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PROSTATE CANCER BIOMARKERS

The present invention was made with Government support under grant number
CA85067 awarded by the National Cancer Institutes Early Detection Research Network,
grant number DAMD17-02-1-0054 awarded by the Department of Defense and a grant
awarded by the Virginia Prostate Center.

RELATED APPLICATION
This application claims priority from U.S. Provisional Application No. 60/379,018, filed
May 10, 2002, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

The number of prostate cancer cases has tripled during the past decade due to the
widespread use of serum prostate-specific antigen (PSA) testing and digital rectal
examination [Howe et al., J. Natl. Cancer Inst. 93:824-842 (2001)]. Although these efforts
have allowed for increased identification of individuals with cancer, overall "early" detection
or determination of aggressive cancers is needed. PSA is currently the best over-all serum
marker for prostate cancer (PCA) in clinical use. Nevertheless, the PSA test lacks specificity
[Djavan, et al. Urology 54:517-5222, (1999); Pannek and Partin, Semin. Urol. Oncol. 16:100-
105 (1998)], limiting its use as an early detection biomarker, and its relation to biologic
activity has been questioned [Stamey et al., J. Urol. 167:103-111 (2002)]. It is important that
additional diagnostic biomarkers be identified in order to reduce PCA mortality. However,
because of the robust molecular and cellular heterogeneity of PCA, it is likely that a
combination or a panel of biomarkers will be required to improve the early detection of
prostate cancer.

The study of the cell’s proteome presents a new horizon for biomarker discovery.
Two-dimensional polyacrylamide gel electrophoresis (2D-EP) has been the classical
approach to explore the proteome for separation and detection of differences in protein
expression [Srinivas et al., Clin. Chem. 47:1901-1911 (2001); Adam et al., Proteomics
1:1264-1270 (2001)]. Advances in 2D-EP technology coupled with robotics and software
programs for identifying potential protein alterations have improved this proteomic system.
Nevertheless, 2D-EP is still cumbersome, labor intensive, suffers reproducibility problems,
and is not readily transformed into a clinical assay. Advances have also been made in mass
spectrometry to achieve high-throughput separation and analysis of proteins [Chong et al.,
Anal. Chem. 73:1219-1227 (2001); Ferrari et al., Rapid Comm. Mass Spec. 14:1149-1154
(2000); Keough et al. Electrophoresis 21:2252-2265 (2000)]. One of the recent advances is
the ProteinChip® system manufactured by Ciphergen Biosystems, Inc. (Fremont, CA). This
system uses surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass

1



10

15

20

25

30

35

WO 2004/030511 PCT/US2003/014432

spectrometry to detect proteins bound to a protein chip array [Merchant and Weinberger,
Electrophoresis 21:1164-1177 (2000); Kuwata et al., Biochem. Biophys. Res. Comm.
245:764-773 (1998)].

This system is an extremely sensitive and rapid method to analyze complex mixtures
of proteins and peptides. Initial studies from our laboratory established the potential of
SELDI for discovery and profiling of prostate and bladder cancer biomarkers in body fluids
and cell lysates [Wright et al., Prostate Cancer and Prostate Diseases 2:264-267 (1999);
Vlahous et al., Am. J. Pathol., 158:1491-1502 (2001)]. However, further improved methods
for differentiating between benign prostate hyperplasia, prostate cancer and a negative
diagnosis are still needed. The present invention addresses this need.

SUMMARY OF THE INVENTION

Protein biomarkers have been discovered that may be used to diagnose, or aid in the
diagnosis of, prostate cancer or benign prostate hyperplasia, or to otherwise make a
negative diagnosis. Accordingly, methods for aiding in the, or otherwise making a, diagnosis
of prostate cancer or benign prostate hyperplasia are provided.

In one form of the invention, a method for aiding in the, or otherwise making a,
diagnosis includes detecting at least two protein biomarkers in a test sample from a subject.
The protein biomarkers have a molecular weight selected from the group consisting of about
4475 + 81, about 5074 + 91, about 5382 + 97, 7024 + 13, about 7820 £ 14, about 8141 + 15,
about 9149 + 16, about 9508 + 17, and about 9656 + 17 Daltons. The method further
includes correlating the detection with a probable diagnosis of benign prostate hyperplasia,
prostate cancer or a negative diagnosis.

In certain forms of the invention, the markers in a test sample from a subject may be
detected in the following groups and may have the following molecular weights:

(i) about 7024 + 13 Dalton and about 7820 + 14 Dalton; (ii) about 7820 + 14 Dalton,
about 7024 + 13 Dalton, about 5382 £ 97 Dalton and about 4475 + 81 Dalton; (iii) about
8141 + 15 Dalton, about 9149 + 16 Dalton, and about 9656 + 17 Dalton; (iv) about 9149 £ 16
Dalton and about 9508 + 17 Dalton; (v) about 5074 + 91 Dalton, about 9149 + 16 Dalton and
about 9656 + 17 Dalton; or (vi) about 5382 + 97 Dalton, about 7024 + 13 Dalton and about
7820 = 14 Dalton. A correlation of the detection with a diagnosis of benign prostate
hyperplasia, prostate cancer or a negative diagnosis can then be made by analyzing one or
more of the above groups of protein biomarkers.

In yet another form of the invention, protein biomarkers that may be detected have
molecular weights selected from the group consisting of about 3486 + 6, about 3963 * 7,
about 4071 £ 7, 4079 £ 7, about 4580 + 8, about 5298 + 10, about 6099 + 11, about 6542 +

12, about 6797 + 12, about 6949 + 13; about 6990 + 13, about 7024 + 13, about 7054 + 13,
2
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about 7820 + 14, about 7844 + 14, about 7885 + 14, about 8067 + 15, about 8356 + 15,
about 8943 + 16, about 9656 + 17, and about 9720 = 18 Daltons.

At least two of the protein biomarkers described herein are typically detected. It is
realized and described herein that one or more of the biomarkers may be detected and
subsequently analyzed, including all of the biomarkers.

In yet another aspect of the invention, kits that may be utilized to detect the
biomarkers described herein and may otherwise be used to diagnose, or otherwise aid in the
diagnosis of, prostate cancer or benign prostate hyperplasia are provided. In one form of the
invention, a kit may include a substrate comprising an adsorbent attached thereto, wherein
the adsorbent is capable of retaining at least one protein biomarker selected from the group
consisting of about 4475 + 81, about 5074 + 91, about 5382 + 97, 7024 £ 13, about 7820 +
14, about 8141 + 15, about 9149 + 16, about 9508 + 17, and about 9656 + 17 Daltons; and
instructions to detect the protein biomarker by contacting a test sample with the adsorbent
and detecting the biomarker retained by the adsorbent.

In yet another embodiment of the invention, the kit may include a substrate
comprising an adsorbent attached thereto, wherein the adsorbent is capable of retaining at
least one proteiﬁ biomarker selected from the group consisting of about 3486 + 6, about
3963 + 7, about 4071 + 7, 4079 * 7, about 4580 + 8, about 5298 + 10, about 6099 + 11,
about 6542 + 12, about 6797 + 12, about 6949 + 13; about 6990 * 13, about 7024 + 13,
about 7054 + 13, about 7820 + 14, about 7844 + 14, about 7885 + 14, about 8067 + 15,
about 8356 + 15, about 8943 + 16, about 9656 + 17, and about 9720 =+ 18 Daltons; and
instructions to detect the protein biomarker by contacting a test sample with the adsorbent
and detecting the biomarker retained by the adsorbent.

In yet another aspect of the invention, methods of using a plurality of classifiers to
make a probable diagnosis of prostate cancer, benign prostate hyperplasia or a negative
diagnosis are provided. In one form of the invention, a method includes a) obtaining mass
spectra from a plurality of samples from normal subjects, subjects diagnosed with prostate
cancer and subjects diagnosed with benign prostate hyperplasia; b) applying a boosted
decision tree analysis to at least a portion of the mass spectra to obtain a plurality of
weighted base classifiers comprising a peak intensity value and an associated threshold
value; and ¢) making a probable diagnosis of at least one of prostate cancer, benign prostate
hyperplasia and a negative diagnosis based on a linear combination of the plurality of
weighted base classifiers. In certain forms of the invention, the method includes using the
peak intensity value and the associated threshold value in linear combination to make a
probable diagnosis of prostate cancer, benign prostate hyperplasia or to make a negative
diagnosis.
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In yet another aspect of the invention, computer program media storing computer
instructions therein for instructing a computer to perform a computer-implemented process
using a plurality of classifiers to make a probable diagnosis of prostate cancer, benign
prostate hyperplasia, or a negative diagnosis, are provided. In one form of the invention, a
computer program medium includes a) first computer program code means for
obtaining mass spectra from a plurality of samples from normal subjects, subjects diagnosed
with prostate cancer, and subjects diagnosed with benign prostate hyperplasia; b) second
computer program code means for applying a boosted decision tree analysis to at least a
portion of the mass spectra to obtain a plurality of weighted base classifiers comprising a
peak intensity value and an associated threshold value; and c) third computer program code
means for making a probable diagnosis of at least one of prostate cancer, benign prostate
hyperplasia, and a negative diagnosis based on a linear combination of the plurality of
weighted base classifiers. The peak intensity and associated threshold values may be used
in linear combination to make a probable diagnosis of at least one of prostate cancer, benign
prostate hyperplasia and a negative diagnosis.

In another form of the invention, a computer program medium includes (a)first
computer program code means for detecting at least two protein biomarkers in a test sample
from a subject, said protein biomarkers having a molecular weight selected from the group
consisting of about 4475 + 81, about 5074 + 91, about 5382 + 97, 7024 + 13, about 7820 +
14, about 8141 + 15, about 9149 + 16, about 9508 + 17, and about 9656 + 17 Daltons; and
(b) second computer program code means for correlating the detection with a probable
diagnosis of benign prostate hyperplasia, prostate cancer or a negative diagnosis.

In a further form of the invention, a computer program medium includes a)first
computer program code means for detecting in a test sample from a subject protein
biomarkers in the following groups and having the following molecular weights: (i) about
7024 * 13 Dalton and about 7820 + 14 Dalton; (ii) about 7820 + 14 Dalton, about 7024 + 13
Dalton, about 5382 + 97 Dalton and about 4475 + 81 Dalton; (i) about 8141 + 15 Dalton,
about 9149 * 16 Daltons, and about 9656 + 17 Dalton; (iv) about 9149 + 16 Dalton and
about 9508 + 17 Dalton; (v) about 5074 + 91 Dalton, about 9149 + 16 Dalton and about 9656
+ 17 Dalton; or (vi) about 5382 + 97 Dalton, about 7024 + 13 Dalton and about 7820 + 14
Dalton; and  (b) second computer program code means for correlating the determination to
a diagnosis of benign prostate hyperplasia, prostate cancer or a negative diagnosis.

In yet another form of the invention, a computer readable medium may include (a)
first computer program code means for detecting at least two protein biomarkers in a test
sample from a subject, said protein biomarkers having a molecular weight selected from the
group consisting of about 3486 + 6, about 3963 + 7, about 4071 + 7, 4079 + 7, about 4580 +
8, about 5298 + 10, about 6099 * 11, about 6542 + 12, about 6797 + 12, about 6949 + 13;
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about 6990 + 13, about 7024 + 13, about 7054 + 13, about 7820 + 14, about 7844 + 14,
about 7885 + 14, about 8067 + 15, about 8356 + 15, about 8943 + 16, about 9656 + 17, and
about 9720 + 18 Daltons; and (b) second computer program means for correlating the
detection to a diagnosis of benign prostate hyperplasia, prostate cancer or a negative
diagnosis.

It is an object of the present invention to provide methods to diagnose, or aid in the
diagnosis of, prostate cancer or benign prostate hyperplasia, or to otherwise make a
negative diagnosis.

It is a further object of the invention to provide kits that may be utilized to detect the
biomarkers described herein and that may be utilized to diagnose, or aid in the diagnosis of,
prostate cancer or benign prostate hyperplasia.

It is another object to provide methods of using a plurality of classifiers to make a
probable diagnosis of prostate cancer or benign prostate hyperplasia.

It is a further object of the invention to provide computer program media storing
computer instructions therein for instructing a computer to perform a computer-implemented
process for developing and/or using a plurality of classifiers to make a probable diagnosis of
prostate cancer, benign prostate hyperplasia, or a negative diagnosis.

These and other objects and advantages of the present invention will be apparent
from the descriptions herein.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a flow diagram that summarizes the process from peak detection to
sample classification as more fully described in Example 1.

FIG. 2A depicts a schematic of the decision tree classification system utilized in
example 1. FIG. 2B depicts the SELDI protein profiles showing various features of the
classification system. FIG. 2C depicts the SELDI protein profiles obtained after storing
samples for a prolonged period of time.

FIG. 3 depicts representative raw spectra of peaks resolved between 2000-40000
Daltons utilizing SELDI as more fully described in Example 2. The top spectra represents
spectra of peaks resolved having a molecular weight in the range of about 2000 to about
10000 Daltons; the bottom spectra represents spectra of peaks resolved having a molecular
weight of about 10000 to about 40000 Daltons.

FIG. 4 depicts graphs showing the training error rate minimal margin and/or test error
rate for the boosted decision tree classifier described in Example 2. FIG. 4A depicts the
training error rate, the minimal margin, and the generalization error rate (testing error) of M,
the number of base stumps for the boosted decision tree classifier distinguishing between
non-cancer and cancer. After the training error reaches zero (on round 47), the minimal
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margin keeps increasing, and the generalization error keeps decreasing, finally reaching
zero (on round 265); FIG. 4B depicts the training error rate and the minimal margin against
the number of base stumps for the boosted decision tree classifier distinguishing between
normal and BPH. After the training error reaches zero (on round 9), the minimal margin
keeps increasing.

FIG. 5 illustrates one example of a central processing unit for implementing a
computer process in accordance with a computer implemented embodiment of the present
invention.

FIG. 6 illustrates one example of a block diagram of internal hardware of the central
processing unit of FIG. 5.

FIG. 7 is an illustrative computer-readable medium upon which computer instructions
can be embodied.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

For the purposes of promoting an understanding of the principles of the invention,
reference will now be made to preferred embodiments and specific language will be used to
describe the same. It will nevertheless be understood that no limitation of the scope of the
invention is thereby intended, such alterations and further modifications of the invention, and
such further applications of the principles of the invention as illustrated herein, being
contemplated as would normally occur to one skilled in the art to which the invention relates.

The present invention relates to methods for aiding in a diagnosis of, and methods
for diagnosing, benign prostate hyperplasia and prostate cancer. Surface enhanced laser
desorption/ionization mass spectroscopy has been combined with various algorithms to
deduce protein biomarkers that may be utilized in various decision trees to aid in the
diagnosis of, and/or to diagnose, benign prostate hyperplasia, prostate cancer or to make a
negative diagnosis.

The methods of the present invention effectively differentiate between individuals
with benign prostate hyperplasia, prostate cancer or normal individuals. As defined herein,
normal individuals are individuals with a negative diagnosis with respect to benign prostate
hyperplasia or prostate cancer. That is, normal individuals do not have benign prostate
hyperplasia or prostate cancer. The method includes detecting a protein biomarker in a test
sample from a subject. For example, the protein biomarkers having a molecular weight of
about 4475 + 81, about 5074 + 91, about 5382 + 97, about 7024 + 13, about 7820 + 14,
about 8141 + 15, about 9149 + 16, about 9508 + 17, and about 9656 + 17 Daltons have
been identified that aid in the probable diagnosis of benign prostate hyperplasia, prostate
cancer or aid in a negative diagnosis. In addition, the protein biomarkers having a molecular
weight of about 3486 + 6, about 3963 + 7, about 4071 + 7, 4079 + 7, about 4580 + 8, about
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5298 + 10, about 6099 + 11, about 6542 + 12, about 6797 + 12, about 6949 + 13; about
6990 + 13, about 7024 + 13, about 7054 + 13, about 7820 + 14, about 7844 + 14, about
7885 + 14, about 8067 * 15, about 8356 + 15, about 8943 + 16, about 9656 + 17, and about
9720 + 18 Daltons have also been identified to aid in the diagnosis. In accordance with the
present invention, at least two or more of the protein biomarkers are detected. As used
herein, the term “detecting” includes determining the presence, the absence, the quantity, or
a combination thereof, of the protein biomarkers. The quantity of the biomarkers may be
represented by the peak intensity as identified by mass spectrometry, for example, or
concentration of the biomarkers.

