wo 2015/000502 A 1[I I P00 0O Y R 0O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/000502 A1

8 January 2015 (08.01.2015) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 3/06 (2006.01) GO6F 17/30 (2006.01) kind of national protection available): AE, AG, AL, AM,
(21) International Application Number: A0, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
) PCT/EP2013/063910 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
2 July 2013 (02.07.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: HITACHI DATA SYSTEMS ENGINEER- . L
ING UK LIMITED [GB/GB]; Queensgate House, (84) Designated States (uniess otherwise indicated, for every
Cookham Road, Bracknell RG12 IRB (GB). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(72) Inventors: POWELL, Richard; 17 Powis Close, Maiden- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
head SL6 3DP (GB). GIBBS, James; 15 Oxford Road, TM), Buropean (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Wokingham RG41 2YE (GB). WARNER, Timothy; 40 EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Lyndsey Close, Farnborough GU14 9TG (GB). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TABAALOUTE, Zahra; 9 Claremont Crescent, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Southampton SO15 4GR (GB). KM, ML, MR, NE, SN, TD, TG).
(74) Agent: MERH-IP MATIAS ERNY REICHL HOFF- Published:

MANN; Paul-Heyse-Str. 29, 80336 Miinchen (DE).

with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR VIRTUALIZATION OF A FILE SYSTEM, DATA STORAGE SYSTEM FOR
VIRTUALIZATION OF A FILE SYSTEM, AND FILE SERVER FOR USE IN A DATA STORAGE SYSTEM

Fig. 1B
260 %a0 o0
/OD b [|{'/'"' [1 [1 /'l/““l [|
o IS
WA NSNS I
601))))
o o o 4w 4 w0

(57) Abstract: The present invention relates to a method and an apparatus for providing a virtualized file system enabling indirect
access to a second file system in a data storage system comprising a plurality of client computers 100 and a second file system man -
aging unit 410 for managing the second file system and enabling client access to the second file system, the method comprising in -
terconnecting a first file system managing unit 310 between the plurality of client computers 100 and the second file system man -
aging unit 410, creating a first directory /root in a first file system managed by the first file system managing unit 310, associating a
first directory /root of the second file system with the first directory /root of the first file system, enabling on-demand virtualization
of the second file system by the first file system managing unit 310 based on client requests received from the client computers 100
at the first file system managing unit 310 and based on the association between the first directory of the first file system and the first
directory of the second file system, and enabling indirect client access to the second file system through the first file system.

10

15

20

25

30

35

WO 2015/000502 PCT/EP2013/063910

METHOD AND APPARATUS FOR VIRTUALIZATION OF A FILE SYSTEM,
DATA STORAGE SYSTEM FOR VIRTUALIZATION OF A FILE SYSTEM, AND
FILE SERVER FOR USE IN A DATA STORAGE SYSTEM

Description

The present invention relates to a method, and apparatus and a data storage system for

virtualization of a file system, and a file server for use in such data storage system.

Background

In the prior art, there are known data storage systems such as e.g. described in connection
with Fig. 1A below, in which multiple client computers are connected via a communication network
with one or more file server systems managing one or more file systems for I/0 access by the client

computers.

At certain times, it may be desirable to exchange the one or more (legacy) file servers with
new file servers in order to improve performance of the whole data storage system, e.g., because the
newer file servers may be adapted to manage more file systems or larger file systems (including
enabling more data storage space and/or larger number of file system objects), enable more
efficient input/output (I/0) performance, enable use of larger storage units or storage units
containing more efficient storage device technologies. Still, it may be desirable to keep the already
existing file system(s) including file system structure (such as an existing file tree structure) and user
data (file content) thereof, while it is, in principle, desirable to enable the users to access the existing
file system(s) without interruption or at least with only a single interruption that is as short as
possible. An example of an apparatus and a method for a hard-ware based file system is described

in US 7,457,822 B4, which is herein incorporated by reference.
Summary
As described in more detail below, embodiments of the invention may be related to a data
storage system, and parts thereof, in which a (new) first file system managing unit is interconnected
between a plurality of client computers and a (legacy) second file system managing unit which

manages one or more file systems accessible by the client computers.

After interconnecting the (new) first file system managing unit, I/O access by the client

10

15

20

25

30

35

WO 2015/000502 PCT/EP2013/063910

computers to the one or more file systems of the (legacy) second file system managing unit may be
achieved through the (new) first file system managing unit. In a first phase referred to as
virtualization, the one or more file systems of the (legacy) second file system managing unit may be
represented by one or more virtualized file systems of the (new) first file system managing unit, the
virtualized file systems being built incrementally during the virtualization phase. In a second phase
(which may overlap with the virtualization phase), referred to migration, user data of the one or more
file systems of the (legacy) second file system managing unit may be migrated to the (new) first file

system managing unit.

