wo 2016/049379 A1 | NF 1 0V 0 Y O N

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/049379 A1l

31 March 2016 (31.03.2016) WIPO | PCT
(51) International Patent Classification: (74) Agents: MEYER, Sheldon, R. et al.; Tucker Ellis LLP,
GO6F 9/445 (2006.01) GO6F 9/50 (2006.01) One Market Plaza, Steuart Tower, Suite 700, San Fran-
i lifornia 94105 .
(21) International Application Number: cisco, California 9 (US)
PCT/US2015/052060 (81) Designated States (unless otherwise indicated, for every
. .) kind of national protection available). AE, AG, AL, AM,
(22) International Filing D"‘“"z 4 Sentember 2015 (24.09.2015 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
cptember 2015 (24.09.2015) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
62/055,482 25 September 2014 (25.09.2014) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
62/076,159 6 November 2014 (06.11.2014) Us SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: ORACLE INTERNATIONAL CORPORA- . L
TION [US/US]; 500 Oracle Parkway, M/S 5op7, Redwood (84) Designated States (uniess otherwise indicated, for every
Shores, California 94065 (US). kind of regional protection available): ARIPO (BW, GH,
’ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(72) Inventors: SEOVIC, Aleksandar; 500 Oracle Parkway, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

M/S 5o0p7, Redwood Shores, California 94065 (US).
RAJA, Harvey; 500 Oracle Parkway, M/S Sop7, Redwood

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

Shores, California 94065 (US).

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SUPPORTING DYNAMIC DEPLOYMENT OF EXECUTABLE CODE IN A DIS-

TRIBUTED COMPUTING ENVIRONMENT

FIGURE 2A

Client 150
Class Definition
252
Class/ID
Agent Code Rergote Crltass Table
250 UppO «
el 262 260
Remate Class Constructor 264
Class Agent
Definition State
266 268
Server 120a
Node 130a
Class/ID
Remote Table Remote
Agent Class [# ¥ 234 Class
238 Support Loader
232 < » 236
220 i
JVM Native
M::Z;d Heap Language PC Registers Method
212 214 Stacks 218 Stacks
- 218 230
" Native Native
Execution Method Method Class
Engine |4—p] Loader
210 Interface Libraries 217
212 214 -

(57) Abstract: A system and method supports dynamic deployment of
executable code in a distributed computing environment. A server node
in the distributed computing environment can receive a class definition
from a client to execute, and generate and load into memory an instance
of a class using said class definition without restarting or redeploying
the server node. The class definition can define a new or updated class
otherwise unavailable to the server node. Classes are identified with
unique class identities which enables determination of whether a class
is new or updated. The class identity can be used to determine the need
for transmitting a class definition to a server node and also to ensure
that a correct version of a class in implemented. In a particular case the
new or updated class definition implements a lambda expression.

WO 2016/049379 A1 |IIIWAK 00N 00T 0O 0 AR

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

SYSTEM AND METHOD FOR SUPPORTING DYNAMIC DEPLOYMENT OF
EXECUTABLE CODE IN A DISTRIBUTED COMPUTING ENVIRONMENT

Copyright Notice:

[0001] A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights

whatsoever.

Field of Invention:

[0002] The present invention is generally related to computer systems, and is particularly

related to a distributed computing environment.

Summary:
[0003] The present disclosure describes systems and methods that can support

dynamic deployment of executable code in a distributed computing environment. A client
generates a class definition for one or more class or updated class. The class definition is
serialized and transmitted to a server in the distributed computing environment. The server in
the distributed computing environment receives the serialized class definition, deserializes the
class definition and generates the one or more class or updated class on the server for
execution. The class or updated class may represent a lambda expression. Furthermore, the
class or updated class is provided with a unique identity to ensure that a correct class or class
version is executed and that a class definition that is unavailable on the server is serialized
and distributed. Dynamic deployment of executable code enables execution of an agent on the
server node where the agent depends on a new class definition otherwise unavailable to the
server node.

[0004] In an embodiment, the present disclosure describes a method for supporting
lambda expressions in a distributed computing environment. The method includes receiving,
via a server, a class definition implementing a lambda expression. The client generates said
class definition implementing a lambda expression, serializes it and sends it to the server. The
server defines a lambda class based on the received class definition. If the lambda expression
is updated on the client side, a new class definition representing the updated lambda
expression is sent to the server.

[0005] These and other objects and advantages of the present invention will become
apparent to those skilled in the art from the following description of the various embodiments,

when read in light of the accompanying drawings.

-1-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

Brief Description of the Figures:

[0006] Figure 1 illustrates a distributed data grid, in accordance with an embodiment of
the invention.

[0007] Figure 2A illustrates a distributed computing environment supporting dynamic
deployment of executable code, in accordance with an embodiment of the invention.

[0008] Figure 2B illustrates a method supporting dynamic deployment of executable code,
in accordance with an embodiment of the invention.

[0009] Figure 3A illustrates a distributed computing environment supporting dynamic
deployment of executable code implementing lambda expressions, in accordance with an
embodiment of the invention.

[00010] Figure 3B illustrates a method supporting dynamic deployment of executable code

implementing lambda expressions, in accordance with an embodiment of the invention.

Detailed Description:

[00011] Described herein are systems and methods which support dynamic deployment
of executable code in a distributed computing environment. A server node in the distributed
computing environment can receive a class definition from a client to execute and generate
and load into memory an instance of a class using said class definition without restarting or
redeploying the server node. The class definition can implement a new or updated class
definition otherwise unavailable to the server node. Classes are identified with unique class
identities which enable determination of whether a class is new or updated. The class identity
can be used to determine the need for transmitting the class definition to a server node and
also to ensure that a correct version of a class is implemented. Dynamic deployment of
executable code enables execution of an agent on the server node where the agent depends
on a new class definition otherwise unavailable to the server node.

[00012] In a particular embodiment, the present disclosure describes systems and
methods that can support dynamic deployment of class definitions implementing lambda
expressions in a distributed computing environment. A server in the distributed computing
environment can receive from a client one or more class definition, wherein the client generates
said one or more class definition to implement a lambda expression. Then, the server can
define a lambda class on the server side based on the received class definition. Furthermore,
when the lambda expression is updated on the client side a new class definition for the updated
lambda class can be prepared and sent from the client to the server.

[00013] The systems and methods for supporting dynamic deployment of executable
code including dynamic deployment of class definitions implementing lambdas as described
herein and illustrated in Figures 2A, 2B, 3A, and 3B have particular utility in the distributed

data grid described below with respect to Figure 1. The systems and methods for supporting

2-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

dynamic deployment of executable code including dynamic deployment of class definitions
implementing lambdas may also be applied in wide variety of alternative distributed computing
environments.

[00014] In the following description, the invention will be illustrated by way of example and
not by way of limitation in the figures of the accompanying drawings. References to various
embodiments in this disclosure are not necessarily to the same embodiment, and such
references mean at least one. While specific implementations are discussed, it is understood
that this is provided for illustrative purposes only. A person skilled in the relevant art will
recognize that other components and configurations may be used without departing from the
scope and spirit of the invention.