In certain forms of the invention, selected groups of protein biomarkers find utility in
diagnosing prostate cancer or benign prostate hyperplasia. For example, the following
groups of markers find utility in making, or otherwise aiding in making, a specific diagnosis:
(1) 7820 and 7024 Dalton biomarkers to diagnose prostate cancer; (2) 7820, 7024 and 5382
Dalton biomarker to diagnose benign prostate hyperplasia; (3) the 7820, 7024, 5382 and
4474 Dalton biomarkers to distinguish between prostate cancer and benign prostate
hyperplasia; (4) the 9149 and 9508 Dalton biomarkers to distinguish between prostate
cancer and benign prostate hyperplasia; (5) the 9149, 9656 and 8141 Dalton biomarkers to
distinguish between prostate cancer and normal individuals; and (6) the 9149, 9656 and
5074 Dalton biomarkers to distinguish between individuals with prostate cancer and normal
individuals. The decision tree showing, for example, how such markers may be utilized is
shown in FIG. 2.

As discussed above, the presence, absence and/or quantity of the various
biomarkers may be utilized to make, or otherwise aid in making, a specific diagnosis. For
example, and referring to FIG. 2, the absence of the 7820 peak and the presence of the
7024 peak may be correlated to a diagnosis of prostate cancer. Referring now to the second
group above, the absence of the 5382, 7024 and 7820 Dalton biomarkers may be correlated
to benign prostate hyperplasia.

The presence and absence of selected biomarkers, along with the quantity of other
biomarkers, may also be utilized to make, or otherwise aid in making, a specific diagnosis.
For example, referring to group 3 mentioned above, the absence of the 7820 Dalton and the
7024 Dalton biomarkers, the presence of the 5382 Dalton biomarker and the presence of the
4475 Dalton biomarker below the indicated threshold value in FIG. 2 may be correlated to a
diagnosis of prostate cancer, whereas if the 4475 Dalton biomarker is present in this same
group in a quantity above the threshold value, a negative diagnosis may be made. The
threshold values in FIG. 2 represent the normalized peak intensity of the biomarkers. As
more fully described in Example 1, these threshold values may represent the normalized
peak intensity of a particular biomarker or the concentration of the biomarker. The
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normalization process may involve subtracting out the ion current not related to the proteins
analyzed. The normalization process could alternatively involve reporting the peak intensity
relative to the peak intensity of an internal or external control. For example, a known protein
may be added to the system. Additionally, a known protein produced by the test subject,
such as albumin, may act as an internal standard or control.

Turning now to the next group 4, presence of the 9149 and the 9508 Dalton peaks
above the indicated threshold values in FIG. 2 correlate to a diagnosis of prostate cancer
whereas presence of the 9149 Dalton biomarker above the indicated threshold value and the
9508 Dalton biomarker below the indicated threshold value may be correlated to a diagnosis
of benign prostate hyperplasia.

Turning now to group 5, if the 9149, 9655 and 8141 Dalton biomarkers are below the
indicated threshold values in FIG. 2, a correlation to prostate cancer may be made.
Alternatively, if the 9149 and 9655 Dalton biomarkers are below the indicated threshold
values, and the 8141 Dalton biomarker is above the indicated threshold value, a negative
diagnosis may be made.

Tuming now to group 6, the presence of the 9656 Dalton biomarker above a
specified threshold value indicated in FIG. 2, and the presence of the 9149 and 5074 Dalton
biomarkers below indicated threshold values, may be correlated to a diagnosis of prostate
cancer. Alternatively, the presence of the 9656 and 5074 Dalton biomarkers above the
indicated threshold values indicated in FIG. 2, and the presence of the 9149 Dalton
biomarker below the indicated threshold value may be correlated to a negative diagnosis.

In yet another form of the method described above, the protein biomarkers that may
be detected include those having a molecular weight selected from the group consisting of
about 3486 * 6, about 3963 + 7, about 4071 + 7, 4079 + 7, about 4580 + 8, about 5298 + 10,
about 6099 + 11, about 6542 + 12, about 6797 + 12, about 6949 + 13; about 6990 + 13,
about 7024 + 13, about 7054 + 13, about 7820 + 14, about 7844 + 14, about 7885 + 14,
about 8067 + 15, about 8356 + 15, about 8943 + 16, about 9656 + 17, and about 9720 + 18
Daltons. Correlation of the detection of these biomarkers with prostate cancer, benign
prostate hyperplasia, or a negative diagnosis is preferably accomplished utilizing a boosted
decision tree analysis as more fully described in Example 2.

The method includes detecting at least one protein biomarker. However, any number
of biomarkers may be detected. It is preferred that at least two protein biomarkers are
detected in the analysis. However, it is realized that three, four, or more, including all, of the
biomarkers described herein may be utilized in the diagnosis. Thus, not only can one or
more markers be detected, one to nine, preferably two to nine, two to twelve and two to
twenty-one biomarkers, or some other combination, may be detected and analyzed as
described herein. In addition, other protein biomarkers not herein described may be
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combined with any of the presently disclosed protein biomarkers to aid in the diagnosis of
prostate cancer or benign prostate hyperplasia. Moreover, any combination of the above
protein biomarkers may be detected in accordance with the present invention. The inventors
have found that selected groups of the protein biomarkers find utility in diagnosing prostate
cancer or benign prostate hyperplasia. For example, the protein biomarkers having a
molecular weight selected from the group consisting of about 3963 + 7, about 4079 + 7,
about 6542 + 12, about 6797 + 12, about 6949 + 13; about 6990 + 13, about 7024 + 13,
about 7885 *+ 14, about 8067 + 15, about 8356 + 15, about 9656 + 17, about 9720 + 18
Daltons may advantageously be utilized for diagnosing prostate cancer from a negative
diagnosis. Additionally, the protein biomarkers having a molecular weight selected from the
group consisting of about 3486 + 6, about 4071 + 7, about 4580 + 8, about 5298 + 10, about
6099 + 11, about 7054 £ 13, about 7820 * 14, about 7844 + 14, and about 8943 + 16 may
advantageously be utilized to distinguish benign prostate hyperplasia from a negative
diagnosis.

The detection of the protein biomarkers described herein in a test sample may be
performed in a variety of ways. ‘In one form of the invention, a method for detecting the
biomarker includes detecting the biomarker by gas phase ion spectrometry utilizing a gas
phase ion spectrometer. The method may include contacting a test sample having a
biomarker, such as the protein biomarkers described herein, with a substrate comprising an
adsorbent thereon under conditions to allow binding between the biomarker and the
adsorbent and detecting the biomarker bound to the adsorbent by gas phase ion
spectrometry.

A wide variety of adsorbents may be used. The adsorbents may include a
hydrophobic group, a hydrophilic group, a cationic group, an anionic group, a metal ion
chelating group, or antibodies which specifically bind to an antigenic biomarker, or some
combination thereof. (such as a “mixed mode” adsorbent). Exemplary adsorbents that
include a hydrophobic group include matrices having aliphatic hydrocarbons, such as C-Cis
aliphatic hydrocarbons and matrices having aromatic hydrocarbon functional groups,
including phenyl groups. Exemplary adsorbents that include a hydrophilic group include
silicon oxide, or hydrophilic polymers such as polyalkylene glycol, such as polyethylene
glycol; dextran, agarose or cellulose. Exemplary adsorbents that include a cationic group
include matrices of secondary, tertiary or quaternary amines. Exemplary adsorbents that
have an anionic group include matrices of sulfate anions and matrices of carboxylate anions
or phosphate anions. Exemplary adsorbents that have metal chelating groups include
organic molecules that have one or more electron donor groups which may form coordinate
covalent bonds with metal ions, such as copper, nickel, cobalt, zinc, iron, aluminum and
calcium. Exemplary adsorbents that include an antibody include antibodies that are specific
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for any of the biomarkers provided herein and may be readily made by methods known to
the skilled artisan.

Alternatively, the substrate can be in the form of a probe which may be removably
insertable into a gas phase ion spectrometer. For example, a substrate may be in the form
of a strip with adsorbents on its surface. In yet other forms of the invention, the substrate
can be positioned onto a second substrate to form a probe which may be removably
insertable into a gas phase ion spectrometer. For example, the substrate can be in the form
of a solid phase, such as a polymeric or glass bead with a functional group for binding the
marker, which can be positioned on a second substrate to form a probe. The second
substrate may be in the form of a strip, or a plate having a series of wells at predetermined
locations. In this manner, the biomarker can be adsorbed to the first substrate and
transferred to the second substrate which can then be submitted for analysis by gas phase
ion spectrometry.

The probe can be in the form of a wide variety of desired shapes, including circular,
elliptical, square, rectangular, or other polygonal or other desired shape, as long as it is
removably insertable into a gas phase ion spectrometer. The probe is also preferably
adapted or otherwise configured for use with inlet systems and detectors of a gas phase ion
spectrometer. For example, the probe can be adapted for mounting in a horizontally and/or
vertically translatable carriage that horizontally and/or vertically moves the probe to a
successive position without requiring, for example, manual repositioning of the probe.

The substrate that forms the probe can be made from a wide variety of materials that
can support various adsorbents. Exemplary materials include insulating materials, such as
glass and ceramic; semi-insulating materials, such as silicon wafers; electrically-conducting
materials (including metals such as nickel, brass, steel, aluminum, gold or electrically-
conductive polymers); organic polymers; biopolymers, or combinations thereof.

In other embodiments of the invention, depending on the nature of the substrate, the
substrate surface may form the adsorbent. In other cases, the substrate surface may be
modified to incorporate thereon a desired adsorbent. The surface of the substrate forming
the probe can be treated or otherwise conditioned to bind adsorbents that may bind markers
if the substrate can not bind biomarkers by itself. Alternatively, the surface of the substrate
can also be treated or otherwise conditioned to increase its natural ability to bind desired
biomarkers. Other probes suitable for use in the invention may be found, for example, in
PCT international publication numbers WO 01/25791 (Tai-Tung et al.) and WO 01/71360
(Wright et al.).

The adsorbents may be placed on the probe substrate in a wide variety of patterns,
including a continuous or discontinuous pattern. A single type of adsorbent, or more than

one type of adsorbent, may be placed on the substrate surface. The patterns may be in the
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form of lines, curves, such as circles, or other shape or pattern as desired and as known in
the art.

The method of production of the probes will dépend on the selection of substrate
materials and/or adsorbents as known in the art. For example, if the substrate is a metal,
the surface may be prepared depending on the adsorbent to be applied thereon. For
example, the substrate surface may be coated with a material, such as silicon oxide, titanium
oxide or gold, that allows derivatization of the metal surface to form the adsorbent. The
substrate surface may then be derivatized with a bifunctional linker, one of which binds, such
as covalently binds, with a functional group on the surface and the opposing end of the linker
may be further derivatized with groups that function as an adsorbent. As a further example,
a substrate that includes a porous silicon surface generated from crystalline silicon can be
chemically modified to include adsorbents for binding markers. Additionally, adsorbents with
a hydrogel backbone can be formed directly on the substrate surface by in situ
polymerization of a monomer solution which includes, for example, substituted acrylamide or
acrylate monomers, or derivatives thereof that include a functional group of choice as
adsorbent.

In preferred forms of the invention, the probe may be a chip, such as those available
from Ciphergen Biosystems, Inc. (Palo Alto, CA). The chip may be a hydrophilic,
hydrophobic, anion-exchange, cation-exchange, immobilized metal affinity or preactivated
protein chip array. The hydrophobic chip may be a ProteinChip H4, which includes a long-
chain aliphatic surface that binds proteins by reverse phase interaction. The hydrophilic chip
may be ProteinChips NP1 and NP2 which include a silicon dioxide substrate surface. The
cation exchange ProteinChip array may be ProteinChip WCX2, a weak cation exchange
array with a carboxylate surface to bind cationic proteins. Alternatively, the chip may be an
anion exchange protein chip array, such as SAX1 (strong anion exchange) ProteinChip
which is made from silicon-dioxide-coated aluminum substrates, or ProteinChip SAX2 with a
higher capacity quaternary ammonium surface to bind anionic proteins. A further useful chip
may be the immobilized metal affinity capture chip (IMAC3) having nitrilotriacetic acid on the
surface. Further alternatively, ProteinChip PS1 is available which includes a
carbonyldiimidazole surface which covalently reacts with amino groups or may be
ProteinChip PS2 which includes an epoxy surface which covalently reacts with amine and
thiol groups.

In accordance with the present invention, the probe contacts a test sample. The test
sample may be obtained from a wide variety of sources. The sample is typically obtained
from biological fluid from a subject or patient who is being tested for prostate cancer, benign
prostate hyperplasia or from a normal individual, or who is otherwise thought to be at risk for
such diseases. A preferred biological fiuid is blood or blood sera. Other biological fluids in
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which the biomarkers may be found include, for example, seminal fluid, seminal plasma,
saliva, lymph fluid, lung/bronchial washes, mucus, nipple secretions, sputum, tears and
saliva. Other test sample sources include, for example, feces. If necessary, the sample
can be solubilized in or mixed with an eluant prior to being contacted with the probe. The
probe may contact the test sample solution by a wide variety of techniques, including
bathing, soaking, dipping, spraying, washing, pipetting or other desirable methods. The
method is performed so that the adsorbent of the probe preferably contacts the test sample
solution. Although the concentration of the biomarker or biomarkers in the sample may vary,
it is generally desirable to contact a volume of test sample that include about 1 attomole to
about 100 picomoles of marker in about 1 pl to about 500 pl solution for binding to the
adsorbent.

The sample and probe contact each other for a period of time sufficient to allow the
biomarker to bind to the adsorbent. Although this time may vary depending on the nature of
the sample, the nature of the biomarker, the nature of the adsorbent and the nature of the
solution the biomarker is dissolved in, the sample and adsorbent are typically contacted for a
period of about 30 seconds to about 12 hours, preferably about 30 seconds to about 15
minutes.

The temperature at which the probe contacts the sample will depend on the nature of
the sample, the nature of the sample, the nature of the biomarker, the nature of the
adsorbent and the nature of the solution the biomarker is dissolved in. Generally, the
sample may be contacted with the probe under ambient temperature and pressure and
conditions. However, the temperature and pressure may vary as desired. For example, the
temperature may vary from about 4°C to about 37°C.

After the sample has contacted the probe for a period of time sufficient for the marker
to bind to the adsorbent or substrate surface should no adsorbent be used, unbound
material may be washed from the substrate or adsorbent surface so that only bound
materials remain on the respective surface. The washing can be accomplished by, for
example, bathing, soaking dipping, rinsing, spraying or otherwise washing the respective
surface with an eluant or other washing solution. A microfluidics process is preferably used
when a washing solution such as an eluant is introduced to small spots of adsorbents on the
probe. The temperature of the washing solution may vary, but is typically about 0°C to about
100°C, and preferably about 4°C and about 37°C.

A wide variety of washing solutions may be utilized to wash the probe substrate
surface. The washing solutions may be organic solutions or aqueous solutions. Exemplary
aqueous solutions may be buffered solutions, including HEPES buffer, a Tris buffer,
phosphate buffered saline or other similar buffers known to the art. The selection of a
particular washing solution will depend on the nature of the biomarkers and the nature of the
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adsorbent utilized. For example, if the probe includes a hydrophobic group and a sulfonate
group as adsorbents, such as the SCXI PorteinChip® array, then an aqueous solution, such
as a HEPES buffer, may be used. As a further example, if a probe includes a metal binding
group as an adsorbent, such as with the Ni(ll) ProteinChip® array, than an aqueous solution,
such as a phosphate buffered saline may be preferred. As yet a further example, if a probe
includes a hydrophobic group as an adsorbent, such as with the HF ProteinChip® array,
water may be a preferred washing solution.

An energy absorbing molecule, such as one in solution, may be applied to the
markers or other substances bound on the substrate surface of the probe. As used herein,
an “energy absorbing molecule” refers to a molecule that absorbs energy from an energy
source in a gas phase ion spectrometer, which may assist the desorption of markers or other
substances from the surface of the probe. Exemplary energy absorbing molecules include
cinnamic acid derivatives, sinapinic acid, dihyroxybenzoic acid and other similar molecules
known to the art. The energy absorbing molecule may be applied by a wide variety of
techniques previously discussed herein for contacting the sample and probe substrate,
including, for example, spraying, pipetting or dipping, preferably after the unbound materials
are washed off the probe substrate surface.