According to the invention, it is an object to provide a method, and apparatus, a data storage
system and a file server for building and providing a virtualized file system enabling indirect access

to a second file system and enabling client access to the second file system.

According to some embodiments, there may be provided an apparatus for providing a
virtualized file system enabling indirect access to a second file system in a data storage system
comprising a plurality of client computers, a second file system managing unit for managing the
second file system and enabling client access to the second file system, and a first file system
managing unit interconnected between the plurality of client computers and the second file system

managing unit.

In some embodiments, the apparatus may comprise the first file system managing unit
adapted to create a first directory in a first file system managed by the first file system managing
unit; associate a first directory of the second file system with the first directory of the first file system;
enable on-demand virtualization of the second file system by the first file system managing unit
based on client requests received from the client computers at the first file system managing unit
and based on the association between the first directory of the first file system and the first directory
of the second file system; and/or enable indirect client access to the second file system through the
first file system. This has the advantage that the client access to the second file system can be
enabled basically immediately after interconnecting the first file system managing unit indirectly

through the first file system management unit.

In some embodiments, for executing on-demand virtualization, the first file system managing
unit may be adapted to receive, from a client computer, an access request directed to a second
directory of the second file system in a second path location with respect to the first directory of the
second file system; create, upon receiving the access request directed to the second directory of the
second file system, a second directory in the first file system in the second path location with respect

to the first directory of the first file system; and/or store metadata of the second directory of the

10

15

20

25

30

35

WO 2015/000502 PCT/EP2013/063910

second file system in the first file system as metadata of the second directory of the first file system.

In some embodiments, the first file system managing unit may be adapted to, when the
access request is a request for modifying the second directory of the second file system, modify the
second directory of the first file system in accordance with the received access request, and send
the access request to the second file system managing unit for modifying the second directory of the
second file system in accordance with the received access request by the second file system
managing unit; and/or, when the access request is a request for reading attributes of the second
directory of the second file system, return requested attributes of the second directory of the second

file system based on metadata of the second directory of the first file system.

In some embodiments, for executing on-demand virtualization, the first file system managing
unit may be adapted to receive, from a client computer, an access request directed to a first file of
the second file system in a first path location with respect to the first directory of the second file
system; create, upon receiving the access request directed to the first file of the second file system,
a first external link object in the first file system in the first path location with respect to the first
directory of the first file system; and/or store metadata of the first file of the second file system in
the first file system as metadata of the first file together with the first external link object of the first

file system.

In some embodiments, the external link object may be a file system object of the first file
system representing the first file of the second file system in the first file system and enabling
access to the first file of the second file system, the first external link object including link data
indicative at least of a unique object ID of the first file in the second file system and the first path

location with respect to the first directory of the second file system.

In some embodiments, the first file system managing unit may be adapted to, when the
access request is a request for modifying the first file of the second file system, send the access
request to the second file system managing unit on the basis of the link data of the first external link
object for modifying the first file of the second file system in accordance with the received access
request by the second file system managing unit; and/or, when the access request is a request for
reading attributes of the first file of the second file system, return requested attributes of the first file

of the second file system based on metadata of the first external link object.

In some embodiments, the first file system managing unit may be adapted to enable
automatic virtualization of the second file system by the first file system managing unit independent

of client requests received from the client computers at the first file system managing unit and

10

15

20

25

30

35

WO 2015/000502 PCT/EP2013/063910

based on virtualization management information managed by the first file system managing unit and
based on the association between the first directory of the first file system and the first directory of
the second file system, the virtualization management information being at least indicative of the

first directory existing in the second file system.

In some embodiments, for executing automatic virtualization, the first file system managing
unit may be adapted to send, to the second file system managing unit, a directory information
request directed to a target directory of the second file system indicated in the virtualization
management information for requesting information indicative of child objects existing in the target
directory of the second file system; receive, from the second file system managing unit, information
indicative of child objects existing in the target directory of the second file system in response to the
directory information request; and/or update the virtualization management information based on
the received information indicative of child objects existing in the target directory of the second file

system.

In some embodiments, for executing automatic virtualization, the first file system managing
unit may be adapted to create, for each child object existing in the target directory of the second file
system as indicated in the virtualization management information, an associated file system object
in the first file system in a path location with respect to the first directory of the first file system
corresponding to the path location of the associated child object with respect to the first directory of

the second file system.