[00015] Furthermore, in certain instances, numerous specific details will be set forth to
provide a thorough description of the invention. However, it will be apparent to those skilled in
the art that the invention may be practiced without these specific details. In other instances,
well-known features have not been described in as much detail so as not to obscure the
invention.

[00016] The present invention is described with the aid of functional building blocks
illustrating the performance of specified functions and relationships thereof. The boundaries of
these functional building blocks have often been arbitrarily defined herein for the convenience
of the description. Thus functions shown to be performed by the same elements may in
alternative embodiments be performed by different elements. And functions shown to be
performed in separate elements may instead be combined into one element. Alternate
boundaries can be defined so long as the specified functions and relationships thereof are
appropriately performed. Any such alternate boundaries are thus within the scope and spirit of
the invention.

[00017] Common reference numerals are used to indicate like elements throughout the
drawings and detailed description; therefore, reference numerals used in a figure may or may
not be referenced in the detailed description specific to such figure if the element is described
elsewhere. The first digit in a three digit reference numeral indicates the series of figures in

which the element first appears.

Distributed Data Grid

[00018] A distributed data grid is a system in which a collection of computer servers
work together in one or more clusters to manage information and related operations, such as
computations, within a distributed or clustered environment. A distributed data grid can be used
to manage application objects and data that are shared across the servers. A distributed data
grid provides low response time, high throughput, predictable scalability, continuous availability

and information reliability. As a result of these capabilities, a distributed data grid is well suited

-3-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

for use in computational intensive, stateful middle-tier applications. In particular examples,
distributed data grids, such as e.g., the Oracle® Coherence data grid, store information in-
memory to achieve higher performance, and employ redundancy in keeping copies of that
information synchronized across multiple servers, thus ensuring resiliency of the system and
continued availability of the data in the event of failure of a server.

[00019] In the following description, an Oracle® Coherence data grid having a
partitioned cache is described. However, one of ordinary skill in the art will understand that the
present invention, described for example in the summary above, can be applied to any
distributed data grid known in the art without departing from the scope of the invention.
Moreover, although numerous specific details of an Oracle® Coherence distributed data grid
are described to provide a thorough description of the invention, it will be apparent to those
skilled in the art that the invention may be practiced in a distributed data grid without these
specific details. Thus, a particular implementation of a distributed data grid embodying the
present invention can, in some embodiments, exclude certain features, and/or include
different, or modified features than those of the distributed data grid described below, without
departing from the scope of the invention.

[00020] Figure 1 illustrates and example of a distributed data grid 100 which stores data
and provides data access to clients 150. A “data grid cluster”, or “distributed data grid”, is a
system comprising a plurality of computer servers (e.g., 120a, 120b, 120¢, and 120d) which
work together in one or more cluster (e.g., 100a, 100b, 100c¢) to store and manage information
and related operations, such as computations, within a distributed or clustered environment.
While distributed data grid 100 is illustrated as comprising four servers 120a, 120b, 120c¢, 120d,
with five data nodes 130a, 130b, 130c, 130d, and 130e in a cluster 100a, the distributed data
grid 100 may comprise any number of clusters and any number of servers and/or nodes in
each cluster. The distributed data grid can store the information in-memory to achieve higher
performance, and employ redundancy in keeping copies of that information synchronized
across multiple servers, thus ensuring resiliency of the system and continued availability of the
data in the event of server failure. In an embodiment, the distributed data grid 100 implements
the present invention, described for example in the summary above and the detailed
description below.

[00021] As illustrated in Figure 1, a distributed data grid provides data storage and
management capabilities by distributing data over a number of servers (e.g., 120a, 120b, 120c,
and 120d) working together. Each server of the data grid cluster may be a conventional
computer system such as, for example, a "commodity x86" server hardware platform with one
to two processor sockets and two to four CPU cores per processor socket. Each server (e.g.,
120a, 120b, 120¢, and 120d) is configured with one or more CPU, Network Interface Card
(NIC), and memory including, for example, a minimum of 4GB of RAM up to 64 GB of RAM or

4-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

more. Server 120a is illustrated as having CPU 122a, Memory 124a and NIC 126a (these
elements are also present but not shown in the other Servers 120b, 120c, 120d). Optionally
each server may also be provided with flash memory — e.g. SSD 128a — to provide spillover
storage capacity. When provided the SSD capacity is preferably ten times the size of the RAM.
The servers (e.g., 120a, 120b, 120c, 120d) in a data grid cluster 100a are connected using
high bandwidth NICs (e.g., PCI-X or PCle) to a high-performance network switch 120 (for
example, gigabit Ethernet or better).

[00022] A cluster 100a preferably contains a minimum of four physical servers to avoid
the possibility of data loss during a failure, but a typical installation has many more servers
Failover and failback are more efficient the more servers that are present in each cluster and
the impact of a server failure on a cluster is lessened. To minimize communication time
between servers, each data grid cluster is ideally confined to a single switch 102 which
provides single hop communication between servers. A cluster may thus be limited by the
number of ports on the switch 102. A typical cluster will therefore include between 4 and 96
physical servers.

[00023] In most Wide Area Network (WAN) configurations of a distributed data grid 100,
each data center in the WAN has independent, but interconnected, data grid clusters (e.g.,
100a, 100b, and 100c). A WAN may, for example, include many more clusters than shown in
Figure 1. Additionally, by using interconnected but independent clusters (e.g., 100a, 100b,
100c¢) and/or locating interconnected, but independent, clusters in data centers that are remote
from one another, the distributed data grid can secure data and service to clients 150 against
simultaneous loss of all servers in one cluster caused by a natural disaster, fire, flooding,
extended power loss and the like. Clusters maintained throughout the enterprise and across
geographies constitute an automatic ‘backup store’ and high availability service for enterprise
data.

[00024] One or more nodes (e.g., 130a, 130b, 130c, 130d and 130e) operate on each
server (e.g., 120a, 120b, 120c, 120d) of a cluster 100a. In a distributed data grid the nodes
may be for example, software applications, virtual machines, or the like and the servers may
comprise an operating system, hypervisor or the like (not shown) on which the node operates.
In an Oracle® Coherence data grid, each node is Java virtual machine (JVM). A number of
JVM/nodes may be provided on each server depending on the CPU processing power and
memory available on the server. JVM/nodes may be added, started, stopped, and deleted as
required by the distributed data grid. JVMs that run Oracle® Coherence automatically join and
cluster when started. JVM/nodes that join a cluster are called cluster members or cluster
nodes.

[00025] In an Oracle® Coherence data grid cluster members communicate using

Tangosol Cluster Management Protocol (TCMP). TCMP is an IP-based protocol that is used

-5-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

to discover cluster members, manage the cluster, provision services, and transmit data
between cluster members. The TCMP protocol provides fully reliable, in-order delivery of all
messages. Since the underlying UDP/IP protocol does not provide for either reliable or in-order
delivery, TCMP uses a queued, fully asynchronous ACK and NACK-based mechanism for
reliable delivery of messages, with unique integral identity for guaranteed ordering of
messages in queues associated with the JVMs operating on a server. The TCMP protocol
requires only three UDP/IP sockets (one multicast, two unicast) and six threads per JVM/node,
regardless of the cluster size.

