responses to prior signal injections. The grid information
410 is stored in grid memory 412. The grid information 410 is transferred from the grid memory 412
to the reach processor 404, where the grid information is used to predict the spatial and temporal
reaches 414 of signal injections. The grid information 410 may also be provided to the association
processor 408 to match sensors to their locations to enable parsing of sensor data 418. Grid
information 410 may also optionally be provided to the model update processor to be used in
predicting responses to signal injections, to validate the models against the collected sensor data
418.

Reach data 414 is the regions of space and time that are predicted to be impacted by a
particular signal injection. The reach data 414 is computed by reach processor 404, using the signal
injection characteristics 400 and the grid information 410 to predict the regions of time and space
impacted by the signal injection; the reach data may just be the size of the regions of time and space,
or may also incorporate the times and locations of the signal injection to contain concrete areas of
space and durations of time that are impacted by the signal injection. The reach data 414 is
transmitted used by association processor 408 to establish the periods of time and locations at which
sensor data 418 was collected that may be associated with signal injections, the association
processor parsing the sensor data 418 to generate the associated sensor data 422 based on when and
where the sensor data was collected in comparison to the signal injection and its reach data 414.

Sensor data 418 is raw outputs from the sensors 420 themselves, typically electrical
waveforms output from a transducer; this data is typically generated continuously by the sensors
420. Alternatively, the sensor data 418 may be taken at discrete sampling periods, or may be stored
locally at memories at the sensor or near a cluster of sensors, and pulled down from the sensors at
particular times. The sensor data 418 is used by the association processor 408 to produce the
associated sensor data 422.

The associated sensor data 422 is output from the association processor 408, which

generates it by parsing the sensor data 418 by the reach factors 412 to associate the sensor data 418
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with particular signal injections. The associated sensor data 422 output by the association processor
408 is transferred to the model update processor 424 where it is used to update belief states
concerning sensor response models 426 that may characterize or classify sensor data.

Sensor response models 426 are various models that map the sensor data 418 to particular
states, conditions, or events occurring at the sensors 420. These models may take the form of
models that convert the sensor output to a level of a measured variable, or may be classifiers or
probability estimates that map the sensor output or combinations of outputs to particular events
happening across the grid, either indicating the presence or the likelihood of such an event. These
models are stored in the sensor response model memory 428, and in systems of the invention, the
sensor response models 426 are transferred from the model memory 428 to the model update
processor 406, where the response models are updated or falsified based on associated sensor data
422 attributable to particular signal injections; the updated sensor response models 430 are
transferred back from the model update processor 406 to the sensor response model memory 428.
Updating the sensor response models allows for calibration of the sensors in-situ and improves the
understanding of sensor outputs, improving the event detection and world state monitoring provided
by the sensors of the sensor network through iteratively falsifying incorrect models of sensor
response to world events of interest to utility operators, such as alerts for various conditions such as
leaks and brownouts, or to remove noise from data, such as that used for process optimization
efforts such as adjusting flow rates or controlling reactive power levels to support transmission
while minimizing waste.

A simple example of an overall architecture involving an example embodiment of the
invention is presented in Fig. 7. The control decision layer 700 makes decisions about the states for
some or all gird controls. Grid control decisions are made according to methods ensuring that the
manipulation of controls creates samples that do not influence one another, and optionally selecting
the control decisions to provide high learning value or to improve particular grid parameters such as
ensuring certain voltage levels in electrical grids, or flow rates in gas or water grids. The control
decisions from the control decision layer 700 are carried out by the controls 702, 704, and 706.
Examples of particular controls include capacitor bank switches, load tap changers, switches and
storage devices on electrical grids, or valves and sources on water and gas grids. The controls may
carry out the control decisions by, for example, actuating switches, moving load tap changer
positions, and narrowing or widening valves. The actions of the controls change grid parameters,
and those changes propagate through the grid 708. For example, opening a valve on a gas grid may
cause pressures to increase downstream over time, within a certain distance from the valve, or in an
electrical grid, power quality and reactive power levels may change based on the switching on or off
of a capacitor bank. Sensors 714, 716, and 718 placed along the grid measure grid parameters, and
detect the propagation of the signal injection through the grid 708. The signal injections are limited
in the extent to which they propagate through the grid 708, defined as the spatial reach of that signal
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injection such as the spatial reach 710 outlining the region affected by the signal injected by control
702 and including the connection of sensor 714 to the grid 708, and spatial reach 712 outlining the
region affected by the signal injected by control 706 and including the connection of sensor 718 to
grid 708. Data processing layer 720 associates the data from sensors 714, 716, and 718 with signal
injections whose spatial and temporal reaches include the sensor data, for example associating data
from sensor 714 with data from a signal injection implemented by control 702 based on spatial reach
710, and associating data from sensor 718 with a signal injection implemented by control 706 based
on spatial reach 712. The associated sensor data from the data processing layer 720 is then analyzed
by the data analysis layer 722 to determine understandings about grid behavior and sensor response.
This understanding of grid behavior generated by the data analysis layer 722 may, for example, take
the form of sensor response models which are used to interpret the outputs from grid sensors 714,
716, and 718 during ordinary operations, for example to set thresholds or alerts for brownout
conditions when voltage drops in an electrical line, or setting an alert for methane levels crossing
normal operational thresholds. The data analysis layer 722 may interface with the control decision
layer 700 to iteratively coordinate and implement signal injections into the grid and provide
information that improves the selection of signal injections to implement, for example by predicting
the effects of a signal injection on the grid or computing the extent to which learning may be refined