In some embodiments, said sending the directory information request is automatically
repeated by the first file system management unit for a plurality of target directories of the second
file system, and/or said creating, for each child object existing in the target directory of the second
file system as indicated in the virtualization management information, the associated file system
object in the first file system may be repeated by the first file system management unit for each of

the plurality of target directories.

In some embodiments, said repeatedly sending the directory information request for a
plurality of target directories of the second file system and said repeatedly creating the associated
file system object in the first file system for each of the child directories of the plural target

directories may be performed in parallel by the first file system management unit.

In some embodiments, an execution rate per unit time of said repeatedly sending the
directory information request for a plurality of target directories of the second file system may be

controlled by the first file system management unit based on a storage occupancy of a buffer unit of

10

15

20

25

30

35

WO 2015/000502 PCT/EP2013/063910

the first file system managing unit.

In some embodiments, an execution rate per unit time of said repeatedly sending the
directory information request for a plurality of target directories of the second file system may be
controlled by the first file system management unit based on a rate of availability rate of

communication channels between the first and second file system managing units.

In some embodiments, the created file system object may be a third directory of the first file

system when the associated child object is a third directory of the second file system.

In some embodiments, for executing automatic virtualization, the first file system managing
unit may be further adapted to create a self-reference link in the created third directory of the first
file system, calculate a fake link count for the created third directory of the first file system based on
the number of child directories of the associated third directory in the second file system, and/or
store the calculated fake link count in the metadata of the created third directory of the first file

system.

In some embodiments, the first file system management unit may be adapted to decrement
the fake link count stored in the metadata of the third directory of the first file system associated
with the third directory in the second file system, when automatically creating a child directory in the
third directory of the first file system being associated with a child directory of the third directory of

the second file system.

In some embodiments, the first file system management unit may be further adapted to
receive, from one of the client computers, a request for reading a link count of the third directory of
the second file system; calculate the link count of the third directory of the second file system by
adding the fake link count of the third directory of the first file system and a real link count of the
third directory of the first file system; and/or send the calculated link count to the client computer in

response to the request.

In some embodiments, the created file system object may be a second external link object
when the respective child object is a second file of the second file system, the second external link
object representing the second file of the second file system in the first file system and enabling
access to the second file of the second file system, the second external link object including link
data indicative at least of a unique object ID of the second file in the second file system and a path

location of the second file with respect to the first directory of the second file system.

10

15

20

25

30

35

WO 2015/000502 PCT/EP2013/063910

In some embodiments, the first file system management unit may be further adapted to
divide the virtualization management information into a plurality of data blocks, and/or repeatedly
generate, for each data block, a backup copy of each of the data blocks of the virtualization

management information.

In some embodiments, a first data block of the plurality of data blocks may include
management data associated with a fourth directory of the second file system, and one or more
second data blocks may include management data associated with child directories of the fourth
directory of the second file system, wherein the first file system management unit may be adapted to
generate a backup copy of each of the one or more second data blocks before generating a backup

copy of the first data block.

According to some embodiments of another aspect, there may be provided a method for
providing a virtualized file system enabling indirect access to a second file system in a data storage
system comprising a plurality of client computers and a second file system managing unit for

managing the second file system and enabling client access to the second file system.

The method may comprise interconnecting a first file system managing unit between the
plurality of client computers and the second file system managing unit; creating a first directory in a
first file system managed by the first file system managing unit; associating a first directory of the
second file system with the first directory of the first file system; enabling on-demand virtualization of
the second file system by the first file system managing unit based on client requests received from
the client computers at the first file system managing unit and based on the association between the
first directory of the first file system and the first directory of the second file system; and/or enabling

indirect client access to the second file system through the first file system.

On-demand virtualization in some embodiments may comprise receiving, at the first file
system managing unit, an access request directed to a second directory of the second file system in
a second path location with respect to the first directory of the second file system; creating, upon
receiving the access request directed to the second directory of the second file system, a second
directory in the first file system in the second path location with respect to the first directory of the
first file system; and/or storing metadata of the second directory of the second file system in the first

file system as metadata of the second directory of the first file system.

In some embodiments, when the access request is a request for modifying the second
directory of the second file system, the method may further comprise modifying the second directory

of the first file system in accordance with the received access request, sending the access request to

10

15

20

25

30

35

WO 2015/000502 PCT/EP2013/063910

the second file system managing unit, and modifying the second directory of the second file system

in accordance with the received access request.

In some embodiments, when the access request is a request for reading attributes of the
second directory of the second file system, the method may further comprise returning requested
attributes of the second directory of the second file system based on metadata of the second

directory of the first file system.