[00026] The functionality of a data grid cluster is based on services provided by cluster
nodes. Each service provided by a cluster node has a specific function. Each cluster node can
participate in (be a member of) a number of cluster services, both in terms of providing and
consuming the cluster services. Some cluster services are provided by all nodes in the cluster
whereas other services are provided by only one or only some of the nodes in a cluster. Each
service has a service name that uniquely identifies the service within the data grid cluster, and
a service type, which defines what the service can do. There may be multiple named instances
of each service type provided by nodes in the data grid cluster (other than the root cluster
service). All services preferably provide failover and failback without any data loss.

[00027] Each service instance provided by a cluster node typically uses one service
thread to provide the specific functionality of the service. For example, a distributed cache
service provided by a node is provided by single service thread of the node. When the schema
definition for the distributed cache is parsed in the JVM/node, a service thread is instantiated
with the name specified in the schema. This service thread manages the data in the cache
created using the schema definition. Some services optionally support a thread pool of worker
threads that can be configured to provide the service thread with additional processing
resources. The service thread cooperates with the worker threads in the thread pool to provide
the specific functionality of the service.

[00028] In an Oracle® Coherence data grid, the cluster service (e.g., 136a, 136b, 136¢,
136d, 136e) keeps track of the membership and services in the cluster. Each cluster node
always has exactly one service of this type running. The cluster service is automatically started
to enable a cluster node to join the cluster. The cluster service is responsible for the detection
of other cluster nodes, for detecting the failure (death) of a cluster node, and for registering the
availability of other services in the cluster. The proxy service (e.g., 138c¢) allows connections
(e.g. using TCP) from clients that run outside the cluster. The invocation Service (e.g., 134d)
allows application code to invoke agents to perform operations on any node in the cluster, or
any group of nodes, or across the entire cluster. Although shown on only one node each, the
invocation service and proxy service can be configured on any number up to all of the nodes
of the distributed data grid.

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

[00029] In an Oracle® Coherence data grid, the distributed cache service (e.g., 132a,
132b, 132¢, 132d, 132e) is the service which provides for data storage in the distributed data
grid and is operative on all nodes of the cluster that read/write/store cache data, even if the
node is storage disabled. The distributed cache service allows cluster nodes to distribute
(partition) data across the cluster 100a so that each piece of data in the cache is managed
primarily (held) by only one cluster node. The distributed cache service handles storage
operation requests such as put, get, etc. The distributed cache service manages distributed
caches (e.g., 140a, 140b, 140c, 140d, 140e) defined in a distributed schema definition and
partitioned among the nodes of a cluster.

[00030] A partition is the basic unit of managed data in the distributed data grid and
stored in the distributed caches (e.g., 140a, 140b, 140c, 140d, and 140e). The data is logically
divided into primary partitions (e.g., 142a, 142b, 142c, 142d, and 142e), that are distributed
across multiple cluster nodes such that exactly one node in the cluster is responsible for each
piece of data in the cache. Each cache (e.g., 140a, 140b, 140c, 140d, and 140¢) can hold a
number of partitions. Each partition (e.g., 142a, 142b, 142c, 142d, 142e) may hold one datum
or it may hold many. A partition can be migrated from the cache of one node to the cache of
another node when necessary or desirable. For example, when nodes are added to the cluster,
the partitions are migrated so that they are distributed among the available nodes including
newly added nodes. In a non-replicated distributed data grid there is only one active copy of
each partition (the primary partition). However, there is typically also one or more
replica/backup copy of each partition (stored on a different server) which is used for failover.
Because the data is spread out in partition distributed among the servers of the cluster, the
responsibility for managing and providing access to the data is automatically load-balanced
across the cluster.

[00031] The distributed cache service can be configured so that each piece of data is
backed up by one or more other cluster nodes to support failover without any data loss. For
example, as shown in Figure 1, each partition is stored in a primary partition (e.g., dark shaded
squares 142a, 142b, 142c¢, 142d, and 142¢) and one or more synchronized backup copy of
the partition (e.g., light shaded squares 144a, 144b, 144c, 144d, and 144e¢). The backup copy
of each partition is stored on a separate server/node than the primary partition with which it is
synchronized. Failover of a distributed cache service on a node involves promoting the backup
copy of the partition to be the primary partition. When a server/node fails, all remaining cluster
nodes determine what backup partitions they hold for primary partitions on failed node. The
cluster nodes then promote the backup partitions to primary partitions on whatever cluster
node they are held (new backup partitions are then created).

[00032] A distributed cache is a collection of data objects. Each data object/datum can

be, for example, the equivalent of a row of a database table. Each datum is associated with a

-7-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

unique key which identifies the datum. Each partition (e.g., 142a, 142b, 142c, 142d, 142e) may
hold one datum or it may hold many and the partitions are distributed among all the nodes of
the cluster. In an Oracle® Coherence data grid each key and each datum is stored as a data
object serialized in an efficient uncompressed binary encoding called Portable Object Format
(POF).

[00033] In order to find a particular datum, each node has a map, for example a hash
map, which maps keys to partitions. The map is known to all nodes in the cluster and is
synchronized and updated across all nodes of the cluster. Each partition has a backing map
which maps each key associated with the partition to the corresponding datum stored in the
partition. An operation associated with a particular key/datum can be received from a client at
any node in the distributed data grid. When the node receives the operation, the node can
provide direct access to the value/object associated with the key, if the key is associated with
a primary partition on the receiving node. If the key is not associated with a primary partition
on the receiving node, the node can direct the operation directly to the node holding the primary
partition associated with the key (in one hop). Thus, using the hash map and the partition
maps, each node can provide direct or one-hop access to every datum corresponding to every
key in the distributed cache.

[00034] In some applications, data in the distributed cache is initially populated from a
database 110 comprising data 112. The data 112 in database 110 is serialized, partitioned and
distributed among the nodes of the distributed data grid. Distributed data grid 100 stores data
objects created from data 112 from database 110 in partitions in the memory of servers 120a,
120b, 120c¢, 120d such that clients 150 and/or applications in data grid 100 can access those
data objects directly from memory. Reading from and writing to the data objects in the
distributed data grid 100 is much faster and allows more simultaneous connections than could
be achieved using the database 110 directly. In-memory replication of data and guaranteed
data consistency make the distributed data grid suitable for managing transactions in memory
until they are persisted to an external data source such as database 110 for archiving and
reporting. If changes are made to the data objects in memory the changes are synchronized
between primary and backup partitions and may subsequently be written back to database 110
using asynchronous writes (write behind) to avoid bottlenecks.

