A litter and litter making method producing animal litter from a carbohydrate starch-containing cereal grain admixture extruded from an extruder forming self-clumping pellets having a clumping agent formed during extrusion composed at least in part of carbohydrate polymer binder. Each self-clumping litter pellet is extruded under conditions that cause formation of carbohydrate polymer binder clumping agent at least some of which is water soluble. One method of extruding litter pellets causes starch dextrinization such that at least some of the clumping agent in each pellet is formed of dextrin. Each pellet can be coated such as with a smectite like bentonite. During use, clumping agent in a pellet wetted with urine dissolves and flows in between and along adjacent pellets causing them to self-clump.
METHOD OF MAKING EXTRUDED SELF-CLUMPING ANIMAL LETTER

FIELD

[0001] The present invention is directed to animal litter and more particularly to animal litter having a clumping agent produced during extrusion that self-clumps the litter during use and a method of making extruded self-clumping animal litter having a clumping agent produced during extrusion.

BACKGROUND

[0002] While attempts have been made in the past to produce a lighter, more natural, and even biodegradable animal litter, improvements nonetheless remain desirable. Conventional granular clay-based and gel-based litters are relatively heavy, cost a considerable amount of money to ship, and are often a burden for purchasers to carry. While many so-called natural animal litters have been introduced into the marketplace, they can be nearly as heavy as conventional litter, typically absorb far less urine than conventional litter, can produce their own unpleasant odor, and many times do not clump well, if they even clump at all. As a result, such so-called natural animal litters have struggled to achieve significant commercial success.

SUMMARY

[0003] The present invention is directed to granular pet or animal litter that is particularly well suited for use as cat litter, which is formed of litter grains or granules comprised of extruded starch-containing pellets that each have a plurality of pairs of internal voids that aid liquid absorption and which have an outer surface that can be porous having a plurality of pores and which includes a water soluble carbohydrate polymer binder formed during extrusion that functions as a clumping agent to clump adjacent pellets together when wetted with liquid. The pellets produce granular litter having a bulk density that is at least 40% less than the bulk density of conventional clay-based cat litters and weighs no more than half the weight of conventional clay-based cat litter for a given volume. The pellets have a starch content of at least 40% by weight such that the combination of pores, voids and starch grains work synergistically to produce a lightweight animal litter that has an absorptive capacity for absorbing urine, moisture from fecal matter, water and other liquids substantially at least as great as conventional
clay-based cat litter on a per weight basis and possesses at least 70% the absorptive capacity of conventional clay-based cat litter on a per volume basis.

[0004] Each pellet has a clumping agent produced during gelatinization and/or extrusion of a high-carbohydrate admixture containing at least 45% carbohydrates by weight where at least some of the starch present is converted during gelatinization and/or extrusion from a single screw or twin screw extruder into a clumping agent in the form of a carbohydrate polymer binder that can include or be composed of water-soluble carbohydrate polymer binder, such as dextrin. In one pellet embodiment, each pellet is formed of a high-starch admixture containing at least 45% starch by weight that produces a sufficient amount of a carbohydrate polymer binder clumping agent in each pellet during extrusion, which preferably is water soluble, which enables at least some binder to dissolve in urine, moisture from fecal matter, water or another liquid during wetting of a pellet that flows along the pellet in between one or more adjacent pellets at least loosely binding adjacent pellets self-clumping a plurality of pairs of the pellets, i.e., at least three of the pellets, together.

[0005] Each pellet is round, oblong, e.g., generally cylindrical, generally disc-shaped, generally scalloped, or generally half-moon shaped, and is formed of natural or plant based constituents producing litter pellets that can be of biodegradable composition. Each pellet has a width or diameter ranging between 0.2 millimeters and 10 millimeters, a length ranging between 0.2 millimeters and 10 millimeters, and a thickness of at least 0.1 millimeters enabling a plurality of pairs of rows and a plurality of pairs of columns of litter pellets a plurality of pairs of layers deep to be used in a litter box defining litter grains of a similar size and shape to that of conventional clay-based litter.

[0006] Each pellet can be extruded with a treatment added, mixed or otherwise blended with an admixture from which the pellet is extruded with such a treatment being in the form of one or more of an odor inhibitor, a urea degradation inhibitor, a urease formation inhibitor, a bacterial inhibitor, a fungal growth inhibitor, a yeast growth inhibitor, an antiparasitic treatment, an antiviral, a scent, a fragrance, or another treatment before extrusion. Each pellet can also be treated after extrusion with one of more of the aforementioned treatments such as by dusting, misting, spraying, agglomerating, plating, coating or otherwise applying one or more such treatments to or onto each pellet. If
desired, each pellet can be extruded with at least one treatment added to the admixture and thereafter be treated with at least one other treatment after extrusion imparting to each pellet at least a plurality of an odor inhibitor, a urea degradation inhibitor, a urease formation inhibitor, a bacterial inhibitor, a fungal growth inhibitor, a yeast growth inhibitor, an anti-parasitic treatment, an antiviral, and a scent, a fragrance.

[0007] Each pellet can be coated with a coating that increases pellet crush strength, imparts each pellet with an appearance, texture and feel similar to or substantially the same as conventional clay-based litter granules, forms a shell around each pellet having a hardness greater than that of the pellet, substantially completely encapsulates each pellet, and/or complements the pellet by giving the pellet one or more absorptive, odor control, antibacterial, antifungal, anti-yeast, antiviral, anti-parasitic or other properties not already present in the pellet. In one coating embodiment, the coating includes an absorbent material, such as a smectite like bentonite clay, such as sodium Bentonite. Such a coating can be applied in a manner that coats each pellet with a coating substantially completely encapsulating the pellet that is between 0.02 millimeter and 1 millimeter thick and preferably is at least 0.1 millimeter thick. Such a coating embodiment can further include or instead be composed of a zeolite, sodium bicarbonate and/or calcium bicarbonate, along with silica, e.g., crystalline silica, that is applied in a manner that coats each pellet with a coating having at least 70% by coating weight of the smectite that is between 0.02 millimeter and 1 millimeter thick and preferably is at least 0.1 millimeter thick.

[0008] The pellets are made from a relatively high starch admixture having a relatively low moisture content of less than 20% by weight, and preferably less than 15% by weight, when gelatinized and extruded by a single screw extruder under a relatively high extruder pressure of at least 800 pounds per square inch (psi) and an extruder temperature of at least 135° Celsius (at least about 275° Fahrenheit) that produces carbohydrate polymer binder clumping agent during extrusion enabling the pellets to self-clump when wetted with urine, moisture from fecal matter, water or another liquid. In one method of making litter pellets in accordance with the invention, the high starch admixture is gelatinized and extruded at a pressure of at least 900 psi, preferably between 900-1500 psi, and at a temperature of at least 140° Celsius (at least about 284° Fahrenheit),
preferably between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit).

[0009] When extruded under such conditions, starch carbohydrate polymer binder formation can and preferably does occur that can include starch dextrinization forming at least 0.5% by weight of each extruded pellet of a water soluble carbohydrate polymer binder clumping agent that preferably is or includes dextrin. In one litter pellet making method, adiabatic extrusion occurs under such extrusion conditions and extruder operating parameters causing starch dextrinization to occur during extrusion forming a sufficient amount of dextrin in each pellet greater than 0.1% of pellet weight that functions as a clumping agent during pet or animal litter use such that wetted pellets self-clump when wet. In one such method, extrusion under such conditions produces between 0.1% and 10% carbohydrate polymer binder clumping agent that can be partially or substantially completely composed of dextrin.

[0010] One admixture is formed of at least 50% by dry mixture weight of a high carbohydrate cereal grain having a carbohydrate content of at least 45% of cereal grain weight that also is of high starch content having a starch content of at least 45%. Suitable cereal grains used in making the admixture include one or more of corn or maize, rice, wheat, triticale, amaranth, and/or sorghum. In one admixture embodiment, one or more whole grains of one or more types of cereal grains are used in the admixture. In another admixture embodiment, one or more types of cereal grains are used in the admixture with each cereal grain being particle size reduced or comminuted in grit, meal, starch, or flour form.

[0011] In one admixture embodiment, the admixture is formed of or includes sorghum in an amount of at least 30% of dry admixture weight. In another admixture embodiment, the admixture is formed of or includes sorghum in an amount of at least 70% of dry admixture weight. In still another, the admixture is formed of or includes sorghum in an amount of at least 95% of dry admixture weight with another such admixture embodiment being substantially completely formed of sorghum. In such sorghum-containing admixture embodiments, the sorghum of the admixture can be provided by whole grains of sorghum that is extruded without first being particle size reduced.
[0012] The admixture can include cellulosic material in an amount of no more than 50% of dry admixture weight having a cellulose content of at least 20% by cellulosic material weight. In at least one admixture, no cellulosic material is used with at least 80% of the dry admixture formed of one or more types of cereal grains. Such an admixture formed of the one or more types of cereal grains can be made of whole grains and/or particle size reduced or comminuted grains mixed or blended together in a mixer or blender to which water can be added, such as to activate one or more of the cereal grains and/or constituent(s) of the grains including one or more of starch(es), sugar(s), protein(s), and/or the like. Water can also be added to the admixture in the extruder including during gelatinization of the admixture if desired.

[0013] The gelatinized admixture is extruded from the extruder at pressures and temperatures in accordance with that discussed above forming carbohydrate polymer binder clumping agent in each pellet sufficient to self-clump, producing a plurality of pairs of pairs of pellets per second and preferably producing at least 150 -200 pounds of such pellets per hour. An extruder particularly well suited for producing such pellets at a desired minimum pound per hour rate at a desired consistency and uniformity is a single screw extruder equipped with a compression screw or a screw having one or more compressor sections or zones that can help keep extrusion pressures and temperatures relatively constant within a desired one of the aforementioned pressure and/or temperature range(s).

[0014] Such extruder operating conditions and parameters not only form pellets containing carbohydrate polymer binder clumping agent in an amount sufficient to produce self-clumping pellets, but which also cause each pellet to expand or puff like puffed rice or popcorn during and/or after extrusion. Depending on the pellet density desired, a post-extrusion pellet expansion or puffing control step can be performed immediately after extrusion that limits post-extrusion expansion or puffing and which can positively impact starch re-crystallization and/or retrogradation. Where such a post-extrusion pellet expansion or puffing control step is performed, pellets exiting the extruder are held, such as in a container or on a sheet, allowing between 5 pound and 50 pounds of extruded pellets to be gathered together in contact with one another for a
period of between 5 minutes and 45 minutes before the expansion or puffing stabilized pellets are transferred.

[0015] The pellets can be treated or coated right after extrusion or after post-extrusion expansion or puffing stabilization is performed which such a step between extrusion and post-extrusion treatment and/or coating is desired or needed. Where the pellets are treated after extrusion, the treatment can be applied to the pellets before and/or during an agglomeration, plating or coating step where each pellet is coated with a coating such as the smectite, e.g., bentonite, coating discussed above. Where a post-extrusion treatment step is performed, one or more of an odor inhibitor, a urea degradation inhibitor, a urease formation inhibitor, a bacterial inhibitor, a fungal growth inhibitor, a yeast growth inhibitor, an anti-parasitic treatment, an antiviral, a scent, a fragrance, or another treatment can be applied directly to the pellets, such as by dusting, misting, spraying, coating or the like. Such a post-extrusion treatment step can be performed while the pellets are in an agglomerator, coating tumbler, coater, or the like that can agitate and/or move the pellets during application of the one or more treatments.

[0016] Where performed as part of the coating step, the one or more treatments can be mixed, entrained, and/or dissolved in a liquid that can also contain one or more constituents of the coating and/or which can be used to wet, tackify, or otherwise increase coating adherence during the coating step. The coating step is performed in one or more agglomeration, plating devices, and/or coating tumblers until the pellets are desirably coated. If desired, more than coating step can be performed to coat each pellet with a plurality of layers of coating.

[0017] If desired, one or more drying steps can be performed after extrusion and/or after coating. One or more of the aforementioned stabilization steps can also be performed, where uncoated and/or coated pellets are held at a desired temperature and/or humidity for a desired period of time. In one stabilization step, pellets fall from the extruder into a container or onto a sheet where the pellets are held in contact with one another for either a predetermined period of time or time range or until the pellets cool to a predetermined temperature or until their temperature is within a predetermined temperature range before the pellets are transferred for additional post-extrusion processing, like treatment, coating, drying and/or packaging.
The pellets, whether coated or uncoated, are packaged for shipment and retail sale in bags, containers, boxes, or the like that can be air-tightly sealed along with one or more packets of a desiccant where it is desired to maintain the packaged litter pellets at or below a desired moisture level during shipment, storage and prior to consumer use. If desired, one or more packets of a humectant can be packaged with the pellets in addition to or instead of desiccant packets where it is desired to maintain the packaged litter pellets at or above a desired moisture level during shipment, storage and prior to consumer use. Such packets help maintain pellet absorbency and performance for an extended period of time and can help extend shelf life by slowing or stopping starch re-crystallization and/or retrogradation.

In one method of making animal litter, one such admixture that includes starch is gelatinized in an extruder under sufficient pressure and temperature to cause a litter clumping agent to form in each pellet that includes a carbohydrate polymer binder formed of at least some of the starch in the admixture during extrusion from the extruder producing a plurality of extruded litter pellets having a bulk density no greater than 0.7 grams per cubic centimeter having carbohydrate polymer binder clumping agent sufficient for a plurality of pairs of adjacent pellets to self-clump when wetted. In one such method, the carbohydrate polymer binder clumping agent formed in each pellet during extrusion is water soluble. In one such method, at least part, if not all, of the carbohydrate polymer binder clumping agent includes or is formed of dextrin.

During operation of a single screw or twin screw extruder in carrying out one such method of making litter, the admixture has a moisture content low enough and the extruder operates at an extrusion pressure and temperature high enough to dextrinize starch in the admixture during at least one of gelatinization and extrusion of the admixture in the extruder forming dextrin in each litter pellet extruded from the extruder. In one implementation of the method, the admixture has a moisture content of no more than 20% by total wet admixture weight and the extruder extrudes the plurality of pairs of litter pellets at an extrusion pressure of at least 800 pounds per square inch and at extrusion temperature of at least 135° Celsius. Under such extruder operating conditions, the extruder operates under adiabatic extruder operating conditions during extruding the
plurality of litter pellets such that carbohydrate polymer binder is formed in each extruded pellet that includes at least some dextrin in each pellet.

[0021] One such method of making litter produces litter pellets each having at least 0.1% dextrin by weight. Another such method produces litter pellets each having at least 1% dextrin by weight. Still another such method produces litter pellets each having between 0.1% and 5% dextrin by weight. Another such method produces litter pellets each having between 1% and 10% dextrin by weight.

[0022] One admixture well suited for use with a method of making of making litter has at least one cereal grain with a high carbohydrate content of at least 45% by cereal grain weight. Such an admixture can be formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 45% by cereal grain weight. When extruded in accordance with a method of making litter of the present invention, each one of the plurality of litter pellets produced has at least 0.5% of carbohydrate polymer clumping agent by uncoated pellet weight and preferably between 1% and 10% carbohydrate polymer clumping agent with at least some of the carbohydrate polymer clumping agent being water soluble.

[0023] One such admixture has a moisture content of no more than about 20% by admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 600 pounds per square inch and at extrusion temperature of at least 135° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Such an admixture can also include between 5% and 30% sorghum by dry admixture weight. Each pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

[0024] Another admixture that produces extruded litter pellets having at least 1% carbohydrate polymer binder clumping agent by pellet weight and preferably between 1%
and 25% carbohydrate polymer binder clumping agent by pellet weight has a moisture content of no more than about 20% of admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 800 pounds per square inch and at extrusion temperature of at least 135° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least one of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Such an admixture can also include between 5% and 30% sorghum by dry admixture weight. Each litter pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

[0025] Another admixture that produces extruded litter pellets having at least 1% carbohydrate polymer binder clumping agent by pellet weight and preferably between 1% and 25% carbohydrate polymer binder clumping agent by pellet weight has a moisture content of no more than about 18% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 900 pounds per square inch and at extrusion temperature of at least 140° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least one of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Such an admixture can also include between 5% and 30% sorghum by dry admixture weight. Each pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

[0026] Still another admixture that produces extruded pellets having at least 1% carbohydrate polymer binder clumping agent by pellet weight and preferably between 1% and 25% carbohydrate polymer binder clumping agent by pellet weight has a moisture
content of no more than about 20% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 900 pounds per square inch and at extrusion temperature of at least 140° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% sorghum by dry admixture weight (before any water is added to the admixture) with suitable sources of sorghum including at least of one whole grain white or red sorghum, white or red sorghum grits, white or red sorghum meal, white or red sorghum flour, and white or red sorghum starch and which can include a blend or mixture of more than one of sorghum grain, sorghum grits, sorghum meal, sorghum flour and sorghum starch. Such an admixture can also include between 5% and 30% corn by dry admixture weight that can be formed of particle sized reduced corn, such as in the form of corn grits, corn meal, corn flour and corn starch. Each pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

[0027] In a method of making litter, the extruder extrudes pellets having at least 1% of the carbohydrate polymer binder clumping agent by pellet weight at an extrusion pressure of between 900 pounds per square inch and 1,200 pounds per square inch and at an extrusion temperature of between 140° Celsius and 165° Celsius. Such a method produces pellets with at least some of the carbohydrate polymer binder clumping agent being water soluble. One dry admixture for use in an extruder under such extruder operating conditions has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Such an admixture can also include between 5% and 30% sorghum by dry admixture weight. Each pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

[0028] In another method of making the litter, the extruder extrudes pellets at an extrusion pressure of at least 900 pounds per square inch and preferably between 900 pounds per square inch and 1,200 pounds per square inch and at an extrusion temperature of at least 140° Celsius and preferably between 140° Celsius and 165° Celsius producing
litter pellets each having at least some carbohydrate polymer binder clumping agent with at least some of the carbohydrate polymer binder clumping agent being water soluble and which can be formed of water soluble dextrin. One dry admixture for use in an extruder under such extruder operating conditions has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Such an admixture can also include between 5% and 30% sorghum by dry admixture weight. Each pellet can have a smectite-containing coating that can be formed of bentonite.

[0029] In another method of making litter, the extruder extrudes pellets at an extrusion pressure of at least 900 pounds per square inch and preferably somewhere between 900 pounds per square inch and 1,500 pounds per square inch and at an extrusion temperature of at least 140° Celsius and preferably somewhere between 140° Celsius and 165° Celsius causing starch dextrinization to occur during one of gelatinizing and extruding of the litter pellets forming at least some dextrin in each extruded litter pellet. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. Suitable sources of the cereal grain include at least one of a cereal grain grits, a cereal grain meal, a cereal grain flour and a cereal grain starch and which can include a blend or mixture of more than one of grits, meal, flour and starch. One such method of making litter produces pellets each having at least 0.1% dextrin by pellet weight. Another such method produces litter pellets each having at least 1% dextrin by weight. Still another such method produces pellets each having between 0.1% and 5% dextrin by pellet weight. Another such method produces pellets each having between 2% and 15% dextrin by weight. Each litter pellet can have a smectite-containing coating that can be formed of bentonite.

[0030] In still another method of making litter, an extruder extrudes pellets at an extrusion pressure of at least 900 pounds per square inch and preferably between 900 pounds per square inch and 2,000 pounds per square inch and at an extrusion temperature of at least 140° Celsius and preferably between 140° Celsius and 165° Celsius producing litter pellets each having at least some carbohydrate polymer binder clumping agent with
at least some of the carbohydrate polymer binder clumping agent being water soluble and which can be formed of water soluble dextrin. One dry admixture for use in an extruder under such extruder operating conditions has at least 70% sorghum by dry admixture weight (before any water is added to the admixture) with suitable sources of sorghum including at least one of whole grain red or white sorghum, red or white sorghum meal, red or white sorghum flour and red or white sorghum starch and which can include a blend or mixture of more than one of red and white sorghum grain, grits, meal, flour and starch. Such an admixture can also include between 5% and 30% corn by dry admixture weight. Each pellet can have a smectite-containing coating that can be formed of bentonite.

These and other objects, features and advantages of this invention will become apparent from the following detailed description of the invention and accompanying drawings.

DETAILED DESCRIPTION

LITTER PELLET EMBODIMENTS

The present invention is directed to a method of making a starch based litter by extrusion and high starch granules or pellets (hereinafter "pellets") produced by extrusion that are well suited for use as animal litter. The pellets can be used by themselves as litter or can be subjected to one or more treatment steps after extrusion including one or more post-extrusion treatment steps that applies a coating to the pellets. The litter pellets are extruded from a high-carbohydrate admixture having at least 45% carbohydrates by pellet weight and a relatively low moisture content of less than 15% by pellet weight producing pellets each having a water-soluble carbohydrate polymer binder disposed about their outer surface that can form at least part of the outer surface of each pellet that reacts to water and urine by dissolving and promoting pellet clumping thereby adhesively bonding adjacent pellets together such that the pellets are self-clumping when wetted. An admixture from which litter pellets in accordance with the present invention are extruded is a high starch admixture having at least having at least 45% starch by admixture weight and a relatively low moisture content of less than 20% by admixture weight producing extruded pellets each having a water-soluble carbohydrate polymer binder at least some of which is disposed about the outer surface of each pellet that can form at least part of
the outer surface of each pellet that reacts to water and urine by dissolving and promoting pellet clumping by adhesively bonding adjacent pellets together. In one post-extrusion pellet treatment, a water-absorptive coating that can include a smectite, such as bentonite, is applied after extrusion.

[0033] Pellets having such a composition and made from such an admixture using a method in accordance with the present invention advantageously are self-clumping in a litter box when wetted. During extrusion, water-soluble carbohydrate polymer binder produced from starch in the admixture forms in each pellet during extrusion with the binder functioning as a clumping agent when wetted by urine or another liquid during use in a litter box. When pellets in a litter box are wetted by urine, at least some of the binder in the wetted pellets dissolves and flows between adjacent pellets self-clumping them together forming a clump having at least a plurality of pairs of pellets, i.e., at least three pellets, that can easily be scooped up and removed as a clump from the litter box when cleaning the litter box.

[0034] The pellets are advantageously water absorptive or hydrophilic as the pellets relatively absorb moisture from fecal matter and urine. The pellets can also be and preferably are water expulsive in that urine absorbed by pellets can evaporate from the wetted pellets with outwardly wicking of water in the urine helping to speed drying of the pellets reducing moisture in the pellets to a moisture content low enough that bacteria, virus, fungus, and yeast formation are halted or slowed to a level that prevents formation of unpleasant odors. Starch and fiber present in each pellet advantageously functions as a biological filter adsorbing organic material, such as urea, in liquid absorbed by the pellets such that the water evaporation from a clump of pellets draws and keeps water away from urea adsorbed by the pellets slowing down the urea cycle while also advantageously preventing bacterial, fungal, yeast and viral growth. Such starch and fiber present in each pellet can also help wick water outwardly to the exterior or outer surface of each wetted pellet thereby helping to speed drying of each wetted pellet. As a result, odor formation is reduced if not substantially completely prevented.

[0035] Each one of a plurality of pairs of pellets produced by extrusion in accordance with the present invention can be generally circular or oval, can be oblong, e.g., generally cylindrical, can be disc-shaped, can be pie-shaped, can be scallop-shaped, can be half-
moon shaped, or can have another shape. Each pellet has an outer surface or skin that can be porous possessing a plurality of pairs of pores of different sizes formed therein when formed with pores. Each pellet has a plurality of pairs of internal voids, one or more of which can be in fluid-flow communication with one or more of the pores where the pellet is formed with pores. At least a portion of the outer skin of each pellet includes or is formed of a carbohydrate polymer binder formed during pellet extrusion that dissolves or goes into solution when the pellet is wetted by water, urine or another liquid. The water-solubilized binder from a wetted pellet flows in between adjacent pellets during wetting of those pellets causing at least a plurality of pairs, i.e., at least three, of the pellets to self-clump together forming a clump having at least a plurality of pairs of pellets. During wetting of the plurality of pair of pellets, water-solubilized binder from one wetted pellet mixes together with water-solubilized binder from one or more adjacent wetted pellets causing the plurality of pairs pellets to self-clump together. As water evaporates from the clump of pellets, the binder clumping the plurality of pairs of pellets together not only remains but strengthens the bond holding the clumped pellets together more firmly clumping the pellets together enabling the clump of pellets to be removed as a clump from the unbound, loose or unused pellets in a litter box surrounding the clump, such as by scooping, sifting, straining or the like.

[0036] When used for animal litter, e.g., cat litter, each pellet can be round, e.g., generally oval or oblong, e.g., generally cylindrical, can be disc-shaped, e.g., shaped like a plate or convex lens, can be half-moon shaped, can be scalloped shaped, or have another shape with each pellet having a width or diameter of between 0.2 millimeters and ten millimeters, a length no greater than about fifteen millimeters, and a thickness of at least about 0.1 millimeters. In one embodiment, a batch of at least a plurality of pairs of pellets produced in accordance with the present invention that is well suited for use as litter has at least one half of one plurality of pairs of the pellets of the batch with diameters or widths ranging from about 0.2 millimeters to about four millimeters, lengths ranging from about 0.2 millimeters to about four millimeters, and a thickness of at least about 0.1 millimeters. In another embodiment, a batch of pellets produced in accordance with the present invention that is well suited for litter has at least one half of the pellets of the batch having diameters or widths ranging from about 0.2 millimeters to about six
millimeters with lengths ranging from about one millimeter to about ten millimeters and a thickness of at least 0.1 millimeters. Such sized pellets are desirable for minimizing a pet or animal using a litter box filled with such pellets tracking pellets out of the litter box during usage. Such sized pellets are also desirable for producing a clump of pellets when wetted with a liquid, such as urine, that is wider than deep.