On-demand virtualization in some embodiments may comprise receiving, at the first file
system managing unit, an access request directed to a first file of the second file system in a first
path location with respect to the first directory of the second file system; creating, upon receiving the
access request directed to the first file of the second file system, a first external link object in the
first file system in the first path location with respect to the first directory of the first file system;
and/or storing metadata of the first file of the second file system in the first file system as metadata

of the first file together with the first external link object of the first file system.

The external link object may be a file system object of the first file system representing the
first file of the second file system in the first file system and enabling access to the first file of the
second file system, the first external link object preferably including link data indicative at least of a
unique object ID of the first file in the second file system and the first path location with respect to

the first directory of the second file system.

In some embodiments, when the access request is a request for modifying the first file of the
second file system, the method may further comprise sending the access request to the second file
system managing unit on the basis of the link data of the first external link object, and modifying the

first file of the second file system in accordance with the received access request.

In some embodiments, when the access request is a request for reading attributes of the
first file of the second file system, the method may further comprise returning requested attributes

of the first file of the second file system based on metadata of the first external link object.

In some embodiments, the method may further comprise enabling automatic virtualization of
the second file system by the first file system managing unit independent of client requests received
from the client computers at the first file system managing unit and/or based on virtualization
management information managed by the first file system managing unit and based on the
association between the first directory of the first file system and the first directory of the second file

system, the virtualization management information being preferably at least indicative of the first

10

15

20

25

30

35

WO 2015/000502 PCT/EP2013/063910

directory existing in the second file system.

Automatic virtualization in some embodiments may comprise sending, from the first file
system managing unit to the second file system managing unit, a directory information request
directed to a target directory of the second file system indicated in the virtualization management
information for requesting information indicative of child objects existing in the target directory of the
second file system; receiving, at the first file system managing unit from the second file system
managing unit, information indicative of child objects existing in the target directory of the second
file system in response to the directory information request; and/or updating the virtualization
management information based on the received information indicative of child objects existing in the

target directory of the second file system.

Automatic virtualization in some embodiments may further comprise creating, for each child
object existing in the target directory of the second file system as indicated in the virtualization
management information, an associated file system object in the first file system in a path location
with respect to the first directory of the first file system corresponding to the path location of the

associated child object with respect to the first directory of the second file system.

In some embodiments, said sending the directory information request is automatically
repeated for a plurality of target directories of the second file system, and/or said creating, for each
child object existing in the target directory of the second file system as indicated in the virtualization
management information, the associated file system object in the first file system is repeated for

each of the plurality of target directories.

In some embodiments, said repeatedly sending the directory information request for a
plurality of target directories of the second file system and said repeatedly creating the associated
file system object in the first file system for each of the child directories of the plural target

directories may be performed in parallel.

In some embodiments, an execution rate per unit time of said repeatedly sending the
directory information request for a plurality of target directories of the second file system may be

controlled based on a storage occupancy of a buffer unit of the first file system managing unit.

In some embodiments, an execution rate per unit time of said repeatedly sending the
directory information request for a plurality of target directories of the second file system may be
controlled based on a rate of availability rate of communication channels between the first and

second file system managing units.

10

15

20

25

30

35

WO 2015/000502 PCT/EP2013/063910

In some embodiments, the created file system object may be a third directory of the first file

system when the associated child object is a third directory of the second file system.

Automatic virtualization in some embodiments may further comprise creating a self-
reference link in the created third directory of the first file system, calculating a fake link count for
the created third directory of the first file system based on the number of child directories of the
associated third directory in the second file system, and/or storing the calculated fake link count in

the metadata of the created third directory of the first file system.

In some embodiments, the method may further comprise decrementing the fake link count
stored in the metadata of the third directory of the first file system associated with the third directory
in the second file system, when automatically creating a child directory in the third directory of the

first file system being associated with a child directory of the third directory of the second file system.

In some embodiments, the method may further comprise receiving, at the first file system
managing unit from one of the client computers, a request for reading a link count of the third
directory of the second file system; calculating, at the first file system managing unit, the link count
of the third directory of the second file system by adding the fake link count of the third directory of
the first file system and a real link count of the third directory of the first file system; and/or sending

the calculated link count to the client computer in response to the request.

In some embodiments, the created file system object may be a second external link object
when the respective child object is a second file of the second file system, the second external link
object preferably representing the second file of the second file system in the first file system and
enabling access to the second file of the second file system, the second external link object
preferably including link data indicative at least of a unique object ID of the second file in the second
file system and a path location of the second file with respect to the first directory of the second file

system.

In some embodiments, the method may further comprise dividing the virtualization
management information into a plurality of data blocks, and repeatedly generating, for each data

block, a backup copy of each of the data blocks of the virtualization management information.