[00035] Although the data is spread out across cluster nodes, a client 150 can connect
to any cluster node and retrieve any datum. This is called location transparency, which means
that the developer does not have to code based on the topology of the cache. In some
embodiments, a client might connect to a particular service e.g., a proxy service on a particular
node. In other embodiments, a connection pool or load balancer may be used to direct a client
to a particular node and ensure that client connections are distributed over some or all the data

nodes. However connected, a receiving node in the distributed data grid receives tasks from a

-8-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

client 150, and each task is associated with a particular datum, and must therefore be handled
by a particular node. Whichever node receives a task (e.g. a call directed to the cache service)
for a particular datum identifies the partition in which the datum is stored and the node
responsible for that partition, the receiving node, then directs the task to the node holding the
requested partition for example by making a remote cache call. Since each piece of data is
managed by only one cluster node, an access over the network is only a "single hop" operation.
This type of access is extremely scalable, since it can use point-to-point communication and
thus take optimal advantage of a switched fabric network such as InfiniBand.

[00036] Similarly, a cache update operation can use the same single-hop point-to-point
approach with the data being sent both to the node with the primary partition and the node with
the backup copy of the partition. Modifications to the cache are not considered complete until
all backups have acknowledged receipt, which guarantees that data consistency is maintained,
and that no data is lost if a cluster node were to unexpectedly fail during a write operation. The
distributed cache service also allows certain cluster nodes to be configured to store data, and
others to be configured to not store data.

[00037] In some embodiments, a distributed data grid is optionally configured with an
elastic data feature which makes use of solid state devices (e.g. SSD 128a), most typically
flash drives, to provide spillover capacity for a cache. Using the elastic data feature a cache is
specified to use a backing map based on a RAM or DISK journal. Journals provide a
mechanism for storing object state changes. Each datum/value is recorded with reference to
a specific key and in-memory trees are used to store a pointer to the datum (a tiny datum/value
may be stored directly in the tree). This allows some values (data) to be stored in solid state
devices (e.g. SSD 128a) while having the index/memory tree stored in memory (e.g. RAM
124a). The elastic data feature allows the distributed data grid to support larger amounts of
data per node with little loss in performance compared to completely RAM-based solutions.
[00038] A distributed data grid such as the Oracle® Coherence data grid described
above can improve system performance by solving data operation latency problems and by
caching and processing data in real time. Applications cache data in the data grid, avoiding
expensive requests to back-end data sources. The shared data cache provides a single,
consistent view of cached data. Reading from the cache is faster than querying back-end data
sources and scales naturally with the application tier. In memory performance alleviates
bottlenecks and reduces data contention, improving application responsiveness. Parallel query
and computation is supported to improve performance for data-based calculations. The
distributed data grid is fault-tolerant, providing for data reliability, accuracy, consistency, high
availability, and disaster recovery. The distributed data grid enables applications to scale
linearly and dynamically for predictable cost and improved resource utilization. For many

applications, a distributed data grid offers a valuable shared data source solution.

-9-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

Code Execution In A Distributed Data Grid

[00039] In embodiments, the distributed data grid supports the use of agents to perform
operations on the nodes of the distributed data grid. For partitioned data, the agent can be
configured to execute on the node (or nodes) that owns the data to execute against. Queuing,
concurrency management, agent execution, data access by the agent and data modification
by the agent all occur on that grid node. (Only the synchronous backup of the resultant data
modification, if any, requires additional network traffic.) For many processing purposes, it is
much more efficient to provide the agent to the node than to handle distributed concurrency
control, coherency and data updates. In other words, the Data Grid determines the location to
execute the agent based on the configuration for the data topology, moves the agent there,
executes the agent (automatically handling concurrency control for the item while executing
the agent), backs up the modifications if any, and returns a result.

[00040] An entry processor is one example of an agent used to perform an operation
on the nodes of the distributed data grid. Other examples of agents/executable code include,
but are not limited to: aggregators, filters, value extractors, and invocables. For example an
Oracle® Coherence data grid supports a lock-free programming model through the
EntryProcessor API. Advantageously, an entry processor performs an implicit low-level lock
on the entries it is processing, thereby allowing the client to place processing code in an entry
processor without having to worry about concurrency control. An entry processor can be
invoked on a specific key, on a collection of keys, or on a Filter (the Filter is executed against
the cache entries and each entry that matches the Filter criteria has the entry processor
executed against it). Entry processors are executed in parallel across the cluster (on the nodes
that own the individual entries.) This provides a significant advantage over having a client lock
all affected keys, pull all required data from the cache, process the data, place the data back
in the cache, and unlock the keys. The processing occurs in parallel across multiple computers
(as opposed to serially on one computer) and the network overhead of obtaining and releasing
locks is eliminated. The code of the entry processor for execution against the chosen entries
is transmitted into the distributed data grid. For many transaction types, the use of entry
processors minimizes contention and latency and improves system throughput, without
compromising the fault-tolerance of data operations.

[00041] For example, an agent can be created on a client 150 of the distributed data
grid 100 shown in Figure 1. In order to execute the agent, the agent is serialized and
transmitted to one or more node in the distributed data grid 100. To serialize an object means
to convert its state to a byte stream so that the byte stream can be reverted back (deserialized)
into a copy of the object. Deserialization is the process of converting the serialized form of an
object back into a copy of the object. The Java platform specifies a default way by which

serializable objects are serialized. A (Java) class can override this default serialization and

-10-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

define its own way of serializing objects of that class. When an object is serialized, information
that identifies its class is recorded in the serialized stream. However, the class's definition
("class file") itself is typically NOT recorded. It is typically the responsibility of the system (for
example the server) that is deserializing the object to determine how to locate and load the
necessary class files.

[00042] A problem may arise where the agent utilizes a class definition (“class file”)
which is not available on a node of the distributed data grid upon which it is desired to realize
the agent. In this situation, the agent will fail to operate on the node because the necessary
class cannot be found by the node on which the agent is attempting to operate. Another
problem may arise where the class definition is different on the client than it is on the node.
For example, a class definition may have been modified/updated on the client but not
modified/updated on the nodes of the distributed data grid. In this situation, the agent may
operate because the necessary class is found on the node, however, the agent may not
operate as intended because it utilizes a different class definition than intended by the creator
of the agent. In prior embodiments, where new or updated class files were deployed on a client,
it was necessary redeploy and restart nodes in the distributed data grid to support those new
or updated class files before they could be utilized by agents operating in the distributed data
grid. This is very cumbersome and time consuming for large clusters.

[00043] In embodiments, the distributed data grid 100, overcomes these problems by
implementing a system and method for supporting dynamic deployment of new or updated
class definitions from the client 150 to nodes of the distributed data grid 100 for execution in
agents. Additionally, the distributed data grid 100 implements version control for class
definitions to ensure that a class called by an agent (such as an entry processor) has the same
class definition as the class on the client 150 where the agent was prepared. Utilizing the
system and method for supporting dynamic deployment of class definitions and version control
for class definitions increases the utility of the distributed data grid because it allows new or
updated class definitions to be correctly be executed on nodes of the distributed data grid.
Furthermore, avoiding the need to redeploy and restart nodes in the distributed data grid to

support new or updated class definitions improves performance of the distributed data grid.