[0037] Each pellet is of high-starch composition having at least 45% starch by weight and being composed of at least 55% starch by weight having an amount by weight of carbohydrate polymer binder produced during gelatinization by the extruder, including during extrusion from the extruder, sufficient to solubilize and self-clump with adjacent pellets upon being wetted with water, urine or another liquid. In one embodiment, each pellet has at least 0.1% carbohydrate polymer binder and preferably at least about 0.5% carbohydrate polymer binder by uncoated untreated pellet weight that can be and preferably is distributed throughout each pellet with at least some of the carbohydrate polymer binder disposed at or along the outer surface of each pellet and which can form at least a portion of the outer surface of each pellet. In one such embodiment, each pellet has between 0.5% and 15% carbohydrate polymer binder by uncoated untreated pellet weight with at least some of the carbohydrate polymer binder disposed at or along the outer surface of each pellet enabling it to be more rapidly dissolved by water, urine or another liquid upon wetting to form a flowable liquid adhesive that flows from the pellet therealong and in between adjacent pellets helping to bind them and hence self-clump them together.

[0038] In another extruded pellet embodiment, each pellet has at least about 1.5% carbohydrate polymer binder by uncoated untreated pellet weight that can be distributed throughout the pellet but which has at least some carbohydrate polymer binder disposed at or along the outer surface of the pellet and which can form at least a portion of the outer pellet surface. In one such embodiment, each pellet has between 2% and 15% carbohydrate polymer binder by uncoated untreated pellet weight with at least some of the carbohydrate polymer binder disposed at or along the outer surface of each pellet enabling it to be dissolved by water, urine or another liquid to form a flowable liquid adhesive that flows from the pellet along the outer pellet surface including in between adjacent pellets to bind them and hence clump them together. In another such
embodiment, each pellet has between 1% and 5% carbohydrate polymer binder by uncoated untreated pellet weight. In still another such embodiment, each pellet has between 2% and 4% carbohydrate polymer binder by uncoated untreated pellet weight. In still another extruded pellet embodiment, each pellet has at least about 2% carbohydrate polymer binder by uncoated untreated pellet weight that can be distributed throughout the pellet but which has at least some carbohydrate polymer binder disposed at or along the outer surface of the pellet and which can form at least a portion of the outer pellet surface. In one such embodiment, each pellet has between 2% and 15% carbohydrate polymer binder by uncoated untreated pellet weight with at least some of the carbohydrate polymer binder disposed at or along the outer surface of each pellet enabling it to be dissolved by water, urine or another liquid to form a flowable liquid adhesive that flows from the pellet along the outer pellet surface including in between adjacent pellets to bind them and hence clump them together.

In a further extruded pellet embodiment, each pellet has at least 3% carbohydrate polymer binder by uncoated untreated pellet weight that can be distributed throughout the pellet which has at least some carbohydrate polymer binder disposed at or along the outer surface of the pellet and which can form at least a portion of the outer pellet surface. In one such embodiment, each pellet has between 3% and 15% carbohydrate polymer binder by uncoated untreated pellet weight with at least some of the carbohydrate polymer binder disposed at or along the outer surface of each pellet, including forming at least a portion of the outer pellet surface, enabling it to be dissolved by water, urine or another liquid to form a flowable liquid adhesive that flows from the pellet along the outer pellet surface including in between adjacent pellets to bind them and hence clump them together.

In another extruded pellet embodiment, the carbohydrate polymer binder is formed of starch, which preferably is or includes an amylopectin starch based carbohydrate polymer binder, at least some of which is disposed at or along the outer pellet surface such that the carbohydrate polymer binder can form or otherwise define at least a portion of the outer pellet surface. Such a pellet can have such an amylopectin starch based carbohydrate polymer binder in any of the minimum weight percentages and/or weight percentage ranges defined above.
In at least one extruded pellet embodiment, the carbohydrate polymer binder can be formed of starch, such as an amylopectin starch based carbohydrate polymer binder, but includes dextrin, such as in the form of yellow dextrin and/or white dextrin, at least some of which is disposed at or along the outer pellet surface such that the carbohydrate polymer binder can form or otherwise define at least a portion of the outer pellet surface. Such a pellet can have such a dextrin containing carbohydrate polymer binder in any of the minimum weight percentages and/or weight percentage ranges defined hereinabove and/or hereinbelow.

In still another extruded pellet embodiment, the carbohydrate polymer binder is formed substantially of dextrin, such as in the form of yellow dextrin and/or white dextrin, at least some of which is disposed at or along the outer pellet surface such that the dextrin binder can form or otherwise define at least a portion of the outer pellet surface. Such a pellet can have such dextrin binder in any of the minimum weight percentages and/or weight percentage ranges discussed hereinabove and/or hereinbelow.

Each such dextrin binder containing extruded pellet is of high-starch composition having at least 45% starch by weight and can be composed of at least 55% starch by weight having an amount by weight of dextrin produced during gelatinization by the extruder, including during extrusion from the extruder, sufficient to dissolve, flow in between adjacent pellets, and self-clump with the adjacent pellets upon being wetted with water, urine or another liquid. In one embodiment, each pellet has at least 0.1% dextrin and can have at least about 1% dextrin by uncoated untreated pellet weight that can be and preferably is distributed throughout the pellet having at least some of the dextrin disposed at or along the outer surface of the pellet forming at least a portion of the outer pellet surface. In one such embodiment, each pellet has between 0.1% and 10% dextrin by uncoated untreated pellet weight with at least some of the dextrin disposed at or along the outer surface of each pellet enabling the dextrin to be dissolved by water, urine or another liquid to form a flowable liquid adhesive that flows from the pellet therealong and in between adjacent pellets to bind them and hence clump them together thereby producing a self-clumping litter mixture. In another such embodiment, each pellet has between 1% and 5% dextrin by uncoated untreated pellet weight with at least some of the dextrin disposed at or along the outer surface of each pellet enabling the dextrin to be
dissolved by water, urine or another liquid to form a flowable liquid adhesive that flows from the pellet therealong and in between adjacent pellets to bind them and hence clump them together thereby producing a self-clumping litter mixture.

[0045] In another extruded pellet embodiment, each pellet has at least 2% dextrin by uncoated untreated pellet weight that can be distributed throughout the pellet but which has at least some of the dextrin disposed at or along the outer surface of the pellet such that at least a portion of the outer pellet surface can be and preferably is formed of dextrin. In one such embodiment, each pellet has between 2% and 10% dextrin by uncoated untreated pellet weight with at least some of the dextrin disposed at or along the outer surface of each pellet enabling it to be dissolved by water, urine or another liquid to form a flowable liquid adhesive that flows from the pellet along the outer pellet surface including in between adjacent pellets to bind them and hence clump them together thereby producing a self-clumping litter mixture.

[0046] In still another extruded pellet embodiment, each pellet has at least 3% dextrin by uncoated untreated pellet weight that can be distributed throughout the pellet but which has at least some dextrin disposed at or along the outer surface of the pellet and which can form at least a portion of the outer pellet surface. In one such embodiment, each pellet has between 3% and 12% dextrin by uncoated untreated pellet weight with at least some of the dextrin disposed at or along the outer surface of each pellet enabling the dextrin to be dissolved by water, urine or another liquid to form a flowable liquid adhesive that flows from the pellet along the outer pellet surface including in between adjacent pellets to bind them and hence clump them together.

[0047] In a further extruded pellet embodiment, each pellet has at least 4% dextrin by uncoated untreated pellet weight that can be distributed throughout the pellet which has at least some dextrin disposed at or along the outer surface of the pellet and which can form at least a portion of the outer pellet surface. In one such embodiment, each pellet has between 4% and 14% dextrin by uncoated untreated pellet weight with at least some of the dextrin disposed at or along the outer surface of each pellet, including forming at least a portion of the outer pellet surface, enabling the dextrin to be dissolved by water, urine or another liquid to form a flowable liquid adhesive that flows from the pellet along the outer pellet surface including in between adjacent pellets to bind them and hence clump
them together. Such a pellet embodiment produces litter formed of at least a plurality of pairs, i.e., at least three, of the pellets that not only can be biodegradable but which also is self-clumping without requiring any separate additive to promote clumping.

[0048] In a further extruded pellet embodiment, each pellet has at least 5% dextrin by uncoated untreated pellet weight that can be distributed throughout the pellet which has at least some dextrin disposed at or along the outer surface of the pellet and which can form at least a portion of the outer pellet surface. In one such embodiment, each pellet has between 5% and 15% dextrin by uncoated untreated pellet weight with at least some of the dextrin disposed at or along the outer surface of each pellet, including forming at least a portion of the outer pellet surface, enabling the dextrin to be dissolved by water, urine or another liquid to form a flowable liquid adhesive that flows from the pellet along the outer pellet surface including in between adjacent pellets to bind them and hence clump them together. Such a pellet embodiment produces litter formed of at least a plurality of pairs, i.e., at least three, of the pellets that not only can be biodegradable but which also is self-clumping without requiring any separate additive to promote clumping.

[0049] Such pet or animal litter produced of dextrin-containing extruded pellets in accordance with the present invention not only can be biodegradable but also can be toilet flushable. In one extruded pellet embodiment, such pet or animal litter produced of extruded pellets left uncoated are not only biodegradable but also toilet flushable. In another extruded pellet embodiment, such pet or animal litter produced of extruded pellets left uncoated and untreated are not only biodegradable but also toilet flushable.

[0050] A plurality of pairs of such pellets produces pet or animal litter having a bulk density of no greater than 0.65 grams per cubic centimeter (g/cm³) and preferably no greater than about 0.62 grams per cubic centimeter (g/cm³) which has a bulk density of at least 40% less than conventional clay-based (e.g., bentonite containing) cat litters having a bulk density of no less than 1 gram per cubic centimeter (g/cm³) that is at least 50% lighter in weight and preferably at least 60% lighter in weight for a given volume as compared to conventional clay-based (e.g., bentonite containing) cat litters making containers of litter produced of coated pellets in accordance with the present invention much easier for a person to carry as compared to a container of the same size filled with conventional clay-based litter. Pet or animal litter composed of such pellets (whether the
pellets are coated or uncoated) have pellets when uncoated with a weight per liter of at least 200 grams per liter and preferably at least 250 grams per liter helping to produce a granular pelletized litter formed of pellets (whether coated or uncoated) having a desired pellet density and consistency that not only minimizes tracking but which also absorbs liquid and clumps similar to and preferably better than conventional clay-based (e.g., bentonite containing) cat litters. In another preferred pet or litter formed of such pellets (whether coated or uncoated), the uncoated pellets have a weight per liter of at least 275 grams per liter.

LITTER PELLET COATING AND COATING METHODS

[0051] Each pellet can be coated with a coating covering the outer surface of each pellet with the coating formulated to enhance pellet performance including by increasing the ability of each pellet to absorb or facilitate absorption of water, urine, or another liquid as well as to treat material, including fecal matter, urine, water or another liquid that comes into pellet contact. In one embodiment, any one of the above described pellet embodiments are coated with a coating that includes a smectite. One preferred smectite is a type of clay such as a bentonite, e.g. sodium bentonite. Such a coating can instead be or also include sodium bicarbonate, e.g. baking soda, a zeolite, and a scent if desired. Such a coating can instead be or also include silica, such as crystalline silica, as well as calcium carbonate.

[0052] In one coated extruded pellet embodiment, any one of the plurality of pairs of uncoated pellet embodiments discussed herein can be coated with such a coating after extrusion. In one implementation of a method of making coated litter in accordance with the present invention, the pellets are coated relatively shortly after extrusion and before any drying of the pellets is done. In another implementation of a method of making coated litter in accordance with the present invention, the pellets are coated more than an hour after extrusion as the pellets can be coated after the pellets are dried thereby enabling the pellets to be coated at a location remote from where the pellets were extruded.

[0053] One pellet coating formulation includes at least 65% by coating weight of smectite that preferably is sodium bentonite that is ground or crushed into a powder having an average mesh size of about 20 mesh or greater (e.g., 30 mesh, 40 mesh, 50
mesh, or an even finer mesh), preferably having a mesh size of 50 mesh or greater (e.g., 50 mesh, 60 mesh, 70 mesh, 80 mesh, 90 mesh, 100 mesh, or an even finer mesh), and which has an average particle size no greater or larger than about 400 microns. One coating formulation is composed of at least 65% sodium bentonite having a mesh size of 70 mesh or greater (e.g., 70 mesh, 80 mesh, 90 mesh, 100 mesh, or an even finer mesh). Such a powdered coating includes no more than 10% by coating weight of either sodium bicarbonate or calcium bicarbonate. Where the powdered coating formulation includes zeolite, the powdered coating includes no more than 10% by coating weight of zeolite. Such a powdered coating formulation can contain silica, e.g., crystalline silica, but not more than about 8% by coating weight. Where the powdered coating includes a scent or a fragrance, such a powdered coating includes no more than 3% and preferably less than about 1% by coating weight of the scent or fragrance.

[0054] Another coating formulation is composed of at least 80% by coating weight of smectite that preferably is sodium bentonite that is ground or crushed, such as into a powder, having an average mesh size of about 50 mesh or greater and which has an average particle size no greater or larger than about 400 microns. Still another coating formulation is composed of at least 80% by coating weight of sodium bentonite having an average mesh size of about 70 mesh or greater (e.g., 70 mesh, 80 mesh, 90 mesh, 100 mesh, or an even finer mesh). Such a coating formulation includes no more than 10% by coating weight of either sodium bicarbonate or calcium bicarbonate. Where the coating formulation includes zeolite, the coating formulation includes no more than 8% by coating weight of zeolite. Such a coating formulation can contain silica, e.g., crystalline silica, but not more than about 8% by coating weight. Where the coating formulation includes a scent or a fragrance, such a powdered coating includes no more than 2% and preferably less than about 1% by coating weight of a scent or fragrance. Such a coating formulation is not limited to just these constituents as other constituents can be used. The amount of such a coating formulation applied to each extruded pellet preferably amounts to no more than 5% pellet weight once the coating has been applied to the pellet and the coated pellet has been dried or cured.

[0055] Such a coating formulation can be applied to uncoated pellets with the coating formulation mixed with a liquid, such as water, which is sprayed on the pellets, or
otherwise applied to the pellets in a manner that coats them with the coating formulation. Such a coating formulation can be applied using an agglomerator, such as a commercially available agglomerator, using a coating tumbler, such as a commercially available coating tumbler, using a cement mixer, or using another suitable coating device.

[0056] In one method of applying such a coating formulation, preferably one of the above-described coating formulations, the coating formulation is applied in powdered form onto uncoated pellets in a commercial agglomerator or a commercial coating tumbler that rotates, tumbles, vibrates and/or otherwise agitates pellets therein within a short enough period of time after extrusion of the pellets that the outer surface of the pellets are still sticky or tacky facilitating adherence of the powdered coating formulation to each pellet. In one such method of applying the coating, the coating formulation is applied onto uncoated pellets within an hour of being extruded and while at least some of the carbohydrate polymer binder on or of the outer surface of each pellet is still sticky or tacky thereby using the clump facilitating binder in each pellet produced during extrusion to facilitate adherence of the powdered coating formulation to each pellet. In another such method of applying the coating, the coating formulation is applied onto uncoated pellets within a half hour of being extruded and while at least some of the carbohydrate polymer binder on or of the outer surface of each pellet is still sticky or tacky thereby using the clump facilitating binder in each pellet produced during extrusion to facilitate adherence of the powdered coating formulation to each pellet. In still another such method of applying the coating, the coating formulation is applied onto uncoated pellets within fifteen minutes of being extruded and while at least some of the carbohydrate polymer binder on or of the outer surface of each pellet is still sticky or tacky thereby using the clump facilitating binder in each pellet produced during extrusion to facilitate adherence of the powdered coating formulation to each pellet.

[0057] In one method of applying such a coating formulation to extruded pellets, the coating formulation is applied using a liquid, such as water, and a pressurized gas, such as pressurized air, which not only helps vaporize or mist the coating formulation containing liquid but also helps agitate or move around the pellets in a drum, container or enclosure which are being coated. In such a method of applying a coating formulation onto pellets that can be uncoated, such as right after being extruded, a ground or
powdered coating formulation, such as one of the above-described formulations, is mixed with liquid, e.g., water, which can be sprayed from a nozzle together with compressed air into an enclosure, such as a drum or other container, which contains pellets helping to agitate the pellets and coat the pellets with a minimum of disturbance or damage to the pellets during coating. The drum or container in which the pellets are disposed during such a coating step preferably is rotated, vibrated or otherwise agitated to help facilitate coating each pellet.

[0058] In one coating arrangement, the liquid with which the ground or powdered coating formulation is mixed provides a liquid carrier for the coating formulation that can and preferably does include one or more antimicrobial agents, antifungal agents, and/or anti-yeast agents in the liquid that are at least partially absorbed into each pellet to treat each pellet during the coating step and/or at least form part of the outer coating of each pellet thereby treating the coating and/or pellet during the coating step. Such a liquid coating formulation carrier can include one or more inhibitors in the liquid that can be one or more urine breakdown inhibitors(s), such as one or more urease inhibitor(s) and/or one or more de-nitrification inhibitors. Such a liquid coating formulation carrier can also include a citrate, such as sodium citrate, and/or an acid, such as citric acid, and/or propionic or propanoic acid that can be at least partially absorbed by each pellet during the coating step treating each pellet and/or form at least part of the coating that covers each pellet during the coating step. Such treatments added to the liquid that serves as a carrier in which ground or powdered coating formulation is mixed and applied, e.g., sprayed, onto the pellets during the coating step treats each pellet and/or the coating applied to each pellet during the coating step in a manner that inhibits odor, inhibits bacterial growth, inhibits fungal growth, inhibits viral growth, and/or inhibits yeast growth.

[0059] If desired, one or more of these treatments can be applied in a step separate from that of the coating step where each pellet is coated with a ground or powdered coating formulation in accordance with that discussed above. One or more of these treatments can be applied in a treatment step performed before the coating step where it is desired for at least some of the treatment(s) applied to the pellets to be at least partially absorbed into each pellet or coat the outer surface of each pellet before coating each pellet with the
powdered or ground coating formulation. It is also contemplated performing the coating step before performing a treatment step such as where it is also desired to treat the coating. Finally, a method of making litter pellets in accordance with the present invention contemplates performing one or more treatment steps before performing one or more coating steps further contemplating performing one or more treatment steps after the coating step(s) is/are performed.

[0060] One example of a suitable urine breakdown inhibitor treatment that can be applied during a treatment and/or coating step is Dicyandiamide (DCD), which is also known as Cyanoguanidine, 1-Cyanoguanidine, or 2-Cyanoguanidine, can be included as an additive, e.g. additive 40, 42, 44, and/or 46, or as a coating 48. If desired, a member of a cyanamidine derivate, such as Guanidine hydrochloride, Chlorohexidine, Biguanide, 3-Amino-l,2,4-trazole, Aminoguanidine, Tetramethyl guanidine, Benzoguanamine, 1-o-Tolylbguanide, Cyanodithioimidocarbonic acid, 2-Aminopyrimidine, Dodecyl guanidine, Guanidine, Disodium cyanodithioimidocarbonate, Cyanamide, Butylbiguanide, Guanidinium sulfate, 2-Amino-4-methoxy-6methyl-l,3,5-trazine, Pimagedine hydrochloride, Phenylguanidine, Guanylthiourea, Cyrex, O-Methylisourea, Aminoguanidine bicarbonate, 3-Amino-5-carboxy-l,2,4-triazole, Chlorhexidine hydrochloride, 5-Amono-lH-tetrazole, 1-o-Tolylbguanide monohydrochloride, N-Cyanoacetimidate, Dodecylguanidine hydrochloride, Carbazamidine hydrochloride, 3-Amino-5-mercapto-l,2,4-triazole, Cyanimidocarbonic acid dimethylester, 2-Amino-4,6-dimethoxy-pyrimidine, Guanidine sulfamate, Bis(2-methylisouronium) sulfate, and/or 2-Methylisouronium acetate, can be used with or instead of DCD. DCD or one of the aforementioned equivalents can function as a urease inhibitor that inhibits the action of the urease enzyme to prevent urease from breaking down urea in urine absorbed by pellets of litter containing DCD (and/or an equivalent). It should be noted that DCD also is a de-nitrification inhibitor that prevents lighter vapor pressure ammoniated products from being released from the degradation or breakdown of urea byproducts and/or the degradation or breakdown of other components in urine deposited in pellets of the litter containing such an inhibitor.

[0061] Another example of a suitable urine breakdown inhibitor that can also be applied during a treatment and/or coating step is hydroquinone (HQ) as it is a urease inhibitor
that inhibits the action of the urease enzyme in breaking down urea in urine. Hydroquinone is also known as benzene-1,4-diol or quinol. As a result of inhibiting the action of urease, HQ prevents the breakdown of urea in urine in litter composed of pellets in accordance with the present invention by preventing the formation of lighter vapor pressure ammoniated product from exiting pellets that have absorbed animal urine. If desired, other hydroquinones or hydroquinone equivalents can be used with or instead of HQ. It is contemplated that HQ (or another hydroquinone) used with DCD. One or more hydroquinones can be included in a treatment/coating wetting mixture that includes DCD and/or one or more derivatives of DCD, including one or more of those listed in the preceding paragraph.

[0062] A still further example of a suitable urine breakdown inhibitor treatment that can also be applied during a treatment and/or coating step is N-(n-butyl) thiophosphoric triamide (NBPT) as it also is a urease inhibitor that inhibits the action of the urease enzyme in breaking down urea in urine. If desired, one or more NBPT equivalents can be used with or instead of NBPT. It is contemplated that HQ can be part of a litter mixture that also includes DCD and/or another hydroquinone. In another litter mixture, NBPT (or an equivalent(s)) can be applied to treat pellets of a litter mixture that also includes DCD and/or one or more derivatives of DCD, including one or more of those listed above. In a still further litter mixture, NBPT (or an equivalent(s)) can be applied to treat pellets of a litter mixture that also includes DCD and/or one or more derivatives of DCD along with one or more hydroquinones.

[0063] Another treatment that can be applied is a propionate, preferably sodium propionate, which can be added as a pellet stabilizer that can stabilize and/or prevent recrystallization and/or retrogradation of starch in each pellet.

[0064] Where such a coating formulation is applied to the pellets, the application of the coating formulation is done in such a manner, such as using an agglomerator, a coating tumbler or the like, to coat each pellet with a coating having a thickness of at least 50 microns. In a method of coating the pellets, an agglomerator or coating tumbler is used to apply a coating formulation, such as one of the above-described coating formulations, to coat each pellet with a coating having a thickness of at least 50 microns that can vary between 50 microns (e.g., 0.05 millimeter) and about 1000 microns (e.g., 1 millimeter)
that substantially completely covers substantially the entire outer surface of each pellet being coated. In another method of coating the pellets, an agglomerator or coating tumbler is used to apply a coating formulation, such as one of the above-described coating formulations, to coat each pellet with a coating having a thickness of at least 100 microns that can vary between 100 microns (e.g., 0.1 millimeter) and about 1000 microns (e.g., 1 millimeter) that substantially completely covers substantially the entire outer surface of each pellet being coated.

[0065] When the coating dries or sets after the coating step has been performed, the coating helps strengthen each pellet helping to impart to each coated pellet a crush strength that is at least 75% that of conventional bentonite clay based cat litters having a bulk density at least 80% greater than coated pellets produced in accordance with the present invention. In one coated pellet embodiment, such a coating imparts a crush strength that is at least 85% that of conventional bentonite clay based cat litters having a bulk density nearly twice as great and, in at least some instances more than twice as great, as the bulk density of coated pellets produced in accordance with the present invention.

[0066] In another coated pellet embodiment, a plurality of pairs of coated pellets coated with a bentonite containing coating, such as described above, having a coating thickness between 0.1 millimeters and 1 millimeters produces coated pellets having a bulk density of no greater than 0.7 grams per cubic centimeter (g/cm³) and preferably no greater than about 0.65 grams per cubic centimeter (g/cm³) which has a bulk density of at least 35% less than conventional clay-based (e.g., bentonite containing) cat litters having a bulk density of no lower than 1 gram per cubic centimeter (g/cm³). One preferred coated pellet embodiment is coated with such a bentonite containing coating has a bulk density of no greater than 0.65 grams per cubic centimeter (g/cm³) and preferably no greater than about 0.62 grams per cubic centimeter (g/cm³) which has a bulk density of at least 40% less than conventional clay-based (e.g., bentonite based) cat litters having a bulk density of about 1.1 grams per cubic centimeter (g/cm³). Litters produced with such coated pellets are therefore at least 40% lighter in weight and preferably at least about 50% lighter in weight for a given volume as compared to conventional clay-based (e.g., bentonite containing) cat litters making containers of litter produced of coated pellets in accordance
with the present invention much easier for a person to carry as compared to a container of the same size filled with conventional clay-based litter.

[0067] When the coating dries or sets after the coating step has been performed, the coating substantially completely covers substantially the entire outer surface of each pellet being coated helping to encapsulate each pellet helping to produce a coated pellet having desirable urine and fecal matter absorption and clumping characteristics. Such a coating substantially encapsulating each pellet forms a hard shell that appears and feels to an animal, e.g., cat, stepping on and/or in litter formed of a plurality of the coated pellets as if the animal were stepping on and/or in conventional clay-based cat litter.