by a particular signal injection.
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What is claimed is:

2.

A method for determining the effects of a signal injection on a sensor response, comprising:
implementing a signal injection on a utility grid
receiving sensor data
receiving a spatial reach for the signal injection
receiving a temporal reach for the signal injection
associating, using a processor, the sensor data within the spatial reach and within

the temporal reach with the signal injection.

The method of claim 1, further comprising updating a model of sensor response based on

the associated sensor data and the signal injection.

3.

The method of claim 2, wherein updating a model of sensor response comprises:

predicting the sensor response to the signal injection using models of sensor response

comparing the associated data to the predicted sensor response

falsifying models of sensor response where the predicted sensor response deviates from the

associated data.

4.

S.

The method of claim 2, wherein updating a model of sensor response comprises:
updating a database of sensor response to signal injections with the associated
sensor data
computing, based on the updated database of sensor response to signal injections,
relationship between sensor response and a grid parameter affected by the signal

injection.

The method of claim 2, wherein updating a model of sensor response includes removing

data from the model based on the age of the data and an inclusion period.

The method of claim 2, wherein the model of sensor response is an alert threshold.

The method of claim 2, wherein the model of sensor response is a classifier

The method of claim 1, wherein the sensor data are electrical measurements.

The method of claim 1, wherein the sensor data are methane concentration measurements.
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10.

11.

12.

The method of claim 1, wherein the signal injection is a change in state of a grid control.

The method of claim 1, further comprising:
implementing a second signal injection on the utility grid
receiving a second spatial reach for a second signal injection
receiving a second temporal reach for a second signal injection
associating sensor data within the second spatial reach and within the second

temporal reach with the second signal injection.

The method of claim 11, wherein the first signal injection and the second signal injection are

implemented concurrently.

13.

The method of claim 1, wherein the spatial reach is computed based on a database of grid

response to previous signal injections.

14.

15.

The method of claim 1, wherein the temporal reach is computed based on a database of grid

response to previous signal injections.

A system for associating sensor data with particular signal injections into a utility grid,

comprising:

a plurality of utility grid controls

a plurality of sensors

a sensor data memory configured to receive and store sensor data

a spatial reach memory configured to receive and store spatial reaches for signal injections

a temporal reach memory configured to receive and store temporal reaches for signal

injections

an association processor configured to associate data with signal injections based on the

spatial and temporal reaches of the signal injections.

16.

The system of claim 15, further comprising:

a memory configured to store a database of previous grid responses to signal
injections

a spatial reach processor configured to compute the spatial reach of a signal
injection based on the database of previous grid responses to signal injections

a temporal reach processor configured to compute the temporal reach of a signal

injection based on the database of previous grid responses to signal injections.
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17. The system of claim 15, further comprising:
a memory configured to store models of sensor response
a processor configured to update models of sensor response using associated sensor

data.
18. The system of claim 17, wherein the processor is configured to update models of sensor
response by comparing the outputs of models of sensor response to data associated with signal
injections and falsifying at least some of the models of sensor response.

19. The system of claim 15, wherein the sensors are located along a utility grid.

20. The system of claim 15, wherein the association processor is configured to compare time

and location metadata of the sensor data with the spatial and temporal reach of the signal injection.
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