In another embodiment, the chip can be a SEND chip. “Surface-Enhanced Neat
Desorption” or “SEND” is a version of SELDI that involves the use of probes comprising
energy absorbing molecules chemically bound to the probe surface. (“SEND probe.”)
“Energy absorbing molecules” (“EAM”) refer to molecules that are capable of absorbing
energy from a laser desorption/ ionization source and thereafter contributing to desorption
and ionization of analyte molecules in contact therewith. The phrase includes molecules
used in MALDI , frequently referred to as “matrix”, and explicitly includes cinnamic acid
derivatives, sinapinic acid (“SPA”), cyano-hydroxy-cinnamic acid (“CHCA”) and
dihydroxybenzoic acid, ferulic acid, hydroxyacetophenone derivatives, as well as others. It
also includes EAMs used in SELDI. SEND is further described in United States patent
5,719,060 and United States patent application 60/408,255, filed September 4, 2002
(Kitagawa, “Monomers And Polymers Having Energy Absorbing Moieties Of Use In
Desorption/lonization Of Analytes”). SEND biochips avoid the necessity of applying external
matrix to the chip before laser desorption/ionization.

After the biomarker is appropriately bound to the probe, the biomarker may be
detected, quantified and/or its characteristics may be otherwise determined using a gas
phase ion spectrometer. As known in the art, gas phase ion spectrometers include, for
example, mass spectrometers, ion mobility spectrometers, and total ion current measuring

devices.
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In a preferred embodiment, a mass spectrometer is utilized to detect the biomarkers
bound to the substrate surface of the probe. The probe, with the bound marker on its
surface, may be introduced into an inlet system of the mass spectrometer. The marker may
then be ionized by an ionization source, such as a laser, fast atom bombardment, plasma or
other suitable ionization sources known to the art. The generated ions are typically collected
by an ion optic assembly and a mass analyzer then disperses and analyzes the passing
ions. The ions exiting the mass analyzer are detected by a detector. The detector translates
information of the detected ions into mass-to-charge ratios. Detection and/or quantitation of
the marker will typically involve detection of signal intensity.

In further preferred forms of the invention, the mass spectrometer is a laser
desorption time-of-flight mass spectrometer, and further preferably surface enhanced laser
desorption time-of-flight mass spectrometry (SELDI) is utilized. SELDI is an improved
method of gas phase ion spectrometry for biomolecules. In SELDI, the surface on which the
analyte is applied plays an active role in the analyte capture, and/or desorption.

As known in the art, in laser desorption mass spectrometry, a probe with a bound
marker is introduced into an inlet system. The marker is desorbed and ionized into the gas
phase by a laser ionization source. The ions generated are collected by an ion optic
assembly. lons are accelerated in a time-of-flight mass analyzer through a short high voltage
field and allowed to drift into a high vacuum chamber. The accelerated ions strike a
sensitive detector surface at a far end of the high vacuum chamber at a different time. As
the time-of-flight is a function of the mass of the ions, the elapsed time between ionization
and impact can be used to identify the presence or absence of molecules of specific mass.
Quantitation of the biomarkers, either in relative or absolute amounts, may be accomplished
by comparison of the intensity of the displayed signal of the biomarker to a control amount of
a biomarker or other standard as known in the art. The components of the laser desorption
time-of-flight mass spectrometer may be combined with other components described herein
and/or known to the skilled artisan that employ various means of desorption, acceleration,
detection, or measurement of time.

In further embodiments, detection and/or quantitation of the biomarkers may be
accomplished by matrix-assisted laser desorption ionization (MALDI). MALDI also provides
for vaporization and ionization of biological samples from a solid-state phase directly into the
gas phase. As known in the art, the sample, including the desired analyte, is dissolved or
otherwise suspended in, a matrix that co-crystallizes with the analyte, preferably to prevent
the degradation of the analyte during the process.

In another form of the invention, an ion mobility spectrometer can be used to detect
and characterize the biomarkers described herein. The principle of ion mobility spectrometry
is based on different mobility of ions. Specifically, ions of a sample produced by ionization
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move at different rates, due to their difference in, for example, mass, charge, or shape,
through a tube under the influence of an electric field. The ions (typically in the form of a
current) are registered at the detector which can then be used to identify a marker or other
substances in the sample. One advantage of ion mobility spectrometry is that it can operate
at atmospheric pressure.

In another embodiment, a total ion current measuring device can be used to detect
and characterize the biomarkers described herein. This device can be used, for example,
when the probe has a surface chemistry that allows only a single type of marker to be
bound. When a single type of marker is bound on the probe, the total current generated
from the ionized biomarker reflects the nature of the marker. The total ion current produced
by the biomarker can then be compared to stored total ion current of known compounds.
Characteristics of the biomarker can then be determined.

TOF-to-M/Z transformation involves the application of an algorithm that transforms
times-of-flight into mass-to-charge ratio (M/Z). In this step, the signals are converted from
the time domain to the mass domain. That is, each time-of-flight is converted into mass-to-
charge ratio, or M/Z. Calibration can be done internally or externally. In internal calibration,
the sample analyzed contains one or more analytes of known M/Z. Signal peaks at times-of-
flight representing these massed analytes are assigned the known M/Z. Based on these
assigned M/Z ratios, parameters are calculated for a mathematical function that converts
times-of-flight to M/Z. In external calibration, a function that converts times-of-flight to M/Z,
such as one created by prior internal calibration, is applied to a time-of-flight spectrum
without the use of internal calibrants.

Baseline subtraction improves data quantification by eliminating artificial,
reproducible instrument offsets that perturb the spectrum. It involves calculating a spectrum
baseline using an algorithm that incorporates parameters such as peak width, and then
subtracting the baseline from the mass spectrum.

High frequency noise signals are eliminated by the application of a smoothing
function. A typical smoothing function applies a moving average function to each time-
dependent bin. In an improved version, the moving average filter is a variable width digital
filter in which the bandwidth of the filter varies as a function of, e.g., peak bandwidth,
generally becoming broader with increased time-of-flight. See, e.g.,, WO 00/70648,
November 23, 2000 (Gavin et al., “Variable Width Digital Filter for Time-of-flight Mass
Spectrometry”).

Analysis generally involves the identification of peaks in the spectrum that represent
signal from an analyte. Peak selection can, of course, be done by eye. However, software
is available as part of Ciphergen’s ProteinChip® software that can automate the detection of
peaks. In general, this software functions by identifying signals having a signal-to-noise ratio
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above a selected threshold and labeling the mass of the peak at the centroid of the peak
signal. In one useful application many spectra are compared to identify identical peaks
present in some selected percentage of the mass spectra. One version of this software
clusters all peaks appearing in the various spectra within a defined mass range, and assigns
a mass (M/Z) to all the peaks that are near the mid-point of the mass (M/2) cluster.

Peak data from one or more spectra can be subject to further analysis by, for
example, creating a spreadsheet in which each row represents a particular mass spectrum,
each column represents a peak in the spectra defined by mass, and each cell includes the
intensity of the peak in that particular spectrum. Various statistical or pattern recognition
approaches can applied to the data.

Data generated by desorption and detection of the biomarkers can be analyzed with
the use of a programmable digital computer. The computer program generally contains a
readable medium that stores codes. Certain code can be devoted to memory that includes
the location of each feature on a probe, the identity of the adsorbent at that feature and the
elution conditions used to wash the adsorbent. Using this information, the program can then
identify the set of features on the probe defining certain selectivity characteristics, such as
types of adsorbent and eluants used. The computer also contains code that receives data
on the strength of the signal at various molecular masses received from a particular
addressable location on the probe as input. This data can indicate the number of
biomarkers detected, optionally including the strength of the signal and the determined
molecular mass for each biomarker detected.

Data analysis can include the steps of determining signal strength (e.g., height of
peaks, area of peaks) of a biomarker detected and removing “outerliers” (data deviating from
a predetermined statistical distribution). For example, as previously mentioned, the
observed peaks can be normalized, a process whereby the height of each peak relative to
some reference is calculated. For example, a reference can be background noise generated
by instrument and chemicals (e.g., energy absorbing molecule) which is set as zero in the
scale. The signal strength can then be detected for each biomarker or other substances can
be displayed in the form of relative intensities in the scale desired (e.g., 100). Alternatively,
a standard may be included with the sample so that a peak from the standard can be used
as a reference to calculate relative intensities of the signals observed for each biomarker or
other markers detected as previously discussed.

The computer can transform the resulting data into various formats for displaying. In
one format, referred to as “spectrum view or retentate map,” a standard spectral view can be
displayed, wherein the view depicts the quantity of biomarker reaching the detector at each
particular molecular weight. In another format, referred to as “peak map,” only the peak
height and mass information are retained from the spectrum view, yielding a cleaner image
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and enabling markers with nearly identical molecular weights to be more easily seen. In yet
another format, referred to as “gel view,” each mass from the peak view can be convened
into a grayscale image based on the height of each peak, resulting in an appearance similar
to bands on electrophoretic gels. In a further format, referred to as “3-D overlays,” several
spectra can be overlayed to study subtle changes in relative peak heights. In yet a further
format, referred to as “difference map view,” two or more spectra can be compared,
conveniently highlighting unique biomarkers and biomarkers which are up- or down-
regulated between samples. Biomarker profiles (spectra) from any two samples may be
compared visually.

Using any of the above display formats, it can be readily determined from the signal
display whether a biomarker having a particular molecular weight is detected from a sample.
Moreover, from the strength of signals, the amount of markers bound on the probe surface
can be determined. .

In preferred forms of the invention, a single decision tree classification algorithm is
utilized to analyze the data generated from SELDI. Such an algorithm is more specifically
described in example 1 herein. In more preferred forms of the invention, the a boosted
decision tree algorithm is utilized to analyze the data generated from SELDI. Such an
algorithm is more specifically described in, for example, example 2. Such a process results
in improved specificity and selectivity as more fully described in Example 2.

The test samples may be pre-treated prior to being subject to gas phase ion
spectrometry. For example, the samples can be purified or otherwise pre-fractionated to
provide a less complex sample for analysis. The optional purification procedure for the
biomolecules present in the test sample may be based on the properties of the
biomolecules, such a size, charge and function. Methods of purification include
centrifugation, electrophoresis, chromatography, dialysis or a combination thereof. As
known in the art, electrophoresis may be utilized to separate the biomolecules in the sample
based on size and charge. Electrophoretic procedures are well known to the skilled artisan,
and include isoelectric focusing, sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE), agaroase gel electrophoresis, and other known methods of electrophoresis.

The purification step may be accomplished by a chromatographic fractionation
technique, including size fractionation, fractionation by charge and fractionation by other
properties of the biomolecules being separated. =~ As known in the art, chromatographic
systems include a stationary phase and a mobile phase, and the separation is based upon
the interaction of the biomolecules to be separated with the different phases. In preferred
forms of the invention, column chromatographic procedures may be utilized. Such
procedures include partition chromatography, adsorption chromatography, size-exclusion
chromatography, ion-exchange chromatography and affinity chromatography.  Such
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methods are well known to the skilled artisan. In size exclusion chromatography, it is
preferred that the size fractionation columns exclude molecules whose molecular mass is
greater than about 10,000 Da.

In a preferred form of the invention, the sample is purified or otherwise fractionated
on a bio-chromatographic chip by retentate chromatography before gas phase ion
spectrometry. A preferred chip is the Protein Chip™ available from Ciphergen Biosystems,
Inc. (Palo Alto, CA). As described above, the chip or probe is adapted foi use in a mass
spectrometer. The chip comprises an adsorbent attached to its surface. This adsorbent can
function, in certain applications, as an in situ chromatography resin. In operation, the
sample is applied to the adsorbent in an eluant solution. Molecules for which the adsorbent
has affinity under the wash condition bind to the adsorbent. Molecules that do not bind to
the adsorbent are removed with the wash. The adsorbent can be further washed under
various levels of stringency so that analytes are retained or eluted to an appropriate level for
analysis. An energy absorbing molecule can then be added to the adsorbent spot to further
facilitate desorption and ionization. The analyte is detected by desorption from the
adsorbent, ionization and direct detection by a detector. Thus, retentate chromatography
differs from traditional chromatography in that the analyte retained by the affinity material is
detected, whereas in traditional chromatography, material that is eluted from the affinity
material is detected.

In yet another form of the invention, the biomarkers of the present invention may be
detected, qualitatively or quantitatively, by an immunoassay procedure. The immunoassay
typically includes contacting a test sample with an antibody that specifically binds to or
otherwise recognizes a biomarker, and detecting the presence of a complex of the antibody
bound to the biomarker in the sample. The immunoassay procedure may be selected from
a wide variety of immunoassay procedures known to the art involving recognition of
antibody/antigen complexes, including enzyme immunassays, competitive or non-
competitive, and including  enzyme-linked immunosorbent assays  (ELISA),
radioimmunoassays (RIA), and Western blots, and use of multiplex assays, including use of
antibody arrays wherein several desired antibodies are placed on a support, such as a glass
bead or plate, and reacted or otherwise contacted with the test sample. Such assays are
well known to the skilled artisan and are described, for example, more thoroughly in
Antibodies: A Laboratory Manual (1988) by Harlow & Lane; Immunoassays: A Practical
Approach, Oxford University Press, Gosling, J.P. (ed.) (2001) and/or Current Protocols in
Molecular Biology (Ausubel et al.) which is regularly and periodically updated.

The antibodies to be used in the immunoassays described herein may be polyclonal
antibodies and may be obtained by procedures which are well known to the skilled artisan,
including injecting purified biomarkers into various animals and isolating the antibodies
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produced in the blood serum. The antibodies may be monoclonal antibodies whose method
of production is well known to the ant, including injecting purified biomarkers into a mouse,
for example, isolating the spleen cells producing the anti-serum, fusing the cells with tumor
cells to form hybridomas and screening the hybridomas. The biomarkers may first be
purified by techniques similarly well known to the skilled artisan, including the
chromatographic, electrophoretic and centrifugation techniques described previously herein.
Such procedures may take advantage of the protein biomarker's size, charge, solubility,
affinity for binding to selected components, combinations thereof, or other characteristics or
properties of the protein. Such methods are known to the art and can be found, for
example, in Current Protocols in Protein Science, J. Wiley and Sons, New York, NY, Coligan
et al. (Eds.) (2002; Harris, E.L.V., and S. Angal in Protein purification applications: a practical
approach, Oxford University Press, New York, NY (1990). Once the antibody is provided, a
biomarker can be detected and/or quantitated by the immunoassays previously described
herein.

Although specific procedures for immunoassays are well known to the skilled artisan,
generally, an immunoassay may be performed by initially obtaining a sample as previously
described herein from a test subject. The antibody may be fixed to a solid support prior to
contacting the antibody with a test sample to facilitate washing and subsequent isolation of
the antibody/protein biomarker complex. Examples of solid supports are well known to the
skilled artisn and include, for example, glass or plastic in the form of, for example, a
microtiter plate. Antibodies can also be attached to the probe substrate, such as the
ProteinChip™ arrays described herein.

After incubating the test sample with the antibody, the mixture is washed and the
antibody-marker complex may be detected. = The detection can be accomplished by
incubating the washed mixture with a detection reagent, and observing, for example,
development of a color or other indicator. The detection reagent may be, for example, a
second antibody which is labeled with a detectable label. Exemplary detectable labels
include magnetic beads (e.g., DYNABEADS™), fluorescent dyes, radiolabels, enzymes
(e.g., horseradish peroxide, alkaline phosphatase and others commonly used in enzyme
immunoassay procedures), and colorimetric labels such as colloidal gold, colored glass or
plastic beads. Alternatively, the marker in the sample can be detected using an indirect
assay, wherein, for example, a second, labeled antibody is used to detect bound marker-
specific antibody, and/or in a competition or inhibition assay wherein, for example, a
monoclonal antibody which binds to a distinct epitope of the biomarker is incubated
simultaneously with the mixture. The amount of an antibody-marker complex can be
determined by comparing to a standard.
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Throughout the assays, incubation and/or washing steps may be required after each
combination of reagents. Incubation steps can vary from about 5 seconds to several hours,
preferably from about 5 minutes to about 24 hours. However, the incubation time will
depend upon the particular immunoassay, biomarker, and assay conditions. Usually the
assays will be carried out at ambient temperature, although they can be conducted over a
range of temperatures, such as about 0°C to about 40°C.

In yet another aspect of the invention, kits are provided that may, for example, be
utilized to detect the biomarkers described herein. The kits can, for example, be used to
detect any one or more of the biomarkers described herein which may advantageously be
utilized for diagnosing, or aiding in the diagnosis of, prostate cancer, benign prostate
hyperplasia or in a negative diagnosis.