[0068] When the coating dries or sets after the coating step has been performed, the coating substantially completely covers substantially the entire outer surface of each pellet being coated helping to encapsulate each pellet helping to produce a coated pellet having desirable urine and fecal matter absorption and clumping characteristics. Such a coating substantially encapsulating each pellet also helps retain any treatment(s) applied to the pellets or at least slow the rate at which such treatments may possibly evaporate, degrade or otherwise reduce in effectiveness. Such a coating substantially encapsulating each pellet also allows greater concentrations of such treatments to be applied including concentrations that normally would be considered toxic to animals because the coating serves as a barrier preventing an animal, e.g., cat using the litter from coming into contact with such higher concentrations.

[0069] Such a coating substantially encapsulating each pellet also allows treatments normally considered toxic to animals to be applied because the coating serves as a barrier preventing an animal, e.g., cat using the litter from coming into contact with such potentially toxic treatments. Examples of such treatments that are potentially toxic that can be applied to the pellets in a treatment step performed before the coating step include phenols, glycols, triclosan, certain chlorides, e.g., benzyl chloride, hypochlorite or sodium hypochlorite, e.g. chlorine, ethylene oxide, methyl bromide, peroxycetic acid, pyrethins and pyrethroids, organophosphates, carbamates, organochlorides, anti-parasitic treatments, and/or other potentially toxic chemicals and compounds. The coating subsequently applied to each treated pellet advantageously helps prevent the potentially toxic chemical(s) and compound(s) in each treated pellet from coming into contact with
the animal while the animal is in contact with litter formed of a plurality of pairs of the coated pellets including during urination and defecation by the animal in the litter. By such a coating enabling safe use of such a potentially toxic treatment or treatments applied to pellets produced in accordance with the present invention advantageously provides better inhibition of bacterial growth, better inhibition of fungal growth, and/or better inhibition of yeast growth thereby helping to provide better odor control.

[0070] A preferred anti-parasitic treatment step capable of inhibiting and/or killing toxoplasma gondii protozoa is composed of artemisinin in a ground, powdered, or other comminuted form and/or that can be mixed with a liquid, such as water, in a manner that can solubilize or dissolve the artemisinin in the liquid that is then applied to each pellet to treat the pellets before and/or during the step of pellet coating producing a treated pellet having at least 0.25% by pellet weight and preferably between 0.25% and 5% by pellet weight. Another anti-parasitic treatment is cetylpyridinium chloride applied in a concentration or amount of at least 0.25% by pellet weight and preferably between 0.25% and 3% by pellet weight. Still another anti-parasitic treatment is natural or synthetic pyrethroids in a concentration of at least 0.25% by pellet weight and preferably between 0.25% and 5% by pellet weight. Other anti-parasitic treatments that inhibit and/or kill toxoplasma gondii protozoa include cyhalothrin, bifenthrin, carbaryl or another carbamate, Imidacloprid or another neonicotinoid, fipronil or another GABA receptor pesticide, permethrin, diazinon, dichorvos, DDT (dichlorodiphenyltrichloroethane) or another organophosphate insecticide, and/or chlorfenapyr or another pro-insecticide in an amount sufficient to inhibit and preferably kill toxoplasma gondii protozoa in feline fecal material deposited in litter formed of pellets formulated and produced in accordance with the present invention. One or more of such anti-parasitic treatments can be added to the admixture during making of the admixture, added to water added to the admixture, added to the extruder during gelatinization and/or extrusion, applied to the pellets after extrusion, included as part of any pellet coating mixture, and/or applied before, during and/or after coating the pellets.
LITTER PELLET MAKING METHODS

INTRODUCTION

[0071] A method of making an extruded self-clumping pellet in accordance with the present invention does so using a single screw or twin screw extruder that gelatinizes a starch-containing admixture having a sufficient amount and type(s) of starch that produces a carbohydrate polymer binder and distributes at least some of the binder in and along an outer surface of a pellet extruded from the extruder. In one implementation of the method, the starch-containing admixture possesses relatively low moisture and has a sufficient amount of starch of a desired amylose:amylopectin ratio or within a desired amylose:amylopectin range that causes starch dextrinization to occur during extrusion using a single screw or twin screw extruder producing a plurality of pairs of extruded pellets that each have a sufficient amount of dextrin that enables the pellets to self-clump when wetted by liquid.

ADMIXTURE FORMULATION

[0072] One starch-containing admixture is formed substantially of one or more high carbohydrate, high starch cereal grains to produce an admixture having a carbohydrate content of at least 60% by weight and a starch content of at least 45% by weight when the weight of any water present in each cereal grain used in the admixture is discounted or eliminated from consideration. Another starch-containing admixture formed substantially of one or more high carbohydrate, high starch cereal grains has a carbohydrate content of at least 65% by weight and a starch content of at least 55% by weight when the weight of any water present in each cereal grain of the admixture is discounted or eliminated from consideration.

[0073] Suitable high carbohydrate, high starch cereal grains include one or more of corn or maize, rice, wheat, triticale, amaranth, and/or sorghum. Each cereal grain used to make an admixture in accordance with the present invention can be comminuted, e.g., ground, in a manner that produces reduced size cereal grain particles in the form of grits, meal, starch, or flour that is mixed in an admixture mixing step to make the admixture. Where comminuted, each cereal grain used to make such an admixture that is comminuted can be comminuted in a separate comminuting step but preferably is purchased in a form
where each particle size reduced cereal grain used to make the admixture already has been comminuted.

[0074] Examples of suitable commercially available comminuted high carbohydrate, high starch grain cereals include corn grits, cornmeal, corn starch, corn flour, rice grits, rice meal, rice starch, rice flour, wheat grits, wheat meal, wheat starch, wheat flour, triticale grits, triticale meal, triticale starch, triticale flour, amaranth grits, amaranth meal, amaranth starch, amaranth flour, sorghum grits, sorghum meal, sorghum starch and/or sorghum flour. Such suitable high carbohydrate, high starch grain cereals can be whole or degemermed. Such suitable high carbohydrate, high starch grain cereals can also be starch modified, such as chemically modified, such as by chemically cross-linking in a manner producing chemically cross-linked starches.

[0075] In at least one admixture formulation the whole or degemermed grain of one or more of the aforementioned cereal grains can be used as at least one admixture component. In one preferred admixture formulation, whole or degemermed red and/or white sorghum is a cereal grain used in make an admixture formulation that is extruded to form pellets in accordance with the present invention. Sorghum is desired as it has tannins that possesses antibacterial and antifungal properties that help reduce bacterial growth and fungal growth in litter produced using coated or uncoated extruded pellets.

[0076] In one admixture, each of the one or more suitable high carbohydrate high starch containing cereal grains used to form an admixture in accordance with the present invention preferably has starch with an amylose content of no more than 50% of the starch present in each one of the one or more high carbohydrate, high starch grain cereals used to make the admixture. In another admixture, the starch of each one of the the one or more high carbohydrate high starch containing cereal grains used to form an admixture in accordance with the present invention preferably has an amylose:amylopectin ratio of between 10:90 and 45:55. In still another admixture, the starch of the one or more high carbohydrate high starch containing cereal grains used to make the admixture has an amylose:amylopectin ratio of between 15:85 and 40:60. In a further admixture, the starch of each one of the one or more high carbohydrate high starch containing cereal grains used to make the admixture has an amylose:amylopectin ratio of between 20:80 and 35:65.
In one admixture, the starch of each of the one or more suitable high carbohydrate high starch containing cereal grains used to form an admixture in accordance with the present invention includes both amylose and amylopectin where the amylopectin has a weight average molecular weight ranging between 25 million g/mol. and 650 million g/mol. In such an admixture, the starch of each of the one or more suitable high carbohydrate high starch containing cereal grains used to form an admixture in accordance with the present invention preferably gels during gelatinization substantially without producing any paste during gelatinization. In such an admixture, the starch of each of the one or more suitable high carbohydrate high starch containing cereal grains used to form an admixture in accordance with the present invention has a short gel texture. In such an admixture, the starch of each of the one or more suitable high carbohydrate high starch containing cereal grains used to form an admixture in accordance with the present invention has a starch grain size or diameter of no greater than 40 microns. In such an admixture, the starch of each of the one or more suitable high carbohydrate high starch containing cereal grains used to form an admixture in accordance with the present invention is unimodal made up of spherical or polyhedral shaped starch granules without having substantially any lenticular shaped starch granules.

One starch-containing admixture is formed of a mixture of one of more high carbohydrate, high starch cereal grains making up between 50% and 80% of dry admixture weight before adding any water to the admixture with the mixture of one or more cereal grains having a carbohydrate content of at least 60% by cereal grain mixture weight and a starch content of at least 50% by cereal grain mixture weight. Another starch-containing admixture is formed of a mixture of one of more high carbohydrate, high starch cereal grains making up between 50% and 80% by weight (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 65% of cereal grain mixture weight and a starch content of at least 60% of cereal grain mixture weight. A further starch-containing admixture is formed of a mixture of one of more high carbohydrate, high starch cereal grains making up between 50% and 80% by (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content.
of at least 70% of cereal grain mixture weight and a starch content of at least 65% of cereal grain mixture weight.

[0079] Where less than the entire admixture is made of high carbohydrate, high starch cereal grains, a cellulosic material in an amount of at least 5% and no greater than 50% of the total admixture weight (before the addition of any water to the admixture) can be added to the admixture to provide the remainder of the admixture with the cellulosic material being added in an amount sufficient to help not only facilitate liquid absorption during pet or animal litter use but also to help generally retain pellet structure in a manner that helps water soluble binder clumping of adjacent pellets in a litter box. Suitable cellulosic material(s) include one or more of a wood fiber, hay, preferably alfalfa hay oat hay or another type of hay, beet fiber, preferably beet pulp, or another cellulosic material.

Where less than the entire admixture is made of cereal grains, the remainder of the admixture can include sodium chloride in an amount of between about 0% and about 5% of the admixture weight (before the addition of any water to the admixture) can be added to the admixture to help produce or otherwise help induce formation of carbohydrate polymer binder during gelatinization and/or extrusion preferably by helping to produce or help induce dextrin formation or dextrinization. If desired, glycerol monostearate (GMS) in an amount of no more than about 1% and preferably between 0% and 0.2% by total admixture weight (before the addition of any water to the admixture) can also be added to the admixture to help produce a desired gelatinized admixture viscosity during extrusion that helps maintain generally constant extrusion temperatures and pressures during extrusion and which also can function as a surfactant that can help with the plating or coating of the pellets using any one of the coating formulations discussed above.

[0080] The balance or remainder of such an admixture formulation can also include one or more of the following additional constituents: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast additives, urea or urease inhibitors, or the like as well as incidental matter and/or incidental impurities. For any one of the admixture formulations disclosed in the preceding two paragraphs, the balance or remainder of the admixture formulation can also include one or more of the following additional constituents in an amount no greater than about 5% each of total admixture weight (before the addition of any water to the admixture).
admixture) of the following: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast inhibitors, or the like as well as incidental matter and/or incidental impurities.

[0081] Another starch-containing admixture is formed of a mixture of one of more high carbohydrate, high starch cereal grains making up between 60% and 90% by weight of the total admixture (before the addition of any water to the admixture) with the mixture of the one or more high carbohydrate, high starch cereal grains having a carbohydrate content of at least 60% by cereal grain mixture weight and a starch content of at least 50% by cereal grain mixture weight. Still another starch-containing admixture (before the addition of any water to the admixture) is formed of a mixture of one of more high carbohydrate, high starch cereal grains making up between 60% and 90% by weight of the total admixture with the mixture of the one or more high carbohydrate, high starch cereal grains having a carbohydrate content of at least 65% by cereal grain mixture weight and a starch content of at least 60% by cereal grain mixture weight. A further starch-containing admixture is formed of a mixture of one of more high carbohydrate, high starch cereal grains making up between 60% and 90% by weight (before adding any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 70% of cereal grain mixture weight and a starch content of at least 65% of cereal grain mixture weight.

[0082] Where less than the entire admixture of the preceding paragraph is made of high carbohydrate, high starch cereal grains, the remainder of the admixture can include a cellulosic material in an amount of at least 5% and no greater than 40% of admixture weight (before the addition of any water to the admixture). The remainder of the admixture can further include sodium chloride in an amount of between 0.1% and 5% of the admixture weight (before the addition of any water to the admixture) can be added to the admixture. If desired, glycerol monostearate in an amount of no more than about 0.2% by total admixture weight (before the addition of any water to the admixture) can also be added to the admixture.

[0083] The balance or remainder of such an admixture formulation can also include one or more of the following additional constituents: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast
additives, urea or urease inhibitors, and/or the like as well as incidental matter and/or incidental impurities. For any one of the admixture formulations disclosed in the preceding two paragraphs, the balance or remainder of the admixture formulation can also include one or more of the following additional constituents in an amount no greater than about 5% each of total admixture weight (before the addition of any water to the admixture) of the following: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast additives, urea or urease inhibitors, and/or the like as well as incidental matter and/or incidental impurities.

[0084] Another starch-containing admixture is formed of a mixture of one of more of high carbohydrate, high starch cereal grains that make up between 80% and 95% by weight of the total admixture (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 60% by cereal grain mixture weight and a starch content of at least 45% by cereal grain mixture weight. Still another starch-containing admixture is formed of a mixture of one or more cereal grains that make up between 80% and 95% by weight of the total admixture (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 65% by cereal mixture weight and a starch content of at least 55% by cereal grain mixture weight. A further starch-containing admixture is formed of a mixture of one of more cereal grains that make up between 80% and 95% by weight of the total admixture (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 70% by cereal mixture weight and a starch content of at least 60% by cereal grain mixture weight.

[0085] Where less than the entire admixture of the preceding paragraph is made of high carbohydrate, high starch cereal grains, the remainder of the admixture can include a cellulosic material in an amount of at least 2% and no greater than 20% of admixture weight (before the addition of any water to the admixture). The remainder of the admixture can further include sodium chloride in an amount of between 0.1% and 5% of the admixture weight (before adding any water) added to the admixture. If desired, glycerol monostearate in an amount of no more than about 0.2% of total admixture weight (before adding any water) can also be added.
[0086] The balance or remainder of such an admixture formulation can also include one or more of the following additional constituents: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast additives, urea or urease inhibitors, and/or the like as well as incidental matter and/or incidental impurities. For any one of the admixture formulations disclosed in the preceding two paragraphs, the balance or remainder of the admixture formulation can also include one or more of the following additional constituents in an amount no greater than about 5% each of total admixture weight (before the addition of any water to the admixture) of the following: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast additives, urea or urease inhibitors, and/or the like as well as incidental matter and/or incidental impurities.

[0087] Another starch-containing admixture is formed of a mixture of one or more of high carbohydrate, high starch cereal grains that make up between 80% and 99% (-100%) by weight of the total admixture (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 60% by cereal grain mixture weight and a starch content of at least 45% by cereal grain mixture weight. Still another starch-containing admixture is formed of a mixture of one or more cereal grains that make up between 80% and 99% (-100%) by weight of the total admixture (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 65% by cereal mixture weight and a starch content of at least 55% by cereal grain mixture weight. A further starch-containing admixture is formed of a mixture of one or more cereal grains that make up between 80% and 99% (-100%) by weight of the total admixture (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 70% by cereal mixture weight and a starch content of at least 60% by cereal grain mixture weight.

[0088] Where less than the entire admixture of the preceding paragraph is made of high carbohydrate, high starch cereal grains, the remainder of the admixture can include a cellulosic material containing at least 20% cellulose by total weight of the cellulose material in an amount of at least 2% and no greater than 20% of admixture weight (before the addition of any water to the admixture). In at least one admixture, the dry admixture
has no more than about 5% of a cellulose material containing at least 20% cellulose by total weight of the cellulose material. In another admixture, the dry admixture contains no cellulosic material. The remainder of the admixture can further include sodium chloride in an amount of between 0.1% and 5% of the admixture weight (before adding any water) added to the admixture. If desired, glycerol monostearate in an amount of no more than about 0.2% of total admixture weight (before adding any water) can also be added.

[0089] The balance or remainder of such an admixture formulation can also include one or more of the following additional constituents: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast additives, urea or urease inhibitors, and/or the like as well as incidental matter and/or incidental impurities. For any one of the admixture formulations disclosed in the preceding two paragraphs, the balance or remainder of the admixture formulation can also include one or more of the following additional constituents in an amount no greater than about 5% each of total admixture weight (before the addition of any water to the admixture) of the following: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast additives, urea or urease inhibitors, and/or the like as well as incidental matter and/or incidental impurities.

[0090] Another starch-containing admixture is formed of a mixture of one of more cereal grains that make up between 90% and 99% (-100%) by weight of the total admixture (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 60% by cereal grain mixture weight and a starch content of at least 45% by cereal grain mixture weight. Still another starch-containing admixture is formed of a mixture of one of more cereal grains that make up between 90% and 99% by weight of the total admixture (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 65% by cereal mixture weight and a starch content of at least 55% by cereal grain mixture weight. A further starch-containing admixture is formed of a mixture of one of more cereal grains that make up between 90% and 99% by weight of the total admixture (before the addition of any water to the admixture) with the mixture of one or more cereal grains having a carbohydrate content of at least 70% by cereal mixture weight and a starch content of at least 60% by cereal grain mixture weight.
Where less than the entire admixture of the preceding paragraph is made of high carbohydrate, high starch cereal grains, the remainder of the admixture can include a cellulosic material in an amount between 0% and 10% admixture weight (before the addition of any water to the admixture). The remainder of the admixture can further include sodium chloride in an amount of between 0% and 1% of the admixture weight (before the addition of any water to the admixture) added to the admixture. If desired, glycol monostearate in an amount of between 0% and 0.2% of total admixture weight (before the addition of any water to the admixture) can also be added.

The balance or remainder of such an admixture formulation can also include one or more of the following additional constituents: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast additives, urea or urease inhibitors, and/or the like as well as incidental matter and/or incidental impurities. For any one of the admixture formulations disclosed in the preceding two paragraphs, the balance or remainder of the admixture formulation can also include one or more of the following additional constituents in an amount no greater than about 5% each of total admixture weight (before the addition of any water to the admixture) of the following: fillers, odor inhibitors, scents, fragrances, adsorbents, bacteriostats, antiviral additives, antifungal additives, anti-yeast additives, urea or urease inhibitors, and/or the like as well as incidental matter and/or incidental impurities.

An admixture formulated in accordance with the present invention, including having any of the above-disclosed admixture formulations, has a moisture or water content of at least about 7% by weight and no more than about 22% water by total wet admixture weight when being processed by the extruder during gelatinization and/or extrusion of the admixture. In another admixture, the admixture has a moisture or water content of between about 8% and about 19% water by wet admixture weight. In another admixture, the admixture has a moisture or water content of between about 8.5% and about 18% by wet admixture weight. In still another admixture, the admixture has a moisture or water content of between 9% and 18% by wet admixture weight.

Where the admixture has too much water, a water reduction step can be performed prior to or during mixing or gelatinization, such as by drying the admixture, to bring the total moisture or water content to a level within a corresponding desired one of
the 7%-22%, 8%-19%, 8.5%-18% and 9%-18% water content ranges disclosed above.
Where a drying step is performed, it can be performed as a separate step using a
commercial dryer, an oven, using a desiccant, or the like.

[0095] Another admixture formulated in accordance with the present invention, including
having any of the above-disclosed admixture formulations, has a moisture or water
content of at least 7% by weight and no more than 22% water by total admixture weight
when being processed by the extruder during gelatinization and/or extrusion of the
admixture. In another admixture, the admixture has a moisture or water content of
between about 8% and about 19% by weight. In another admixture, the admixture has a
moisture or water content of between about 8.5% and about 18% by weight. In still
another admixture, the admixture has a moisture or water content of between 9% and
18% by admixture weight.

[0096] Where the admixture has too much water, a water reduction step can be
performed prior to or during mixing or gelatinization, such as by drying the admixture, to
bring the total moisture or water content to a level within a corresponding desired one of
the 7%-22%, 8%-19%, 8.5%-18% and 9%-18% water content ranges disclosed above.
Where a drying step is performed, it can be performed as a separate step using a
commercial dryer, an oven, using a desiccant, or the like.

[0097] Where the admixture does not have enough water, water is added during a water
adding step that can be performed in (i) a separate water adding step, (ii) during mixing
of the admixture during a mixing step, (iii) during gelatinization of the mixed admixture
during a gelatinization step and/or (iv) during extrusion from the extruder during an
extrusion step to increase the moisture content of the admixture so the admixture has a
moisture or water content of at least 7% and no greater than 22% by total admixture
weight and preferably between 7% and 19%. In another method implementation,
sufficient water is added in such a water adding step that gives the admixture a moisture
content of between about 8% and about 19% and preferably between 8% and 18%. In still
another method implementation, sufficient water is added during the water adding step
that gives the admixture a moisture content of between about 8.5% and about 18% and
preferably between 8.5% and 18%. Where water is added to the admixture in a water
adding step, the water can be added during the mixing step, the gelatinizing step and/or during the extrusion step just prior to pellets being extruded from the extruder.

[0098] Limiting the moisture content of the admixture so it falls within a corresponding one of the desired aforementioned moisture content ranges set forth above is important, if not critical, to ensuring that sufficient water soluble carbohydrate polymer binder is formed during gelatinization and/or extrusion so that each pellet extruded from the extruder contains a sufficient amount of water soluble carbohydrate polymer binder so that each pellet will advantageously clump, preferably self-clump, with one or more adjacent pellets when wetted with moisture, liquid, urine, or water. In one method of making litter pellets in accordance with the present invention, limiting the moisture content of the admixture within a corresponding one of the above water content ranges is important, if not critical, to ensuring that water soluble carbohydrate polymer binder is formed during gelatinization and/or extrusion so that each pellet extruded from the extruder contains carbohydrate polymer binder disposed at, along, and/or forming at least part of the outer surface of each pellet, in an amount sufficient so that binder in each pellet will dissolve and cause the pellet to clump, preferably self-clump, with one or more adjacent pellets when at least that pellet is wetted with moisture, liquid, urine, or water.

[0099] In another method of making litter pellets in accordance with the present invention, limiting the moisture content of the admixture within a corresponding one of the above listed water content ranges is important, if not critical, to ensuring that starch dextrinization occurs during extrusion of the admixture forming a sufficient amount of dextrin in each extruded pellet that functions as a water soluble binder enabling each pellet to advantageously clump, preferably self-clump, with one or more adjacent pellets when wetted with moisture, liquid, urine, or water. In one such method, limiting the moisture content of the admixture within a corresponding one of the above recited water content ranges is important, if not critical, to ensuring that dextrin is formed during gelatinization and/or extrusion so that each pellet extruded from the extruder contains dextrin disposed at, along, and/or forming at least part of the outer surface of each pellet, in an amount sufficient so that the dextrin dissolves in water causing each pellet to clump, preferably self-clump, with one or more adjacent pellets when the pellet is wetted with moisture, liquid, urine, or water.
MIXING THE ADMIXTURE

[00100] In mixing any of the above admixture formulations, each constituent of the admixture formulation can be first added to a mixer or blender that preferably is a commercially available mixer or blender, such as a ribbon blender, a paddle blender, a tumble blender or a vertical blender. A mixer or blender well suited for use in mixing an admixture formulated in accordance with the present invention is a commercially available ribbon blender. One suitable ribbon blender well suited for use is a Ross Model 42N-25 25 cubic feet, 10 horsepower ribbon blender. Another suitable ribbon blender well suited for use is a Ross Model 42A-52 52 cubic feet, 20 horsepower ribbon blender.

[00101] The constituents, including each high carbohydrate, high starch cereal grain, any cellulosic material(s), any sodium chloride, and any of the aforementioned additional constituents that can be added to provide the balance or remainder of the admixture are mixed in the ribbon blender for a long enough time to mix them together using suitable mixing parameters to form a substantially homogeneously blended raw material mixture. Such a ribbon blender typically has a plurality of ribbons that rotate relative to one another at approximately 300 foot per minute tip speeds or higher with all of the admixture constituents blended together for at least 3 minutes before adding any water or before transferring the blended raw material mixture to a feed hopper of an extruder that feeds the blended raw material mixture into the extruder.

[00102] In a method of mixing an admixture in accordance with the present invention, each high carbohydrate, high starch cereal grain of the desired admixture formulation is blended in the ribbon blender for a suitable period of time, typically at least 3 minutes, before the blended raw material mixture is transferred, such as by a bucket elevator or the like, which elevates the blended raw material mixture to feed it into the feed hopper of the extruder. Any cellulosic material, such as hay, beet pulp, wood fiber, or the like, is added to the blended raw material mixture at the feed hopper enabling a mixer, such as a paddle or ribbon mixer, driven by the extruder to mix the cellulosic material with the blended raw material mixture forming the dry admixture. Any sodium chlorite, GMO, and/or any of the aforementioned additional constituents that can be added to provide the balance or remainder of the admixture are either blended in the
ribbon blender or added to the feed hopper with the cellulosic material in forming the dry admixture.

[00103] In another method of making an admixture for extrusion into litter pellets in accordance with the present invention, water in an amount sufficient to form a wet admixture having a corresponding desired one of the water content ranges listed above is added to the dry admixture in the extruder. If desired, at least some of the water can be added to constituents of the admixture being blended in the ribbon blender with additional water added later to the admixture in the extruder during operation of the extruder.