In some embodiments, a first data block of the plurality of data blocks includes management
data associated with a fourth directory of the second file system, and one or more second data

blocks include management data associated with child directories of the fourth directory of the

10

15

20

25

30

35

WO 2015/000502 -10- PCT/EP2013/063910
second file system, wherein the method preferably further includes generating a backup copy of

each of the one or more second data blocks before generating a backup copy of the first data block.

According to another aspect, there may be provided an apparatus for providing a virtualized
file system enabling indirect access 1o a second file system in a data storage system comprising a
plurality of client computers, a second file system managing unit for managing the second file
system and enabling client access to the second file system, and a first file system managing unit

interconnected between the plurality of client computers and the second file system managing unit.

The apparatus may comprising the first file system managing unit being adapted to create a
first directory in a first file system managed by the first file system managing unit; associate a first
directory of the second file system with the first directory of the first file system; enable on-demand
virtualization of the second file system by the first file system managing unit based on client
requests received from the client computers at the first file system managing unit and based on the
association between the first directory of the first file system and the first directory of the second file

system; and/or enable indirect client access to the second file system through the first file system.

In some embodiments, the first file system managing unit of the apparatus may be further
adapted to execute steps of one or more of the aspects described above in connection with some

embodiments.

According to another aspect, there may be provided a data storage system for providing a
virtualized file system enabling indirect access to a second file system in a data storage system
comprising a plurality of client computers, a second file system managing unit for managing the
second file system and enabling client access to the second file system, and a first file system
managing unit interconnected between the plurality of client computers and the second file system
managing unit, the first file system managing unit being preferably adapted to create a first directory
in a first file system managed by the first file system managing unit; associate a first directory of the
second file system with the first directory of the first file system; enable on-demand virtualization of
the second file system by the first file system managing unit based on client requests received from
the client computers at the first file system managing unit and based on the association between the
first directory of the first file system and the first directory of the second file system; and/or enable

indirect client access to the second file system through the first file system.

In some embodiments, the first file system managing unit of the data storage system may be
further adapted to execute steps of one or more of the aspects described above in connection with

some embodiments.

10

15

20

25

30

35

WO 2015/000502 -1l PCT/EP2013/063910

According to another aspect, there may be provided a file system server for use in a data
storage system according as described above, preferably comprising a first file system managing

unit as described above in connection with some embodiments.

According to another aspect, there may be provided a computer program product comprising
computer program code means being configured to cause a processing unit of a file system
management unit in a data storage system to execute the steps of one or more of the aspects

described above in connection with some embodiments.

Brief description of drawings

Fig. 1A shows an example of a data storage system.

Fig. 1B shows an example of the data storage system of Fig. 1A having interconnected an
additional storage apparatus.

Fig. 1C shows another example of a data storage system.

Fig. 1D shows another example of a data storage system.

Fig. 2 exemplarily shows a schematic view of the structure of a file system management unit.

Fig. 3 exemplarily shows a schematic functional view of a virtualization and migration unit.

Fig. 4 shows an example of a file system tree structure.

Fig. 5A shows an example of a virtualized file system tree structure based on the tree
structure of Fig. 4.

Figs. 5B and 5C show examples of other virtualized file system tree structures based on the
tree structure of Fig. 4.

Fig. 6 shows an exemplary flow chart of a method for virtualization initialization.

Fig. 7 shows an illustration of information exchange for automatic background virtualization.

Fig. 8 shows an example of a virtualization management information table at a first point of
time during virtualization.

Fig. 9 shows an example of a partially virtualized file system tree structure.

Fig. 10 shows an example of the virtualization management information table at a second
point of time during virtualization.

Fig. 11 shows another illustration of information exchange for automatic background
virtualization.

Fig. 12 shows an example of the virtualization management information table at a third point
of time during virtualization.

Fig. 13 shows an example of a partially virtualized file system tree structure.

Fig. 14 shows an exemplary flow chart of automatic background virtualization management.

10

15

20

25

30

35

WO 2015/000502 -12- PCT/EP2013/063910

Fig. 15 shows an exemplary flow chart of automatic background virtualization.

Fig. 16 shows another exemplary flow chart of automatic background migration.

Fig. 17A shows an exemplary schematic data structure of an external link object for a
virtualized file.

Fig. 17B shows an exemplary schematic data structure of metadata for a virtualized
directory.

Fig. 18 shows an illustration of information exchange for on-demand virtualization.

Fig. 19 shows an example of a partially virtualized file system tree structure after on-demand
virtualization according to Fig. 18.

Fig. 20 shows an exemplary flow chart of a method for enabling user file access during
virtualization.

Fig. 21 shows an exemplary flow chart of a method for enabling attributes access during
virtualization.

Fig. 22A shows an exemplary flow chart of a method for enabling user directory access
during virtualization.