In one embodiment, a kit may include a substrate that includes an adsorbent thereon,
wherein the adsorbent is preferably suitable for binding one or more protein biomarkers
described herein, and instructions to detect the biomarker by contacting a test sample as
described herein with the adsorbent and detecting the biomarker retained by the adsorbent.
In certain embodiments, the kits may include an eluant, or instructions for making an eluant,
wherein the combination of the eluant and the adsorbent allows detection of the protein
biomarkers by, for example, use of gas phase ion spectrometry. Such kits can be prepared
from the materials described herein. In yet another embodiment, the kit may include a first
substrate that includes an adsorbent thereon (e.g., a particle functionalized with an
adsorbent) and a second substrate onto which the first substrate can be positioned to form a
probe which is removably insertable into a gas phase ion spectrometer. In other
embodiments, the kit may include a single substrate which is in the form of a removably
insertable probe with adsorbents on the substrate. In yet another embodiment, the kit may
further include a pre-fractionation spin column (e.g, K-30 size exclusion column).

The kit may further include instructions for suitable operating parameters in the form
of a label or a separate insert. For example, the kit may have standard instructions
informing a consumer or other individual how to wash the probe after a particular form of
sample is contacted with the probe. As a further example, the kit may include instructions
for pre-fractionating a sample to reduce the complexity of proteins in the sample.

In a further embodiment, a kit may include an antibody that specifically binds to the
marker and a detection reagent. Such kits can be prepared from the materials described
herein. The kit may further include pre-fractionation spin columns as described above, as
well as instructions for suitable operating parameters in the form of a label or a separate
insert.

In yet another aspect of the invention, methods of using a plurality of classifiers to
make a probable diagnosis of prostate cancer, benign prostate hyperplasia or a negative
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diagnosis are provided. In one form of the invention, a method includes a) obtaining mass
spectra from a plurality of samples from normal subjects, subjects diagnosed with prostate
cancer, and subjects diagnosed with benign prostate hyperplasia; b) applying a boosted
decision tree analysis to at least a portion of the mass spectra to obtain a plurality of
weighted base classifiers, wherein the classifiers include a peak intensity value and an
associated threshold value; and c¢) making a probable diagnosis of at least one of prostate
cancer, benign prostate hyperplasia, and a negative diagnosis based on a linear
combination of the plurality of weighted base classifiers. In certain forms of the invention,
the method includes using the peak intensity value and the associated threshold value in
linear combination to make a probable diagnosis of at least one of prostate cancer, benign
prostate hyperplasia and a negative diagnosis. The preferred algorithm and data treatment
is more fully described in Example 2.

Computer Implementation

The techniques of the present invention may be implemented on a computing system
104 such as that depicted in FIG. 5. In this regard, FIG. 5 is an illustration of a computer
system 104 which is also capable of implementing some or all of the computer processing in
accordance with at least one computer implemented embodiment of the present invention.

Viewed externally, in FIG. 5, a computer system designated by reference numeral
104 has a computer portion 112 having drives 502 and 504, which are merely symbolic of a
number of disk drives which might be accommodated by the computer system. Typically,
these could include a floppy disk drive 502, a hard disk drive (not shown externally) and a
CD ROM 504. The number and type of drives vary, typically with different computer
configurations. Disk drives 502 and 504 are in fact optional, and for space considerations,
are can be omitted from the computer system.

The computer system 104 also has an optional display monitor 110 upon which
visual information pertaining to cells being normal or abnormal, suspected normal,
suspected abnormal, etc. can be displayed . In some situations, a keyboard 116 and a
mouse 114 are provided as input devices through which input may be provided, thus
allowing input to interface with the central processing unit (CPU) 604 (FIG. 6). Then again,
for enhanced portability, the keyboard 116 can be either a limited function keyboard or
omitted in its entirety. In addition, mouse 114 optionally is a touch pad control device, or a
track ball device, or even omitted in its entirety as well, and similarly may be used as an
input device. In addition, the computer system 104 may also optionally include at least one
infrared (or radio) transmitter and/or infrared (or radio) receiver for either transmitting and/or

receiving infrared signals.
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Although computer system 104 is illustrated having a single processor, a single hard
disk drive 614 and a single local memory, the system 104 is optionally suitably equipped with
any multitude or combination of processors or storage devices. Computer system 104 is, in
point of fact, able to be replaced by, or combined with, any suitable processing system
operative in accordance with the principles of the present invention, including hand-held,
laptop/notebook, mini, mainframe and super computers, as well as processing system
network combinations of the same.

FIG. 6 illustrates a block diagram of the internal hardware of the computer system
104 of FIG. 5. A bus 602 serves as the main information highway interconnecting the other
components of the computer system 104. CPU 604 is the central processing unit of the
system, performing calculations and logic operations required to execute a program. Read
only memory (ROM) 606 and random access memory (RAM) 608 constitute the main
memory of the computer system 104. Disk controller 610 interfaces one or more disk drives
to the system bus 602. These disk drives are, for example, floppy disk drives such as 502,
CD ROM or DVD (digital video disks) drive 504, or internal or external hard drives 614. As
indicated previously, these various disk drives and disk controllers are optional devices.

A display interface 618 interfaces display 110 and permits information from the bus
602 to be displayed on the display 110. Again as indicated, display 110 is also an optional
accessory. For example, display 110 could be substituted or omitted. Communications with
external devices, for example, the other components of the system described herein, occur
utilizing communication port 616. For example, optical fibers and/or electrical cables and/or
conductors and/or optical communication (e.g., infrared, and the like) and/or wireless
communication (e.g., radio frequency (RF), and the like) can be used as the transport
medium between the external devices and communication port 616. Peripheral interface
620 interfaces the keyboard 116 and the mouse 114, permitting input data to be transmitted
to the bus 602.

In alternate embodiments, the above-identified CPU 604, may be replaced by or
combined with any other suitable processing circuits, including programmable logic devices,
such as PALs (programmable array logic) and PLAs (programmable logic arrays). DSPs
(digital signal processors), FPGAs (field programmable gate arrays), ASICs (application
specific integrated circuits), VLSIs (very large scale integrated circuits) and the like.

Any presently available or future developed computer software language and/or
hardware components can be employed in such embodiments of the present invention. For
example, at least some of the functionality mentioned above could be implemented using
Extensible Markup Language (XML), HTML, Visual Basic, C, C++, or any assembly

language appropriate in view of the processor(s) being used. It could also be written in an
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interpretive environment such as Java and transported to multiple destinations to various
users.

One of the implementations of the invention is as sets of instructions resident in the
random access memory 608 of one or more computer systems 104 configured generally as
described above. Until required by the computer system 104, the set of instructions may be
stored in another computer readable memory, for example, in the hard disk drive 614, or in a
removable memory such as an optical disk for eventual use in the CD-ROM 504 or in a
floppy disk (e.g., floppy disk 702 of FIG. 7) for eventual use in a floppy disk drive 502.
Further, the set of instructions (such as those written in Java, HTML, XML, Standard
Generalized Markup Language (SGML), and/or Structured Query Language (SQL)) can be
stored in the memory of another computer and transmitted via a transmission medium such
as a local area network or a wide area network such as the Internet when desired by the
user. One skilled in the art knows that storage or transmission of the computer program
medium changes the medium electrically, magnetically, or chemically so that the medium
carries computer readable information.

Any biomarker, individually, is useful in aiding in.the determination of prostate cancer
status. First, the selected biomarker is measured in a subject sample using the methods
described herein, e.g., capture on a SELDI biochip followed by detection by mass
spectrometry. Then, the measurement is compared with a diagnostic amount or control that
distinguishes a prostate cancer status from a non-cancer status. The diagnostic amount will
reflect the information herein that a particular biomarker is up-regulated or down-regulated in
a cancer status compared with a non-cancer status. As is well understood in the art, the
particular diagnostic amount used can be adjusted to increase sensitivity or specificity of the
diagnostic assay depending on the preference of the diagnostician. The test amount as
compared with the diagnostic amount thus indicates prostate cancer status.

While individual biomarkers are useful diagnostic markers, it has been found that a
combination of biomarkers provides greater predictive value than single markers alone.
Specifically, the detection of a plurality of markers in a sample increases the percentage of
true positive and true negative diagnoses and would decrease the percentage of false
positive or false negative diagnoses. Thus, preferred methods of the present invention
comprise the measurement of more than one biomarker. The detection of the marker or
markers is then correlated with a probable diagnosis of human cancer

In other embodiments, the measurement of markers can involve quantifying the
markers to correlate the detection of markers with a probable diagnosis of cancer. Thus, if
the amount of the markers detected in a subject being tested is different compared to a
control amount (i.e., higher or lower than the control, depending on the marker), then the

subject being tested has a higher probability of having cancer.
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The correlation may take into account the amount of the marker or markers in the
sample compared to a control amount of the marker or markers (up or down regulation of the
marker or markers) (e.g., in normal subjects in whom human cancer is undetectable). A
control can be, e.g., the average or median amount of marker present in comparable
samples of normal subjects in whom human cancer is undetectable. The control amount is
measured under the same or substantially similar experimental conditions as in measuring
the test amount. The correlation may take into account the presence or absence of the
markers in a test sample and the frequency of detection of the same markers in a control.
The correlation may take into account both of such factors to facilitate determination of
prostate cancer status.

In certain embodiments of the methods of qualifying cancer status, the methods
further comprise managing subject treatment based on the status. As aforesaid, such
management describes the actions of the physician or clinician subsequent to determining
cancer status. For example, if the result of the methods of the present invention is
inconclusive or there is reason that confirmation of status is necessary, the physician may
order more tests. Alternatively, if the status indicates that surgery is appropriate, the
physician may schedule the patient for surgery. In other instances, the patient may receive
chemotherapy or radiation treatments, either in lieu of, or in addition to, surgery. Likewise, if
the result is negative, e.g., the status indicates late stage cancer or if the status is otherwise
acute, no further action may be warranted. Furthermore, if the results show that treatment
has been successful, no further management may be necessary.

The invention also provides for such methods where the biomarkers (or specific
combination of biomarkers) are measured again after subject management. In these cases,
the methods are used to monitor the status of the cancer, e.g., response to cancer
treatment, remission of the disease or progression of the disease. Because of the ease of
use of the methods and the lack of invasiveness of the methods, the methods can be
repeated after each treatment the patient receives. This allows the physician to follow the
effectiveness of the course of treatment. If the results show that the treatment is not
effective, the course of treatment can be altered accordingly. This enables the physician to
be flexible in the treatment options.

In another example, the methods for detecting markers can be used to assay for and
to identify compounds that modulate expression of these markers in vivo or in vitro.

The methods of the present invention have other applications as well. For example,
the markers can be used to screen for compounds that modulate the expression of the
markers in vitro or in vivo, which compounds in turn may be useful in treating or preventing

cancer in patients.
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In another example, the markers can be used to monitor the response to treatments
for cancer.

In yet another example, the markers can be used in heredity studies to determine if
the subject is at risk for developing cancer. For instance, certain markers may be genetically
linked. This can be determined by, e.g., analyzing samples from a population of prostate
cancer patients whose families have a history of prostate cancer. The results can then be
compared with data obtained from, e.g., cancer patients whose families do not have a
history of prostate cancer. The markers that are genetically linked may be used as a tool to
determine if a subject whose family has a history of prostate cancer is pre-disposed to
having prostate cancer.

Reference will now be made to specific examples illustrating the biomarkers, kits,
computer program media and methods above. It is to be understood that the examples are
provided to illustrate preferred embodiments and that no limitation to the scope of the

invention is intended thereby.

EXAMPLE 1
Use of Serum Protein Fingerprinting and a Pattern Matching Algorithm for Diagnosing

Prostate Cancer or Benign Prostate Hyperplasia

Materials and Methods
Serum Samples

Serum samples were obtained from the Virginia Prostate Center Tissue and Body
Fluid Bank. The serum procurement, data management and blood collection protocols were
approved by Eastern Virginia Medical School Institutional Review Board. Blood samples
from patients diagnosed with either PCA or BPH were procured from the Department of
Urology, Eastern Virginia Medical School, and the healthy men (HM) cohort was obtained
from free screening clinics open to the general public. Only pre-treatment samples obtained
at the time of diagnosis of PCA or BPH were used for this study. After informed consent, the
sample was collected into a 10 cc Serum Separator Vacutainer Tube and after 30 minutes
was centrifuged at 3750 x 100 rpm for 5 minutes. The serum was distributed into 500 ul
aliquots, and stored frozen at -80°C. A quality control sample was prepared by pooling an
equal amount of serum from each specimen of the age matched HM group, and storing 100
ul aliquots at -80°C. The quality control (QC) sample was used to determine reproducibility

and as a control protein profile for each SELDI experiment.

Patient and Donor Cohorts

Specimens from four groups of patients were used in this study: 96 age-matched
HM (control), 92 benign prostate hyperplasia (BPH), 99 patients diagnosed with organ
25



10

15

20

25

30

35

WO 2004/030511 PCT/US2003/014432

confined PCA (T1, T2) and 98 diagnosed with non-organ confined (T3, T4) PCA. A donor
was selected for the HM if they had a normal digital rectal exam, a PSA < 4.0ng/ml, and had
no evidence of prostatic disease. The HM group consisted of 48 Caucasian and 48 African
American males ranging in age from 51-70 (mean of 60). There were 33 Caucasian, 2
African American, and 57 of unknown race in the BPH patients group, ranging in age from
48 to 86 (mean 67). The BPH patients were selected if they had PSA values between 4 and
10, low PSA velocities, and had multiple negative biopsies. The organ confined (T1, T2)
PCA group consisted of 76 Caucasian, 20 African American, 1 Asian, and 2 of unknown race
with ages ranging from 50 to 89 (mean 71). For the non-organ confined PCA group (T3, T4),
there were 80 Caucasian, 16 African-American, and 2 of unknown race, ranging in age from
44 to 87 (mean 69). The range and mean PSA values for the HM group was 0.15-3.83
ng/ml (1.32 ng/ml); 0.0-10.91ng/ml (4.60ng/ml) for the BPH group; 0.0-95.16ng/ml
(10.10ng/ml) for the PCA T1, T2 group; and 0.0-8752ng/ml (206.93ng/ml) for the PCA T3, T4
group.
SELDI Protein Profiling

Various chip chemistries (hydrophobic, ionic, cationic, and metal binding) were
initially evaluated to determine which affinity chemistry provided the best serum profiles in
terms of number and resolution of proteins. The IMAC-Cu metal binding chip was observed
to give the best results. IMAC-3 chips (Ciphergen Biosystems, Inc, Fremont ,CA) were
coated with 20 pl of 100 mM CuSO, on each array, placed on a TOMY Micro Tube Mixer
(MT-360, Tomy Seiko Co., Ltd), and agitated for 5 minutes. The chips were rinsed with
deionized (DI) water 10 times, 20 ul of 100 mM sodium acetate added to each array, and
shaken for 5 minutes to remove the unbound copper. The chips were rinsed again with DI
water (X10) and put into a bioprocessor (Ciphergen Biosystems, Inc.), which is a device to
hold 12 chips and which allows for application of larger volumes of serum to each chip array.
The bioprocessor was washed and shaken on a platform shaker at a speed of 250 rpm for 5
minutes with 200 pl PBS in each well. This was repeated twice more and each time the PBS
buffer was discarded by inverting the bioprocessor on a paper towel. Serum samples for
SELDI analysis were prepared by vortexing 20 pl of serum with 30 pl of 8M Urea/ 1%
CHAPS in PBS in a 1.5 ml microfuge tube at 4°C for 10 minutes. 100 pul of 1M urea with
0.125% CHAPS was added to the serum/Urea mixture and briefly vortexed. PBS was added
to make a 1:5 dilution and placed on ice until applied to a protein chip array. 50 ul of the
diluted serum/urea mixture was applied to each well, the bioprocessor sealed, and shaken
on a platform shaker at a speed of 250 rpm for 30 minutes. The serum/urea mixture was
discarded and the PBS washing step was repeated 3 times. The chips were removed from
the bioprocessor, washed with DI water 10 times, air-dried and stored in the dark at room
temperature until subjected to SELDI mass analysis. Prior to SELDI analysis, 0.5 ul of a
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saturated solution of the energy absorbing molecule (EAM) sinapinic acid in 50% (v/v)
acetonitrile, 0.5% trifluoroacetic acid was applied onto each chip array twice, letting the array
surface air dry between each sinapinic acid application. Chips were placed in the Protein
Biological System Il mass spectrometer reader (Ciphergen Biosystems, Inc.), and time of
flight spectra were generated by averaging 192 laser shots collected in the positive mode at
laser intensity 220, detector sensitivity 7, and focus lag time of 900 ns. Mass accuracy was
calibrated externally using the All-in-1 peptide MW standard (Ciphergen).
Data Analysis

The data analysis process used in this study involved three stages: (1) peak
detection and alignment; (2) selection of peaks with the highest discrimatory power; and (3)
data analysis using a Decision Tree algorithm. A stratified random samvpling with 4 strata
(PCA (T1/T12), PCA (T3/M1), BPH, HM) was used to separate the entire data set into training
and test data sets prior to the analysis. The training data set consisted of SELDI spectra
from 167 PCA, 77 BPH, and 82 normal serum samples. The validity and accuracy of the
classification algorithm was then challenged with a blinded test data set consisting of 30
PCA, 15 BPH, and 15 normal samples.