[00104] In one method, whole or degermed grains of one or more cereal grains are added to the extruder without first being mixed in a mixing step, such as in a ribbon blender or the like. In one preferred admixture formulation that uses sorghum, whole grains of red and/or white sorghum are added directly to a hopper of the extruder without first performing any mixing step on the whole grain sorghum.

GELATINIZING THE ADMIXTURE AND EXTRUDING THE PELLETS

[00105] The extruder is operated to gelatinize the wet admixture in the extruder gelatinizing the admixture into a dough or dough-like material that is then forced under pressure by one or more rotating screws of the extruder through the extruder until extruded from an opening in a die of an extruder head. As the gelatinized admixture is extruded as extrudate out the extruder die, a cutter, such as a rotary cutting blade rotating at a speed of between 3,000 and 9,000 revolutions per minute, cuts the extrudate exiting the extruder into at least a plurality of pairs of pellets having a diameter or width ranging between about one millimeter and about ten millimeters with a thickness of at least 0.1 millimeters. Where the pellets are elongate or oblong, pellets are produced, having a length ranging between about one millimeters and about ten millimeters. Where the pellets are disc-shaped, half-moon shaped, or scalloped, such pellets are produced having a cross-sectional thickness of at least 0.1 millimeters and a width or diameter between 1 millimeter and ten millimeters. The size of the die opening and the speed of the rotary cutter can be changed using routine testing and experimentation to achieve a desired pellet size producing a plurality of pairs of pellets well suited in size for use as cat litter. Pellets produced having a desired diameter or width, length and thickness.
In one method of making pellets well suited for use as pet or animal litter, e.g., cat litter, in accordance with the present invention, a suitable extruder is a single screw extruder, such as an Advantage 50 single screw extruder made by American Extrusion International of 498 Prairie Hill Road of South Beloit, Illinois. In one such implementation of a method of making pellets, wet admixture is gelatinized in the extruder during a gelatinization step and then extruded from the extruder during an extrusion step at a high enough extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at a high enough extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head causing carbohydrate polymer binder to form thereby producing a plurality of pairs of pellets well suited for use as pet or animal litter, e.g., cat litter, having carbohydrate polymer binder in each pellet. Such extruder operating conditions where the admixture is gelatinized in the extruder during a gelatinization step and then extruded from the extruder during an extrusion step at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head can cause adiabatic extrusion or adiabatic extruder operating conditions forming carbohydrate polymer binder in each pellet. Each pellet produced from such a method preferably has carbohydrate polymer binder in an amount and/or pellet weight percentage in accordance with at least one of the carbohydrate polymer binder containing pellet embodiments described above.

In another such method implementation, admixture is gelatinized during the gelatinization step and extruded from the extruder during the extrusion step at a high enough extrusion temperature ranging between 135° Celsius (about 275° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at a high enough extrusion pressure ranging between 800 psi and 2,500 psi at the die of the extruder head causing carbohydrate polymer binder to form during gelatinization and/or during extrusion producing a plurality of pairs of pellets each having carbohydrate polymer binder in an amount and/or pellet weight percentage in accordance with at least one of the carbohydrate polymer binder containing pellet embodiments described above. In still another method implementation, admixture gelatinized during the gelatinization step is extruded from the extruder during the extrusion step at a high enough extrusion temperature ranging between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit)
and at a high enough extrusion pressure of between 900 psi and 1,800 psi at the die of the extruder head producing extruded pellets in accordance with the present invention each having carbohydrate polymer binder in an amount and/or pellet weight percentage in accordance with at least one of the carbohydrate polymer binder containing pellet embodiments described above. In a further method implementation, admixture gelatinized during the gelatinization step is extruded from the extruder during the extrusion step at a high enough extrusion temperature ranging between 145° Celsius (about 293° Fahrenheit) and 160° Celsius (about 320° Fahrenheit) and at a high enough extrusion pressure of between 900 psi and 1,800 psi, and preferably at least about 1,100 psi, at the die of the extruder head producing extruded pellets in accordance with the present invention each having carbohydrate polymer binder in an amount and/or pellet weight percentage in accordance with at least one of the carbohydrate polymer binder containing pellet embodiments described above. Under each of the aforementioned extruder temperatures and pressures, the extruder is operating under adiabatic extrusion conditions such that adiabatic extrusion is occurring causing the formation of carbohydrate polymer binder in each extruded pellet.

[00108] In one implementation of a method of making pellets, wet admixture is gelatinized in the extruder during a gelatinization step and then extruded from the extruder during an extrusion step at a high enough extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at a high enough extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head dextrinizing starch forming dextrin in each one of the plurality of pairs of pellets produced that is soluble in water, e.g., urine and/or moisture from fecal matter, forming a flowable binder with at least some of the binder flowing between adjacent pellets causing them to readily clump. Such extruder operating conditions where the admixture is gelatinized in the extruder during a gelatinization step and then extruded from the extruder during an extrusion step at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head operates the extruder under adiabatic extrusion or adiabatic extruder operating conditions causing dextrin formation. Each pellet produced from such a method preferably has dextrin in an
amount and/or pellet weight percentage in accordance with at least one of the dextrin containing pellet embodiments described above.

[00109] In another such method implementation, admixture gelatinized during the gelatinization step is extruded from the extruder during the extrusion step at a high enough extrusion temperature ranging between 135°C Celsius (about 275°F Fahrenheit) and 170°C Celsius (about 338°F Fahrenheit) and at a high enough extrusion pressure ranging between 800 psi and 2,500 psi at the die of the extruder head dextrinizing starch causing water soluble dextrin binder to form during gelatinization and/or during extrusion producing a plurality of pairs of pellets each having dextrin in an amount and/or pellet weight percentage in accordance with at least one of the dextrin containing pellet embodiments described above. In still another method implementation, admixture gelatinized during the gelatinization step is extruded from the extruder during the extrusion step at a high enough extrusion temperature ranging between 140°C Celsius (about 284°F Fahrenheit) and 165°C Celsius (about 330°F Fahrenheit) and at a high enough extrusion pressure of between 900 psi and 1,800 psi at the die of the extruder head producing extruded pellets in accordance with the present invention each having dextrin binder in an amount and/or pellet weight percentage in accordance with at least one of the dextrin containing pellet embodiments described above. In a further method implementation, admixture gelatinized during the gelatinization step is extruded from the extruder during the extrusion step at a high enough extrusion temperature ranging between 145°C Celsius (about 293°F Fahrenheit) and 160°C Celsius (about 320°F Fahrenheit) and at a high enough extrusion pressure of between 900 psi and 1,800 psi, preferably at least about 1,100 psi, at the die of the extruder head producing extruded pellets in accordance with the present invention each having dextrin binder in an amount and/or pellet weight percentage in accordance with at least one of the dextrin containing pellet embodiments described above. Under each of the aforementioned extruder temperatures and pressures, the extruder is operating under adiabatic extrusion conditions such that adiabatic extrusion is occurring causing the formation of dextrin in each extruded pellet.
POST-EXTRUSION PELLET TREATMENT
EXPANSION OR PUFFING CONTROL

In one implementation of a method of making pellets well suited for use as animal or pet litter, e.g., cat litter, a pellet expansion or puffing control step can be performed on the pellets right after the extrudate is extruded from the extruder and cut to into pellets by the rotary cutter to help control post-extrusion pellet puffing or expansion. When the pellets are extruded, the pellets tend to keep expanding or puffing for a period of time thereby decreasing their density making them more porous and void filled along with increasing pellet size. When this happens, re-crystallization and/or retrogradation of starch in the pellets can undesirably accelerate.

In a pellet expansion or puffing control step, pellets being extruded are collected in a holding chamber or container, e.g. 40 gallon drum, which can be lined with a plastic liner, e.g. polyethylene or polypropylene trash bag or the like, or gathered on a sheet formed of such a plastic liner material laying on the ground below the extruder until at least 5 pounds of the pellets are collected that remain in contact with one another for a period of at least 5 minutes causing some pellet drying and cooling to occur before being transferred to be dried, treated, coated and/or packaged. In an implementation of such a pellet expansion or puffing control step, the pellets are held in the container or on the sheet until the average temperature of the pellets in contact with one another in the container reaches a temperature of less than 125° Celsius and preferably less than 110° Celsius before being transferred. In another implementation of such a pellet expansion or puffing control step, the pellets are held in the container or on the sheet until the temperature of the pellets reaches a temperature of less than 125° Celsius and preferably less than 110° Celsius before being transferred.

In another pellet expansion or puffing control step, the extruder, such as a single screw extruder, is operated in accordance with the extruder operating conditions and parameters disclosed herein causing at least 100 pounds and preferably at least 300 pounds of pellets to be extruded per hour that are collected immediately upon extrusion in a holding chamber or container that can include a plastic liner, e.g. polyethylene or polypropylene trash bag or the like, or on a sheet formed of such a plastic liner material laying on the ground below the extruder until at least 15 pounds of the pellets are
collected in contact with one another and held for a period of at least 5 minutes before being transferred to be dried, treated, coated and/or packaged. In a implementation of such a pellet expansion or puffing control step, the pellets are held in the container or on the sheet until the average temperature of the pellets in contact with one another in the container reaches a temperature of less than 125° Celsius and preferably less than 110° Celsius before being transferred. In another implementation of such a pellet expansion or puffing control step, the pellets are held in the container or on the sheet until the temperature of at least the outermost pellets reaches a temperature of less than 125° Celsius and preferably less than 110° Celsius before being transferred.

[00113] In a further implementation of such a pellet expansion or puffing control step, the pellets are held in the container or on the sheet until the average temperature of the pellets in contact with one another in the container reaches a temperature of less than 105° Celsius and preferably about 100° Celsius before being transferred. In a still further implementation of such a pellet expansion or puffing control step, the pellets are held in the container or on the sheet until the temperature of the outermost pellets reaches a temperature of less than 105° Celsius and preferably about 100° Celsius before being transferred.

UNCOATED PELLETS

[00114] Where the pellets produced by extrusion in accordance with the above-discussed method in accordance with the present invention are intended to be used without agglomerating, plating or otherwise applying any absorbent, smectite, hardening, encapsulating and/or clay-based coating to the pellets in a pellet coating step, the pellets can be dried in a drying step before packaging the dried pellets in a packaging step. In one implementation of a method of making pellets in accordance with the present invention, post-extrusion processing includes drying the pellets in an oven, a convection and/or radiant heat dryer, air drying the pellets, or the like until each pellet has a moisture content less than 10% by weight and preferably until each pellet has a moisture content less than 5% by weight. In one such method implementation, the pellets are dried in such a drying step until each pellet has a moisture content of less than 3% by weight and preferably less than 2% by weight.
[00115] Unless air dried during the drying step, the pellets can be allowed to stabilize in a stabilizing step for a period of time after the drying step has been performed, such as for a period of one or more hours, before a packaging step is performed where the pellets are packaged in a package suitable for shipment, storage, retail display, retail sale, and consumer or customer use. Where the pellets are air dried, any stabilizing step can be performed concurrently with air drying before the packaging step is performed.

[00116] Retail pelletized litter package sizes contemplated include 2.5 pound package sizes, 5 pound package sizes, 10 pound package sizes, 15 pound package sizes and 20 pound package sizes. Such packaging can be in the form of paper packaging, plastic packaging, such as plastic container, plastic tub, or plastic bucket packaging, or in the form of a substantially gas-tight bag, container, tub or bucket. Where gas-tightly sealed, the pellets can be vacuum packed or inert gas packed, e.g., nitrogen, in order to help maximize storage and shelf life.

[00117] In one packaging method and embodiment, the uncoated pellets are packaged together with one or more packets of desiccant in the package to help maintain desirably low pellet moisture content below a desired moisture content level while packaged. In another packaging method and embodiment, the uncoated pellets are packaged together with one or more packets of desiccant in the package to help control retrogradation of starch in the pellets to help optimize shelf life as well as to help keep the pellet moisture content below a desired level. Where one or more desiccant packets are placed in packages holding uncoated pellets for moisture control, a suitable amount of desiccant is used per package to maintain pellet moisture content of less than about 10% moisture by weight. In still another packaging method and embodiment, where one or more desiccant packets are placed in packages holding uncoated pellets are used for moisture control, a suitable amount of desiccant is used per package to maintain pellet moisture content of less than about 5% moisture by weight. Where desiccant packets are used, silica gel, activated charcoal, calcium sulfate, calcium chloride, Montmorillonite clay and/or molecular sieves can be used as a desiccant.

[00118] In another packaging method and embodiment, the uncoated pellets are packaged together with one or more packets of humectant in the package to help maintain...
desired pellet moisture content above a desired moisture content level while packaged to help limit starch retrogradation to help optimize litter shelf life and litter performance. In one such packaging method and embodiment, the uncoated pellets are packaged together with one or more packets of humectant in the package to help reduce or substantially freeze the rate retrogradation of starch in the pellets to help optimize shelf life and maximize litter performance. Where humectant packets are used, glycerine, sorbitol, polydextrose, or another suitable hygroscopic substance can be used as a humectant.

UNCOATED TREATED PELLETS

[00119] Where the pellets produced by extrusion in accordance with the above-discussed method in accordance with the present invention are treated after extrusion but intended to be used without agglomerating, plating or otherwise applying any absorbent, smectite, hardening, encapsulating and/or clay-based coating to the pellets in a pellet coating step, the pellets can be treated after extrusion with a liquid, e.g., water, and/or powder treatment that inhibits odor, inhibits urea degradation, inhibits urease formation, inhibits bacterial growth, inhibits fungal growth, inhibits viral growth, and/or inhibits yeast growth. Where such a post-extrusion treatment is applied to the pellets, it can be applied or otherwise sprayed onto the pellets while the pellets are being mechanically agitated, pneumatically agitated, or agitated in another manner. If desired, the treatment of the pellets with one or more such inhibitors can be done after or during application of a surfactant, a plating agent or another substance that facilitates retention and/or absorption of the inhibitor(s) by the pellets.

[00120] Such a post-extrusion treatment step can be performed relatively soon after extrusion, if desired. In one such post-extrusion treatment step, the treatment step is performed immediately upon extrusion to help facilitate retention and/or absorption of the inhibitor(s) by the pellets. In another such post-extrusion treatment step, the treatment step is performed within about 5 minutes and two hours of pellet extrusion. Such a post-extrusion treatment step can be performed prior to, during or even after the drying step, where a drying step is performed after pellet extrusion to reduce the pellet moisture content below a desired moisture content level in accordance with that disclosed in the preceding subsection above. If desired, the pellets can be subjected to a pellet
stabilization step in accordance with that also disclosed above in the preceding subsection.

COATED PELLETS

[00121] Where the pellets produced by extrusion in accordance with the above-discussed method in accordance with the present invention are coated after extrusion by applying an absorbent, smectite, hardening, encapsulating and/or clay-based coating to the pellets in a pellet coating step, the pellets can be coated within a relatively short period of time after extrusion while the carbohydrate polymer binder and/or dextrin binder of each pellet is still sticky or tacky causing the coating more quickly and efficiently adhere to and substantially completely coat each pellet. In one implementation of a pellet coating method in accordance with the present invention, the coating step is performed on pellets substantially immediately after the pellets are extruded from the extruder within no more than one half hour after extrusion while the carbohydrate polymer binder and/or dextrin binder of the outer pellet surface is still sticky or tacky causing the coating more quickly and efficiently adhere to and substantially completely coat each pellet. In another implementation of a pellet coating method right after extrusion, the coating step is performed within a period ranging from within 5 minutes after extrusion to no longer than one hour after extrusion while the carbohydrate polymer binder and/or dextrin binder on the outer surface of each pellet preferably is still somewhat sticky or tacky causing the coating more quickly and efficiently adhere to and substantially completely coat each pellet.

[00122] During the coating step, the uncoated pellets are collected and transferred to an agglomerator, such as a commercially available agglomerator that can be a commercially available coating tumbler or the like. Depending on the circumstances, more than one agglomerator, e.g., coating tumbler can be used with one coating step or one part of the coating step being performed on pellets in one coating tumbler before the partially coated pellets are transferred to another coating tumbler where another coating step or another part of the coating step is performed.

[00123] During the coating step, a coating in accordance with that disclosed above in the LITTER PELLET COATING AND COATING METHODS section is applied to the pellets using one or more of the coating methods also disclosed above in the LITTER PELLET
COATING AND COATING METHODS section. Doing so coats each pellet with a coating that can be of an absorptive composition that not only substantially completely encapsulates each pellet but which also increases the crush strength and hardness of each pellet causing a cat to view such coated pellets as if they were substantially the same as granules of conventional clay-based, e.g., bentonite containing, cat litter.

Where the coating is applied together with a liquid, e.g., water, during the coating step, such as by being either dissolved and/or entrained in the liquid used to apply the coating, the liquid can help tackify the carbohydrate polymer binder and/or dextrin binder containing outer surface of each pellet helping the coating to adhere to each pellet during the coating step. Such a liquid can include a substance or component that either helps to cause the coating to adhere to each pellet and/or helps tackify the carbohydrate polymer binder and/or dextrin binder containing outer surface to help cause the coating to adhere to each pellet. A plurality of coating steps can be performed during coating of a single batch of pellets to help draw out some of the carbohydrate polymer binder and/or dextrin binder into the coating to help cause the coating to better adhere to each pellet.

Once the coating is applied, the coated pellets can be subjected to a drying step and/or stabilization step, such as discussed above, before the pellets are packaged in packaging in accordance with that discussed above. Such packaging can also include one or more packets of desiccant and/or humectant packaged together with the coated pellets to help control pellet moisture and/or limit starch retrogradation helping to optimize shelf life and litter performance.

COATED TREATED PELLETS

If desired, extruded pellets can be treated and coated including as respectively discussed in the above UNCOATED TREATED PELLETS subsection with any one or more of the coating formulations disclosed above in the LITTER PELLET COATING AND COATING METHODS section set forth above and in the above COATED PELLETS subsection with any one or more of the treatments also disclosed above in the same LITTER PELLET COATING AND COATING METHODS section. Any treatment step can be performed prior to or during the coating step. Once the coating and treatment steps have been performed, the coated pellets can be subjected to a drying step and/or stabilization step, such as discussed above, before the pellets are packaged in packaging in accordance
with that discussed above. Such packaging can also include one or more packets of desiccant and/or humectant packaged together with the coated pellets to help control pellet moisture and/or limit starch retrogradation helping to optimize shelf life and litter performance.

PREFERRED LITTER PELLET FORMULATIONS AND METHODS

FIRST PELLET FORMULATION AND METHOD

A first suitable admixture for extruding self-clumping pellets well suited for use as pet or animal litter is corn-based and formed of the following constituents:

- **Cornmeal**: 70% - 80%
- **Cellulosic Material**: 20% - 30%
- **Total Mixture (before adding water)**: 100%
- **Water (Liters per 100 lbs of Admixture)**: 4.7 - 5.5

The cornmeal can be coarsely ground or finely ground as known in the industry. The cornmeal can be degermed cornmeal or whole grain cornmeal made of yellow corn or another suitable corn or maize. Suitable cornmeals include CCM 260 and/or YCM 260 milled cornmeals commercially available from Bunge North America of 11720 Borman Drive, St. Louis, Missouri. The cornmeal has at least 70% carbohydrate content by cornmeal weight and at least 60% starch by cornmeal weight. Another cornmeal well suited for use in such a pellet formulation has at least 75% carbohydrate content by cornmeal weight and at least 65% starch by cornmeal weight. The cornmeal has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another cornmeal has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another cornmeal has an amylose:amylopectin ratio of between 20:80 and 35:65.

The cellulosic material contains at least 20% cellulose by cellulosic material weight. One suitable cellulose containing material is hay, such as alfalfa hay, which is ground or milled, such as with a hammer mill, to comminute the hay into smaller size particles having a mesh size of 20 mesh or larger. Another cellulose material is beet pulp and/or wood fiber that is comminuted if needed such that its particles have a
mesh size of 20 mesh or larger. Between 4.7 liters and 5.5 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9% and about 20% and preferably between 9% and 18% of wet admixture weight.

[00130] The corn meal is mixed, such as in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together before transferring the blended dry raw mixture into a hopper of an extruder that can be a single screw extruder such as the Advantage 50 extruder discussed above. As the blended dry raw corn meal mixture is transferred into the extruder hopper, the cellulosic material is added to the blended mixture mixing everything together in a second mixing step forming a dry admixture to which water is added in a water adding step before undergoing gelatinization in the extruder. If desired, at least some water can be added during mixing or blending of the cornmeal before the cornmeal is mixed or blended with the cellulosic material to activate one or more of starches, proteins, lipids, sugars or the like in the cornmeal.

[00131] The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing self-clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of
starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00132] The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that cause adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.25% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00133] During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Operating under these extrusion parameters and/or the extrusion parameters disclosed below, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under these extrusion parameters and/or the extrusion parameters disclosed below, uncoated pellets having a width or diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

[00134] Where the extruder is a single screw extruder, such a single screw extruder can be operated at an extrusion temperature of between 135° Celsius (about 275° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of
between 800 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi.

[00135] In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 160° Celsius (about 320° Fahrenheit) and at an extrusion pressure of at least 1,100 psi and can be operated at an extrusion pressure of between 900 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder can be a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

[00136] Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

[00137] As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.
Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating can include bentonite, such as sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 1.6 millimeters and 3.2 millimeters and a length of between 1.6 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 2.6 millimeters and 4.5 millimeters and a length of between 3.1 and 4.9 millimeters. Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.
In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

SECOND PELLET FORMULATION AND METHOD

A second suitable admixture for extruding self-clumping pellets well suited for use as pet or animal litter also is corn-based and formed of the following constituents:

- **Cornmeal**: 70% - 80%
- **Cellulosic Material**: 20% - 30%
- **Total Mixture (before adding water)**: 100%
- **Water (Liters per 100 lbs of Admixture)**: 4.9 - 5.2

The cornmeal can be coarsely ground or finely ground as known in the industry. The cornmeal can be degermed cornmeal or whole grain cornmeal made of yellow corn or another suitable corn or maize. The cornmeal can be a mixture of degermed cornmeal and whole grain cornmeal. Suitable cornmeals include CCM 260 and/or YCM 260 milled cornmeals commercially available from Bunge North America of 11720 Borman Drive, St. Louis, Missouri. The cornmeal has at least 70% carbohydrate content by cornmeal weight and at least 60% starch by cornmeal weight. Another cornmeal well suited for use in such a pellet formulation has at least 75% carbohydrate content by cornmeal weight and at least 65% starch by cornmeal weight. The cornmeal has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another cornmeal has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another cornmeal has an amylose:amylopectin ratio of between 20:80 and 35:65.

The cellulosic material contains at least 20% cellulose by cellulosic material weight. One cellulose material is hay, such as alfalfa hay, which is ground or milled, such as with a hammer mill, to comminute the hay into smaller size particles preferably having a mesh size of 20 mesh or larger (e.g. 20 mesh, 30 mesh, 40 mesh or larger mesh). Another cellulose material is beet pulp and/or wood fiber that is
comminuted if needed such that its particles have a mesh size of 20 mesh or larger. Between 4.9 liters and 5.2 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9% and about 29% and preferably between 9% and 18% of wet admixture weight.

[00145] The corn meal and/or corn flour is mixed together, such as in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together before transferring the blended dry raw mixture into a hopper of an extruder that can be a single screw extruder such as the Advantage 50 extruder discussed above. As the blended dry raw corn meal and/or corn meal mixture is transferred into the extruder hopper, the cellulosic material, such as hay, is added to the blended mixture mixing everything together in a second mixing step forming a dry admixture to which water is added in a water adding step before undergoing gelatinization in the extruder. If desired, at least some water can be added during mixing or blending of the cornmeal before the cornmeal is mixed or blended with the cellulosic material to activate one or more of starches, proteins, lipids, sugars or the like in the cornmeal.

[00146] The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing self-clumping of the pellet with adjacent pellets. Each self-clumping pellet has a carbohydrate polymer binder content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose
to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00147] The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00148] During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 900 psi and 2,500 psi at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single screw extruder can be operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi.

[00149] In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of at least about 1,100 psi and can be operated at an extrusion pressure of between 900 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one
compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder can be a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

[00150] Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

[00151] As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

[00152] Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

[00153] Such a clay based coating can include bentonite, such as sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or
greater. Such a clay based coating can have a formulation as discussed above in the
LITTER PELLET COATING AND COATING METHODS section. One suitable clay based
coating formulation has at least 70% sodium bentonite and can have between 70% and
100% sodium bentonite. Where the coating formulation includes other constituents, the
coating formulation can include no more than 10% coating formulation weight of zeolite,
no more than 10% coating formulation weight of sodium bicarbonate and/or calcium
bicarbonate, and/or no more than 8% coating formulation weight of silica, e.g.,
crystalline silica.

[00154] After coating, round or generally cylindrical pellets produced using a 0.3
inch extruder head die opening have a width or diameter ranging between about 1.6
millimeters and 3.2 millimeters and a length of between 1.6 and 3.5 millimeters. After
coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die
opening have a width or diameter of between about 2.6 millimeters and 4.5 millimeters
and a length of between 3.1 and 4.9 millimeters. Coated pellets of such size
advantageously have a size similar to that of conventional granular clay-based cat litter
and water absorption of at least 80% of conventional clay-based cat litter. As a result,
performance of coated litter pellets in accordance with the present invention is
substantially the same as conventional clay-based cat litter but weighs less than half that
of conventional clay-based cat litter for a given package volume or package size.