Dynamic Deployment of Class Definitions

[00044] Figure 2A, illustrates a system for dynamic deployment of a new class definition
from the client 150 to a node 130a of the distributed data grid to enable an agent which utilizes
the new class definition to be realized on the node. Although only one client and one node are
shown, the same functionality can be applied on all clients and nodes of the distributed data
grid. As shown in Figure 2A, node 130a is implemented as a Java Virtual Machine (JVM). For
example, an Oracle® JRockit JVM, IBM® JVM, Oracle® JVM or another vendor

-11-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

implementation of JVM. Node 130a, includes execution engine 210, native method interface
212, native method libraries 214, and class loader 217. Node 130a has a JVM memory area
220, which includes method area 212, heap 214, JVM language stacks 216, PC registers 218,
and native method stacks 230. Upon startup of node 130a, class loader 217 loads and
prepares and initializes classes based on class definitions found in the class path for the JVM.
Client 150 is provided with remote class support 262 and node 130a is provided with remote
class support 232. The remote class support functionality allows for dynamic deployment of
new class definitions from the client 150 to a node 130a of the distributed data grid using a
remote class constructor 264 transmitted over-the-wire from the client 150 to the node 130a
as described below.

[00045] As shown in Figure 2A, a user of a client system 150 can prepare agent code
250 for an agent to be operated on node 130a. Agent code can include a new class definition
252, which is either a definition of a new class having a new class name or an updated
definition for a class (i.e. the class is preexisting). Note that even where the class definition is
changed it is technically a new class with a new class definition from the client’s perspective.
The preexisting class on the client cannot be modified — instead a new class including any
changes is implemented. When agent code 250 is attempted to be sent for execution on node
130a, remote class support 262 examines the agent code 250 to determine whether it includes
any new class definition 252. Where one or more new class definition 252 is found, remote
class support 262 prepares remote class constructor 264 for new class definition 252. Remote
class constructor 264 includes new class definition 266 and the captured agent state 268
required to construct an instance of the agent on the node 130a. The remote class constructor
264 is used for wire transport for the new class and enables automatic serialization of the new
class definition for transmission over-the-wire to node 130a.

[00046] Remote class support 262 utilizes a class/ID table 260. Class/ID table 260
includes a class identifier for each preexisting class based on the class name and a hash
function (for example an MD5 hash) of the class definition. This ensures that the identifier for
each class is unique. Moreover, where a class definition is updated, the hash ensures that a
new identifier will be assigned and thus the updated class will have a new class identity. Thus,
using the class/ID table 260, remote class support 262 can determine whether agent code 250
includes any new class definition 252.

[00047] Remote class support 262 thus determines, using the class/ID table 260,
whether any new class definition 252 is utilized in agent code 250. If all classes are preexisting
on the node, remote class support just returns the identity of the class (which can be executed
on node 130a). However, if a new class definition 252 is utilized by the agent code 250, (i.e.
the class is unavailable on the node), then a new class definition 252 is prepared and a new

identity corresponding to the new class definition 252 is stored in Class/ID table 260. A remote

-12-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

class constructor 264 is prepared representing the new class definition 266 and the captured
agent state 268 required to realize the agent on the node 130a. The remote class constructor
instance is automatically serialized and transmitted over-the-wire to node 130a.

[00048] The remote class constructor 264 is received by the node 130a and processed
by remote class support 232. Remote class constructor 264 is automatically deserialized when
it is received over-the-wire from client 150. Node 130a also maintains its own Class/ID Table
260 for validating class identities. Using the deserialized remote class constructor 264 and the
remote class support 232, node 130a prepares a class loader for new class definition 266,
loads the class into JVM memory 220, and initializes an instance of the new class in the JVM.
Node 130a, is thus enabled to execute code utilizing the class instance based on the new class
definition. Remote class support 232 is thus enabled to realize agent 238 for execution on
node 130a.

[00049] Figure 2B illustrates a method 270 for dynamic deployment of new or updated
class definitions from the client 150 to a node 130a of the distributed data grid. At step 272,
the client attempts to send an agent for execution on a node. At step 274, the client determines
an identity for the class. The identity is unique and thus the client can determine at step 276
whether the class already exists by comparing the identity to identities previously stored in the
Class/ID table. If the identity does not match a class in the Class/ID table, the class must be a
new or updated class.

[00050] At step 278, if the class is a new or updated class (identity not present in the
Class/ID table), the client generates a new class definition for the class. A remote constructor
is prepared on the client. The remote constructor includes the new class definition and the
captured state of the agent required to realize the agent on the node. The remote class
constructor instance is automatically serialized and transmitted over-the-wire to the node in
step 280.

[00051] At step 282 the node receives the remote constructor over-the-wire from the
client. At step 284, the remote constructor is deserialized and executed on the node. At step
286, the new class definition and the captured agent state required to realize the agent is
loaded into JVM memory to create an instance of the new or updated class on the node. At
step 288, the instance of the new or updated class is made available for execution on the node
in order to realize the agent on the node. Note that where the class definition is changed on
the client it is technically a new class with a new class definition from the client’'s perspective.
The preexisting class on the node cannot be modified — instead a new class (having a new
class identity) including the changes is implemented. At step 290, the agent is executed on the
node.

[00052] Accordingly, the method allows dynamic deployment of a new or updated class

definition from the client to the node in order to permit implementation of such new or updated

-13-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

class without requiring redeployment of the node/JVM. This dynamic deployment of new or
updated classes with requiring redeployment of the node/JVM enhances the utility of the
distributed data gird to execute agents and eliminates the need to restart nodes when new or

updated class definitions are required.

Dynamic Deployment Of Class Definitions Implementing Lambdas

[00053] In an embodiment, the system and method for dynamic deployment of class
definitions can be used for class definitions associated with lambda expressions. In recent
years, object-oriented programming languages such as Java™ have become increasingly
popular for a wide variety of applications running on many different types of platforms. Some
programming languages may support “lambda expressions”. In object-oriented programming
languages, lambda expressions may be used as a lightweight mechanism for defining objects
that have just one method and no state. The lightweight syntax for the lambda expression can
be optimized for the common usage in various programming language environments. The
Java™ programming language is an example of a lexically-scoped imperative programming
language. Support for lambda expressions was introduced in the Java™ 8 programming
language. Accordingly code for agents to be executed on nodes of a distributed data grid may
in some cases include lambda expressions.

[00054] Lambda expressions are a lightweight way to describe functions that can be
treated as values by a programming language. Lambda expressions can be anonymous
methods, which are aimed at addressing the “vertical problem”, or bulky syntax, by replacing
the machinery of anonymous inner classes with a syntactically lighter-weight mechanism.
Lambda expressions can be viewed as providing support for “code as data” in that methods
can accept lambdas (functions) as arguments and return them as a result. Alambda expression
is like a method: it provides a list of formal parameters and a body—an expression or block—
expressed in terms of those parameters. Lambda expressions may be expressed using syntax
such as the following:

(argument list)—body.