Peak Detection

Peak detection was performed using Ciphergen SELDI software versions 3.0 beta
and 3.0 (Internet address: www.chiphergen.com). The mass range from 2000 to 40000Da
was selected for analysis because this range contained the majority of the resolved
protein/peptides. The molecular masses from 0 to 2000 Da were eliminated from analysis
because this area contains adducts and artifacts of the EAM and possibly other chemical
contaminants. Peak detection involved (1) baseline subtraction, (2) mass accuracy
calibration, (3) automatic peak detection, and (4) peak alignment determination. The
software program calculates noise, peak area, and filter based on the criteria selected by the
operator for data analysis. The settings used for this study were: fitting window width = 100
data points; average noise = 10 points; peak area was calculated using the slope based
method; low minimum valley depth = 10 times noise; high minimum valley depth = 0.5 times
noise; low and high sensitivity of peak height = 10 and 2 times noise, respectively; auto peak
detection slider = 8 for mass range 2 to 4KDa, 11 for mass range 4 to 8KDa, and 8 for mass
range 8 to 40KD.An average of 80 peaks was detected in each spectrum.

Peak alignment

All the labeled peaks (total 63,157) from 772 spectra were exported from SELDI to an
Excel spreadsheet. A PeakMiner algorithm (Internet address: www.evms.edu/vpc/seld),
developed in-house, was used to sort all the peaks based on mass values from low to high
mass. A mass error score, the measurement of mass difference between peak X and peak

X+1, is calculated for each peak using (Mpx-Mpx+1)/Mpx, where Mpx is the mass value of
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peak X. For example, if the mass error score was less than 0.18%, peak X and peak X+1
would be aligned into one peak by averaging the mass values. |f the mass error score was
larger than 0.18%, peak X and peak X+1, would be considered two distinct peaks. This is
an iterative process throughout all the labeled peaks to determine the alignment of peaks,
and records all the samples with peak intensity corresponding to each peak mass.
Feature Selection

The power of each peak in discriminating normal vs. PCA; normal vs. BPH; and BPH
vs. PCA was determined by estimating the AUC, which ranges from 0.5 (no discriminating
power) to 1.0 (complete separation).

Decision Tree Classification

Construction of the decision tree classification algorithm was performed as described
by Breiman et al. (14) with modifications (i.e., used a negative log likelihood as a criterion
and used an AUC of 0.62 for data reduction to select 124 peaks from 779 peaks), using a
training data set consisting of 326 samples (82 normal, 77 BPH, and 167 PCA).
Classification trees split up a dataset into two bins or nodes, using one rule at a time in the
form of a question. The splitting decision is defined by presence or absence and the
intensity levels of one peak. For example, the answer to “does mass A have an intensity
less than or equal to X" splits the data set into two nodes, a left node for yes and a right
node for no. This “splitting” process continues until terminal nodes or leaves (L) are
produced or further splitting has no gain. Classification of terminal nodes is determined by
the group (“class”) of samples (i.e., PCA, BPH, Normal) representing the majority of samples
in that node. A “cost” function is calculated that reflects the heterogeneity of each node: -
log L = -Znjlog(pj) where L is the likelihood of the multinomial distribution, nj is the number of
samples in class j, and pj is the probability of class j. Peaks selected by this process to form
the splitting rules are the ones that achieve the maximum reduction of cost in the two

. descendant nodes.

Statistical Analyses

The AUC was computed to identify the peaks having the highest potential to
discriminate the 3 groups, based on the probability that the test result from a diseased
individual is more indicative of disease than that from a non-diseased individual (15). A
Bayesian approach was used to calculate the expected probabilities of each class in each
terminal node (16); and their 95% confidence intervals were calculated using the posterior
Dirichlet distribution (16). The 95% confidence intervals were calculated by generating and
sorting 4000 samples for the posterior Dirichlet distribution, and the 100" and 3900" sample
considered as the lower and upper bounds of the 95% confidence intervals, respectively.
Specificity was calculated as the ratio of the number of non-disease samples correctly
classified to the total number of non-disease samples. Sensitivity was calculated at the ratio
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of the number of correctly classified diseased samples to the total number of diseased
samples. The PPV was calculated by dividing the number of true PCA positives by the sum
of the number of true PCA positives plus the number of false PCA positives. The NPV was
calculated by dividing the number of true negative non-disease samples (BPH/HM) by the
sum of the number of false negative plus the number of true negative non-disease samples
(BPH/HM).
Results
Data Analysis

Peak detection using the SELDI software program detected 63,157 peaks in the 2-
40KDa mass range following analysis of 772 spectra (386 spectra in duplicate, with
approximately 81 peaks/spectra). Of these, 779 peaks were identified following the
clustering and peak alignment process. The AUC was calculated for each of the 779 peaks.
No single peak was identified that has an AUC of 1.0, indicating that there was not a peak
detected that alone could completely separate two groups (i.e. HM vs. PCA, or HM vs. BPH,
or BPH vs. PCA) or three groups (PCA vs. BPH vs. HM). Of the 779 peaks, 124 had an AUC
of equal to or higher than 0.62. Those with an AUC below 0.62 were considered irrelevant
for classification. These 124 peaks identified in the training set were then used to construct
the decision tree classification algorithm. Figure 1 is a flow diagram that summarizes the
process from peak detection to sample classification. The classification algorithm used 9
masses between 4-10KDa to generate 10 terminal nodes (L1-L10) (Figure 2A). Once the
algorithm identifies the most discrimatory peaks, the classification rule is quite simple. For
example, if an unknown sample has no peak at mass 7819.75 (“root” node) but has a peak
at mass 7024.02, then the sample is placed in terminal node L1 and classified as PCA. If
the sample is placed in L2, it will be assigned to BPH. Another example of this splitting
process, is shown in Figure 2B, in which 4 masses between 5-10KDa are used to assign 46
of the 167 PCA samples to terminal node L7. Based on the stochastic nature of reality,
misclassification of a new sample cannot be ruled out even for a pure node that contains
only one sample type, for example L2 which contain only BPH samples. To obtain an idea if
an unknown sample would be correctly classified or misclassified, the expected probability
and 95% confidence level was calculated for each group in the 10 terminal nodes and is
shown in the following Table 1:
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Table 1. Expected probabilities and the ninety-five percent
confidence levels for each of the classes assigned to the ten
terminal nodes.

Node Class Observation Probability 5% Confidence level
L1 Normal 1 0.0625 0.0081, 0.1693
PCA 27 0.8750 0.7423, 0.9630
BPH 1 0.0625 0.0087, 0.1698
L2 Normal 0 0.0167 0.0005, 0.0584
PCA 0 0.0167 0.0004, 0.0628
BPH 57 0.9667 0.9072, 0.9952
L3 Normal 1 0.2000 0.0247, 0.4793
PCA 5 0.6000 0.3027, 0.8592
BPH 1 0.2000 0.0248, 0.4753
L4 Normal 0 0.0714 0.0018, 0.2509
PCA 0 0.0714 0.0019, 0.2579
BPH 11 0.8571 0.6311, 0.9823
L5  Normal 0 0.1429 0.0040, 0.4725
PCA 4 0.7143 0.3557, 0.9567
BPH 0 0.1429 0.0040, 0.4504
L6 Normal 74 0.9494 0.8950, 0.9858
PCA 2 0.0380 0.0082, 0.0879
BPH 0 0.0127 0.0003, 0.0459
L7 Normal 0 0.0204 0.0005, 0.0738
PCA 46 0.9592 0.8893, 0.9951
BPH 0 0.0204 0.0005, 0.0726
L8 Normal 4 0.5556 0.2458, 0.8416
PCA 2 0.3333 0.0836, 0.6544
BPH 0 0.1111 0.0032, 0.3732
L9 Normal 0 0.1429 0.0034, 0.4560
PCA 0 0.1429 0.0037, 0.4830
BPH 4 0.7143 0.3354, 0.9566
L10 Normal 2 0.0337 0.0068, 0.0784
PCA 81 0.9213 0.8595, 0.9674
BPH 3 0.0449 0.0123, 0.0964

The expected probabilities for HM and PCA samples to be misclassified in L2, for
example, are 1.67%. Although not zero, the likelihood of HM or PCA samples being
assigned to this node is extremely low; whereas BPH has a 96.67% chance of being
correctly classified to L2 (with the 95% confidence interval between 90.72% and 99.52%).
The probability of incorrect assignment of samples increases in nodes that contain either few
majority samples or when only a few samples are assigned to the node, as for example
terminal nodes L3, L5, and L9 (Figure 2A).

A summation of the classification results from the 10 terminal nodes is presented for
the training and test sets in Table 2 seen below.
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Table 2. Decision Tree Classification of the Prostate Training
and Test Sets

A. Training Set

Sample Normal BPH PCA Misclassified Rate

';‘I::;‘,S' 78 | 95.12% | 0 | 0.00% | 4 | 4.88% | 4 4.88%

(3:.;;) o 0.00% |72 | 93.51% | 5 6.49% 5 6.49%

PCA
Stage T1,T2 2 2.38% 0 0.00% 82 | 97.61% 2 2.38%
N=84
PCA
Stage T3,T4 2 2.40% 0 0.00% 81 97.59% 2 2.41%
N=83
Total

Samples 13 3.99%
(N=326)

B. Test Set

Sample Normal BPH PCA Misclassified Rate

Normal
(N=15)

BPH
(N=15)

PCA
Stage T1,T2 | 3 6.67% 0 0.00% 12| 80.00% | 3 20.00%
(N=15)
PCA
Stage T3, T4 | 1 6.67% 1 6.67% 13| 86.67% | 2 13.33%
(N=15)
Total

Samples 6 10.00%
(N=60)

15| 100.00% | O 0.00% 0 0.00% 0 0.00%

0 0.00% | 14| 93.33% 1 6.67% 1 6.67%

C. Differentiation of prostate disease from non-disease in the blinded test set

Percent positive (No. Positive/No. Tested)
Disease/Non-

disease PCA/HM | PCA/BPH | PCA/BPH/HM)| BPH/HC | BPH/T1,T2| T1,T2/T3,T4

Sensitivity | 83(25/30) | 83(25/30) | 83(25/30) | 93(14/15) | 93(14/15) | 80(12/15)
Specificity [100(15/15) | 93(14/15) | 97(29/30)  |100(15/15) | 80(12/15) | 87(13/15)

31



10

15

20

25

30

35

WO 2004/030511 PCT/US2003/014432

The classification algorithm correctly predicted 93.51% to 97.59% of the samples for
each of the 3 groups in the training set (Table 2A), for an overall correct classification of
96%. The algorithm correctly predicted 90% (54/60) of the test samples with all 15 samples
from HM, 93% (14/15) of the BPH samples, and 83% (25/30) of the PCA samples being
correctly classified (Table 2B). The sensitive and specificity of the classification system for
differentiation disease from the non-disease groups is presented in Table 2C. When
comparing PCA vs. non-cancer (BPH/HM), the sensitivity was 83% (25/30) and the
specificity was 97% (29/30). The sensitivity of 83% was also obtained when comparing PCA
vs. HM (25/30) or PCA vs. BPH (25/30); while the specificity was 100% (15/15) for PCA vs.
HM, and 93% (14/15) for PCA vs. BPH. The PPV of the classification system was 96.15%
and the NPV was 96.67%.

Reproducibility
The reproducibility of SELDI spectra, i.e. mass location and intensity, from array to

array on a single chip (intra-assay) and between chips (inter-assay) was determined using
the pooled normal serum QC sample. Seven proteins in the range of 3000 to 10000Da
observed on spectra randomly selected over the course of the study were used to calculate
the coefficient of variance. The intra-assay and inter-assay CV for peak location was 0.05%,
and for normalized intensity (peak height or relative concentration) was 15% and 20%,
respectively (data not shown). Masses that were within 0.18% mass accuracy between
spectra were considered to be the same. Most importantly was the observation that
randomly selected samples, blinded to the person performing SELDI and re-run months or
even a year later, were correctly classified by the decision tree classification algorithm
(Figure 2C).

Discussion

The current standard screening approach for prostate cancer is a serum test for
prostate specific antigen (PSA), and if the test is positive, biopsies are obtained from each
lobe of the prostate. Although the PSA test has a sensitivity >90%, its specificity is only
25%. This low specificity results in subjecting men to biopsies of the prostate as well as
considerable anxiety when they do not have PCA detectable by biopsy. With the SELDI
profiling classification approach, an overall sensitivity of 83%, a specificity of 97%, and a
positive predictive value of 96% was obtained in differentiating prostate cancer from BPH
and age-matched unaffected healthy men. Provided that this SELDI profiling classification
system can be validated using a larger and more clinically diverse study set, this approach
would have immediate and substantial benefit in reducing the number of unnecessary

biopsies.
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Our successful development of a diagnostic system that achieved a high positive
predictive value (PPV) (96%) for the blinded test set is based on using a large, carefully
chosen training set of randomly selected samples. Al specimens were closely age-
matched. Serum samples from unaffected HM, identified as having a negative DRE and
PSA <4.0ng/ml, were obtained from the general population during free prostate screening
clinics. The majority of the BPH patients had 4-10ng/ml PSA and multiple negative biopsies,
and the PCA patients had cancers ranging from small volume localized disease to local and
distant metastatic disease and PSA values varying from O to over 8000 ng/ml. Another
important factor in the construction of a successful classification system was using an
algorithm that could filter out the "noise" that is characteristic of mass spectrometry
instruments; the spurious signals created by the EAM and chemical contaminates introduced
in the assay; and the natural random daily fluctuations and sample to sample variability.
This “normalization” process can be used in, for example, distinguishing peaks due to
artifacts from the true peptide/protein peaks. It becomes even more important when
considering that most of the protein alterations between cancer and the non-cancer cohorts
in the above example is based on either proteins over- or under-expressed and not solely on
whether they are present or absent. Accurate and reproducible feature selection or peak
“picking” algorithms, with normalization functions, we believe is the an important first step in
developing a successful classification algorithm for the SELDI profiling data.

It was encouraging that the three study cohorts could be separated based on the
over- or under-expression of nine peptide/protein masses. A previous study from our
laboratory (12) is, to the best of our knowledge, the first report describing the concept of
SELDI protein profiling as a potential diagnostic approach. This study described that the
selection of a combination of multiple proteins resolved by SELDI, dramatically improved the
detection rate of early stage bladder cancer compared to a single marker (i.e. urine
cytology). Although the differential analysis in this latter study was conducted by cluster
analysis and laborious manual visual inspection of all spectra, it did, however, demonstrate
the power of SELDI profiling to facilitate the discovery of better cancer biomarkers.
Furthermore, it clearly illustrated the need for a bicinformatics algorithm to effectively deal
with the high dimensionality of the SELDI data. Based on the results of this previous study,
we have explored several different bioinformatics models to mine and analyze the large
amounts of data generated from these clinical proteomic studies. The models have included
purely biostatistical algorithms, genetic cluster algorithms, support vector machines, and
decision classification trees. All have obtained between 83-90% accuracy in separating PCA
from the non-cancer (BPH/Normal) samples (G. Wright, O.J.Semmes, P. Barlett, C. Harris,
unpublished observations).
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The classification tree model was selected because it is easy to interpret and the
results can be clearly presented compared to “black box” classifiers such as neural networks
and biostatistical algorithms, specifically in regards to the problems associated with the
deconvolution steps required in identifying the protein peaks used in the classifiers. With the
decision tree algorithm, the protein peaks used in the classifier are easily attainable by
examination of the rules, and these rules are easily validated by examination of the SELDI
processed spectra. In other studies involving ovarian cancer (17), a discriminator pattern
for classification of ovarian cancer consisted of five protein masses of 534Da, 989Da,
2111Da, 2251Da, and 2465Da. Although they used a hydrophobic chip chemistry, which
might be expected to bind some different proteins then would bind to the IMAC-3Cu chip
used in the present study, it is interesting to note that the masses are distinctly different from
those used in the prostate classification system. This suggests that the SELDI protein
“fingerprint” profiling approach is detecting different protein patterns for each type of cancer.
Studies in progress in our laboratory strongly suggest this may be the case. We have
observed that SELDI profiles of breast, ovarian, bladder cancer, and leukemia are different
from each other and from the prostate classification profile described in this report (G.
Wright, Jr., A. Vlahou, C. Laronga, J. Marks, O.J.Semmes, unpublished observations). To
assure the robustness of our diagnostic system, the prostate classification algorithm is being
challenged with non-prostate cancers and non-prostate diseases to determine that the
protein profiling classification algorithm is specific for prostate cancer. A similar scheme will
be required of any disease-specific classification system.