[00155] In one embodiment, it is contemplated that uncoated pellets can be
packaged and sold for use as cat litter. In another embodiment, the pellets are coated with
a clay-based coating as discussed above before being packaged and sold.

THIRD PELLET FORMULATION AND METHOD

[00156] A third suitable admixture for extruding self-clumping pellets well suited
for use as pet or animal litter also is corn-based and formed of the following
constituents:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornmeal</td>
<td>≈ 75% ± 5%</td>
</tr>
<tr>
<td>Cellulosic Material</td>
<td>≈ 25% ± 5%</td>
</tr>
<tr>
<td>Total Mixture (before adding water)</td>
<td>100%</td>
</tr>
<tr>
<td>Water (Liters per 100 lbs of Admixture)</td>
<td>4.7 - 5.5 / 4.9 - 5.2</td>
</tr>
</tbody>
</table>
The cornmeal can be coarsely ground or finely ground as known in the industry. The cornmeal can be degermed cornmeal or whole grain cornmeal made of yellow corn or another suitable corn or maize. Suitable cornmeals include CCM 260 (degermed) and/or YCM 260 (whole grain) milled cornmeals commercially available from Bunge North America of 11720 Borman Drive, St. Louis, Missouri. A combination of degermed and whole grain cornmeals can be mixed together to form the dry raw material (cornmeal) mixture. In certain instances, corn grits can be substituted for all or part of the corn meal.

The cornmeal mixture or formulation has at least 70% carbohydrate content by cornmeal weight and at least 60% starch by cornmeal weight. Another cornmeal mixture or formulation well suited for use in such a pellet formulation has at least 75% carbohydrate content by cornmeal weight and at least 65% starch by cornmeal weight. The cornmeal has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another cornmeal has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another cornmeal has an amylose:amylopectin ratio of between 20:80 and 35:65.

The cellulosic material contains at least 20% cellulose by cellulosic material weight. One cellulosic material is hay, such as alfalfa hay, which is ground or milled, such as with a hammer mill, to comminute the hay into smaller size particles preferably having a mesh size of 20 mesh or larger. Another cellulosic material is beet pulp and/or wood fiber that is comminuted if needed such that its particles have a mesh size of 20 mesh or larger.

In one pellet formulation and pellet making method, between 4.7 liters and 5.5 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9.0% and about 20.0% and preferably between 9% and 18% of wet admixture weight. In another pellet formulation and pellet making method, between 4.9 liters and 5.2 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9.5% and about 10.5% and preferably between 9.7% and 10.3% of wet admixture weight.
The corn meal is mixed, such as in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together before transferring the blended dry raw mixture into a hopper of an extruder that can be a single screw extruder such as the Advantage 50 extruder discussed above. As the blended dry raw corn meal and/or corn meal mixture is transferred into the extruder hopper, the cellulosic material, such as hay, is added to the blended mixture mixing everything together in a second mixing step forming a dry admixture to which water is added in a water adding step before undergoing gelatinization in the extruder. If desired, at least some water can be added during mixing or blending of the cornmeal before the cornmeal is mixed or blended with the cellulosic material to activate one or more of starches, proteins, lipids, sugars or the like in the cornmeal.

The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing self-clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amyllopectin, the amount of water in the admixture, as well as extruder operating conditions.

The carbohydrate polymer binder can be formed at least in part of amyllopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to
occur during extrusion. In an extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that cause adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00164] During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 900 psi and 2,500 psi at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single screw extruder can be operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi.

[00165] In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of at least about 1,100 psi and can be operated at an extrusion pressure of between 900 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder can be a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder.
having at least one compression screw and/or at least one screw with at least one compression section or zone.

[00166] Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

[00167] As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

[00168] Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

[00169] Such a clay based coating can include bentonite, such as sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One preferred clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium
bicarbonate, and/or no more than 8% coating formulation weight of silica, e.g., crystalline silica.

[00170] After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 1.6 millimeters and 3.2 millimeters and a length of between 1.6 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 2.6 millimeters and 4.5 millimeters and a length of between 3.1 and 4.9 millimeters. Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

[00171] In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

FOURTH PELLET FORMULATION AND METHOD

[00172] A fourth suitable admixture for extruding pellets well suited for use as pet or animal litter also is corn-based and formed of the following constituents:

- **Cornmeal**
- Total Mixture (before adding water) ~ 100%
- Water (Liters per 100 lbs of Admixture) 4.7 - 5.5 / 4.9 - 5.2

[00173] The cornmeal can be coarsely ground or finely ground as known in the industry. The cornmeal can be degermed cornmeal or whole grain cornmeal made of yellow corn or another suitable corn or maize. The cornmeal can be a mixture of degermed cornmeal and whole grain cornmeal. Suitable cornmeals include CCM 260 and/or YCM 260 milled cornmeals commercially available from Bunge North America of 11720 Borman Drive, St. Louis, Missouri. In one self-clumping extruded pellet embodiment and method of pellet making, substantially all of the cornmeal is degermed.
yellow cornmeal that can be CCM 260 degemered yellow cornmeal. In another such pellet
embodiment, substantially all of the commeal is degemered yellow cornmeal that can be
YCM 260 whole grain yellow cornmeal. In certain instances, com grits can be substituted
for all or part of the corn meal.

[00174] In still another such pellet embodiment and method of self-clumping pellet
making, the commeal is made of a mixture of degemered yellow cornmeal, e.g. CCM 260,
and whole grain yellow cornmeal, e.g., YCM 260, whose weight percentages can be
varied from any ratio between 75% degemered yellow cornmeal and 25% whole grain
yellow cornmeal to 25% degemered yellow cornmeal and 75% whole grain yellow
commeal. One preferred degemered - whole grain commeal mixture has about 50% (+
5%) degemered yellow commeal and about 50% (± 5%) whole grain yellow commeal.

[00175] The commeal has at least 70% carbohydrate content by commeal weight
and at least 60% starch by commeal weight. Another commeal well suited for use in such
a pellet formulation has at least 75% carbohydrate content by commeal weight and at
least 65% starch by commeal weight. The commeal has at least 55% amylopectin and an
amylose:amylopectin ratio of between 10:90 and 45:55. Another suitable commeal has at
least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60.
Still another commeal has an amylose:amylopectin ratio of between 20:80 and 35:65.

[00176] In one self-clumping pellet formulation and pellet making method,
between 4.7 liters and 5.5 liters of water are added for every 100 pounds of the total
mixture such that the wet admixture has a moisture content ranging between about 9.0%
and about 20.0% and preferably between 9% and 18% of wet admixture weight. In
another self-clumping pellet formulation and self-clumping pellet making method,
between 4.9 liters and 5.2 liters of water are added for every 100 pounds of the total
mixture such that the wet admixture has a moisture content ranging between about 9.5%
and about 10.5% and preferably between 9.7% and 10.3% of wet admixture weight.

[00177] The commeal is mixed, such as in a ribbon blender for a suitable amount
of time in a first mixing step to blend these dry raw materials together forming a dry
admixture before transferring the blended dry raw mixture (dry admixture) into a hopper
of an extruder that can be a single screw extruder such as the Advantage 50 extruder
discussed above. Water is added in a water adding step before the wet admixture undergoes gelatinization in the extruder.

[00178] The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00179] The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur thereby dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that
include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00180] During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135°C (about 275°F) and at an extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135°C Celsius (about 275°F) and 170°C Celsius (about 338°F) and at an extrusion pressure of between 800 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140°C Celsius (about 284°F) and 165°C Celsius (about 330°F) and at an extrusion pressure of between 900 psi and 1,800 psi.

[00181] In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145°C Celsius (about 293°F) and 160°C Celsius (about 320°F) and at an extrusion pressure of between 900 psi and 1,800 psi (preferably at least about 1,100 psi). The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

[00182] Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or
diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One suitable clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 1.6 millimeters and 3.2 millimeters and a length of between 1.6 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die
opening have a width or diameter of between about 2.6 millimeters and 4.5 millimeters and a length of between 3.1 and 4.9 millimeters. Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

FIFTH PELLET FORMULATION AND METHOD

A fifth suitable admixture for extruding pellets well suited for use as pet or animal litter also is corn-based and formed of the following constituents:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornmeal</td>
<td>65% - 85%</td>
</tr>
<tr>
<td>Cellulosic Material</td>
<td>15% - 35%</td>
</tr>
<tr>
<td>Total Mixture (before adding water)</td>
<td>100%</td>
</tr>
<tr>
<td>Water (Liters per 100 lbs of Admixture)</td>
<td>2 - 3 / 2.4 - 2.6</td>
</tr>
</tbody>
</table>

The cornmeal can be coarsely ground or finely ground as known in the industry. The cornmeal can be degermed cornmeal or whole grain cornmeal made of yellow corn or another suitable corn or maize. The cornmeal can be a mixture of degermed cornmeal and whole grain cornmeal. Suitable cornmeals include CCM 260 and/or YCM 260 milled cornmeals commercially available from Bunge North America of 11720 Borman Drive, St. Louis, Missouri. In one self-clumping pellet embodiment and method of self-clumping pellet making, substantially all of the cornmeal is degermed yellow cornmeal that can be CCM 260 degermed yellow cornmeal. In another such pellet embodiment, substantially all of the cornmeal is degermed yellow cornmeal that can be YCM 260 whole grain yellow cornmeal. In certain instances, corn grits can be substituted for all or part of the corn meal.
In still another pellet embodiment and method of pellet making, the cornmeal is made of a mixture of degermed yellow cornmeal, e.g. CCM 260, and whole grain yellow cornmeal, e.g., YCM 260, whose weight percentages can be varied from any ratio between 75% degermed yellow cornmeal and 25% whole grain yellow cornmeal to 25% degermed yellow cornmeal and 75% whole grain yellow cornmeal. One degermed - whole grain cornmeal mixture has about 50% (+ 5%) degermed yellow cornmeal and about 50% (± 5%) whole grain yellow cornmeal.

The cornmeal has at least 70% carbohydrate content by cornmeal weight and at least 60% starch by cornmeal weight. Another cornmeal well suited for use in such a pellet formulation has at least 75% carbohydrate content by cornmeal weight and at least 65% starch by cornmeal weight. The cornmeal has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another cornmeal has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another cornmeal has an amylose:amylopectin ratio of between 20:80 and 35:65.

In one pellet formulation and pellet making method, between 2 liters and 3 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content no more than about 20% having a moisture content ranging between about 4.0% and about 18.0% and preferably between 4.2% and 15% of wet admixture weight. In another self-clumping pellet formulation and self-clumping pellet making method, between 2.4 liters and 2.6 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.8% and about 5.6% and preferably between 5% and 5.5% of wet admixture weight.

The cornmeal is mixed, such as in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together forming a dry admixture before transferring the blended dry raw mixture (dry admixture) into a hopper of an extruder that can be a single screw extruder such as the Advantage 50 extruder discussed above. Water is added in a water adding step before the wet admixture undergoes gelatinization in the extruder. If desired, at least some water can be added during mixing or blending of the cornmeal before the cornmeal is mixed or blended with
the cellulosic material to activate one or more of starches, proteins, lipids, sugars or the like in the cornmeal.

[00194] The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00195] The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that
include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00196] During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 600 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.01 inches and 0.05 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135° Celsius (about 275° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 600 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 600 psi and 1,800 psi.

[00197] In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 160° Celsius (about 320° Fahrenheit) and at an extrusion pressure of between 600 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can be preferred in order to help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder can be a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

[00198] Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2 millimeters and 4 millimeters and a length of between 2 and 4 millimeters were produced. These uncoated pellets have a bulk density no greater than 0.4 grams per cubic centimeter and preferably between 0.30 grams per
cubic centimeter and 0.35 grams per cubic centimeter (preferably about 0.317 grams per cubic centimeter). These uncoated pellets have an ASTM oil absorbancy of at least 1.25 grams per gram and between 1.25 grams per gram and 1.80 grams per gram (preferably about 1.60 grams per gram). These uncoated pellets have an ASTM water absorbancy of at least 0.7 grams per gram and between 0.7 grams per gram and 0.9 grams per gram (preferably about 0.81 grams per gram). Such uncoated pellets have a sieve analysis of between 2%-3% retained by a #5 mesh, between 25%-30% retained by a #8 mesh, between 60%-75% retained by a #10 mesh, and no more than 3% retained by the pan.

[00199] As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

[00200] Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

[00201] Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One suitable clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or
calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, the round or generally cylindrical pellets have a width or diameter ranging between about 2.1 millimeters and 5 millimeters and a length of between 2.1 and 5 millimeters. The coated pellets have a bulk density no greater than 0.75 grams per cubic centimeter and preferably between 0.65 grams per cubic centimeter and 0.58 grams per cubic centimeter (preferably about 0.616 grams per cubic centimeter). The coated pellets have an ASTM oil absorbancy of at least 2.0 grams per gram and between 2.0 grams per gram and 2.75 grams per gram (preferably about 2.5 grams per gram). These coated pellets have an ASTM water absorbancy of at least 1.8 grams per gram and between 1.8 grams per gram and 2.25 grams per gram (preferably about 2.15 grams per gram). Such coated pellets have a sieve analysis of no more than 2% retained by a #5 mesh, between 45%-60% retained by a #8 mesh, between 40%-50% retained by a #10 mesh with less than 1% retained by the pan.

Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 70% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

SIXTH PELLET FORMULATION AND METHOD

A sixth suitable admixture for extruding pellets well suited for use as pet or animal litter also is corn-based and formed of the following constituents:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornmeal</td>
<td>75% ± 5%</td>
</tr>
<tr>
<td>Cellulosic Material</td>
<td>25% ± 5%</td>
</tr>
<tr>
<td>Total Mixture</td>
<td>100%</td>
</tr>
<tr>
<td>Water (Liters per 100 lbs of Admixture)</td>
<td>2 - 3 / 2.4 - 2.6</td>
</tr>
</tbody>
</table>
The cornmeal can be coarsely ground or finely ground as known in the industry. The cornmeal can be degemmed cornmeal or whole grain cornmeal made of yellow corn or another suitable corn or maize. The cornmeal can be a mixture of degemmed cornmeal and whole grain cornmeal. Suitable cornmeals include CCM 260 and/or YCM 260 milled cornmeals commercially available from Bunge North America of 11720 Borman Drive, St. Louis, Missouri. In one self-clumping pellet embodiment and method of self-clumping pellet making, substantially all of the cornmeal is degemmed yellow cornmeal that preferably is CCM 260 degemmed yellow cornmeal. In another pellet embodiment, substantially all of the cornmeal is degemmed yellow cornmeal that preferably is YCM 260 whole grain yellow cornmeal. In certain instances, corn grits can be substituted for all or part of the corn meal.

In still another pellet embodiment and method of pellet making, the cornmeal is made of a mixture of degemmed yellow cornmeal, e.g., CCM 260, and whole grain yellow cornmeal, e.g., YCM 260, whose weight percentages can be varied from any ratio between 75% degemmed yellow cornmeal and 25% whole grain yellow cornmeal to 25% degemmed yellow cornmeal and 75% whole grain yellow cornmeal. One degemmed - whole grain cornmeal mixture has about 50% (± 5%) degemmed yellow cornmeal and about 50% (± 5%) whole grain yellow cornmeal.

The cornmeal has at least 70% carbohydrate content by cornmeal weight and at least 60% starch by cornmeal weight. Another cornmeal well suited for use in such a pellet formulation has at least 75% carbohydrate content by cornmeal weight and at least 65% starch by cornmeal weight. The cornmeal has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another cornmeal has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another cornmeal has an amylose:amylopectin ratio of between 20:80 and 35:65.

In one pellet formulation and pellet making method, between 2 liters and 3 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.0% and about 9.0% and preferably between 4.2% and 8.1% of wet admixture weight. In another pellet formulation and pellet making method, between 2.4 liters and 2.6 liters of water are
added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.8% and about 5.6% and preferably between 5% and 5.5% of wet admixture weight.

The cornmeal is mixed, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together forming a dry admixture before transferring the blended dry raw mixture (dry admixture) into a hopper of an extruder that preferably is a single screw extruder that preferably is the Advantage 50 extruder discussed above. Water is added in a water adding step before the wet admixture undergoes gelatinization in the extruder. If desired, at least some water can be added during mixing or blending of the cornmeal before the cornmeal is mixed or blended with the cellulosic material to activate one or more of starches, proteins, lipids, sugars or the like in the cornmeal.

The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amyllose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being
operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that can cause adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135°C Celsius (about 275°F Fahrenheit) and at an extrusion pressure of at least 600 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.01 inches and 0.05 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135°C Celsius (about 275°F Fahrenheit) and 170°C Celsius (about 338°F Fahrenheit) and at an extrusion pressure of between 600 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140°C Celsius (about 284°F Fahrenheit) and 165°C Celsius (about 330°F Fahrenheit) and at an extrusion pressure of between 600 psi and 1,800 psi.

In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145°C Celsius (about 293°F Fahrenheit) and 160°C Celsius (about 320°F Fahrenheit) and at an extrusion pressure of between 600 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity.
thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

[00215] Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2 millimeters and 4 millimeters and a length of between 2 and 4 millimeters were produced. These uncoated pellets have a bulk density no greater than 0.4 grams per cubic centimeter and preferably between 0.30 grams per cubic centimeter and 0.35 grams per cubic centimeter (preferably about 0.317 grams per cubic centimeter). These uncoated pellets have an ASTM oil absorbancy of at least 1.25 grams per gram and between 1.25 grams per gram and 1.80 grams per gram (preferably about 1.60 grams per gram). These uncoated pellets have an ASTM water absorbancy of at least 0.7 grams per gram and between 0.7 grams per gram and 0.9 grams per gram (preferably about 0.81 grams per gram). Such uncoated pellets have a sieve analysis of between 2%-3% retained by a #5 mesh, between 25%-30% retained by a #8 mesh, between 60%-75% retained by a #10 mesh, and no more than 3% retained by the pan.

[00216] As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

[00217] Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form
a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

[00218] Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

[00219] After coating, the round or generally cylindrical pellets have a width or diameter ranging between about 2.1 millimeters and 5 millimeters and a length of between 2.1 and 5 millimeters. The coated pellets have a bulk density no greater than 0.75 grams per cubic centimeter and preferably between 0.65 grams per cubic centimeter and 0.58 grams per cubic centimeter (preferably about 0.616 grams per cubic centimeter).

The coated pellets have an ASTM oil absorbancy of at least 2.0 grams per gram and between 2.0 grams per gram and 2.75 grams per gram (preferably about 2.5 grams per gram). These coated pellets have an ASTM water absorbancy of at least 1.8 grams per gram and between 1.8 grams per gram and 2.25 grams per gram (preferably about 2.15 grams per gram). Such coated pellets have a sieve analysis of no more than 2% retained by a #5 mesh, between 45%-60% retained by a #8 mesh, between 40%-50% retained by a #10 mesh with less than 1% retained by the pan.

[00220] Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 70% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.
In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

SEVENTH PELLET FORMULATION AND METHOD

A seventh suitable admixture for extruding pellets well suited for use as pet or animal litter is corn-based and formed of the following constituents:

- Corn Flour: 70% - 80%
- Cellulosic Material: 20% - 30%
- Total Mixture (before adding water): 100%
- Water (Liters per 100 lbs of Admixture): 4.7 - 5.5

The corn flour can be made from degermed corn or whole grain corn made of yellow corn, white corn, and/or another suitable corn or maize. The corn flour has at least 70% carbohydrate content by corn flour weight and at least 60% starch by corn flour weight. Another corn flour well suited for use in such a self-clumping pellet formulation has at least 75% carbohydrate content by corn flour weight and at least 65% starch by corn flour weight. The corn flour has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another corn flour has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another corn flour has an amylose:amylopectin ratio of between 20:80 and 35:65.

The cellulosic material contains at least 20% cellulose by cellulosic material weight. One cellulose material is hay, such as alfalfa hay, which is ground or milled, such as with a hammer mill, to comminute the hay into smaller size particles preferably having a mesh size of 20 mesh or larger. Another cellulose material is beet pulp and/or wood fiber that is comminuted if needed such that its particles have a mesh size of 20 mesh or larger. Between 4.7 liters and 5.5 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9.0% and about 11.0% and preferably between 9.4% and 10.8% of wet admixture weight.
The corn flour is mixed, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together before transferring the blended dry raw mixture into a hopper of an extruder that preferably is a single screw extruder like the Advantage 50 extruder discussed above. As the blended dry raw corn flour mixture is transferred into the extruder hopper, the cellulosic material is added to the blended mixture mixing everything together in a second mixing step forming a gelatinization in the extruder. If desired, at least some water can be added during mixing or blending of the corn flour before the corn flour is mixed or blended with the cellulosic material to activate one or more of starches, proteins, lipids, sugars or the like in the corn flour.

The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amyllopectin, the amount of water in the admixture, as well as extruder operating conditions.

The carbohydrate polymer binder can be formed at least in part of amyllopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to...
occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.25% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylpectin, the amount of water in the admixture, as well as extruder operating conditions.

During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135°C Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Operating under these extrusion parameters and/or the extrusion parameters disclosed below, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under these extrusion parameters and/or the extrusion parameters disclosed below, uncoated pellets having a width or diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135°C Celsius (about 275° Fahrenheit) and 170°C Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 800 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140°C Celsius (about 284° Fahrenheit) and 165°C Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi.
In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145°C (about 293°F) and 160°C (about 320°F) and at an extrusion pressure of at least about 1,100 psi and preferably between 900 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can be preferred in order to help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner
described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 1.6 millimeters and 3.2 millimeters and a length of between 1.6 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 2.6 millimeters and 4.5 millimeters and a length of between 3.1 and 4.9 millimeters. Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

EIGHTH PELLET FORMULATION AND METHOD

An eighth suitable admixture for extruding pellets well suited for use as pet or animal litter is rice-based and formed of the following constituents:
Rice Meal 70% - 80%
Cellulosic Material 20% - 30%
Total Mixture (before adding water) 100%
Water (Liters per 100 lbs of Admixture) 4.9 - 5.2

[00238] The rice meal can be coarsely ground or finely ground as known in the industry. The rice meal can be degermed or whole grain rice meal made of a short grained rice, a long grained rice and/or a wild rice. The rice meal used can be a mixture of degermed rice meal and/or whole grain rice meal. The rice meal has at least 70% carbohydrate content by rice meal weight and at least 60% starch by rice meal weight. Another rice meal well suited for use in such a pellet formulation has at least 75% carbohydrate content by rice meal weight and at least 65% starch by rice meal weight. The rice meal has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another rice meal has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another rice meal has an amylose:amylopectin ratio of between 20:80 and 35:65.

[00239] The cellulosic material contains at least 20% cellulose by cellulosic material weight. One cellulose material is hay, such as alfalfa hay, which is ground or milled, such as with a hammer mill, to comminute the hay into smaller size particles preferably having a mesh size of 20 mesh or larger. Another cellulose material is beet pulp and/or wood fiber that is comminuted if needed such that its particles have a mesh size of 20 mesh or larger. Between 4.9 liters and 5.2 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9.5% and about 10.5% and preferably between 9.7% and 10.3% of wet admixture weight.

[00240] The rice meal is mixed together, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together before transferring the blended dry raw mixture into a hopper of an extruder that preferably is a single screw extruder like the Advantage 50 extruder discussed above. As the blended dry raw rice meal mixture is transferred into the extruder hopper, the
cellulosic material, preferably hay, is added to the blended mixture mixing everything together in a second mixing step forming a dry admixture to which water is added in a water adding step before undergoing gelatinization in the extruder. If desired, at least some water can be added during mixing or blending of the rice meal before the rice meal is mixed or blended with the cellulosic material to activate one or more of starches, proteins, lipids, sugars or the like in the rice meal.

The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.5% and 2% of pellet weight, between 2% and 10% of
pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 900 psi and 2,500 psi at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi.

In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of at least about 1,100 psi and preferably between 900 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die
opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, coated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and/or no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 1.6 millimeters and 3.2 millimeters and a length of between 1.6 and 3.5 millimeters. After
coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 2.6 millimeters and 4.5 millimeters and a length of between 3.1 and 4.9 millimeters. Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

NINTH PELLET FORMULATION AND METHOD

A ninth suitable admixture for extruding pellets well suited for use as pet or animal litter is corn-based and formed of the following constituents:

- **Cornstarch** ~ 75% ± 5%
- **Cellulosic Material** ~ 25% ± 5%
- **Total Mixture (before adding water)** 100%
- **Water (Liters per 100 lbs of Admixture)** 4.7 - 5.5 / 4.9 - 5.2

The cornstarch can be coarsely ground, finely ground and/or ground to form a flour as known in the industry. If desired, the cornstarch can be mixed together with one of a cornmeal, corn grits, corn flour, rice meal, rice grits, and/or rice flour producing a dry admixture before mixing with the cellulosic material falling within the ~ 75% ± 5% dry admixture weight range. The cornstarch mixture or formulation has at least 70% carbohydrate content by cornstarch weight and at least 60% starch by cornstarch weight. Another cornstarch mixture or formulation well suited for use in such a pellet formulation has at least 75% carbohydrate content by cornmeal weight and at least 65% starch by cornstarch weight. The cornstarch has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another cornstarch has at
least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another cornstarch has an amylose:amylopectin ratio of between 20:80 and 35:65.