Fig. 22B shows an exemplary flow chart of a method for enabling user directory access
during virtualization.

Fig. 23 shows an exemplary flow chart of a method for virtualization management table
backup.

Fig. 24 shows an example of the virtualization management information table upon
completion of virtualization of the file system tree of Fig. 4.

Fig. 25A shows an illustration of information exchange for write access to a virtualized file.

Fig. 25B shows an illustration of information exchange for read access to a virtualized file.

Fig. 25C shows an illustration of information exchange for attribute access 1o a virtualized file
or directory.

Fig. 25D shows an illustration of information exchange for deleting a virtualized file.

Fig. 25E shows an illustration of information exchange for file creation.

Fig. 25F shows an illustration of information exchange for changing attributes.

Fig. 25G shows an illustration of information exchange for directory creation.

Fig. 25H shows an illustration of information exchange for directory renaming.

Detailed description

In the following, preferred aspects and embodiments of the present invention will be
described in more detail with reference to the accompanying figures. Same or similar features in
different drawings and embodiments are referred to by similar reference numerals. It is to be

understood that the detailed description below relating to various preferred aspects and preferred

10

15

20

25

30

35

WO 2015/000502 -13- PCT/EP2013/063910

embodiments are not to be meant as limiting the scope of the present invention.

Fig. 1A shows an example of a data storage system comprising a plurality of client computers
100 (clients) connected via a communication network 200 to a second storage apparatus 400. The
second storage apparatus 400 comprises a file system management unit 410 for managing one or
more file systems, a storage unit 420 for storing user data and metadata of user data of the one or
more file systems managed by the storage unit 420, and a backup storage unit 430 for performing
backup of data stored in the storage unit 420 upon backup request or automatically such as e.g.
periodically. The second storage apparatus 400 can be realized as a single computing device or as a
system of plural devices connected to each other. For example, the file system management unit
410 can be realized as a system of one or more file system server computers connected to one or

more storage devices as storage units 420 and 430 of a network attached storage (NAS).

The communication network 200 (as well as communication networks 500, 600, and 800
discussed below) may be realized as a wired communication network (such as WAN, LAN, local Fibre
channel network, an Internet based network, an Ethernet communication network or the like) or a
wireless communication network (such as WLAN), or any combination thereof. An underlying
communication protocol may be an Fibre Channel protocol or file based protocols such as NFS-

based protocols or SMB/CIFS-based protocols.

The clients 100 are adapted to access user data of the one or more file systems managed by
the file system management unit 410 of the second storage apparatus 400 via the communication
network 200. Specifically, users can write data to the file system, read data from the file system,
create files and directories in the file system, set or read attributes of file system objects such as
files and directories, modify data of the file system, delete objects of the file system and move file
system objects, via each of the clients 100 connected via the network 200 to the second storage
apparatus 400 depending on user individual or user group individual access policies (e.g. user

access rights, user group access rights, file system permissions etc.).

At certain times, it may be desirable to exchange the second storage apparatus 400 with
another newer file system managing storage apparatus in order to improve performance of the
whole data storage system, e.g., because the newer file system managing storage apparatus may be
adapted to manage more file systems or larger file systems (including enabling more data storage
space and/or larger number of file system objects), enable more efficient input/output (I/0)
performance, enable use of larger storage units or storage units containing more efficient storage
device technologies. Still, it may be desirable to keep the already existing file system(s) including file

system structure (such as an existing file tree structure) and user data (file content) thereof, while it

10

15

20

25

30

35

WO 2015/000502 - 14- PCT/EP2013/063910
is, in principle, desirable to enable the users to access the existing file system(s) without interruption

or at least with only a single interruption that is as short as possible.

According to some preferred aspects of the invention, it is an underlying idea that a newer
first storage apparatus 300, which shall be used instead of the older legacy second storage
apparatus 400 for managing the existing file system(s), is interconnected between the accessing
clients 100 and the legacy second storage apparatus 400 as exemplarily illustrated in Fig. 1B, with

only a single brief service interruption.

Fig. 1B shows an example of the data storage system of Fig. 1A having interconnected the
additional first storage apparatus 300 in between the communication network 200 and the second
storage apparatus 400 according to preferred aspects of the invention. The first storage apparatus
300 comprises a file system management unit 310 for managing one or more file systems, a storage
unit 320 for storing user data and metadata of user data of the one or more file systems managed
by the storage unit 320, and a backup storage unit 330 for performing backup of data stored in the
storage unit 320 upon backup request or automatically such as e.g. periodically. The first storage
apparatus 300 can be realized as a single computing device or as a system of plural devices
connected to each other. For example, the file system management unit 310 can be realized as a
system of one or more file system server computers connected to one or more storage devices as

storage units 320 and 330 of a network attached storage (NAS).