One of the goals of this study was to identify markers in the prostate proteome that
could potentially be used for early detection of cancer. Ongoing studies in our laboratory
evaluating longitudinal serum samples over a 5-10 year period suggested that PCA may be
suspected 5 or more years earlier by PSA testing (G. Wright, Jr., P.F. Schellhammer, B-L.
Adam, unpublished observations). However, in order to effectively apply this classification
system for early detection, it will be important to identify other biomarkers that can
distinguish the aggressive, i.e. clinically important, cancers from non-aggressive cancers.
Current evidence suggests that preoperative serum PSA below 10ng/ml is not a useful
biomarker for predicting presence, volume, grade, or rate of postoperative failure (4, 18).
Thus there is an urgent need for a better biological marker than what PSA and all its
molecular forms have been able to provide. A marker proportional to the volume of Gleason
grade 4/5 (undifferentiated cancer) represents a critical need to more logically direct therapy
tailored to tumor biology. Studies are in progress in our laboratory to evaluate SELDI serum
spectra of pre- and post-prostatectomy samples from patients who, after treatment, have
biochemical evidence for recurrent disease in an effort to identify the biomarkers or risk
factors that signal an aggressive cancer.
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The successful use of the prostate classification system described herein relies
entirely on the protein “fingerprint” pattern of the nine masses. Since these masses were
found to be reproducibly reliably detected, only the mass values are required to make a
correct classification or diagnosis. Knowing their identities for the purpose of differential
diagnosis is not required. However, because, knowing their exact identities will be essential
for understanding what biological role these peptide/proteins may have in the oncogenesis of
PCA; potentially leading to novel therapeutic targets. Studies are in progress to purify,
identify, and characterize these protein/peptide biomarkers. Furthermore, knowing their
identities will make possible production of antibodies for development of either classical or
SELDI immunoassays, similar to the single and multiplex formats we previously described
for the quantitation of PSA and prostate specific membrane antigen (PSMA) (12, 19). This
SELDI immunoassay format provides an alternate platform for quantitation of multiple
biomarkers.

The high sensitivity, specificity, PPV and negative predictive value (NPV) obtained by
the serum protein profiling approach presented in this example demonstrates that SELDI
protein chip mass spectrometry combined with an artificial intelligence classification
algorithm can both facilitate discovery (L.H. Cazares, B-L. Adam, M.D. Ward, S. Nasim, P.F.
Schellhammer, O.J. Semmes, and G.L. Wright, Jr. Normal, benign, pre-neoplastic, and
malignant prostate cells have distinct protein expression profiles resolved by SELDI mass
spectrometry, submitted for publication) of better biomarkers for prostate disease and
provide an innovative clinical diagnostic platform that has the potential to improve the early

detection and differential diagnosis of prostate cancer.

EXAMPLE 2
Use of Serum Protein Fingerprinting and a Boosted Decision Tree Analysis for
Diagnosing Prostate Cancer or Benign Prostate Hyperplasia

Materials and Methods
Study Groups and Samples

Serum samples were obtained from the Virginia Prostate Center Tissue and Body
Fluid Bank. All the samples had been procured from consented patients following protocols
approved by Institutional Review Board and stored frozen at -80 C. None of the samples
had been thawed more then 2 times. Pre-treatment samples from 99 PCA patients (mean
age 71) diagnosed with organ confined cancer, 98 PCA patients (mean age 69) with non-
organ confined disease, 92 patients (mean age 67) diagnosed with BPH, and specimens
from 96 healthy men (mean age 60) with a negative digitial rectal exam (DRE), a PSA less
than 4.0ng/ml, and no evidence of prostatic disease. The mean PSA values were: healthy
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men 1.32ng/ml; BPH 4.60ng/ml; organ confined PCA 10.10ng/ml; and non-organ confined
206.93ng/ml. A quality control sample was prepared by pooling an equal amount of serum
from each normal donor, and storing 100 ul aliquots at -80 C.

Serum samples were prepared by vortexing 20 ul serum with 30 pl of 8M Urea/1%
CHAPS in PBS in a 1.5 ml microfuge tube at 4 C for 10 minutes. This was followed by the
addition of 100 pl of 1M Urea with 0.125% CHAPS, and the mixture briefly vortexed. Fifty ul
of a 1:5 dilution, in PBS, was applied to each well of a bioprocessor (Ciphergen Biosystems,
Inc, Fremont, CA) containing IMAC-3 chips previously activated with CuSO, , the
bioprocessor sealed and agitated on a platform shaker at a speed of 250 rpm for 30 minutes.
A pooled QC serum sample, prepared in the same manner, was applied to an array on each
chip used in the study as a reproducibility check. The serum /Urea mixture was discarded
and PBS used to wash the chips 3 times, the chips removed from the bioprocessor ,
washed with DI water (X10), air-dried, and stored in the dark until subjected to SELDI
analysis. Just prior to SELDI analysis, 0.5 pl of a saturated solution of sinapinic acid in 50%
(v/v) acetonitrile, 0.5% trifluoroacetic acid was applied onto each chip array twice, letting the
array surface air dry between each application. Chips were placed in the PBS-Il mass
spectrometer (Ciphergen Biosystems, Inc.), and time-of-flight spectra generated by
averaging 192 laser shots (positive mode, laser intensity 220, detector sensitivity 7, and
focus lag time of 900 ns). Mass accuracy was calibrated externally using the All-in-1
peptide MW standard (Ciphergen).  Peak detection and alignment was performed using
Ciphergen ProteinChip Software 3.0 with slight modifications. The mass range from 2000 to
40000Da was selected for analysis because this range contained the majority of the
resolved protein/peptides.

Data Analysis
Feature selection
The power of each peak in discriminating PCA from normal, BPH from normal, and
BPH from PCA was determined by estimating the AUC. The area under the ROC curve
ranges from 0.5 (no discrimination) to 1.0 (absolute prediction) (6). Peaks with and AUC
below 0.62 were excluded from further data analyses.

Boosted decision stump classifier
The classifier was developed using a training data set consisting of 167 PCA, 77

BPH, and 82 normal serum samples. The validity and accuracy of the classification
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algorithm was then challenged with a blinded test data set consisting of 30 PCA, 15 BPH,
and 15 normal samples.

The AdaBoost algorithm described by Freund and Schapire (7-9), was used with
modifications to construct the classifier. In this algorithm, decision “stumps” are used as the
base classifiers, each of which has only one split, using one peak. A decision stump usually
is a weak classifier, with rather high error rate. However, the combined stumps using
weighted vote is expected to be a very accurate classifier. The decision stump is denoted by
(Z, c) where Z is a peak, selected from the peaks in the training set, and c is a threshold.
The #th training sample is denoted by (yi; Zi1,...;Zip), where yi stands for the class (label) of
observation i (i= 1; ..., N) and Zjj is the intensity of the th peak of th observation. If there
are two classes, class one (e.g. non-cancer) is denoted by yi = 1, and class two (e.g.
cancer), is denoted by yi = -1. The stump has two leaves, the left one contains the training
samples with intensity of peak Z less than or equal to the threshold ¢, and the right leaf
contains all other samples. If most of the samples in the left leaf are, for example cancer,
then the samples with Z s ¢ will be classified as cancer. The classifier is denoted as f(x),
where x is a Boolean variable, “Z < ¢”, and f(x) takes value from {-1, 1}: f(xj) = 1 if the ith
training sample is classified as class one; and f(xi) = -1 if the th sample is classified as class
two. The sample is misclassified if yf(x/} = -1. For the left leaf, Z < ¢, or x = “true”, let ny; and
Nz be the numbers of observations with yi= 1 and yi = -1, respectively, i.e.,

N N
nit = ), H{(yi=D)&(Z<c)), n2t = Y, I{(yi=—1)&(Z<c)},
i=1

i=1

(1)

where [ {statement} is the indicator function, which equals 1 if the statement is true, or O if
the statement is false. Similarly, let ny2 and ny, be the numbers of observations for yi = 1

and yi = -1, respectively, and Z > ¢, i.e.,

N

N
niz = Y, H{(y=)&(Z>c)}, n2 = X, I{(yi=—1)&(Z>c)}. @)
i=1 i=1

Then the log likelihood for this multinomial model is
2 2

logL=Z Z anI(’g(p'”)9 (3)

u= v=1

where p,, is evaluated by n,, = (n1v + n2v). The peak Z and its threshold ¢ are obtained by
maximizing the log likelihood. The following threshold values were utilized in this example

37



10

15

20

25

30

WO 2004/030511 PCT/US2003/014432

for the prostate cancer biomakers (molecular weight of protein biomarker in parenthesis):
0.1912 (9656); 1.0519 (9720); 0.0000 (6542); 0.0000 (6797); 2.2427 (6949); 0.0000
(7024); 0.1638 (8067);1.7755 (8356); 13.8103 (3963); 0.8301 (4079); 0.3805 (7885); and
0.0000 (6990). The following threshold values were utilized in this example for the benign
prostate hyperplasia biomarkers (molecular weight of protein biomarker in parenthesis:
0.0000 (for 7820, 4580, 7844, 4071 and 6099); 0.2679 (7054); 0.1991 (5298); 3.3758
(3486); and 20.1535 (8943). Through these threshold values, the continuous activities are
converted to binary (or logic) values.

In developing the boosting classifier, an ensemble of decision stumps on weighted
observations is created. If for example, weight w; is assigned to the th observation y; so that
the sum of the weights is N. Then equation (3) is still used to find the split (Z, c), except that
the counts ny4; N2y; Ny2 and Ny, should be modified to incorporate the weights. Equation (1)

becomes

mi= D wil{(yi=1)&(Z <)), nu= Y wil{(yi=-1)&(Z <)},

i=] i=1

and equation (2) becomes

mi= D wil{(yi=1)&(Z > )}, nn= ) wil{(yi = -1) & (Z > c)}.

i=1 i=l1

Thus the basic concept of boosting algorithm is to construct an ensemble of base classifiers
on weighted observations. For the first round, equal weights to all observations are used,
i.e., w=1fori=1,..., N. The samples are classified, and for the next round the weights
are increased for the misclassified observations in the previous round, while decreasing the
weights for the correctly classified observations. Therefore the next decision stump focuses
on the 4 samples misclassified by the previous stump. This procedure is repeated again and
again, as outlined below, until a defined number of stumps have been created.

1. For the first round, using equal weights, w;=1 (i=1, .. .,N).

2. For m =1 to M: Construct a decision stump fm(x) for the training data with

weights w;, 2 Compute error rate

N
errm = %Z wil (yifm(x:) = —1
i=1
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3. Compute confidence Om = log{(1—errm)/ errm}.

4. Update weights, set
wi = wi.exp{om.t (yifu(xi) =-1)}, i=1,...,N,

and normalize the weights: Zi wi=N.

5. Use the linear combination

(%)= Onfm(x)

as the final combined classifier.

The combined classifier f(x) is a weighted majority vote of the M base classifiers. For
the th sample, the mth base classifier f(x) = 1 if it is classified as class one, and fm(xi) = -1
if it is classified as class two. The contribution of the mth decision stump to the final vote is
either am, if the votes for class 1, or -am, if the votes for class 2. Therefore, if the total vote

is positive, i.e.,

f(xi)= famfm(x,-) >0,i=1,..,N, 4)

and the majority votes for class 1, then the sample is classified as class 1; and it is classied
as class 2, if (f(xi) £0). This is a weighted majority vote because am are not equal.

Because there are so many variables involved in a classifier, the testing or
generalization error is zero, with no evidence of overfitting. A detailed explanation why
boosting methods can avoid over-fitting has been described by Schapire and Freund (10).
A sample in the training set was classified correctly if and only if yifix) > 0. The latter is
composed of two parts:

W (K) = D Cmyfn(x) = D0l (yfn(x) > 0) = X 0l (yifn(x) < O), i =1,., N,

m=1 m=1 m=1

where the weights am have been normalized (Zm am = 1). The first item in the right side of
the equation is the total vote of the voters (M) who made the correct decisions (since yfm(x)
> 0), and the second item is the total vote of the voters who made the wrong decisions.

yf(x) is referred to as the margin of the th sample. A sample with a negative margin has
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been misclassified by the combined classifier. The proportion in the training set with negative
margins is the training error rate. The minimal value of the margins is determined by:

M
minimal margin y = 113,?11\1 Z Omyifm(X)
- m=1

and is an important quantity for voting methods. If the minimal margin is above zero, there
will be no training samples being misclassified. The larger the minimal margin, the less
chance of a sample being misclassified (i.e., higher confidence in generalization). Therefore,
the minimal margin in the training samples measures how well the two classes are
separated apart by the learning algorithm in both the training and test sets. As the minimal
margin keeps increasing, there is larger and larger room for the test samples to be correctly
classified by the combined classifier. The plot of minimal margins is important in deciding

when to stop adding more base classifiers (11).

Statistical Analyses
The AUC of the Receiver Operating Characteristics (ROC) was computed to identify

the peaks having the highest potential to discriminate the 3 groups (6). Specificity was
calculated as the ratio of the number of non-disease samples correctly classified to the total
number of non-disease samples. Sensitivity was calculated at the ration of the number of
correctly classified diseased samples to the total number of diseased samples.

Results

Each SELDI spectrum revealed an average of 80 peak masses in the 2000-40000Da
range. The QC spectra were found to be very reproducible with an intra- and inter-assay CV
for peak location of 0.05%, and a CV of 15% and 20%, respectively for peak intensity (data
not shown). Figure 3 shows representative examples of the SELDI spectra. Analysis of all
772 spectra (336 samples run in duplicate) identified 779 peaks, of which 124 had an AUC
equal to or greater than 0.62. These 124 peaks identified in the training set were used to
construct the classifier.

One of the concerns in construction and use of learning algorithms is the possibility
of over-fitting the data. However, boosting methods can avoid over-fitting by calculating the
minimal margin. The larger the minimal margin the less chance of a test sample being
misclassified. Figure 4A shows the training error rate, the minimal margin, and the
generalization error rate (testing error) against M, the number of base stumps for the
boosted decision tree classifier distinguishing non-cancer from cancer. After the training

error reaches zero (round 47), the minimal margin keeps increasing, and at the same time,
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the generalization error keeps decreasing, finally reaching zero on round 265, and then
stays at zero. Similarly, Figure 4B shows the training error rate and the minimal margin
against the number of base stumps for the boosted decision tree classifier distinguishing
normal from BPH. Again, after the training error reaches zero (on round 9), the minimal
margin keeps increasing. As shown, there is no evidence of over-fitting for the boosting
technique. The learning process does not stop when the training error becomes zero; on
the contrary, the learning algorithm continues to enlarge the minimal margin between the two
classes. Therefore, as long as the minimal margin keeps increasing, adding more base
classifiers will not cause over-fitting.

The first boosting classifier (AdaBoost Classifier) for distinguishing non-cancer from
PCA, consisted of 400 base classifiers, including 62 peaks, with a 0 error rate in both 326
training samples and in 60 testing samples. When the number of base stumps (i.e., the
number of rounds) was greater than 47, the training error was zero, but the testing error
(generalization error), was 0.0333. The generalization error was found to decline slowly as
the number of base stumps increases. After round 265, the generalization error remained
zero. The 100 decision stumps with 12 peaks for distinguishing normal from BPH also
obtained a O error rate for both the 159 training and 30 test samples. In this case, the
training error became zero on round 9, and the generalization error for 30 test samples was
s 0, beginning with round 1. When combining these two boosted decision stumps, 100
percent separation for the three classes: normal, BPH and PCA was achieved (Table 1).

However, this classifier combined 500 base classifiers using 74 peaks. For the
purpose of interpretation, there is a need to know what peaks are most important in
distinguishing cancer from noncancer, and what peaks are most important in distinguishing
BPH from normal. This is a problem of feature selection in machine learning. There are
many methods for feature selection, which is an intrinsic component in decision tree models.
In fact, using the areas under the ROC curves to select 124 from 779 peaks is the first step
of feature selection, called the filter method. In constructing the boosted decision stump
classifier, one peak is selected from the 124 peaks in each round. Because this feature
selection procedure is embedded in the algorithm, a feature (peak) may be selected many
times. To avoid selecting the same peak several times, and to select only a new peak in
each round, the features previously selected are ignored. This algorithm is referred to as
Boosted Decision Stump Feature Selection (BDSFS) (12). Using this method, the identity of
the protein masses having utility in distinguishing PCA from BPH and normal men can
readily be obtained. Table 3 lists the average molecular weights for the first 12 peaks
selected for distinguishing cancer from non-cancer by using the BDSFS algorithm, and the
first 9 peaks selected for distinguishing between BPH from normal. Table 4 presents the
results of the BDSFS algorithm. These tables are set forth below:
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Table 3. Peak masses used by the Boosted Decision Stump Feature Selection
classifier in the order of their selection.