The cellulosic material contains at least 20% cellulose by cellulosic material weight. One cellulose material is hay, such as alfalfa hay, which is ground or milled, such as with a hammer mill, to comminute the hay into smaller size particles preferably having a mesh size of 20 mesh or larger (e.g., 30 mesh, 50 mesh, etc.). Another cellulose material is beet pulp and/or wood fiber that is comminuted if needed such that its particles have a mesh size of 20 mesh or larger (e.g., 30 mesh, 50 mesh, etc.).

In one pellet formulation and pellet making method, between 4.7 liters and 5.5 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9.0% and about 11.0% and preferably between 9.4% and 10.8% of wet admixture weight. In another pellet formulation and pellet making method, between 4.9 liters and 5.2 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9.5% and about 10.5% and preferably between 9.7% and 10.3% of wet admixture weight.

The cornstarch is mixed, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together before transferring the blended dry raw mixture into a hopper of an extruder that preferably is a single screw extruder like the Advantage 50 extruder discussed above. As the blended dry raw cornstarch mixture is transferred into the extruder hopper, the cellulosic material, preferably hay, is added to the blended mixture mixing everything together in a second mixing step forming a dry admixture to which water is added in a water adding step before undergoing gelatinization in the extruder. If desired, at least some water can be added during mixing or blending of the cornstarch before the cornstarch is mixed or blended with the cellulosic material.

The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures
and temperatures to cause formation of water soluble carbohydrate polymer binder in the
gelatinized admixture either during gelatinization and/or during extrusion so that each
extruded pellet has enough water soluble carbohydrate polymer binder present that at
least some of the binder dissolves when wetted by urine, fecal matter moisture, or water
causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate
polymer binder content varying between 1% and 2% of pellet weight, between 2% and
10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of
pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate
polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section
above. The actual carbohydrate polymer binder content or carbohydrate polymer binder
content range produced in extruded pellets depends on factors that include the amount of
starch present in the admixture, the ration of amylose to amylopectin, the amount of
water in the admixture, as well as extruder operating conditions.

[00257] The carbohydrate polymer binder can be formed at least in part of
amylopectin and preferably includes dextrin formed as a result of the extruder being
operated under extrusion pressures and temperatures that cause starch dextrinization to
occur during extrusion. In one extruder operating method, the extruder is operated to
produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic
extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each
extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a
dextrin content varying between 1% and 2% of pellet weight, between 2% and 10% of
pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet,
and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges
discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin
content or dextrin content range produced in extruded pellets depends on factors that
include the amount of starch present in the admixture, the ration of amylose to
amylopectin, the amount of water in the admixture, as well as extruder operating
conditions.

[00258] During the gelatinization step and extrusion step, the extruder is operated
at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 170°
Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 900 psi and
2,500 psi at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi.

[00259] In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of at least about 1,100 psi and preferably between 900 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

[00260] Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

[00261] As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.
Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and/or no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 1.6 millimeters and 3.2 millimeters and a length of between 1.6 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 2.6 millimeters and 4.5 millimeters and a length of between 3.1 and 4.9 millimeters. Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

In one method of making cat litter an admixture that includes starch is gelatinized in an extruder under sufficient pressure and temperature causing a litter
clumping agent to form that includes a carbohydrate polymer binder formed of at least some of the starch in the admixture during extrusion from the extruder producing a plurality of extruded litter pellets having a bulk density no greater than 0.7 grams per cubic centimeter having carbohydrate polymer binder clumping agent that preferably is water soluble. In one method, at least part, if not all, of the carbohydrate polymer binder clumping agent includes or is formed of dextrin.

During operation of the extruder in carrying out the method of making litter, the admixture (after any water has been added) has a moisture content low enough and the extruder operates at an extrusion pressure and temperature high enough to dextrinize starch in the admixture during at least one of gelatinization and extrusion by the extruder forming dextrin in each litter pellet. In one implementation of the method, the admixture (after any water has been added, i.e. wet admixture) has a moisture content of no more than 18% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 800 psi and at extrusion temperature of at least 135° Celsius. Under such extruder operating conditions, the extruder can operate under adiabatic extruder operating conditions during extruding the plurality of litter pellets.

One such method of making litter produces litter pellets each having at least 0.1% dextrin by weight. Another such method produces litter pellets each having at least 2% dextrin by weight. Still another such method produces litter pellets each having between 0.1% and 5% dextrin by weight. Another such method produces litter pellets each having between 2% and 10% dextrin by weight.

One admixture well suited for use with a method of making of making litter has at least one cereal grain with a high carbohydrate content of at least 45% by cereal grain weight. Such an admixture can be formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 45% by cereal grain weight. When extruded in accordance with a method of making litter of the present invention, each one of the plurality of litter pellets produced has at least 1% of carbohydrate polymer clumping agent by uncoated pellet weight and preferably between 1% and 10% carbohydrate polymer clumping agent with at least some of the carbohydrate polymer clumping agent being water soluble.
One such admixture (after any water has been added, i.e. wet admixture) has a moisture content of no more than about 10% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 600 pounds per square inch and at extrusion temperature of at least 135° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Each litter pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

Another admixture (after any water has been added, i.e. wet admixture) producing extruded litter pellets having between 1% and 10% carbohydrate polymer binder clumping agent by pellet weight has a moisture content of no more than about 18% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 800 psi and at extrusion temperature of at least 135° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Each litter pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

Another admixture (after any water has been added, i.e. wet admixture) producing extruded litter pellets having between 1% and 10% carbohydrate polymer binder clumping agent by pellet weight has a moisture content of no more than about 15% by total wet admixture weight and the extruder extrudes the plurality of litter pellets
at an extrusion pressure of at least 900 psi and at extrusion temperature of at least 140° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Each litter pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

In a method of making the litter, the extruder extrudes self-clumping pellets having at least 1% of the carbohydrate polymer binder clumping agent by pellet weight at an extrusion pressure of between 900 psi and 1,800 psi and at an extrusion temperature of between 140° Celsius and 165° Celsius. Such a method produces litter pellets with at least some of the carbohydrate polymer binder clumping agent being water soluble. A preferred dry admixture for use in an extruder under such extruder operating conditions has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Each litter pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

In another method of making the litter, the extruder extrudes self-clumping pellets at an extrusion pressure of between 900 psi and 1,800 pounds per square inch and at an extrusion temperature of between 140° Celsius and 165° Celsius producing litter pellets each having at least some carbohydrate polymer binder clumping agent with at least some of the carbohydrate polymer binder clumping agent being water soluble and which can be formed of water soluble dextrin. One dry admixture suitable for use in an extruder under such extruder operating conditions has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn
starch. Each litter pellet can have a smectite-containing coating that can be formed of bentonite.

[00274] In one method of making the litter, the extruder extrudes pellets at an extrusion pressure of between 900 psi and 1,800 pounds per square inch and at an extrusion temperature of between 140° Celsius and 165° Celsius causing starch dextrinization to occur during one of gelatinizing and extruding of the litter pellets forming at least some dextrin in each extruded litter pellet. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. Suitable sources of the cereal grain include at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. One such method of making litter produces litter pellets each having at least 0.1% dextrin by weight. Another such method produces litter pellets each having at least 2% dextrin by weight. Still another such method produces litter pellets each having between 0.1% and 5% dextrin by weight. Another such method produces litter pellets each having between 2% and 10% dextrin by weight. Each litter pellet can have a smectite-containing coating that can be formed of bentonite.

[00275] In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

TENTH PELLET FORMULATION AND METHOD

[00276] A tenth admixture for extruding pellets well suited for use as pet or animal litter is rice-based and formed of the following constituents:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice Meal</td>
<td>~ 100%</td>
</tr>
<tr>
<td>Total Mixture (before adding water)</td>
<td>100%</td>
</tr>
<tr>
<td>Water (Liters per 100 lbs of Admixture)</td>
<td>4.7 - 5.5 / 4.9 - 5.2</td>
</tr>
</tbody>
</table>

[00277] The rice meal can be coarsely ground or finely ground as known in the industry. The rice meal can be degermed rice meal or whole grain rice meal made of
short grain rice, long grain rice, wild rice or another suitable type of rice. The rice meal used can be a mixture of commercially available degermed rice meal and whole grain rice meal. In still another self-clumping pellet embodiment and method of self-clumping pellet making, the cornmeal is made of a mixture of degermed rice meal and whole grain rice meal whose weight percentages can be varied from any ratio between 100% degermed rice meal and 0% whole grain rice meal to 0% degermed rice meal and 100% whole grain rice meal. One suitable degermed - whole grain rice meal mixture has about 50% (+ 5%) degermed rice meal and about 50% (± 5%) whole grain rice meal.

The rice meal has at least 70% carbohydrate content by rice meal weight and at least 60% starch by rice meal weight. Another rice meal well suited for use in such a pellet formulation has at least 75% carbohydrate content by rice meal weight and at least 65% starch by rice meal weight. The rice meal has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another rice meal has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another rice meal has an amylose:amylopectin ratio of between 20:80 and 35:65.

In one pellet formulation and pellet making method, between 4.7 liters and 5.5 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9.0% and about 11.0% and preferably between 9.4% and 10.8% of wet admixture weight. In another self-clumping pellet formulation and self-clumping pellet making method, between 4.9 liters and 5.2 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 9.5% and about 10.5% and preferably between 9.7% and 10.3% of wet admixture weight.

The rice meal is mixed, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together forming a dry admixture before transferring the blended dry raw mixture (dry admixture) into a hopper of an extruder that preferably is a single screw extruder that preferably is the Advantage 50 extruder discussed above. Water is added in a water adding step before the wet admixture undergoes gelatinization in the extruder.

The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before
extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.
During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 800 psi at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135° Celsius (about 275° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 800 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi.

In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 160° Celsius (about 320° Fahrenheit) and at an extrusion pressure of at least about 1,100 psi and preferably between 900 psi and 1,200 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 1.5 millimeters and 2.2 millimeters and a length of between 1.5 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2.5 millimeters and 3.5 millimeters and a length of between 3.0 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.
As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 1.6 millimeters and 3.2 millimeters and a length of between 1.6 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 2.6 millimeters and 4.5 millimeters and a length of between 3.1 and 4.9 millimeters. Coated pellets of such size
advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

[00290] In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

ELEVENTH PELLET FORMULATION AND METHOD

[00291] An eleventh admixture for extruding pellets well suited for use as pet or animal litter also is rice and corn based and is formed of the following constituents:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice Meal</td>
<td>40% - 60%</td>
</tr>
<tr>
<td>Corn Starch</td>
<td>5% - 15%</td>
</tr>
<tr>
<td>Cellulosic Material</td>
<td>10% - 40%</td>
</tr>
<tr>
<td>Total Mixture (before adding water)</td>
<td>100%</td>
</tr>
<tr>
<td>Water (Liters per 100 lbs of Admixture)</td>
<td>2 - 3 / 2.4 - 2.6</td>
</tr>
</tbody>
</table>

[00292] The rice meal can be coarsely ground or finely ground as known in the industry. The rice meal can be degermed rice meal or whole grain rice meal made of short grain rice, long grain rice, wild rice or another suitable rice. The rice meal can be a mixture of commercially available degermed rice meal and commercially available whole grain rice meal. The corn starch preferably is a commercially available corn starch that is finely ground and which can be ground into a flour. If desired, between 0.1% and 0.3% glycerol monostearate (GMS) or another suitable surfactant can be added to the mixture either during blending of the rice meal with the corn starch and/or when blended with the cellulosic material.

[00293] The portion of the dry admixture formed by the rice meal and corn starch has at least 70% carbohydrate content by weight and at least 60% starch by weight. Another dry admixture portion formed of the rice meal and corn starch well suited for use in such a pellet formulation has at least 75% carbohydrate content by weight and at least 65% starch by weight. The dry admixture portion formed of the rice meal and corn starch
has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another dry admixture portion formed of the rice meal and corn starch has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Still another dry admixture portion formed of the rice meal and corn starch has an amylose:amylopectin ratio of between 20:80 and 35:65.

[00294] In one pellet formulation and pellet making method, between 2 liters and 3 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.0% and about 9.0% and preferably between 4.2% and 8.1% of wet admixture weight. In another self-clumping pellet formulation and self-clumping pellet making method, between 2.4 liters and 2.6 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.8% and about 5.6% and preferably between 5% and 5.5% of wet admixture weight.

[00295] The rice meal and corn starch is mixed, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together forming a dry admixture before transferring the blended dry raw mixture (dry admixture) into a hopper of an extruder that preferably is a single screw extruder that preferably is the Advantage 50 extruder discussed above. Water is added in a water adding step before the wet admixture undergoes gelatinization in the extruder. If desired, at least some water can be added during mixing or blending of the rice meal and corn starch before the blended rice meal/cornstarch mixture is mixed or blended with the cellulosic material.

[00296] The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 0.5% and 2% of pellet weight, between 2% and
10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amyllose to amylpectin, the amount of water in the admixture, as well as extruder operating conditions.

The carbohydrate polymer binder can be formed at least in part of amylpectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that cause adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amyllose to amylpectin, the amount of water in the admixture, as well as extruder operating conditions.

During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 600 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.01 inches and 0.05 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135° Celsius (about 275° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 600 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of
between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 600 psi and 1,800 psi.

[00299] In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 160° Celsius (about 320° Fahrenheit) and at an extrusion pressure of between 600 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

[00300] Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2 millimeters and 4 millimeters and a length of between 2 and 4 millimeters were produced. These uncoated pellets have a bulk density no greater than 0.4 grams per cubic centimeter and preferably between 0.30 grams per cubic centimeter and 0.35 grams per cubic centimeter (preferably about 0.317 grams per cubic centimeter). These uncoated pellets have an ASTM oil absorbancy of at least 1.25 grams per gram and between 1.25 grams per gram and 1.80 grams per gram (preferably about 1.60 grams per gram). These uncoated pellets have an ASTM water absorbancy of at least 0.7 grams per gram and between 0.7 grams per gram and 0.9 grams per gram (preferably about 0.81 grams per gram). Such uncoated pellets have a sieve analysis of between 2%-3% retained by a #5 mesh, between 25%-30% retained by a #8 mesh, between 60%-75% retained by a #10 mesh, and no more than 3% retained by the pan.

[00301] As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated,
dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, the round or generally cylindrical pellets have a width or diameter ranging between about 2.1 millimeters and 5 millimeters and a length of between 2.1 and 5 millimeters. The coated pellets have a bulk density no greater than 0.75 grams per cubic centimeter and preferably between 0.65 grams per cubic centimeter and 0.58 grams per cubic centimeter (preferably about 0.616 grams per cubic centimeter). The coated pellets have an ASTM oil absorbancy of at least 2.0 grams per gram and between 2.0 grams per gram and 2.75 grams per gram (preferably about 2.5 grams per gram). These coated pellets have an ASTM water absorbancy of at least 1.8 grams per gram and between 1.8 grams per gram and 2.25 grams per gram (preferably about 2.15 grams per gram). Such coated pellets have a sieve analysis of no more than 2% retained
by a #5 mesh, between 45%-60% retained by a #8 mesh, between 40%-50% retained by a #10 mesh with less than 1% retained by the pan.

Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 70% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

TWELFTH PELLET FORMULATION AND METHOD

A twelfth admixture for extruding pellets well suited for use as pet or animal litter is corn-based and formed of the following constituents:

- Corn Meal 55% - 75%
- Corn Starch 5% - 15%
- Cellulosic Material 10% - 30%

Total Mixture (before adding water) 100%

Water (Liters per 100 lbs of Admixture) 2 - 3 / 2.4 - 2.6

The cornmeal can be coarsely ground or finely ground as known in the industry. The cornmeal can be degermed cornmeal or whole grain cornmeal made of yellow corn or another suitable corn or maize. The cornmeal can be a mixture of degermed cornmeal and whole grain cornmeal. Suitable cornmeals include CCM 260 and/or YCM 260 milled cornmeals commercially available from Bunge North America of 11720 Borman Drive, St. Louis, Missouri. In one self-clumping pellet embodiment and method of self-clumping pellet making, substantially all of the cornmeal is degermed yellow cornmeal that preferably is CCM 260 degermed yellow cornmeal. In another pellet embodiment, substantially all of the cornmeal is degermed yellow cornmeal that preferably is YCM 260 whole grain yellow cornmeal. If desired, in certain instances, corn grits can be substituted for the corn meal. The corn starch preferably is a commercially
available corn starch that is finely ground and which can be ground into a flour. If desired, between 0.1% and 0.3% glycerol monostearate (GMS) or another suitable surfactant can be added to the mixture either during blending of the rice meal with the corn starch and/or when blended with the cellulosic material.

In still another self-clumping pellet embodiment and method of self-clumping pellet making, the cornmeal is made of a mixture of degermed yellow cornmeal, e.g. CCM 260, and whole grain yellow cornmeal, e.g., YCM 260, whose weight percentages can be varied from any ratio between 75% degermed yellow cornmeal and 25% whole grain yellow cornmeal to 25% degermed yellow cornmeal and 75% whole grain yellow cornmeal. One suitable degermed - whole grain cornmeal mixture has about 50% (± 5%) degermed yellow cornmeal and about 50% (± 5%) whole grain yellow cornmeal.

The portion of the admixture formed by the corn meal and corn starch has at least 70% carbohydrate content by weight and at least 60% starch by weight. Another admixture portion formed of corn meal and corn starch well suited for use in such a pellet formulation has at least 75% carbohydrate content by weight and at least 65% starch by weight. The admixture portion formed of corn meal and corn starch has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another admixture portion formed of corn meal and corn starch has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another admixture portion formed of corn meal and corn starch has an amylose:amylopectin ratio of between 20:80 and 35:65.

In one pellet formulation and pellet making method, between 2 liters and 3 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.0% and about 9.0% and preferably between 4.2% and 8.1% of wet admixture weight. In another pellet formulation and pellet making method, between 2.4 liters and 2.6 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.8% and about 5.6% and preferably between 5% and 5.5% of wet admixture weight.
The corn meal and corn starch is mixed, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together forming a dry admixture before transferring the blended dry raw mixture (dry admixture) into a hopper of an extruder that preferably is a single screw extruder that preferably is the Advantage 50 extruder discussed above. Water is added in a water adding step before the wet admixture undergoes gelatinization in the extruder. If desired, at least some water can be added to the admixture portion formed of the corn meal and corn starch before blending the mixed corn meal and corn starch with the cellullosic material.

The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the wet admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylase to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that cause adiabatic extrusion to occur dextrinizing starch during extrusion thereby forming dextrin in each extruded
pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.5% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00315] During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 600 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.01 inches and 0.05 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135° Celsius (about 275° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 600 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 600 psi and 1,800 psi.

[00316] In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 160° Celsius (about 320° Fahrenheit) and at an extrusion pressure of between 600 psi and 1,800 psi. The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder
having at least one compression screw and/or at least one screw with at least one compression section or zone.

Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 2 millimeters and 4 millimeters and a length of between 2 and 4 millimeters were produced. These uncoated pellets have a bulk density no greater than 0.4 grams per cubic centimeter and preferably between 0.30 grams per cubic centimeter and 0.35 grams per cubic centimeter (preferably about 0.317 grams per cubic centimeter). These uncoated pellets have an ASTM oil absorbancy of at least 1.25 grams per gram and between 1.25 grams per gram and 1.80 grams per gram (preferably about 1.60 grams per gram). These uncoated pellets have an ASTM water absorbancy of at least 0.7 grams per gram and between 0.7 grams per gram and 0.9 grams per gram (preferably about 0.81 grams per gram). Such uncoated pellets have a sieve analysis of between 2%-3% retained by a #5 mesh, between 25%-30% retained by a #8 mesh, between 60%-75% retained by a #10 mesh, and no more than 3% retained by the pan.

As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh
size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, the round or generally cylindrical pellets have a width or diameter ranging between about 2.1 millimeters and 5 millimeters and a length of between 2.1 and 5 millimeters. The coated pellets have a bulk density no greater than 0.75 grams per cubic centimeter and preferably between 0.65 grams per cubic centimeter and 0.58 grams per cubic centimeter (preferably about 0.616 grams per cubic centimeter). The coated pellets have an ASTM oil absorbancy of at least 2.0 grams per gram and between 2.0 grams per gram and 2.75 grams per gram (preferably about 2.5 grams per gram). These coated pellets have an ASTM water absorbancy of at least 1.8 grams per gram and between 1.8 grams per gram and 2.25 grams per gram (preferably about 2.15 grams per gram). Such coated pellets have a sieve analysis of no more than 2% retained by a #5 mesh, between 45%-60% retained by a #8 mesh, between 40%-50% retained by a #10 mesh with less than 1% retained by the pan.

Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 70% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.
A thirteenth suitable admixture for extruding pellets well suited for use as pet or animal litter also is sorghum-based and formed of the following constituents:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum</td>
<td>≈ 100%</td>
</tr>
<tr>
<td>Total Mixture (before adding water)</td>
<td>100%</td>
</tr>
<tr>
<td>Water (Liters per 100 lbs of Admixture)</td>
<td>No Water Added</td>
</tr>
</tbody>
</table>

The sorghum can be red or white sorghum in whole grain form that is added directly to a hopper of the extruder where nothing else is required to be mixed with the sorghum. The sorghum has at least 60% carbohydrate content by sorghum weight and at least 50% starch by sorghum weight. Another sorghum well suited for use in such a self-clumping pellet formulation has at least 65% carbohydrate content by sorghum weight and at least 60% starch by sorghum weight. The sorghum has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another suitable sorghum has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Still another sorghum has an amylose:amylopectin ratio of between 20:80 and 35:65.

In one self-clumping pellet formulation and pellet making method, whole grains of red and/or white sorghum forms substantially the entire admixture that is added to the extruded with no more than between .5 liters and 1 liter of water are added for every 100 pounds of the total admixture such that the final or wet admixture has a moisture content ranging between about 8.0% and about 20.0% and preferably between 8% and 19% of wet admixture weight. In another self-clumping pellet formulation and self-clumping pellet making method, no water is added for every 100 pounds of the total mixture made of red and/or white whole grain sorghum such that the final admixture put into the extruder has a moisture content of no more than 20% of admixture weight and preferably no more than 19% of admixture weight.

The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder.
head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight and can also have the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amyllose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00328] The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur thereby dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.1% and 2% of pellet weight, between 1% and 10% of pellet weight, between 2% and 10% of pellet weight, between 3% and 12% of pellet, and/or between 4% and 15% of pellet weight and can also have dextrin ranges in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amyllose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00329] During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an
extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head
e xtruding the gelatinized admixture out an extrusion die having a die opening of between
0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single
screw extruder preferably is operated at an extrusion temperature of between 135°C
Celsius (about 275°F Fahrenheit) and 170°C Celsius (about 338°F Fahrenheit) and at an
extrusion pressure of between 800 psi and 2,500 psi. In another set of extruder operating
parameters, such a single screw extruder is operated at an extrusion temperature of
between 140°C Celsius (about 284°F Fahrenheit) and 165°C Celsius (about 330°F Fahrenheit)
and at an extrusion pressure of between 900 psi and 1,800 psi.

[00330] In another method, the extruder has at least one compression screw or at
least one screw with at least one compression section or zone that is operated at an
extrusion temperature of between 145°C Celsius (about 293°F Fahrenheit) and 160°C Celsius
(about 320°F Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi
(preferably at least about 1,100 psi). The use of an extruder with at least one compression
screw or at least one screw having at least one compression section or zone can help
maintain relatively smooth throughput through the extruder helping to absorb variations
in gelatinized admixture viscosity thereby advantageously helping to better maintain
extruded pellet uniformity. While such an extruder preferably is a single screw extruder
equipped with a compression screw or a screw with at least one compression section or
zone, the method of making pellets in accordance with the present invention can be
practiced using a twin screw extruder having at least one compression screw and/or at
least one screw with at least one compression section or zone.

[00331] Operating under such extrusion parameters, uncoated pellets having a
width or diameter of between about 0.2 millimeters and 2.2 millimeters and a length of
between 0.2 and 2.5 millimeters were produced using a 0.03 inch extruder head die
opening. Operating under such extrusion parameters, uncoated pellets having a width or
diameter of between about 0.2 millimeters and 3.5 millimeters and a length of between
0.2 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

[00332] As discussed above, the pellets can be packaged after extrusion, dried and
then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated
and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried,
stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One suitable clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 0.5 millimeters and 3.2 millimeters and a length of between 0.5 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 0.5 millimeters and 4.5 millimeters and a length of between 0.5 and 4.9 millimeters. Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is
substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.

In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

FOURTEENTH PELLET FORMULATION AND METHOD

A fourteenth admixture for extruding pellets well suited for use as pet or animal litter can be formed of the following constituents:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Weight Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum</td>
<td>75% - 100%</td>
</tr>
<tr>
<td>Cellulosic Material</td>
<td>25% - 0%</td>
</tr>
<tr>
<td>Total Mixture (before adding water)</td>
<td>100%</td>
</tr>
<tr>
<td>Water (Liters per 100 lbs of Admixture)</td>
<td>0 - 3 / 0 - 4.5</td>
</tr>
</tbody>
</table>

The sorghum can be whole grain red or white sorghum that can be degemmed as well. If desired, the sorghum used can be particle-size reduced such as in the form of sorghum meal, sorghum grits, sorghum flour or sorghum starch. The cellulosic material contains at least 15% cellulose by cellulosic material weight. One suitable cellulosic material is hay, such as alfalfa hay, which is ground or milled, such as with a hammer mill, to comminute the hay into smaller size particles preferably having a mesh size of 20 mesh or larger (e.g., 30 mesh, 50 mesh, etc.). Another suitable cellulosic material is beet pulp and/or wood fiber that is comminuted if needed such that its particles have a mesh size of 20 mesh or larger (e.g., 30 mesh, 50 mesh, etc.).