[00055] Aspects of the use of lambda expressions in the Java™ programming language
are described, for example in the following U.S. Patent Applications which are incorporated
herein by reference: U.S. Patent Application Ser. No. 13/779,536 entitled “SYSTEM AND
METHOD FOR SUPPORTING COMPATIBILITY CHECKING FOR LAMBDA EXPRESSION”
filed February 27, 2014; U.S. Patent Application Ser. No. 13/677,001 entitled “TARGET
TYPING OF OVERLOADED METHOD AND CONSTRUCTOR ARGUMENTS” filed November
14, 2012; U.S. Patent Application Ser. No. 13/677000 entitled “SYSTEM AND METHOD FOR
INFERRING IMMUTABILITY OF PROGRAM VARIABLES” filed November 14, 2012; U.S.

-14-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

Patent Application Ser. No. 13/779557 entitled “SYSTEM AND METHOD FOR COMPILING
LAMBDA EXPRESSION IN A PROGRAMMING LANGUAGE ENVIRONMENT?” filed February
27, 2013; and U.S. Patent Application Ser. No. 13/028111 entitled “BINDING-BASED
CHARACTERIZATION OF CLOSURES IN SOFTWARE PROGRAMS” filed February 15,
2011.

[00056] Lambda expressions are “anonymous” in that they are not named. Thus,
Lambda expressions enable definition of anonymous methods, and enable treating such
anonymous methods as instances of functional interfaces. The use of functional interfaces with
anonymous inner classes is a common pattern in the Java™ programming language, thus the
Java™ programming language leverages functional interfaces to implement lambda
expressions. In the Java™ 8 programming language, a lambda expression can be described
as a stripped-down form of the anonymous class declaration in which the parameter of the
lambda expression is the same as the parameter to the anonymous class declaration's
method, and the body of the lambda expression is the same as the body of the anonymous
class declaration's method (but is able to elide the ‘return’ keyword because the only thing this
particular lambda expression's body does is return a value). The expression-body form
eliminates the need for a return keyword, which could otherwise represent a substantial
syntactic overhead relative to the size of the expression. Thus, in the Java™ 8 programming
language, lambda expressions are implemented in terms of class definitions for functional
interfaces.

[00057] Described herein are systems and methods that can support dynamic
deployment of classes implementing lambdas in a distributed computing environment
including, for example, the distributed data grid of Figure 1. As described above, the distributed
data grid supports performance of transaction using an agent operating on the nodes of the
distributed data grid. The code for such agents may include lambda expressions. However, in
prior implementations, classes used in an agent had to be available (pre-existing) in the class
path for each cluster node — this precluded the use lambdas in agents unless the class
implementing the lambda had previously been deployed to the nodes of the distributed data
grid (or the nodes were redeployed). For the server to actually process the lambda expression
required the same compiled code in both the client and server class path. That is the server
must have a class corresponding to the lambda expression in the server class path. Any
changes or introduction of new lambdas on the client required redeployment and restart of
both the client and the server in order to deploy a new class corresponding to the lambda
expression to the server. This is very cumbersome and time consuming for large clusters.
[00058] In order to overcome this limitation, in embodiments of the present invention,
the client transmits not only the metadata describing the lambda expression for use in an agent,

but also, the actual class definition for the class implementing the lambda expression. Dynamic

-15-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

deployment of classes implementing lambda expressions can be performed as a particular
case of the dynamic deployment of class definition described above. At the server, the class
definition received from the client is parsed and a new lambda class generated from it for use
in the agent/entry processor. The server defines a lambda class based on the class definition
received from the client and executes it. This allows modification of the existing lambda
expressions or the introduction of new lambda expressions without the need for redeployment
or server restart to place the compiled code for the lambda expression in the class path.
[00059] Figure 3A shows an illustration of a system supporting dynamic lambdas in a
distributed computing environment, in accordance with an embodiment of the invention. As
shown in Figure 3, the distributed computing environment 300, such as a distributed data grid,
includes a client 301 and a server 302. In an embodiment, the distributed computing
environment may be a distributed data grid 100 as shown in Figure 1, in which client 301
represents one or more of clients 150 and server 302 represents one or more of nodes 130a,
130b, 130c¢, 130d, and 130e.

[00060] As described above, in prior embodiments without dynamic deployment of class
definitions, only the metadata 305, which describes the lambda expression 303, was sent over
from the client 301 to the server 302. Then, the server 302 can take advantage of the lambda
expression 303 on the client side based on the received metadata 306. It was the responsibility
of the server 302 deserializing the received metadata 306 to determine how to locate and load
the necessary class files for the static lambda. The class files therefore need to have already
been deployed on the server 302 and also be the same as on the client 301 (i.e. not
changed/updated on the client). Thus, any changes or introduction of new lambdas on the
client side require a redeployment and/or a restart of both the client 301 and the server 302
before they could be invoked on the server 302 by the client.

[00061] On the other hand, in embodiments of the present invention which enable the use
of dynamic deployment of class definitions, when the new or updated class definitions are used
to implement lambdas, the client 301 generates one or more class definition 307 to execute
from the lambda expression 303, and sends the class definition 307 to the server 302 in the
distributed computing environment 300. After the server 302 receives the class definition 308
to execute, the server 302 defines a lambda instance 304 on the server side, based on the
received class definition 308, and then executes the lambda instance 304 defined by the
received class definition 308. Additionally, if the client 301 updates the lambda expression 303
on the client side, e.g. when the lambda expression 303 is modified or is introduced with a new
behavior, a new class definition 307 can be prepared and transmitted to the server 302 and a
new lambda instance can be created and executed having the new behavior.

[00062] Figure 3B illustrates a method for supporting dynamic lambdas in a distributed

computing environment. At step 320, the client generates said class definition from a lambda

-16-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

expression. At step 322, the server receives the class definition to execute from a client. At
step 324, the server defines and loads a lambda class on the server-side based on the received
class definition. At step 326, the server creates and executes the lambda instance defined on
the server-side based on the received class definition. If the lambda expression is updated on
the client side the process is repeated from steps 320 to 326 using a new class definition based
on the updated lambda expression and resulting in a new lambda class definition and instance
on the server side.

[00063] While various embodiments of the present invention have been described above,
it should be understood that they have been presented by way of example, and not limitation.
It will be apparent to persons skilled in the relevant art that various changes in form and detail
can be made therein without departing from the spirit and scope of the invention.

[00064]It is also noted that, while for purposes of illustration, the above description is provided
largely in the context of using the Java™ programming language (or a language closely related
to Java™), the techniques described may be used for any programming language that
supports Lambda expressions, overloading of invocation operations such as methods,
constructors, or functions. The techniques may be used for object-oriented languages in some
embodiments, or for non-object-oriented languages (such as various procedural languages) in
other embodiments.