Non-cancer vs. Cancer Normal vs. BPH
No. Mass No. Mass

1 9655.75 1 7819.75
2 9719.99 2 4579.73
3 6541.82 3 7844.00
4 6797.02 4 4071.18
5 6949.22 5 7054.17
6 7024.02 6 5297.55
7 8066.95 7 3486.21
8 8355.56 8 6099.08
9 3963.18 9 8943.08
10 4079.48
11 7884.72
12 6990.63
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Table 4. Classification of the training and test sets by the Boosted Decision Stump Feature

Selection algorithm.

Training Set Test Set
Prediction
Normal | BPH PCA | Normal | BPH PCA
Normal 82 0 7 14 0 0
BPH 0 74 0 0 15 1
PCA 0 3 160 1 0 29
BDSFS | sensitivity 95.18% 96.67%
Classifier
Specificity 98.11% 96.67%
# of Peaks 21 peaks from 21 base classifiers
Minimal
-0.2555
Margin
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This classifier (BDSFS Classifier) used 21 peaks selected by the BDSFS algorithm,
which consisted of the 12 peaks in Table 3 for distinguishing cancer from non-cancer, and
the first 9 peaks for distinguishing normal from BPH. This classifier obtained a sensitivity
and specificity in the test set of 96.67%. In this case, the interpretation is much easier than
the AdaBoost Classifier, which contains 74 peaks (Table 1). However, the minimal margin
for the BDSFS classifier is -0.2555, while the minimal margin for classifier 1 is 0.1143.
Therefore, the AdaBoost Classifier will be more accurate than the BDSFS Classifier for new
(unknown) samples.

Discussion

SELDI mass spectrometry, using a protein chip which captures proteins based on
their ability to selectively bind to chemically activated copper surface through histidine,
tryptophan, cysteine, or phosphorylated amino acids, was capable of resolving an average of
80 serum protein/peptides, ranging from 2,000-40,000 Daltons. This is far less then the
hundred to thousands of proteins capable of being separated by two-dimensional
electrophoresis; however the advantage over 2D-EP is the ability of SELDI to effectively
resolve polypeptides and peptides under 20,000 Da. This has opened the door to readily
resolve and study such peptides as potential biomarkers for diagnosis, prognosis, and as
therapeutic targets. Interestingly, the 24 proteins identified in this study to be the most
useful for separating PCA from the non-cancer groups, range between 3,000-10,000 Da.
Since the introduction of SELDI, there has been a concern that such “peptides” might
represent random fragments of larger proteins. If this were true, we would not have been
able to achieve high reproducibility in protein patterns (0.05% CV for peak location and 15-
20% CV for peak intensities).

Even with only an average of 80 peaks per spectra obtained between 2-40KDa, there
is still extremely high dimensionality of the data. Initial analysis of the 772 serum samples
(386 run in duplicate) resulted in 63,157 peaks, which were reduced to 779 peaks after
cluster analysis and peak alignment. Of the 779 peaks, 124 peaks were statistically found to
have the highest potential to discriminate the 3 groups: normal vs. PCA, normal vs. BPH;
and BPH vs. PCA.  Subsequent analysis of the 124 peaks in each of the 772 samples
resulted in processing over 95,000 data points to order to identify the pattern or combination
of masses that separate PCA from the non-cancer groups. Because of this high
dimensionality, only an artificial intelligent algorithm would be capable of analyzing such high
volume of data to develop an efficient and reproducible classifier. We have evaluated
several different models, including biostatistical (13,14), genetic cluster, and support vector
machines algorithms.  Although most could obtain between 83-90% accuracy in
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differentiating PCA from the non-cancer (BPH/normal) groups, the decision tree model (15)
was selected because it is easier to interpret compared to “black box” classifiers such as
neural networks and biostatistical algorithms. Using the same data set described in this
study, we developed a single decision tree base classifier with nine masses between 2000-
10000Da that achieved a sensitivity of 83% and a specificity of 97% for differentiating PCA
from the non-cancer groups (i.e., BPH and Normal) (discussed in Example 1). However, a
single decision tree classifier's predictive power may not be as good as other learning
algorithms, such as neural networks and surface vector machine. Furthermore, assays for
the early detection of cancer need to be highly accurate to avoid generating too many false
positives. The present study was initiated to determine if we could increase the predictive
power of the decision tree classifier. Tremendous improvement in the predictive power of
decision tree classifiers has been recently reported using voting methods, such as boosting
(16) and bootstrap methods. In one voting method, called the bagging method (17,18), the
decision tree model is fitted many times on randomly re-sampled observations (bootstrap
sub-samples) and then combines the decision trees using simple voting. Another approach
is a boosting method (7), referred to as the AdaBoost algorithm, which fits the decision tree
model many times on weighted observations, and then combines the decision trees using
weighted voting. In both bagging and boosting, the combined classifier has better
performance than each of the individual base decision trees. We chose the boosting
approach over the bagging algorithm because it is generally more accurate in the test
samples than the bagging approach (10). Using the AdaBoost algorithm a classifier was
established that was 100% accurate in predicting, for both the training and blinded test sets,
whether the sample was from a patient diagnosed with PCA or BPH, or if the sample was
from a healthy donor. Although this classifier produced a sensitivity and specificity of 100%,
it used 74 protein mass values (peaks), and required combining 500 base decision tree
classifiers, making it highly accurate but difficult to interpret. Other models, such as a
biostatistical approach using Wavelets (13) and surface vector machines (Wright,
unpublished data), can reach similar high accuracy but with the same difficulty, especially in
identifying the protein masses used in the classifier.  This difficulty results when the same
feature (peak) is selected many times. To avoid selecting the same peak several times, we
used a modified boosting algorithm called the Boosted Decision Stump Feature Selection
(12), which selects only a single peak on each round, and excludes peaks selected from
previous rounds. In this way, the identity of the 24 peaks important in distinguishing the
three groups was easily obtained. The classifier was slightly less accurate than the
AdaBoost classifier by misclassifying 1 of 15 BPH as PCA and 1/29 PCA as normal,
whereas all 14 samples from normal unaffected men were correctly identified.  This

classifier still achieved a respectable 96.67% for both sensitivity and specificity, using 21
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peaks and only 21 base decision tree classifiers. The specificity remained the same at 97%
as obtained with the single base classifier but the sensitivity, the ability to correctly predict
the PCA samples, was increased from 83% to 97% by this boosting algorithm.

The PSA test is the current screening test for prostate cancer, and if positive,
biopsies are obtained from each lobe of the prostate. Many consider this test the best for
any human cancer, yet it is far from a perfect test for early detection of PCA. Although it has
a high sensitivity of >90%, its specificity is only 25% in distinguishing PCA from BPH; and
some men with prostate cancer have normal levels of PSA. Because of the low specificity,
men are subjected to unnecessary biopsies causing considerable anxiety when they in fact
do not have cancer. Current evidence also suggests that preoperative serum PSA below
10ng/ml is not a useful biomarker for predicting presence, volume, grade, or rate of
postoperative failure (1). Based on these facts there is a need for better biological marker
than PSA and all its molecular forms can provide. Provided that the accuracy of the
boosting decision tree classifier can be validated on a larger number of samples, evaluated
at multiple sites, including testing the validity of the profiling assay with samples from non-
cancer patients, SELDI protein profiling combined with a bioinformatics classifier may
provide that “better” test for the early detection and diagnosis of prostate cancer. Support for
this potential are reports from other investigators achieving similar results for ovarian and
breast cancer using SELDI combined with different bioinformatics classifier's then used in
the present study (19; Li, J, Zhang, Z, Rosenzweig, J, Wang, YY, Chan, D. Potential serum
biomarkers identified by SELDI mass spectrometry can discriminate breast cancer from non-
cancer patients. Proc. Am. Assoc. Cancer Res. 2002; 43:136 [abstract 682]). Overall these
initial studies suggest that SELDI provides a unique opportunity to develop an innovative
proteomic approach to cancer diagnosis.

The identity of the peak masses used in the classifier is not necessary for making a
diagnosis. The only requirement for this classification system to make an accurate diagnosis
is that the biomarkers be reproducibly detected by SELDI and selected by the classifier.
Obtaining a name for each of the masses used in the classifier will not make the
classification system better or more accurate. Knowing the identity of the protein biomarkers
is, however, important from a discovery perspective. The identity of the peptide/protein
biomarkers will be needed to understand the biological role these proteins have in the
oncogenesis of PCA. Such information could lead to better therapeutic interventions.
Knowing the identity will facilitate the production of antigen and antibody reagents for
development of classical multiplex immunoassays and antibody arrays, should the profiling
approach fail to be developed into a clinical assay. For these reasons, protein identification
of the potential biomarkers is in progress.
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In conclusion, the high sensitivity and specificity achieved by the combined use of
multiple serum biomarkers provides supporting evidence that SELDI, combined with a
learning algorithm, can not only facilitate the discovery of new and better biomarkers for
PCA, but has potential for being developed into a novel clinical diagnostic assay.
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While the invention has been illustrated and described in detail in the drawings and

foregoing description, the same is to be considered as illustrative and not restrictive in

character, it being understood that only the preferred embodiment has been shown and

described and that all changes and modifications that come within the spirit of the invention

are desired to be protected. In addition, all references cited herein are indicative of the level

of skill in the art and are hereby incorporated by reference in their entirety.
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CLAIMS
What is claimed is:
1. A method for aiding in a diagnosis of benign prostate hyperplasia or prostate
cancer, comprising:
(a) detecting at least two protein biomarkers in a test sample from a subject, said
protein biomarkers having a molecular weight selected from the group consisting of about

4475 1 81, about 5074 £ 91, about 5382 + 97, 7024 £ 13, about 7820 + 14, about 8141 + 15,

about 9149 * 16, about 9508 + 17, and about 9656 + 17 Daltons; and
(b) correlating the detection with a probable diagnosis of benign prostate
hyperplasia, prostate cancer or a negative diagnosis.

2. The method of claim 1, wherein said detection step further comprises
identifying the differential expression of said biomarkers.

3. The method of claim 1, wherein the at least two protein biomarkers are the
about 7820 £ 14 Dalton and the 7024 + 13 Dalton protein biomarkers.

4, The method of claim 1, wherein the at least two protein biomarkers are the
about 7820 + 14 Dalton, the about 7024 + 13 Dalton, the about 5382 + 97 Dalton, and the
about 4475 + 81 Dalton biomarkers.

5. The method of claim 1, wherein the at least two protein biomarkers are the
about 8141 + 15 Dalton, about 9149 + 16 Dalton, and the about 9656 *+ 17 Dalton
biomarkers.

6. The method of claim 1, wherein the at least two protein biomarkers are the
about 5074 + 91 Dalton, the about 9149 + 16 Dalton, and the about 9656 + 17 Dalton
biomarkers.

7. The method of claim 1, wherein the at least two protein biomarkers are the
about 9149 £ 16 Dalton and the about 9508 + 17 Dalton biomarkers.

8. The method of claim 1, wherein the at least two protein biomarkers are the

about 5382 + 97 Dalton, the about 7024 + 13 Dalton, and the about 7820 + 14 Dalton

biomarkers.
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9. The method of claim 1, wherein the at least two protein biomarkers are the
about 7024 + 13 Dalton, the about 7820 + 14 Dalton, the about 5382 + 97 Dalton, and the
about 4475 + 81 Dalton biomarkers.

10.  The method of claim 3, wherein said method comprises determining the
absence of the about 7820 + 14 Dalton protein biomarker and determining the presence of

the about 7024 + 13 Dalton protein biomarker.

11. The method of claim 4, wherein said method comprises determining the
absence of the about 7820 + 14 Dalton and about 7024 = 13 Dalton biomarkers, the
presence of the about 5382 + 97 Dalton biomarker, and the quantity of the about 4475 + 81
Dalton biomarker.

12. The method of claim 5, wherein said method comprises determining the
quantity of the about 8141 £ 15 Dalton, about 9149 + 16 Dalton, and about 9656 + 17 Dalton

biomarkers.

13. The method of claim 6, wherein said method comprises determining the
quantity of the about 5074 + 91 Dalton, about 9149 + 16 Dalton, and about 9656 + 17 Dalton

biomarkers.

14. The method of claim 7, wherein said method comprises determining the
quantity of the about 9149 + 16 Dalton and about 9508 + 17 Dalton biomarkers.

15.  The method of claim 8, wherein said method comprises determining the
absence of the about 5382 + 97 Dalton, about 7024 + 13 Dalton and about 7820 + 14 Daliton

biomarkers.

16. The method of claim 9, wherein said method comprises determining the
absence of the about 7024 + 13 Dalton and about 7820 + 14 Dalton biomarkers, the
presence of the about 5382 + 97 Dalton biomarker and determining the quantity of the about
4475 + 81 Dalton biomarker.

17.  The method of claim 1, wherein said detecting at least two protein biomarkers

in a test sample from a subject is performed by mass spectroscopy.
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18.  The method of claim 17, wherein said mass spectroscopy is laser desorption
mass spectroscopy.

19. The method of claim 18, wherein said mass spectroscopy is surface
enhanced laser desorption/ionization mass spectroscopy.

20. The method of claim 19, wherein the laser desorption/ionization mass
spectroscopy includes:

(a) providing a substrate comprising an adsorbent attached thereto;

(b) contacting the test sample with the adsorbent;

(c) desorbing and ionizing the biomarkers from the substrate; and

(d) detecting the desorbed/ionized biomarkers with a mass spectrometer.

21.  The method of claim 20, further comprising purifying the test sample prior to
contacting the test sample with the adsorbent.

22.  The method of claim 1, wherein said detecting at least two protein biomarkers-
in a test sample from a subject is performed by an immunoassay.

23. The method of claim 22, wherein said immunoassay is an enzyme
immunoassay.

24. The method of claim 1, wherein said test sample is a biological fluid from said

subject.

25.  The method of claim 24, wherein the biological fluid is blood serum.

26. The method of claim 1, wherein the test sample is selected from the group
consisting of seminal fluid, seminal plasma, saliva, blood, lymph fluid, lung/bronchial

washes, mucus, feces, nipple secretions, sputum, tears or urine.

27. The method of claim 1, wherein two to nine markers are detected.

28. A method of diagnosing prostate cancer or benign prostate hyperplasia,
comprising:
(a) detecting in a test sample from a subject protein biomarkers in the following

groups and having the following molecular weights:
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(i) about 7024 + 13 Dalton and about 7820 + 14 Dalton;

(i) about 7820 + 14 Dalton, about 7024 + 13 Dalton, about 5382 + 97
Dalton and about 4475 £ 81 Dalton;

(iii) about 8141 + 15 Dalton, about 9149 + 16 Daltons, and about 9656 +

17 Dalton;
(iv)  about 9149 + 16 Dalton and about 9508 + 17 Dalton;
» (v) about 5074 + 91 Dalton, about 9149 + 16 Dalton and about 9656 + 17
Dalton; or
(vi) about 5382 + 97 Dalton, about 7024 + 13 Dalton and about 7820 + 14
Dalton; and

(b) correlating the determination to a diagnosis of benign prostate hyperplasia,
prostate cancer or a negative diagnosis.

29. The method of claim 28, wherein said detecting is performed by mass
spectroscopy.

30. The method of claim 28, wherein said mass spectroscopy is laser desorption

mass spectroscopy.

31. The method of claim 29, wherein said mass spectroscopy is surface
enhanced laser desorption/ionization mass spectroscopy.

32. The method of claim 30, wherein the laser desorption/ionization mass
spectroscopy includes:

(a) providing a substrate comprising an adsorbent attached thereto;

(b) contacting the test sample with the adsorbent;

() desorbing and ionizing the biomarkers from the substrate; and

(d) detecting the desorbed/ionized biomarkers with a mass spectrometer.

33. The method of claim 28, further comprising purifying the test sample prior to
contacting the test sample with the adsorbent.

34. The method of claim 28, wherein said detecting is performed by an

immunoassay.