The portion of the admixture formed by the sorghum has at least 60% carbohydrate content by weight and at least 50% starch by weight. Another admixture portion formed of sorghum well suited for use in such a pellet formulation has at least 65% carbohydrate content by weight and at least 60% starch by weight. The admixture portion formed of sorghum has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another admixture portion formed of sorghum has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60.
Another admixture portion formed of sorghum has an amylose:amylopectin ratio of between 20:80 and 35:65.

[00340] In one self-clumping pellet formulation and pellet making method, between 0 liters and 3 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.0% and about 20.0% and preferably between 5% and 20% of wet admixture weight. In another pellet formulation and pellet making method, between 0 liters and 4.5 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4% and about 20% and preferably between 5% and 19% of wet admixture weight.

[00341] The sorghum is mixed, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together forming a dry admixture before transferring the blended dry raw mixture (dry admixture) into a hopper of an extruder that can be a single screw extruder such as the Advantage 50 extruder discussed above. Water is added in a water adding step before the wet admixture undergoes gelatinization in the extruder. If desired, at least some water can be added to the admixture portion formed of the sorghum before further blending the cellulosic material with the sorghum.

[00342] The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight and can also have the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section.
above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00343] The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur thereby dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.1% and 2% of pellet weight, between 1% and 10% of pellet weight, between 2% and 10% of pellet weight, between 3% and 12% of pellet, and/or between 4% and 15% of pellet weight and can also have dextrin ranges in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00344] During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135° Celsius (about 275° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 800 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi.
In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 160° Celsius (about 320° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi (preferably at least about 1,100 psi). The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 0.2 millimeters and 2.2 millimeters and a length of between 0.2 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 0.2 millimeters and 3.5 millimeters and a length of between 0.2 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form
a coating of between 0.1 millimeters and 1 millimeter substantially completely covering
the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One suitable clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 0.5 millimeters and 3.2 millimeters and a length of between 0.5 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 0.5 millimeters and 4.5 millimeters and a length of between 0.5 and 4.9 millimeters. Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size. In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

FIFTEENTH PELLET FORMULATION AND METHOD

A fifteenth admixture for extruding pellets well suited for use as pet or animal litter can be formed of the following constituents:
Corn 5% - 95%
Sorghum 95% - 5%

Total Mixture (before adding water) 100%
Water (Liters per 100 lbs of Admixture) 0 - 1.5 / 0 - 3

[00352] The corn can be whole grain corn or degermed corn and the sorghum can be whole grain red or white sorghum that can be degermed as well. If desired, the sorghum used can be particle-size reduced such as in the form of sorghum meal, sorghum grits, sorghum flour or sorghum starch. Likewise, where particle size reduce corn is used, it can be in the form of corn meal, corn grits, corn flour or corn starch.

[00353] If desired, cornmeal can be used that can be coarsely ground or finely ground as known in the industry. Where cornmeal is used, the cornmeal can be degermed cornmeal or whole grain cornmeal made of yellow corn or another suitable corn or maize. The cornmeal can be a mixture of degermed cornmeal and whole grain cornmeal. Suitable cornmeals include CCM 260 and/or YCM 260 milled cornmeals commercially available from Bunge North America of 11720 Borman Drive, St. Louis, Missouri.

[00354] In one self-clumping pellet embodiment and method of self-clumping pellet making, substantially all of the cornmeal is degermed yellow cornmeal such as CCM 260 degermed yellow cornmeal. In another pellet embodiment, substantially all of the cornmeal is degermed yellow cornmeal that can be YCM 260 whole grain yellow cornmeal. If desired, in certain instances, corn grits can be substituted for the corn meal. The corn starch preferably is a commercially available corn starch that is finely ground and which can be ground into a flour. If desired, between 0.1% and 0.3% glycerol monostearate (GMS) or another suitable surfactant can be added to the mixture either during blending of the rice meal with the corn starch and/or when blended with the cellulosic material.

[00355] In still another self-clumping pellet embodiment and method of self-clumping pellet making where cornmeal is used, the cornmeal is made of a mixture of degermed yellow cornmeal, e.g., CCM 260, and whole grain yellow cornmeal, e.g., YCM 260, whose weight percentages can be varied from any ratio between 75% degermed yellow cornmeal and 25% whole grain yellow cornmeal to 25% degermed yellow...
cornmeal and 75% whole grain yellow cornmeal. One suitable degermed - whole grain cornmeal mixture has about 50% (+ 5%) degermed yellow cornmeal and about 50% (+ 5%) whole grain yellow cornmeal.

The portion of the admixture formed by the corn and sorghum has at least 70% carbohydrate content by weight and at least 60% starch by weight. Another admixture portion formed of corn and sorghum well suited for use in such a pellet formulation has at least 75% carbohydrate content by weight and at least 65% starch by weight. The admixture portion formed of corn and sorghum has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another admixture portion formed of corn and sorghum has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another admixture portion formed of corn and sorghum has an amylose:amylopectin ratio of between 20:80 and 35:65.

In one self-clumping pellet formulation and pellet making method, between 0 liters and 3 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.0% and about 20.0% and preferably between 5% and 20% of wet admixture weight. In another pellet formulation and pellet making method, between 0 liters and 1.5 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4% and about 20% and preferably between 5% and 19% of wet admixture weight.

The corn and sorghum is mixed, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together forming a dry admixture before transferring the blended dry raw mixture (dry admixture) into a hopper of an extruder that can be a single screw extruder such as the Advantage 50 extruder discussed above. Water is added in a water adding step before the wet admixture undergoes gelatinization in the extruder. If desired, at least some water can be added to the admixture portion formed of the corn and sorghum before further blending the mixed corn and sorghum.

The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the admixture before extruding
the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight and can also have the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

[00360] The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur thereby dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.1% and 2% of pellet weight, between 1% and 10% of pellet weight, between 2% and 10% of pellet weight, between 3% and 12% of pellet, and/or between 4% and 15% of pellet weight and can also have dextrin ranges in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.
During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135°C (about 275°F) and at an extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135°C Celsius (about 275°F) and 170°C Celsius (about 338°F) and at an extrusion pressure of between 800 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140°C Celsius (about 284°F) and 165°C Celsius (about 330°F) and at an extrusion pressure of between 900 psi and 1,800 psi.

In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145°C Celsius (about 293°F) and 160°C Celsius (about 320°F) and at an extrusion pressure of between 900 psi and 1,800 psi (preferably at least about 1,100 psi). The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 0.2 millimeters and 2.2 millimeters and a length of between 0.2 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 0.2 millimeters and 3.5 millimeters and a length of between 0.2 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.
As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.

Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One suitable clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 0.5 millimeters and 3.2 millimeters and a length of between 0.5 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 0.5 millimeters and 4.5 millimeters and a length of between 0.5 and 4.9 millimeters. Coated pellets of such size
advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size. In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

SIXTEENTH PELLET FORMULATION AND METHOD

[00368] A sixteenth admixture for extruding pellets well suited for use as pet or animal litter can be formed of the following constituents:

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>5% - 95%</td>
</tr>
<tr>
<td>Sorghum</td>
<td>95% - 5%</td>
</tr>
<tr>
<td>Cellulosic Material</td>
<td>5% - 15%</td>
</tr>
</tbody>
</table>

Total Mixture (before adding water) 100%

Water (Liters per 100 lbs of Admixture) 0 - 3 / 0 - 4.5

[00369] The corn can be whole grain corn or degermed corn and the sorghum can be whole grain red or white sorghum that can be degermed as well. If desired, the sorghum used can be particle-size reduced such as in the form of sorghum meal, sorghum grits, sorghum flour or sorghum starch. Likewise, where particle size reduce corn is used, it can be in the form of corn meal, corn grits, corn flour or corn starch.

[00370] The cellulosic material contains at least 15% cellulose by cellulosic material weight. One suitable cellulosic material is hay, such as alfalfa hay, which is ground or milled, such as with a hammer mill, to comminute the hay into smaller size particles preferably having a mesh size of 20 mesh or larger (e.g., 30 mesh, 50 mesh, etc.). Another suitable cellulosic material is beet pulp and/or wood fiber that is comminuted if needed such that its particles have a mesh size of 20 mesh or larger (e.g., 30 mesh, 50 mesh, etc.).

[00371] The portion of the admixture formed by the corn and sorghum has at least 70% carbohydrate content by weight and at least 60% starch by weight. Another
admixture portion formed of corn and sorghum well suited for use in such a pellet formulation has at least 75% carbohydrate content by weight and at least 65% starch by weight. The admixture portion formed of corn and sorghum has at least 55% amylopectin and an amylose:amylopectin ratio of between 10:90 and 45:55. Another admixture portion formed of corn and sorghum has at least 60% amylopectin and an amylose:amylopectin ratio of between 15:85 and 40:60. Another admixture portion formed of corn and sorghum has an amylose:amylopectin ratio of between 20:80 and 35:65.

[00372] In one self-clumping pellet formulation and pellet making method, between 0 liters and 3 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4.0% and about 20.0% and preferably between 5% and 20% of wet admixture weight. In another pellet formulation and pellet making method, between 0 liters and 4.5 liters of water are added for every 100 pounds of the total mixture such that the wet admixture has a moisture content ranging between about 4% and about 20% and preferably between 5% and 19% of wet admixture weight.

[00373] The corn and sorghum is mixed, preferably in a ribbon blender for a suitable amount of time in a first mixing step to blend these dry raw materials together forming a dry admixture before transferring the blended dry raw mixture (dry admixture) into a hopper of an extruder that can be a single screw extruder such as the Advantage 50 extruder discussed above. Water is added in a water adding step before the wet admixture undergoes gelatinization in the extruder. If desired, at least some water can be added to the admixture portion formed of the corn and sorghum before further blending the cellulosic material with the corn and sorghum.

[00374] The extruder has at least one extruder screw that is rotated during the gelatinization step and the extrusion step to first gelatinize the admixture before extruding the gelatinized admixture through at least one orifice or opening in the die of the extruder head. The extruder is operated to produce high enough extrusion pressures and temperatures to cause formation of water soluble carbohydrate polymer binder in the gelatinized admixture either during gelatinization and/or during extrusion so that each extruded pellet has enough water soluble carbohydrate polymer binder present that at
least some of the binder dissolves when wetted by urine, fecal matter moisture, or water causing clumping of the pellet with adjacent pellets. Each pellet has a carbohydrate polymer binder content varying between 1% and 2% of pellet weight, between 2% and 10% of pellet weight, between 3% and 10% of pellet weight, between 4% and 12% of pellet, and/or between 5% and 15% of pellet weight and can also have the carbohydrate polymer binder ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual carbohydrate polymer binder content or carbohydrate polymer binder content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

The carbohydrate polymer binder can be formed at least in part of amylopectin and preferably includes dextrin formed as a result of the extruder being operated under extrusion pressures and temperatures that cause starch dextrinization to occur during extrusion. In one extruder operating method, the extruder is operated to produce extrusion pressure(s) and extrusion temperature(s) that causes adiabatic extrusion to occur thereby dextrinizing starch during extrusion thereby forming dextrin in each extruded pellet. Where starch dextrinization occurs during extrusion, each pellet has a dextrin content varying between 0.1% and 2% of pellet weight, between 1% and 10% of pellet weight, between 2% and 10% of pellet weight, between 3% and 12% of pellet, and/or between 4% and 15% of pellet weight and can also have dextrin ranges in accordance with the dextrin ranges discussed above in the LITTER PELLET EMBODIMENTS section above. The actual dextrin content or dextrin content range produced in extruded pellets depends on factors that include the amount of starch present in the admixture, the ration of amylose to amylopectin, the amount of water in the admixture, as well as extruder operating conditions.

During the gelatinization step and extrusion step, the extruder is operated at an extrusion temperature of at least 135° Celsius (about 275° Fahrenheit) and at an extrusion pressure of at least 800 pounds per square inch (psi) at the extruder head extruding the gelatinized admixture out an extrusion die having a die opening of between 0.03 inches and 0.1 inches. Where the extruder is a single screw extruder, such a single screw extruder preferably is operated at an extrusion temperature of between 135°
Celsius (about 275° Fahrenheit) and 170° Celsius (about 338° Fahrenheit) and at an extrusion pressure of between 800 psi and 2,500 psi. In another set of extruder operating parameters, such a single screw extruder is operated at an extrusion temperature of between 140° Celsius (about 284° Fahrenheit) and 165° Celsius (about 330° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi.

[00377] In another method, the extruder has at least one compression screw or at least one screw with at least one compression section or zone that is operated at an extrusion temperature of between 145° Celsius (about 293° Fahrenheit) and 160° Celsius (about 320° Fahrenheit) and at an extrusion pressure of between 900 psi and 1,800 psi (preferably at least about 1,100 psi). The use of an extruder with at least one compression screw or at least one screw having at least one compression section or zone can help maintain relatively smooth throughput through the extruder helping to absorb variations in gelatinized admixture viscosity thereby advantageously helping to better maintain extruded pellet uniformity. While such an extruder preferably is a single screw extruder equipped with a compression screw or a screw with at least one compression section or zone, the method of making pellets in accordance with the present invention can be practiced using a twin screw extruder having at least one compression screw and/or at least one screw with at least one compression section or zone.

[00378] Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 0.2 millimeters and 2.2 millimeters and a length of between 0.2 and 2.5 millimeters were produced using a 0.03 inch extruder head die opening. Operating under such extrusion parameters, uncoated pellets having a width or diameter of between about 0.2 millimeters and 3.5 millimeters and a length of between 0.2 and 3.9 millimeters were produced using a 0.1 inch extruder head die opening.

[00379] As discussed above, the pellets can be packaged after extrusion, dried and then packaged after extrusion, dried, stabilized and then packaged after extrusion, treated and packaged after extrusion, treated, dried and packaged after extrusion, treated, dried, stabilized and packaged after extrusion, coated and packaged after extrusion, coated, dried and packaged after extrusion, treated/coated and packaged after extrusion, or treated/coated, dried and packaged after extrusion. The pellets can be packaged together with desiccant and/or humectant as also discussed above.
Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated to form a coating of at least 0.05 millimeters substantially completely covering the outer surface of each pellet. Where coated with a clay-based coating, the pellets are agglomerated, plated or otherwise coated such as in the manner described above in the LITTER PELLET COATING AND COATING METHODS section to form a coating of between 0.1 millimeters and 1 millimeter substantially completely covering the outer surface of each pellet.

Such a clay based coating preferably includes bentonite, preferably sodium bentonite, that is comminuted, such as by grinding or the like, into a granular material or powder having a mesh size of about 20 mesh or greater and preferably a mesh size of 50 mesh or greater. Such a clay based coating can have a formulation as discussed above in the LITTER PELLET COATING AND COATING METHODS section. One suitable clay based coating formulation has at least 70% sodium bentonite and can have between 70% and 100% sodium bentonite. Where the coating formulation includes other constituents, the coating formulation can include no more than 10% coating formulation weight of zeolite, no more than 10% coating formulation weight of sodium bicarbonate and/or calcium bicarbonate, and no more than 8% coating formulation weight of silica, e.g., crystalline silica.

After coating, round or generally cylindrical pellets produced using a 0.3 inch extruder head die opening have a width or diameter ranging between about 0.5 millimeters and 3.2 millimeters and a length of between 0.5 and 3.5 millimeters. After coating, round or generally cylindrical pellets produced using a 0.1 inch extruder head die opening have a width or diameter of between about 0.5 millimeters and 4.5 millimeters and a length of between 0.5 and 4.9 millimeters. Coated pellets of such size advantageously have a size similar to that of conventional granular clay-based cat litter and water absorption of at least 80% of conventional clay-based cat litter. As a result, performance of coated litter pellets in accordance with the present invention is substantially the same as conventional clay-based cat litter but weighs less than half that of conventional clay-based cat litter for a given package volume or package size.
In one embodiment, it is contemplated that uncoated pellets can be packaged and sold for use as cat litter. In another embodiment, the pellets are coated with a clay-based coating as discussed above before being packaged and sold.

PREFERRED CAT LITTER PELLET FORMULATIONS AND METHODS

[00383] In one method of making an admixture well suited for making cat litter includes starch that is gelatinized in an extruder under sufficient pressure and temperature causing a litter clumping agent to form during pellet extrusion that includes a carbohydrate polymer binder formed of at least some of the starch in the admixture during extrusion from the extruder producing a plurality of extruded litter pellets having a bulk density no greater than 0.7 grams per cubic centimeter having carbohydrate polymer binder clumping agent that preferably is water soluble. In one method, at least part, if not all, of the carbohydrate polymer binder clumping agent includes or is formed of dextrin.

[00384] During operation of the extruder in carrying out the method of making litter, the admixture (after any water has been added) has a moisture content low enough and the extruder operates at an extrusion pressure and temperature high enough to dextrinize starch in the admixture during at least one of gelatinization and extrusion by the extruder forming dextrin in each litter pellet. In one implementation of the method, the admixture (after any water has been added, i.e. wet admixture) has a moisture content of no more than 18% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 800 psi and at extrusion temperature of at least 135° Celsius. Under such extruder operating conditions, the extruder operates under adiabatic extruder operating conditions during extruding the plurality of litter pellets.

[00385] One such method of making litter produces litter pellets each having at least 0.1% dextrin by weight. Another such method produces litter pellets each having at least 2% dextrin by weight. Still another such method produces litter pellets each having between 0.1% and 5% dextrin by weight. Another such method produces litter pellets each having between 2% and 10% dextrin by weight.

[00386] One admixture well suited for use with a method of making of making litter has at least one cereal grain with a high carbohydrate content of at least 45% by cereal grain weight. Such an admixture can be formed of at least 70% by dry admixture.
weight of at least one cereal grain having a high carbohydrate content of at least 45% by cereal grain weight. When extruded in accordance with a method of making litter of the present invention, each one of the plurality of litter pellets produced has at least 1% of carbohydrate polymer clumping agent by uncoated pellet weight and preferably between 1% and 10% carbohydrate polymer clumping agent with at least some of the carbohydrate polymer clumping agent being water soluble.

[00387] One such admixture (after any water has been added, i.e. wet admixture) has a moisture content of no more than about 10% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 600 pounds per square inch and at extrusion temperature of at least 135° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Each litter pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

[00388] Another admixture (after any water has been added, i.e. wet admixture) producing extruded litter pellets having between 1% and 10% carbohydrate polymer binder clumping agent by pellet weight has a moisture content of no more than about 18% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 800 psi and at extrusion temperature of at least 135° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch.
starch. Each litter pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

[00389] Another admixture (after any water has been added, i.e. wet admixture) producing extruded litter pellets having between 1% and 10% carbohydrate polymer binder clumping agent by pellet weight has a moisture content of no more than about 15% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 900 pounds per square inch and at extrusion temperature of at least 140° Celsius. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. One such dry admixture has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Each litter pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

[00390] In one method of making the litter, the extruder extrudes pellets having at least 1% of the carbohydrate polymer binder clumping agent by pellet weight at an extrusion pressure of between 900 psi and 2,500 pounds per square inch and at an extrusion temperature of between 140° Celsius and 165° Celsius. Such a method produces litter pellets with at least some of the carbohydrate polymer binder clumping agent being water soluble. One dry admixture suitable for use in an extruder under such extruder operating conditions has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Each litter pellet can be coated after extrusion with a smectite-containing coating that can be formed of bentonite.

[00391] In another method of making self-clumping litter, the extruder extrudes pellets at an extrusion pressure of between 900 psi and 2,500 pounds per square inch and at an extrusion temperature of at least 140° Celsius and preferably between 140° Celsius and 165° Celsius producing litter pellets each having at least some carbohydrate polymer
binder clumping agent with at least some of the carbohydrate polymer binder clumping agent being water soluble and which can be formed of water soluble dextrin. A dry admixture suitable for use in an extruder under such extruder operating conditions has at least 70% corn by dry admixture weight (before any water is added to the admixture) with suitable sources of corn including at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. Each litter pellet can have a smectite-containing coating that can be formed of bentonite.

Such a method of making the litter, the extruder extrudes pellets at an extrusion pressure of between 900 psi and 1,800 pounds per square inch and at an extrusion temperature of between 140° Celsius and 165° Celsius causing starch dextrinization to occur during one of gelatinizing and extruding of the litter pellets forming at least some dextrin in each extruded litter pellet. The admixture can be made of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. Suitable sources of the cereal grain include at least of corn grits, corn meal, corn flour and corn starch and which can include a blend or mixture of more than one of corn grits, corn meal, corn flour and corn starch. One such method of making litter produces litter pellets each having at least 0.1% dextrin by weight. Another such method produces litter pellets each having at least 2% dextrin by weight. Still another such method produces litter pellets each having between 0.1% and 5% dextrin by weight. Another such method produces litter pellets each having between 2% and 10% dextrin by weight. Each litter pellet can have a smectite-containing coating that can be formed of bentonite.

The present invention is directed to a method of making animal litter comprising gelatinizing an admixture comprised of starch under sufficient pressure and temperature to form a water soluble carbohydrate polymer binder or adhesive from at least some of the starch of the mixture during extrusion of the admixture from an extruder that puffs or expands the admixture during extrusion producing a plurality of extruded pellets having a bulk density no greater than 0.7 grams per cubic centimeter and a plurality of pairs of internal voids. The water soluble carbohydrate polymer binder or adhesive can be and
preferably is disposed about an outer surface of each one of the extruded pellets. The water soluble carbohydrate polymer binder or adhesive forms part of the outer surface of each one of the extruded pellets. The water soluble carbohydrate polymer binder or adhesive comprises a dextrin. The dextrin is composed of one of white and yellow dextrin.

The admixture has a moisture low enough to achieve dextrinization of the starch in the admixture during extrusion of the plurality of pellets. In a preferred implementation of the method, the admixture is extruded under adiabatic extruder operating conditions.

In carrying out the method, each one of the plurality of pellets is comprised of at least 0.1% dextrin by pellet weight. Each one of the plurality of pellets can be comprised of no more than about 5% dextrin by pellet weight.

In carrying out another implementation of the method, each one of the plurality of pellets is comprised of at least 1% dextrin by pellet weight. Each one of the plurality of pellets is comprised no more than about 10% dextrin by pellet weight. Each one of the plurality of pellets is comprised at least about 5% dextrin by pellet weight. Each one of the plurality of pellets is comprised no more than about 15% dextrin by pellet weight.

In carrying out an implementation of a preferred method, each one of the plurality of pellets is comprised of at least 1% dextrin by pellet weight after extrusion. Each one of the plurality of pellets is comprised of no more than about 15% dextrin by pellet weight after extrusion. Each one of the plurality of pellets is comprised of at least 5% dextrin by pellet weight after extrusion. Each one of the plurality of pellets is comprised no more than about 10% dextrin by pellet weight after extrusion. Each one of the plurality of pellets is comprised at least about 10% dextrin by weight after extrusion. Each one of the plurality of pellets is comprised no more than about 25% dextrin by pellet weight after extrusion.

In a preferred method, each one of the plurality of pellets is comprised of at least 0.1% dextrin by pellet weight after pellet extrusion and pellet drying. Each one of the plurality of pellets is comprised of no more than about 5% dextrin by pellet weight after pellet extrusion and pellet drying. Each one of the plurality of pellets is comprised of at least 5% dextrin by pellet weight after extrusion and drying. Each one of the plurality of pellets is comprised no more than about 10% dextrin by pellet weight after extrusion and
drying. Each one of the plurality of pellets is comprised at least about 10% dextrin by pellet weight after extrusion and drying. Each one of the plurality of pellets is comprised no more than about 15% dextrin by pellet weight after extrusion and drying.

The starch of the admixture can be comprised of corn starch that is provided from one of corn meal and corn flour. In one implementation of the method, the corn starch comprises a modified corn starch that can be a chemically modified corn starch. If desired, such a chemically modified corn starch can comprise a cross-linked chemically modified corn starch.

In a preferred method implementation, the corn starch has no greater than about 50% amylose. The corn starch can have an amylose:amylopectin ratio of between 10:90 and 45:60. The corn starch can have an amylose:amylopectin ratio of between 15:85 and 35:65. The corn starch can have an amylose:amylopectin ratio of between 20:80 and 30:70. The corn starch can have an amylose:amylopectin ratio of between 20:80 and 35:65.

In another preferred method implementation, the starch is comprised of amylose and amylopectin, wherein the amylopectin in the starch has a weight average molecular weight ranging between 25 million g/mol and 650 million g/mol. The starch has a grain diameter of no greater than 40 micrometers and can produce a gel during gelatinization during extrusion. Such a starch preferably produces no paste or substantially no paste during gelatinization. The starch has a starch grain diameter no greater than 40 micrometers. The starch is unimodal and comprised of one of spherical and polyhedral shaped starch granules. The starch can have spherical or polyhedral shaped starch granules. The starch lacks any lenticular shaped starch granules. The starch can be composed of sorghum that can be red or white sorghum that can be whole grain sorghum that is gelatinized during extrusion. The starch of the admixture can also be comprised of one of corn and sorghum or a combination of corn and sorghum.