Interconnecting the first storage apparatus 300 in between the communication network 200
and the second storage apparatus 400 requires only a single short interruption of file system
services, during which interruption the clients 100 are disconnected and cannot access the existing
file system(s) for a short period, i.e. clients 100 cannot read user data, write user data, create new

file system objects such as files and directories or access file system object attributes.

After interconnecting the first storage apparatus 300 in between the communication network
200 and the second storage apparatus 400, the clients 100 remain disconnected from the second
storage system 400 and can, therefore, not directly access the file system(s) managed by the
second file storage apparatus 400 but only can access the file system(s) managed by the second
storage apparatus 400 indirectly through the first storage apparatus 300. According to preferred
aspects, it is desirable that all user access will only be addressed to the first storage apparatus 300

and no direct connections to the second storage apparatus 400 exist.

First, after interconnecting the first storage apparatus 300, the one or more file systems to

be accessed by the users via the clients 100 are still held on the second storage apparatus 400

10

15

20

25

30

35

WO 2015/000502 -15- PCT/EP2013/063910
(including the user data of files and directories for organizing the files, and including metadata of the
file system objects) and the first storage apparatus 300 does not hold any data of the existing file

system(s).

In order to be able to handle all user access requests to the file system(s) locally on the first
storage apparatus 300 and disconnect the second storage apparatus 400, all file system data
(including user data and file system metadata) may eventually need to be migrated from the second
storage apparatus 400 to the first storage apparatus 300. However, for large file systems containing
a large number of directories and files, such data migration may take very long, and if user access
were disabled during migration of data until all file system data (including user data and file system
metadata) would exist on the first storage apparatus 300, this would lead to disadvantageously long

periods of undesirable non-accessibility of the file system(s) by the clients 100.

For minimizing the period of undesirable non-accessibility of the file system(s), the first
storage system 300 is adapted to enable indirect user access to the file system(s) managed by the

second storage apparatus 400 immediately after interconnecting the first storage apparatus 300.

Then, in a first phase after interconnecting the first storage apparatus 300, referred to as
“Virtualization” in the following, the first storage apparatus 300 performs virtualization of the file
system tree(s) of the file system(s) in which the file system tree(s) of the file system(s) which exist on
the second storage system 400 is/are virtually created on the first storage apparatus 300 without

actually migrating user data stored on the storage unit 420 of the second storage apparatus.

In a second phase, referred to “Migration” in the following, the actual user data including the
actual data contents of files and the like will be transferred from the second storage apparatus 400

to the first storage apparatus 300.

Upon completion of both of the virtualization phase and the migration phase, the first storage
apparatus 300 will be able to handle locally the existing file system(s), which may very likely have
been changed in the meantime due to ongoing user access to the file system(s) during the
virtualization and migration phases, and the second storage apparatus 400 can be disconnected

completely thereafter.

During both of the virtualization phase and the migration phase, however, the second storage

apparatus 400 will need to remain accessible by the first storage apparatus 300.

While the virtualization phase and the migration phase will be described in more detail below

10

15

20

25

30

35

WO 2015/000502 -16- PCT/EP2013/063910
with respect to some preferred aspects as distinct phases, in which data migration is not started
until completion of the virtualization phase, it is to be understood that the present invention is not
limited to such configuration, and that these phases can also overlap in a timely manner in that
migration of file data content of files of already virtualized portions of the file system(s) may be

performed already while virtualization is still ongoing for other portions of the file system(s).

When exemplarily considering the virtualization phase and the migration phase as distinct
subsequently performed operational phases, no user data (i.e. contents of files) will exist on the first
storage system 300 (e.g. stored in the storage unit 320) because during the virtualization phase, the
first file system management unit 310 will build a virtualized file tree structure of the file system(s)
managed by the second file system management unit 410 in that the first file system management
unit 310 will create an external link object stored by the storage unit 320 for each file that exists in

the file system(s) of the second storage apparatus 400.

The external link objects will be file system objects of the file system(s) managed by the first
file system management unit 310, each external link object enabling access to the corresponding
file of the file system(s) managed by the second file system management unit 410 as long as the
actual user data of the file (i.e. the file content itself) has not been migrated to the storage unit 320

of the first storage apparatus 300.

The details of user access to files of the file system(s) existing on the second storage
apparatus 400 through external link objects existing on the first storage apparatus 300 will be

described below.