[00065] Many features of the present invention can be performed in, using, or with the
assistance of hardware, software, firmware, or combinations thereof. The present invention
may be conveniently implemented using one or more conventional general purpose or
specialized digital computer, computing device, machine, or microprocessor, including one or
more processors, memory and/or computer readable storage media programmed according to
the teachings of the present disclosure. Features of the invention may also be implemented in
hardware using, for example, hardware components such as application specific integrated
circuits (ASICs) and programmable logic device. Implementation of the hardware state
machine so as to perform the functions described herein will be apparent to persons skilled in
the relevant art.

[00066] Features of the present invention can be incorporated in software and/or firmware
for controlling the hardware of a processing system, and for enabling a processing system to
interact with other mechanisms utilizing the results of the present invention. Such software or
firmware may include, but is not limited to, application code, device drivers, operating systems
and execution environments/containers. Appropriate software coding can readily be prepared
by skilled programmers based on the teachings of the present disclosure, as will be apparent
to those skilled in the software art.

[00067] In some embodiments, the present invention includes a computer program product

which is a storage medium or computer readable medium (media) having instructions stored

-17-

10

15

WO 2016/049379 PCT/US2015/052060

thereon/in which can be used to program a computer to perform any of the processes of the
present invention. The storage medium or computer readable medium can include, but is not
limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive,
and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMSs, flash
memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs),
or any type of media or device suitable for storing instructions and/or data. In embodiments,
the storage medium or computer readable medium can be non-transitory.

[00068] The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifications and variations will be apparent to
the practitioner skilled in the art. The embodiments were chosen and described in order to best
explain the principles of the invention and its practical application, thereby enabling others
skilled in the art to understand the invention for various embodiments and with various
modifications that are suited to the particular use contemplated. It is intended that the scope

of the invention be defined by the following claims and their equivalents.

-18-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

Claims:

What is claimed is:

1. A method for supporting dynamic deployment of executable code from a client to a
node in a distributed computing environment, the method comprising:

receiving at the node a serialized object from the client, wherein the serialized object
comprises a class definition for a new class not present in the class path of the node and a
captured state of an agent utilizing said new class;

deserializing the serialized object on the node to retrieve said class definition and said
captured state of the agent;

loading the class definition and captured state of the agent in memory of the node to
generate an instance of the new class on the node; and

executing the agent on the node.

2. The method of claim 1, wherein said class definition implements a lambda expression.

3. The method of any of claims 1 to 2, further comprising:

receiving agent code on the client;

determining the class definition for said new class from said agent code on the client;
and

generating a class identity for said new class based on the class definition.

4. The method of any of claims 1 to 3, further comprising:
maintaining a class/identity table on said client;
receiving agent code on the client for said agent;
determining the class definition for said new class from said agent code on the client;
generating a class identity for said new class based on the class definition; and
using the class/identity table to determine that said new class is not present in the class

path of the node.

5. The method of any of claims 1 to 3, further comprising:
maintaining a class/identity table on said client;
receiving agent code on the client for said agent;
determining the class definition for said new class from said agent code on the client;
generating a class identity for said new class based on the class definition;

using the class/identity table to determine that said new class is not present in the class

-19-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

path of the node; and
adding the class identity for said new class to the class/identity table.

6. The method of any of claims 1 to 5, further comprising:

receiving agent code on the client for said agent;

determining the class definition for said new class from said agent code on the client;

generating on said client the serialized object comprising a class definition for a new
class not present in the class path of the node and the captured state of an agent utilizing said
new class; and

transmitting said serialized object to the node.

7. The method of any of claims 1 to 6, further comprising:

receiving agent code on the client for said agent, wherein said agent code includes a
lambda expression;

determining the class definition for said new class from said agent code on the client,
wherein the class definition implements said lambda expression;

generating on said client the serialized object comprising a class definition for a new
class not present in the class path of the node and the captured state of an agent utilizing said
new class; and

transmitting said serialized object to the node.

8. The method of any of claims 1 to 7, wherein the distributed computing environment
comprises a data grid cluster and wherein dynamic deployment of executable code enables
execution of the agent on a plurality of nodes in said data grid cluster holding data to be
operated on by said agent without redeployment of said plurality of nodes in said data grid

cluster.

9. The method of any of claims 1 to 8, wherein the distributed computing environment
comprises a data grid cluster and wherein said agent is an entry processor for execution

against data held in said node.

10. The method of any of claims 1 to 9, wherein the distributed computing environment
comprises a data grid cluster and wherein said agent is one of an aggregator, a filter, a value

extractor, and an invocable, for execution against data held in said node.

11. A system for supporting dynamic deployment of executable code in a distributed

computing environment, the system comprising:

-20-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

a computer system comprising a microprocessor and a memory;

a node deployed on said computer system as part of said distributed computing

environment; and

12.

13.

14.

15.

wherein said node is configured to,

receive a serialized object from a client, wherein the serialized object comprises
a class definition for a new class not present in the class path of the node and a
captured state of an agent utilizing said new class,

deserialize the serialized object on the node to retrieve said class definition and
said captured state of the agent,

load the class definition and captured state of the agent in a portion of said
memory allocated to said node to generate an instance of the new class on the node,
and

execute the agent on the node.

The system of claim 11, wherein said class definition implements a lambda expression.

The system of any of claims 11 to 12, further comprising:

a client computer system comprising a microprocessor and a memory; and

a client operating on said client computer system, wherein said client is configured to,
receive agent code for said agent,
determine the class definition for said new class from said agent code; and

generate a class identity for said new class based on the class definition.

The system of any of claims 11 to 13, further comprising:

a client computer system comprising a microprocessor and a memory; and

a client operating on said client computer system, wherein said client is configured to,
maintain a class/identity table,
receive agent code for said agent,
determine the class definition for said new class from said agent code,
generate a class identity for said new class based on the class definition, and
use the class/identity table to determine that said new class is not present in

the class path of the node.

The system of any of claims 11 to 13, further comprising:
a client computer system comprising a microprocessor and a memory; and
a client operating on said client computer system, wherein said client is configured to,

maintain a class/identity table,

21-

10

15

20

25

30

35

WO 2016/049379 PCT/US2015/052060

receive agent code for said agent,

determine the class definition for said new class from said agent code,

generate a class identity for said new class based on the class definition,

use the class/identity table to determine that said new class is not present in
the class path of the node, and

add the class identity for said new class to the class/identity table.

16. The system of any of claims 11 to 15, further comprising:
a client computer system comprising a microprocessor and a memory; and
a client operating on said client computer system, wherein said client is configured to,
maintain a class/identity table,
receive agent code for said agent,
determine the class definition for said new class from said agent code,
generate the serialized object comprising a class definition for a new class not
present in the class path of the node and the captured state of an agent utilizing said
new class, and

transmit said serialized object to the node.

17. The system of any of claims 11 to 16, further comprising:
a client computer system comprising a microprocessor and a memory; and
a client operating on said client computer system, wherein said client is configured to,
maintain a class/identity table,
receive agent code for said agent wherein said agent code includes a lambda
expression,
determine the class definition for said new class from said agent code wherein
the class definition implements said lambda expression,
generate the serialized object comprising a class definition for a new class not
present in the class path of the node and the captured state of an agent utilizing said
new class, and

transmit said serialized object to the node.