35. The method of claim 34, wherein said immunoassay is an enzyme
immunoassay.
54



10

15

20

25

30

35

WO 2004/030511 PCT/US2003/014432

36. The method of claim 28, wherein said method comprises determining the
presence of a protein biomarker having a molecular weight of about 7024 + 13 and the

absence of a protein biomarker having a molecular weight of about 7820 + 14 Daltons.

37. The method of claim 28, wherein said method comprises determining the
absence of the about 7820 + 14 Dalton and about 7024 + 13 Dalton biomarkers, the
presence of the about 5382 + 97 Dalton biomarker and the quantity of the about 4475 + 81
Dalton biomarker.

38. The method of claim 28, wherein said method comprises determining the
quantity of the about 8141 £ 15 Dalton, about 9149 + 16 Dalton, and about 9656 + 17 Dalton

biomarkers.

39. The method of claim 28, wherein said method comprises determining the
quantity of the about 9149 + 16 Dalton and about 9508 + 17 Dalton biomarkers.

40. The method of claim 28, wherein said method comprises determining the
quantity of the about 5074 + 91 Dalton, about 9149 + 16 Dalton and about 9656 + 17 Dalton

biomarkers.

41, The method of claim 28, wherein said method comprises determining the
absence of the about 5382 + 97 Dalton, about 7024 + 13 Dalton and about 7820 * 14 Dalton

biomarkers.

42, The method of claim 28, wherein biomarkers from one to six of said groups
are detected.

43. A method for diagnosing benign prostate hyperplasia or prostate cancer,
comprising:

(a) detecting at least two protein biomarkers in a test sample from a subject, said
protein biomarkers having a molecular weight selected from the group consisting of about
3486 + 6, about 3963 + 7, about 4071 + 7, 4079 £ 7, about 4580 + 8, about 5298 + 10, about
6099 + 11, about 6542 + 12, about 6797 + 12, about 6949 + 13; about 6990 *+ 13, about
7024 + 13, about 7054 + 13, about 7820 + 14, about 7844 + 14, about 7885 * 14, about
8067 + 15, about 8356 + 15, about 8943 + 16, about 9656 + 17, and about 9720 + 18

Daltons; and
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(b) correlating the detection to a diagnosis of benign prostate hyperplasia,
prostate cancer or a negative diagnosis.

44, The method of claim 43, wherein said method comprises:

(a) detecting protein biomarkers having a molecular weight selected from the
group consisting of about 3963 + 7, about 4079 + 7, about 6542 + 12, about 6797 £ 12,
about 6949 + 13; about 6990 + 13, about 7024 + 13, about 7885 + 14, about 8067 * 15,
about 8356 + 15, about 9656 + 17, about 9720 + 18 Daltons, and a combination thereof;
and

(b) correlating the detection to a diagnosis of prostate cancer.

45. The method of claim 43, wherein said method comprises detecting protein
biomarkers having a molecular weight selected from the group consisting of about 3486 =+ 6,
about 4071 £ 7, about 4580 + 8, about 5298 + 10, about 6099 + 11, about 7054 + 13, about
7820 + 14, about 7844 + 14, about 8943 + 16, and a combination thereof; and

(b) correlating the detection to a diagnosis of benign prostate
hyperplasia.

46. The method of claim 43, wherein said method comprises detecting from two
to twelve of said protein biomarkers.

47. The method of claim 45, wherein said method comprises detecting from two

to nine of said protein biomarkers.

48.  The method of claim 43, wherein said method comprises detecting from two
to twenty-one of said protein biomarkers.

49. A kit, comprising:

(a) a substrate comprising an adsorbent attached thereto, wherein the adsorbent
is capable of retaining at least one protein biomarker selected from the group consisting of
about 4475 + 81, about 5074 + 91, about 5382 + 97, 7024 + 13, about 7820 + 14, about
8141 £+ 15, about 9149 + 16, about 9508 + 17, and about 9656 + 17 Daltons; and

(b) instructions to detect the protein biomarker by contacting a test sample with
the adsorbent and detecting the biomarker retained by the adsorbent.
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50. The kit of claim 49, wherein the substrate is a probe adapted for use with a
gas phase ion spectrometer, said probe having a surface onto which the adsorbent is
attached.

51. The kit of claim 49, wherein the adsorbent is a metal chelate adsorbent.

52. The kit of claim 49, wherein the adsorbent comprises a cationic group.

53. The kit of claim 49, wherein the substrate comprises a plurality of different
types of adsorbent.

54. The kit of claim 49, wherein the adsorbent is an antibody that specifically
binds to the biomarker.

55. The kit of claim 49, wherein the kit further comprises (1) an eluant wherein the

biomarker is retained on the adsorbent when washed with the eluant.

56. A kit, comprising: -

(a) a substrate comprising an adsorbent attached thereto, wherein the adsorbent
is capable of retaining at least one protein biomarker selected from the group consisting of
about 3486 £ 6, about 3963 + 7, about 4071 + 7, 4079 + 7, about 4580 + 8, about 5298 + 10,
about 6099 + 11, about 6542 + 12, about 6797 + 12, about 6949 *+ 13; about 6990 * 13,
about 7024 + 13, about 7054 + 13, about 7820 *+ 14, about 7844 + 14, about 7885 + 14,
about 8067 + 15, about 8356 £ 15, about 8943 *+ 16, about 9656 + 17, and about 9720 + 18
Daltons; and

(b) instructions to detect the protein biomarker by contacting a test sample with
the adsorbent and detecting the biomarker retained by the adsorbent.

57. The kit of claim 49, wherein the substrate is a probe adapted for use with a
gas phase ion spectrometer, said probe having a surface onto which the adsorbent is
attached.

58. The kit of claim 49, wherein the adsorbent is a metal chelate adsorbent.

59. The kit of claim 49, wherein the adsorbent comprises a cationic group.
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60.  The kit of claim 49, wherein the substrate comprises a plurality of different
types of adsorbent.

61.  The kit of claim 49, wherein the adsorbent is an antibody that specifically
binds to the biomarker.

62. The kit of claim 49, wherein the kit further comprises (1) an eluant wherein the
biomarker is retained on the adsorbent when washed with the eluant.

63. A method of using a plurality of classifiers to make a probable diagnosis of
prostate cancer, benign prostate hyperplasia, or a negative diagnosis, comprising the steps
of:

a) obtaining mass spectra from a plurality of samples from normal subjects, subjects
diagnosed with prostate cancer, and subjects diagnosed with benign prostate hyperplasia;
and,

b) applying a boosted decision tree analysis to at least a portion of the mass spectra
to obtain a plurality of weighted base classifiers comprising a peak intensity value and an
associated threshold value; and

¢) making a probable diagnosis of at least one of prostate cancer, benign prostate
hyperplasia, and a negative diagnosis based on a linear combination of the plurality of
weighted base classifiers.

64. A method of developing a plurality of classifiers for use in making a probable
diagnosis of prostate cancer, benign prostate hyperplasia, or a negative diagnosis,
comprising the steps of:

a) obtaining mass spectra from a plurality of samples from normal subjects, subjects
diagnosed with prostate cancer, and subjects diagnosed with benign prostate hyperplasia;
and

b) applying a boosted decision tree analysis to at least a portion of the mass spectra
to obtain a plurality of weighted base classifiers comprising a peak intensity value and
associated threshold value, said values used in linear combination to make a probable

diagnosis of at least one of prostate cancer and a negative diagnosis.

65. A computer program medium storing computer instructions therein for instructing
a computer to perform a computer-implemented process using a plurality of classifiers to
make a probable diagnosis of prostate cancer, benign prostate hyperplasia, or a negative

diagnosis, comprising:
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a) first computer program code means for obtaining mass spectra from a
plurality of samples from normal subjects, subjects diagnosed with prostate cancer, and
subjects diagnosed with benign prostate hyperplasia;

b) second computer program code means for applying a boosted decision tree
analysis to at least a portion of the mass spectra to obtain a plurality of weighted base
classifiers comprising a peak intensity value and an associated threshold value; and

c) third computer program code means for making a probable diagnosis of at
least one of prostate cancer, benign prostate hyperplasia, and a negative diagnosis based
on a linear combination of the plurality of weighted base classifiers.

66. A computer program medium storing computer instructions therein for instructing
a computer to perform a computer-implemented process for developing a plurality of
classifiers for use in making a probable diagnosis of prostate cancer, benign prostate
hyperplasia, or a negative diagnosis, comprising:

a) first computer program code means for obtaining mass spectra from a
plurality of samples from normal subjects, subjects diagnosed with prostate cancer, and
subjects diagnosed with benign prostate hyperplasia; and

b) second computer program code means for applying a boosted decision tree
analysis to at least a portion of the mass spectra to obtain a plurality of weighted base
classifiers comprising a peak intensity value and associated threshold value, said values
used in linear combination to make a probable diagnosis of at least one of prostate cancer

and a negative diagnosis.

67. A computer program medium storing computer instructions therein for instructing

~ a computer to perform a computer-implemented process of aiding in a diagnosis of benign

prostate hyperplasia or prostate cancer, comprising:

(a) first computer program code means for detecting at least two protein
biomarkers in a test sample from a subject, said protein biomarkers having a molecular
weight selected from the group consisting of about 4475 + 81, about 5074 + 91, about 5382
+ 97, 7024 + 13, about 7820 £ 14, about 8141 + 15, about 9149 + 16, about 9508 £ 17, and
about 9656 *+ 17 Daltons; and

(b) second computer program code means for correlating the detection with a
probable diagnosis of benign prostate hyperplasia, prostate cancer or a negative diagnosis.

68. The medium of claim 67, wherein at least two protein biomarkers are the
about 7820 + 14 Dalton and the 7024 £ 13 Dalton protein biomarkers.
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69. The medium of claim 67, wherein the at least two protein biomarkers are the
about 7820 * 14 Dalton, the about 7024 + 13 Dalton, the about 5382 + 97 Dalton, and the

about 4475 + 81 Dalton biomarkers.

70.  The medium of claim 67, wherein the at least two protein biomarkers are the
about 8141 + 15 Dalton, about 9149 = 16 Dalton, and the about 9656 = 17 Dalton
biomarkers.

71.  The medium of claim 67, wherein the at least two protein biomarkers are the
about 5074 + 91 Dalton, the about 9149 + 16 Dalton, and the about 9656 + 17 Dalton
biomarkers.

72. The medium of claim 67, wherein the at least two protein biomarkers are the
about 9149 + 16 Dalton and the about 9508 + 17 Dalton biomarkers.

73.  The medium of claim 67, wherein the at least two protein biomarkers are the
about 5382 + 97 Dalton, the about 7024 + 13 Dalton, and the about 7820 + 14 Dalton
biomarkers.

74.  The medium of claim 67, wherein the at least two protein biomarkers are the
about 7024 + 13 Dalton, the about 7820 * 14 Dalton, the about 5382 + 97 Dalton, and the

about 4475 + 81 Dalton biomarkers.

75. The medium of claim 68, further comprising third computer program code
means for determining the absence of the about 7820 + 14 Dalton protein biomarker and

determining the presence of the about 7024 + 13 Dalton protein biomarker.

76. The medium of claim 69, wherein said medium comprises fourth computer
program code means for determining the absence of the about 7820 + 14 Dalton and about
7024 + 13 Dalton biomarkers, the presence of the about 5382 + 97 Dalton biomarker, and

the quantity of the about 4475 + 81 Dalton biomarker.
77. The medium of claim 70, wherein said medium comprises fifth computer

program code means for determining the quantity of the about 8141 * 15 Dalton, about 9149
+ 16 Dalton, and about 9656 + 17 Dalton biomarkers.
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78. The medium of claim 71, further comprising sixth computer program code
means for determining the quantity of the about 5074 + 91 Dalton, about 9149 + 16 Dalton,

and about 9656 + 17 Dalton biomarkers.

79.  The medium of claim 72, further comprising seventh computer program code
means for determining the quantity of the about 9149 + 16 Dalton and about 9508 + 17
Dalton biomarkers.

80. The medium of claim 73, further comprising eighth computer program code
means for determining the absence of the about 5382 + 97 Dalton, about 7024 + 13 Dalton

and about 7820 * 14 Dalton biomarkers.

81. The medium of claim 74, further comprising ninth computer program code
means for determining the absence of the about 7024 + 13 Dalton and about 7820 + 14
Dalton biomarkers, the presence of the about 5382 + 97 Dalton biomarker and determining
the quantity of the about 4475 £ 81 Dalton biomarker.

82. A computer program medium storing computer instructions therein for instructing
a computer to perform a computer-implemented process for diagnosing prostate cancer or
benign prostate hyperplasia, comprising:

a) first computer program code means for detecting in a test sample from a
subject protein biomarkers in the following groups and having the following molecular
weights:

(i) about 7024 + 13 Dalton and about 7820 *+ 14 Dalton;

(i) about 7820 + 14 Dalton, about 7024 + 13 Dalton, about 5382 + 97
Dalton and about 4475 + 81 Dalton;

(i)  about 8141 + 15 Dalton, about 9149 + 16 Daltons, and about 9656 *

17 Dalton;
(iv) about 9149 + 16 Dalton and about 9508 £ 17 Dalton;
(v) about 5074 + 91 Dalton, about 9149 + 16 Dalton and about 9508 + 17
Dalton; or
(vi) about 5382 + 97 Dalton, about 7024 + 13 Dalton and about 7820 *+ 14
Daiton; and
(b) second computer program code means for correlating the determination to a

diagnosis of benign prostate hyperplasia, prostate cancer or a negative diagnosis.
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83. The medium of claim 82, further comprising third computer program code
means for determining the presence of a protein biomarker having a molecular weight of

about 7024 + 13 and the absence of a protein biomarker having a molecular weight of about

' 7820 + 14 Daltons.

84. The medium of claim 82, further comprising fourth computer program code
means for determining the absence of the about 7820 + 14 Dalton and about 7024 + 13
Dalton biomarkers, the presence of the about 5382 + 97 Dalton biomarker and the quantity
of the about 4475 + 81 Dalton biomarker.

85. The medium of claim 82, further comprising fifth computer program code
means for determining the quantity of the about 8141 + 15 Dalton, about 9149 + 16 Dalton,

and about 9656 + 17 Dalton biomarkers.

86. The medium of claim 82, further comprising sixth computer program code
means for determining the quantity of the about 9149 + 16 Dalton and about 9508 * 17

Dalton biomarkers.

87.  The medium of claim 82, further comprising seventh computer program code
means for determining the quantity of the about 5074 + 91 Dalton, about 9149 + 16 Dalton

and about 9508 + 17 Dalton biomarkers.

88. The medium of claim 82, further comprising eighth computer program code
means for determining the absence of the about 5382 + 97 Dalton, about 7024 + 13 Daiton
and about 7820 + 14 Dalton biomarkers.

89. A computer program medium storing computer instructions therein for
instructing a computer to perform a computer-implemented process for diagnosing benign
prostate hyperplasia or prostate cancer, comprising:

(a) first computer program code means for detecting at least two protein
biomarkers in a test sample from a subject, said protein biomarkers having a molecular
weight selected from the group consisting of about 3486 + 6, about 3963 + 7, about 4071 +
7, 4079 + 7, about 4580 + 8, about 5298 + 10, about 6099 + 11, about 6542 + 12, about
6797 + 12, about 6949 + 13; about 6990 + 13, about 7024 + 13, about 7054 *+ 13, about
7820 + 14, about 7844 + 14, about 7885 *+ 14, about 8067 + 15, about 8356 + 15, about
8943 + 16, about 9656 + 17, and about 9720 £ 18 Daltons; and
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(b) second computer program means for correlating the detection to a diagnosis
of benign prostate hyperplasia, prostate cancer or a negative diagnosis.

90. The medium of claim 89, further comprising:

(a) third computer program code means for detecting protein biomarkers having
a molecular weight selected from the group consisting of about 3963 + 7, about 4079 * 7,
about 6542 + 12, about 6797 + 12, about 6949 + 13; about 6990 + 13, about 7024 + 13,
about 7885 + 14, about 8067 + 15, about 8356 + 15, about 9656 + 17, about 9720 + 18
Daltons, and a combination thereof; and

(b) fourth computer program code means for correlating the detection to a

diagnosis of prostate cancer.

91. The medium of claim 90, further comprising:

(a) third computer program means for detecting protein biomarkers having a
molecular weight selected from the group consisting of about 3486 + 6, about 4071 + 7,
about 4580 * 8, about 5298 + 10, about 6099 * 11, about 7054 + 13, about 7820 + 14, about
7844 + 14, about 8943 * 16, and a combination thereof; and

(b) fourth computer program code means for correlating the detection to a

diagnosis of benign prostate hyperplasia.
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