During extrusion, a plurality of pellets are produced each having at least 0.5% expanded starch by pellet weight. In another method implementation, a plurality of pellets are produced during during extrusion each having at least about 1% expanded starch by pellet weight. In still another method implementation, a plurality of pellets are
produced during extrusion each having between 0.25% and 5% expanded starch by pellet weight.

A plurality of pairs of round or oblong pellets can be produced during extrusion that each have a diameter of no greater than about 5 millimeters and a length no greater than about 10 millimeters. Each extruded pellet can have a plurality of pairs of internal voids and a plurality of pairs of pores in its outer surface in communication with at least one of the internal voids. Each extruded pellet can be coated with a coating immediately after extrusion that can be a hydrophilic coating. Such a hydrophilic coating can be comprised of a smectite. One preferred smectite is comprised of bentonite that preferably is sodium bentonite. The coating can further be comprised of a zeolite.

In another preferred method of making animal litter comprising gelatinizing an admixture comprised of starch under sufficient pressure and temperature to dextrinize at least some of the starch of the admixture during extrusion of the admixture under adiabatic extrusion conditions producing a plurality of extruded pellets each having an outer surface comprised of dextrin. In one method implementation, substantially all of the starch in the admixture is comprised of corn starch. The corn starch can have an amylose:amylopectin ratio of between 10:90 and 50:50. The corn starch can have an amylose:amylopectin ratio of between 20:90 and 40:60. The admixture can be comprised of at least 80% corn meal. The admixture can be comprised of at least 95% corn meal and substantially all of the starch in the admixture can be comprised of corn starch.

In another preferred method implementation, the admixture is comprised of sorghum, such as red or white sorghum, which can be whole grain sorghum. The sorghum starch can have an amylose:amylopectin ratio of between 10:90 and 50:50. The sorghum starch can have an amylose:amylopectin ratio of between 20:90 and 40:60. The admixture can be comprised of at least 80% sorghum. The admixture can be comprised of at least 95% sorghum and substantially all of the starch in the admixture is provided by the sorghum.

In another method of making animal litter cereal grain(s) having greater than 50% starch by weight are gelatinized into a gelatinized admixture under sufficient pressure and temperature to dextrinize at least some of the starch present during extrusion of the mixture into a plurality of pellets under adiabatic extrusion conditions. The gelatinized
admixture is comprised of at least 80% of at least one cereal grain by weight. The
gelatinized admixture can be comprised of a plurality of cereal grains. In one method
implementation, the admixture is comprised of corn that can be de-germed corn and
which can be comprised of modified starch and/or form modified starch during extrusion.
Such a modified starch can be comprised of a chemically modified starch that can be a
cross-linked starch.

Another preferred method of making animal litter comprises gelatinizing an
admixture comprised of starch in an extruder under sufficient pressure and temperature
forming a litter clumping agent comprised of a carbohydrate polymer binder from at least
some of the starch of the admixture during extrusion from the extruder producing a
plurality of extruded litter pellets having a bulk density no greater than 0.7 grams per
cubic centimeter and comprised of carbohydrate polymer binder clumping agent. The
carbohydrate polymer binder clumping agent in each litter pellet is water soluble. The
carbohydrate polymer binder clumping agent can be comprised of dextrin.
The admixture can have a moisture content low enough and the extruder can operate at an
extrusion pressure and temperature high enough to dextrinize starch in the admixture
during at least one of gelatinization and extrusion by the extruder forming dextrin in each
litter pellet. In one method implementation, the admixture has a moisture content of no
more than 18% by total wet admixture weight and the extruder extrudes the plurality of
litter pellets at an extrusion pressure of at least 800 pounds per square inch and at
extrusion temperature of at least 135° Celsius. The extruder can operate under adiabatic
extruder operating conditions during extruding the plurality of litter pellets.

Each one of the plurality of litter pellets can be comprised at least 0.1% dextrin by
pellet weight. Each each one of the plurality of litter pellets can be comprised of between
0.1% and 5% dextrin by pellet weight. Each one of the plurality of litter pellets can be
comprised at least 1% dextrin by pellet weight. Each one of the plurality of litter pellets
can be comprised of between 2% and 10% dextrin by pellet weight.

In one implementation of the method, the admixture is comprised of at least one
cereal grain having a high carbohydrate content of at least 45% by cereal grain weight.
The admixture can be comprised of a dry admixture formed of at least 70% by dry
admixture weight of at least one cereal grain having a high carbohydrate content of at least 45% by cereal grain weight.

Each one of the plurality of litter pellets produced by extrusion is comprised of at least 1% of the carbohydrate polymer clumping agent by pellet weight. Each one of the plurality of litter pellets can be comprised of between 1% and 10% by weight of the carbohydrate polymer binder clumping agent and wherein the carbohydrate polymer binder clumping agent is comprised of a water soluble carbohydrate polymer binder clumping agent.

The admixture can have a moisture content of no more than about 10% by total wet admixture weight and the extruder can extrude the plurality of litter pellets at an extrusion pressure of at least 600 pounds per square inch and at extrusion temperature of at least 135° Celsius. The admixture can be comprised of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. The dry admixture can be comprised of at least 70% corn by dry admixture weight. The dry admixture can be comprised of at least 70% sorghum by dry admixture weight.

The admixture can be comprised of a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. The dry admixture can be comprised of at least 70% corn by dry admixture weight. The corn can be comprised of at least one of corn grits, corn meal, corn flour and corn starch. The dry admixture can be comprised of at least 70% sorghum by dry admixture weight. The sorghum can be comprised of at least one of whole sorghum grain, sorghum grits, sorghum meal, sorghum flour and sorghum starch. Each litter pellet can be coated with an outer coating comprised of a smectite after extrusion that can be bentonite such as sodium bentonite.

In one method implementation, the admixture has a moisture content of no more than 15% by total wet admixture weight and the extruder extrudes the plurality of litter pellets at an extrusion pressure of at least 900 pounds per square inch and an extrusion temperature of at least 140° Celsius. The admixture can be comprised of a dry admixture
formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight. The dry admixture can be comprised of at least 70% corn by dry admixture weight. The corn can be comprised of at least one of corn grits, corn meal, corn flour and corn starch. The dry admixture can be comprised of at least 70% sorghum by dry admixture weight. The sorghum can be comprised of at least one of whole sorghum grain, sorghum grits, sorghum meal, sorghum flour and sorghum starch. Each litter pellet can be coated with an outer coating comprised of a smectite after extrusion that can be bentonite such as sodium bentonite.

In another implementation of the method of making animal litter, the extruder extrudes the plurality of litter pellets at an extrusion pressure of between 900 pounds per square inch and 1,800 pounds per square inch and at an extrusion temperature of between 140° Celsius and 165° Celsius. The pellets extruded have a carbohydrate polymer binder clumping agent that is comprised of a water soluble carbohydrate polymer binder. The water soluble carbohydrate polymer binder can be comprised of a dextrin. Starch dextrinization occurs during one of gelatinizing and extruding of the plurality of litter pellets from the extruder producing litter pellets each comprised of dextrin.

The dry admixture can be comprised of at least 70% corn by dry admixture weight. The corn can be comprised of at least one of corn grits, corn meal, corn flour and corn starch. The dry admixture can be comprised of at least 70% sorghum by dry admixture weight. The sorghum can be comprised of at least one of whole sorghum grain, sorghum grits, sorghum meal, sorghum flour and sorghum starch. Each litter pellet can be coated with an outer coating comprised of a smectite after extrusion that can be bentonite such as sodium bentonite.

In another method implementation, a dry admixture formed of at least 70% by dry admixture weight of at least one cereal grain having a high carbohydrate content of at least 65% by cereal grain weight and having a high starch content of at least 60% by cereal grain weight can be gelatinized and extruded. The at least one cereal grain can be comprised of sorghum that can be a red or white sorghum can can be formed of whole grain sorghum. The at least one cereal grain is comprised of at least one of sorghum grits, sorghum meal, sorghum flour and sorghum starch. Each one of the plurality of litter
pellets can be comprised of at least 0.1% dextrin by pellet weight. Each one of the plurality of litter pellets can be comprised of between 0.1% and 5% dextrin by pellet weight. Each one of the plurality of litter pellets can be comprised of between 1% and 10% dextrin by pellet weight. Each litter pellet can be coated with an outer coating comprised of a smectite after extrusion that can be bentonite such as sodium bentonite.

The present invention is also directed to a self-clumping animal litter that comprises (a) at least 40% starch by weight of the cat litter, and (b) a carbohydrate polymer binder litter clumping agent formed during making of the litter. The carbohydrate polymer binder litter clumping agent comprises a water soluble carbohydrate polymer binder formed from starch during making of the litter. The water soluble carbohydrate polymer binder can be comprised of an amyllopectin starch-based carbohydrate polymer binder. The water soluble carbohydrate polymer binder can be comprised of dextrin.

The litter can have between 1% and 10% carbohydrate polymer binder litter clumping agent by weight of the litter. The carbohydrate polymer binder litter clumping agent is comprised of a water soluble polymer binder that can be comprised of dextrin. The litter is comprised of a plurality of extruded pellets and the carbohydrate polymer binder litter clumping agent is formed during pellet extrusion producing self-clumping litter pellets.

The starch from which the litter pellets are extruded can be comprised of at least one cereal grain having a carbohydrate content of at least 60% by cereal grain weight and a starch content of at least 45% by cereal grain weight. The at least one cereal grain from which the litter pellets are extruded is comprised of one of corn, maize, rice, wheat, triticale, amaranth and sorghum. The at least one cereal grain can be comprised of at least one of ground or comminuted corn, maize, rice, wheat, triticale, amaranth and sorghum. The at least one cereal grain can also be comprised of at least one of corn grits, cornmeal, corn starch, corn flour, rice grits, rice meal, rice starch, rice flour, wheat grits, wheat meal, wheat starch, wheat flour, triticale grits, triticale meal, triticale starch, triticale flour, amaranth grits, amaranth meal, amaranth starch, amaranth flour, sorghum grits, sorghum meal, sorghum starch, and sorghum flour. The carbohydrate polymer binder
clumping agent comprises a water soluble polymer binder clumping agent that can be comprised of dextrin.

In another self-clumping litter embodiment, the litter is comprised of a plurality of pellets, each pellet comprised of (a) at least one cereal grain comprised of starch, (b) a carbohydrate polymer binder litter clumping agent, and (c) a smectite. The carbohydrate polymer binder litter clumping agent of each pellet comprises a water soluble carbohydrate polymer binder that can be comprised of dextrin. The at least one cereal grain has a carbohydrate content of at least 60% by cereal grain weight and a starch content of at least 45% by cereal grain weight. The at least one cereal grain is comprised of at least one of ground or comminuted corn, maize, rice, wheat, triticale, amaranth and sorghum. The at least one cereal grain can be comprised of at least one of corn grits, cornmeal, corn starch, corn flour, rice grits, rice meal, rice starch, rice flour, wheat grits, wheat meal, wheat starch, wheat flour, triticale grits, triticale meal, triticale starch, triticale flour, amaranth grits, amaranth meal, amaranth starch, amaranth flour, sorghum grits, sorghum meal, sorghum starch, and sorghum flour. Each pellet can have an outer layer or coating formed of a smectite that can be comprised of bentonite such as sodium bentonite.

Another self-clumping litter embodiment is comprised of a plurality of extruded pellets, each extruded pellet comprised of (a) at least one cereal grain comprised of starch, (b) a water soluble carbohydrate polymer binder litter clumping agent formed from starch during pellet extrusion, and (c) an exterior comprised of a bentonite. The at least one cereal grain has a carbohydrate content of at least 60% by cereal grain weight and a starch content of at least 45% by cereal grain weight. The at least one cereal grain is comprised of ground or comminuted corn or maize. The at least one cereal grain can be comprised of sorghum that can be a white sorghum or a red sorghum. The sorghum can be comprised of whole grain sorghum.

[00393] Understandably, the present invention has been described above in terms of one or more preferred embodiments and methods. It is recognized that various alternatives and modifications may be made to these embodiments and methods that are within the scope of the present invention. Various alternatives are contemplated as being within the scope of the present invention. It is also to be understood that, although the
foregoing description and drawings describe and illustrate in detail one or more preferred embodiments of the present invention, to those skilled in the art to which the present invention relates, the present disclosure will suggest many modifications and constructions, as well as widely differing embodiments and applications without thereby departing from the spirit and scope of the invention as defined by the claims set forth below.
CLAIMS
What is claimed is:

1. A method of making animal litter comprising gelatinizing an admixture comprised of starch under sufficient pressure and temperature to form a water soluble carbohydrate polymer binder or adhesive from at least some of the starch of the mixture during extrusion of the admixture from an extruder that puffs or expands the admixture during extrusion producing a plurality of extruded pellets having a bulk density no greater than 0.7 grams per cubic centimeter and a plurality of pairs of internal voids.

2. The method of claim 1 wherein the water soluble carbohydrate polymer binder or adhesive is disposed about an outer surface of each one of the extruded pellets.

3. The method of claim 2 wherein the water soluble carbohydrate polymer binder or adhesive forms part of the outer surface of each one of the extruded pellets.

4. The method of claim 3 wherein the water soluble carbohydrate polymer binder or adhesive comprises a dextrin.

5. The method of claim 4 wherein the admixture has a moisture low enough to achieve dextrinization of the starch in the admixture during extrusion of the plurality of pellets.

6. The method of claim 5 wherein the admixture is extruded under adiabatic extruder operating conditions.

7. The method of claim 4 wherein the dextrin comprises one of white and yellow dextrin.

8. The method of claim 7 wherein each one of the plurality of pellets is comprised of at least 0.1% dextrin by pellet weight.

9. The method of claim 8 wherein each one of the plurality of pellets is comprised of no more than about 5% dextrin by pellet weight.
10. The method of claim 8 wherein each one of the plurality of pellets is comprised of at least 1% dextrin by pellet weight.

11. The method of claim 10 wherein each one of the plurality of pellets is comprised no more than about 10% dextrin by pellet weight.

12. The method of claim 10 wherein each one of the plurality of pellets is comprised at least about 5% dextrin by pellet weight.

13. The method of claim 12 wherein each one of the plurality of pellets is comprised no more than about 15% dextrin by pellet weight.

14. The method of claim 7 wherein each one of the plurality of pellets is comprised of at least 1% dextrin by pellet weight after extrusion.

15. The method of claim 14 wherein each one of the plurality of pellets is comprised of no more than about 15% dextrin by pellet weight after extrusion.

16. The method of claim 14 wherein each one of the plurality of pellets is comprised of at least 5% dextrin by pellet weight after extrusion.

17. The method of claim 16 wherein each one of the plurality of pellets is comprised no more than about 10% dextrin by pellet weight after extrusion.

18. The method of claim 16 wherein each one of the plurality of pellets is comprised at least about 10% dextrin by weight after extrusion.

19. The method of claim 18 wherein each one of the plurality of pellets is comprised no more than about 25% dextrin by pellet weight after extrusion.

20. The method of claim 7 wherein each one of the plurality of pellets is comprised of at least 0.1% dextrin by pellet weight after extrusion and drying.

21. The method of claim 20 wherein each one of the plurality of pellets is comprised of no more than about 5% dextrin by pellet weight after extrusion and drying.
22. The method of claim 20 wherein each one of the plurality of pellets is comprised of at least 5% dextrin by pellet weight after extrusion and drying.

23. The method of claim 22 wherein each one of the plurality of pellets is comprised no more than about 10% dextrin by pellet weight after extrusion and drying.

24. The method of claim 22 wherein each one of the plurality of pellets is comprised at least about 10% dextrin by pellet weight after extrusion and drying.

25. The method of claim 24 wherein each one of the plurality of pellets is comprised no more than about 15% dextrin by pellet weight after extrusion and drying.

26. The method of claim 3 wherein the starch of the admixture comprises corn starch.

27. The method of claim 26 wherein the corn starch is provided from one of corn meal and corn flour.

28. The method of claim 27 wherein the corn starch comprises a modified corn starch.

29. The method of claim 28 wherein the modified corn starch comprises a chemically modified corn starch.

30. The method of claim 29 wherein the chemically modified corn starch comprises cross-linked chemically modified corn starch.

31. The method of claim 26 wherein the corn starch has no greater than about 50% amylose.

32. The method of claim 31 wherein the corn starch has an amylose:amylopectin ratio of between 10:90 and 45:60.

33. The method of claim 32 wherein the corn starch has an amylose:amylopectin ratio of between 15:85 and 35:65.
34. The method of claim 33 wherein the starch has an amylose:amylopectin ratio of between 20:80 and 30:70.

35. The method of claim 34 wherein the starch has an amylose:amylopectin ratio of between 20:80 and 35:65.

36. The method of claim 3 wherein the starch is comprised of amylose and amylopectin, wherein the amylopectin in the starch has a weight average molecular weight ranging between 25 million g/mol. and 650 million g/mol.

37. The method of claim 36 wherein the starch has a grain diameter no greater than 40 micrometers.

38. The method of claim 36 wherein the starch produces a gel during gelatinization.

39. The method of claim 38 wherein the starch produces no paste during gelatinization.

40. The method of claim 36 wherein the starch has spherical or polyhedral shaped starch granules.

41. The method of claim 40 wherein the starch lacks any lenticular shaped starch granules.

42. The method of claim 40 wherein the starch has a starch grain diameter no greater than 40 micrometers.

43. The method of claim 36 wherein the starch is unimodal and comprised of one of spherical and polyhedral shaped starch granules.

44. The method of claim 43 wherein the starch lacks any lenticular shaped starch granules.

45. The method of claim 43 wherein the starch has a grain diameter no greater than 40 micrometers.
46. The method of claim 3 wherein the starch is comprised of sorghum.

47. The method of claim 46 wherein the starch is comprised of one of whole grain red or white sorghum.

48. The method of claim 46 wherein the starch of the admixture is comprised of one of corn and sorghum.

49. The method of claim 3 wherein the starch is comprised of amylose and amylopectin, wherein the amylopectin in the starch has a weight average molecular weight no greater than 650 million g/mol., and wherein the starch produces a gel upon gelatinization.

50. The method of claim 49 wherein the starch is comprised of sorghum.

51. The method of claim 50 wherein the starch is comprised of whole grain sorghum.

52. The method of claim 49 wherein the starch has a grain diameter no greater than 40 micrometers.

53. The method of claim 49 wherein the starch produces no paste upon gelatinization.

54. The method of claim 49 wherein the starch has spherical or polyhedral shaped starch granules.

55. The method of claim 54 wherein the starch lacks any lenticular shaped starch granules.

56. The method of claim 54 wherein the starch has a starch grain diameter no greater than 40 micrometers.

57. The method of claim 49 wherein the starch is unimodal and comprised of one of spherical and polyhedral shaped starch granules.
58. The method of claim 57 wherein the starch lacks any lenticular shaped starch granules.

59. The method of claim 58 wherein the starch has a grain diameter no greater than 40 micrometers.

60. The method of claim 3 wherein extrusion produces a plurality of pellets each having at least 0.5% expanded starch by weight.

61. The method of claim 60 wherein extrusion produces a plurality of pellets each having at least about 1% expanded starch by weight.

62. The method of claim 60 wherein extrusion produces a plurality of pellets each having between 0.25% and 5% expanded starch by weight.

63. The method of claim 3 wherein extrusion produces a plurality of pairs of round or oblong pellets each having a diameter of no greater than about 5 millimeters and a length no greater than about 10 millimeters.

64. The method of claim 63 wherein each pellet has a plurality of pairs of internal voids and a plurality of pairs of pores in its outer surface in communication with at least one of the internal voids.

65. The method of claim 64 wherein each one of the plurality of pairs of pellets are coated with a coating immediately after extrusion.

66. The method of claim 65 wherein the coating is a hydrophilic coating.

67. The method of claim 66 wherein the coating is comprised of a smectite.

68. The method of claim 67 wherein the smectite is comprised of bentonite.

69. The method of claim 68 wherein the bentonite comprises sodium bentonite.

70. The method of claim 67 wherein the coating is further comprised of a zeolite.
71. The method of claim 64 wherein each one of the plurality of pairs of pellets are coated with a coating after extrusion but during the gelatinization phase.

72. The method of claim 71 wherein the coating is a hydrophilic coating.

73. The method of claim 72 wherein the coating is comprised of a smectite.

74. The method of claim 73 wherein the smectite is comprised of bentonite.

75. The method of claim 74 wherein the bentonite comprises sodium bentonite.

76. The method of claim 72 wherein the coating is further comprised of a zeolite.

77. A method of making animal litter comprising gelatinizing an admixture comprised of starch under sufficient pressure and temperature to dextrinize at least some of the starch of the admixture during extrusion of the admixture under adiabatic extrusion conditions producing a plurality of extruded pellets each having an outer surface comprised of dextrin.

78. The method of claim 77 wherein substantially all of the starch in the admixture comprises corn starch.

79. The method of claim 78 wherein the corn starch has an amylose:amylopectin ratio of between 10:90 and 50:50.

80. The method of claim 78 wherein the corn starch has an amylose:amylopectin ratio of between 20:90 and 40:60.

81. The method of claim 77 wherein the admixture is comprised of at least 80% corn meal and the starch is comprised of corn starch.

82. The method of claim 81 wherein the admixture is comprised of at least 95% corn meal and substantially all of the starch in the admixture is comprised of corn starch.
83. The method of claim 77 wherein the admixture is comprised of sorghum.

84. The method of claim 83 wherein the admixture is comprised of whole grain sorghum.

85. A method of making animal litter comprising gelatinizing cereal grain having greater than 50% starch by weight into a gelatinized mixture under sufficient pressure and temperature to dextrinize at least some of the starch present during extrusion of the mixture under adiabatic extrusion conditions.

86. The method of claim 85 wherein the gelatinized mixture is comprised of at least 80% of at least one cereal grain by weight.

87. The method of claim 86 wherein the gelatinized mixture is comprised of a plurality of cereal grains.

88. The method of claim 87 wherein the gelatinized mixture is comprised of corn.

89. The method of claim 88 wherein the gelatinized mixture is comprised of degermed corn.

90. The method of claim 88 wherein the corn is comprised of modified starch.

91. The method of claim 90 wherein the modified starch comprises chemically modified starch.

92. The method of claim 91 wherein the chemically modified starch comprises a cross-linked starch.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 A01K 1/01(2006.01)i, A01K 1/035(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A01K 1/01; A01K 29/00; B08B 3/00; B28C 5/46; C08B 31/00; A01K 1/035

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: animal, litter, gelatinize, admixture, starch, adhesive, extrude, dextrin, corn and sorghum

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2012-0118242 A (CHEESEMAN et al.) 17 May 2012 See abstract; claims 1-14; paragraph [0020].</td>
<td>1-92</td>
</tr>
<tr>
<td>A</td>
<td>US 4009684 A (KLIMENT et al.) 01 March 1977 See abstract and claims 1-8.</td>
<td>1-92</td>
</tr>
<tr>
<td>A</td>
<td>US 2007-0179291 A (THIBODEAU et al.) 02 August 2007 See abstract and claims 1-6.</td>
<td>1-92</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0185977 A (DIXON et al.) 04 August 2011 See the whole document.</td>
<td>1-92</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
17 December 2013 (17.12.2013)

Date of mailing of the international search report
18 December 2013 (18.12.2013)

Name and mailing address of the ISA/KR
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer
YANG, In Su
Telephone No. +82-42-481-813 1

Form PCT/ISA/210 (second sheet) (July 2009)
International Search Report

Information on patent family members

PCT/US2013/059319

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2012-0118242 Al</td>
<td>17/05/2012</td>
<td>AU 2010-238369 Al</td>
<td>10/11/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2758859 Al</td>
<td>21/10/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2241178 Al</td>
<td>20/10/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2418935 Al</td>
<td>22/02/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-119272 Al</td>
<td>21/10/2010</td>
</tr>
<tr>
<td>US 04009684 A</td>
<td>01/03/1977</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2004-224263 Al</td>
<td>07/10/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P10408936 A</td>
<td>18/04/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2382419 Al</td>
<td>24/10/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2423712 Al</td>
<td>26/09/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2426478 Al</td>
<td>24/10/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2426478 C</td>
<td>21/06/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2462053 Al</td>
<td>26/09/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2462053 C</td>
<td>31/05/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1496952 Al</td>
<td>19/01/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1615957 Al</td>
<td>18/01/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1615957 Bl</td>
<td>13/02/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05010317 A</td>
<td>17/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003-0232965 Al</td>
<td>18/12/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011-0278500 Al</td>
<td>17/11/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7985742 B2</td>
<td>26/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03-090801 Al</td>
<td>06/11/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004-085481 Al</td>
<td>07/10/2004</td>
</tr>
<tr>
<td>US 2011-0185977 Al</td>
<td>04/08/2011</td>
<td>AU 2011209935 Al</td>
<td>09/08/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2011209936 Al</td>
<td>06/09/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2787031 Al</td>
<td>04/08/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2790146 Al</td>
<td>04/08/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102740685 A</td>
<td>17/10/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102821758 A</td>
<td>12/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2528428 Al</td>
<td>05/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2528428 A4</td>
<td>06/11/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2528588 Al</td>
<td>05/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013-517795 A</td>
<td>20/05/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2012008663 A</td>
<td>23/08/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2012009615 A</td>
<td>12/07/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011-0185978 Al</td>
<td>04/08/2011</td>
</tr>
<tr>
<td>US 2008-0121187 Al</td>
<td>29/05/2008</td>
<td>CA 2659357 Al</td>
<td>06/03/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2057262 Al</td>
<td>13/05/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008-027745 Al</td>
<td>06/03/2008</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)