18. The system of any of claims 11 to 17, wherein the distributed computing environment
comprises a data grid cluster and wherein dynamic deployment of executable code enables
execution of the agent on a plurality of nodes in said data grid cluster holding data to be
operated on by said agent without redeployment of said plurality of nodes in said data grid

cluster.

22

10

15

20

25

WO 2016/049379 PCT/US2015/052060

19. The system of any of claims 11 to 18, wherein the distributed computing environment
comprises a data grid cluster and wherein said agent is one of an entry processor, an
aggregator, a filter, a value extractor, and an invocable, for execution against data held in said

node.

20. A non-transitory computer readable medium including instruction stored thereon for
supporting dynamic deployment of executable code from a client to a node in a distributed
computing environment, which instructions, when executed cause the node to perform steps
comprising:

receiving at the node a serialized object from the client, wherein the serialized object
comprises a class definition for a new class not present in the class path of the node and a
captured state of an agent utilizing said new class;

deserializing the serialized object on the node to retrieve said class definition and said
captured state of the agent;

loading the class definition and captured state of the agent in memory of the node to
generate an instance of the new class on the node; and

executing the agent on the node.
21. A computer program comprising program instructions for execution on one or more
computer systems, wherein the program instructions when executed causes the one or more

computer systems to perform the method of any of claims 1 to 10.

22. A computer program product comprising the computer program of claim 21 stored in a

non-transitory machine readable data storage medium.

-23-

WO 2016/049379 PCT/US2015/052060

1/5

FIGURE 1 '
100 Clients 150

AP

BREOBEEOEOBBEEOOOOO
OO0HEO0O000HEOOO0EBEBEOO]Y BEEONOO0BEBEOOEOOOBAB

OEOO0EEOOO0OBROOEBEEBEOO

00000 0DDBEE0000000 B 7 OOHEEBEOOBRBOODOBEBOOO
BOOOEBBEAEOO0O00BEBOOOO \"1428 142b OOO00BEBOHEEO0BHBECOD
DDDDDDDDDE&'\ 144d BEOOBEOOOOOOOBBOOO
Setiug s macosac] 1440 [E-aaanomscosootes

EE00EEE000EEA000E0 EEO00BEE0E0B000
Cache 140a 14427 Cache 140b
Cache Service 132a /1 20a Cache Service 132b
Cluster Service 136a Cluster Service 136b
Node 130a Node 130b
SSD .
128a Switch
102 Server 120b
142cn 144evy ~_142dy_144cs 142e
SEEE BEREL FEEERREREE /| ! A
ODbEsLOLOEEDLEOOOEE SESEE%EESE S%S%E%SEE%%SEE%
DOmECOREEROO0000000 eEr000n0oea00EEE000|| |lseE00000eRO0EEE000
EO0000EEROOO0BEEEO00 ooooeoneEnooooneso||| ||ooooe0oEsCOoOOOERD
DOEBEEOODEEEE0EEDOOE ooeeenacnean0noooe|| ||ooessne00REOOOO0OE
cescocsoscoocgcssoll | [ioommRifoctoascoad) fiooman foo%henc ot
EEEEEDOEEEOO0DEEED EooEEzooeEE00OBE0O|| ||3oEE e e aa D e e e
Cache 140c Cache 140d Cache 140e
Cache Service 132c Cache Service 132d Cache Service 132e
| Cluster Service &l Cluster Service 136d Cluster Service 136e
| Proxy Service 138¢c | Invocation Service 134d
Node 130c
Node 130d Node 130e
Server 120c Server 120d

Cluster 100a

JAT =N

Cluster 100b N~
Database
Cluster 100c¢ 110
Data 112
~

WO 2016/049379

PCT/US2015/052060
2/5
Client 150
Class Definition
252
Class/ID
Agent Code Remote Class Table
D — Support D —
250 260
262 =
Remote Class Constructor 264
Class Agent
Definition State
266 268
Server 120a
Node 130a
\ 4 Class/ID
Remote Table Remote
Agent Class > 234 Class
238 | Support Loader
232 < > 236
220"\ I
JVM Native
M::Z;)d Heap Language PC Registers Method
212 214 Stacks 218 Stacks
I 216 230
. Native Native
Execution Class
. Method Method
Er;g1]|(;1e) Interface = Libraries L(;a1d7er
= 212 214 =

WO 2016/049379 PCT/US2015/052060

3/5

FIGURE 2B
270 \

The client attempts to send agent for execution on a
272 7 node.
274 ~—~ The client determines an identity for the class.

The client determines whether the class definition already
[exists in the Class/ID Table.

l

The client generates a class definition for the class if not
[present in the Class/ID table

l

The client transmits the remote constructor containing

276 7

278 7

U
280 class definition and captured state to the node.
A 4
282 T~ The node receives the remote constructor.
v
oga —~ The node deserializes and executes the remote
constructor.

l

The node loads the byte code implementing the new class
into memory and returns an instance of the new class.

l

The instance of the new class is configured for execution
[on the node.

286 —~—

288 T~

A 4
290 —~~— The agent is executed on the node.

WO 2016/049379 PCT/US2015/052060

4/5
(Distributed Computing Environment 300
Server 302 Client 301
|~ Megda_ta_ 1 R] Metadata
| 306 ™ 305

Lambda
Instance
304

Lambda

Expression
303

Class Definition Class Definition
308 307

WO 2016/049379 PCT/US2015/052060

5/5

FIGURE 3B

The client generates class definition
320 from a lambda expression.

I

The server receives the remote
constructor to execute from the client.

I

The server defines a lambda class
based on the received class definition.

I

The server creates and executes an
instance of the lambda class.

322 ~

324 7~

326 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/052060

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/445 GO6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X AL-JAROODI J ET AL: "Middleware 1,11,
infrastructure for parallel and 20-22
distributed programming models in
heterogeneous systems",
IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, IEEE SERVICE CENTER,
LOS ALAMITOS, CA, US,
vol. 14, no. 11,
1 November 2003 (2003-11-01), pages
1100-1111, XP011103739,
ISSN: 1045-9219, DOI:
10.1109/TPDS.2003.1247671
A the whole document 2-10,
12-19
A US 2009/144714 A1 (FAN NAN [CN] ET AL) 1-22
4 June 2009 (2009-06-04)
the whole document
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

23 December 2015

Date of mailing of the international search report

12/01/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Breche, Philippe

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/052060

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Laurent Baduel ET AL: "Programming,
Composing, Deploying for the Grid"

In: "Grid Computing: Software Environments
and Tools",

1 January 2006 (2006-01-01), Springer
London, London, XP055238382,

ISBN: 978-1-85233-998-2

pages 1-30,

the whole document

1-22

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2015/052060
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2009144714 Al 04-06-2009 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report
	Page 33 - wo-search-report