While the connection of the first and second storage apparatuses 300 and 400 in all of the
configurations of Figs. 1B to 1D below may be realized in various ways, e.g. similar to the
communication network 200 discussed above, and it may be particularly desirable to provide a Fibre
channel connection having plural Fibre channels allowing parallel communication in the different
plural Fibre channels. Furthermore, it may be desirable to use a file-based communication protocol
such as e.g. FTP-based protocols, NFS-based protocols (e.g. NFSv3 or NFSv4) or SMB/CIFS-based

protocols, or the like.

Fig. 1C shows another example of a data storage system having interconnected an additional
first storage apparatus 300 in between the communication network 200 and another
communication network 500, which is connected to plural second storage apparatuses 400. That is,
the difference to the data storage system as shown in Fig, 1B is that the first storage apparatus 300

can be used to be exchanged with a plurality of previously existing legacy storage apparatuses 400,

10

15

20

25

30

35

WO 2015/000502 -17- PCT/EP2013/063910
each managing one or more file system(s) to be accessed by the clients 100. The first storage
apparatus 300 is adapted to perform virtualization and migration of the file systems managed by the

plural legacy storage apparatuses 400.

Upon completion of both of the virtualization phase and the migration phase, the first storage
apparatus 300 will be able to handle locally the existing file systems, which may very likely have
been changed in the meantime due to ongoing user access to the file system(s) during the
virtualization and migration phases, and one or more or all of the second storage apparatuses 400
can be disconnected completely thereafter. During both of the virtualization phase and the migration
phase, however, the second storage apparatuses 400 will need to remain accessible by the first

storage apparatus 300.

In the example of Fig. 1C, it becomes apparent that it may even be advantageous in some
cases to only perform virtualization of file systems by the first storage apparatus 300 without any
subsequent migration phase. For example, after completion of the virtualization of all file systems
managed by the legacy storage apparatuses 400, while the actual user data (file content) of the file
systems will remain to be stored only on the storage units of the legacy storage apparatuses 400, all
file systems of the plural legacy storage apparatuses 400 can be accessed by the clients 100
through the virtualized file systems managed by the first storage apparatus 300 as a single access

point.

Fig. 1D shows another example of a data storage system. Again, clients 100 are connected
via a communication network 200 to the first storage apparatus 300, and the first storage apparatus
300 is connected via another communication network 500 to the second (legacy) storage apparatus
300. In addition, the first storage apparatus 300 is connected via yet another communication
network 800 to a remote storage apparatus 900 while the second storage apparatus 400 is

connected via yet another communication network 600 to another remote storage apparatus 700.

Such configuration also allows remote data replication, in which user data stored on the
storage unit 320 of the first storage apparatus 300 can be remote replicated via the communication
network 800 to a storage unit of the first remote storage apparatus 900 and user data stored on the
storage unit 420 of the second storage apparatus 400 can be remote replicated via the
communication network 600 to a storage unit of the second remote storage apparatus 700. Of
course, remote replication of data via the networks 800 and 600 can be performed synchronously or

asynchronously.

In principle, for a large number of legacy data storage systems, there will exist a configuration

10

15

20

25

30

35

WO 2015/000502 -18- PCT/EP2013/063910
having a second storage apparatus 400 at a first site and a remote storage apparatus 700 for
synchronous or asynchronous remote replication of user data of the file system(s) managed by the
second storage apparatus 400. After interconnecting the first storage apparatus 300 as described
above in connection with Fig. 1B, the first storage apparatus 300 will perform virtualization of the file
system(s) managed by the second storage apparatus 400 but will not actually migrate user data

until the start of the migration phase.

According to an exemplary embodiment, during virtualization phase without migration, all
user access to the file system(s) by the clients 100 will be passed through to the second storage
apparatus 400, including all data modifying user requests such as write access, attribute changing
user access, creation of new file and directories, renaming operations etc., and the second storage
system 400 will continue to manage the current (canonical) version of the file system(s). In such
embodiments, it will not be necessary to perform data replication from the first storage apparatus
300 to the remote storage apparatus 900 as long as all data modifying user access to the file
system(s) by the clients 100 will be passed through to the second storage apparatus 400, because
the canonical data version of the file system(s) will be held completely on the second storage
apparatus 400 and be replicated synchronously or asynchronously to the storage apparatus 900,

and the remote storage apparatus 900 can be connected later.

However, in some other embodiments in which migration is started already during (or after
virtualization), and modifying user access is not passed through anymore to the second storage
apparatus 400 for file system objects which have been fully migrated and are fully held on the first
storage apparatus 300, and/or for creation of new files and/or new directories being only performed
in the file system(s) being managed by the first storage apparatus 300, i.e. when the file systems
may start to differ, additional data replication to the remote storage apparatus 900 may become
desirable at least for file system objects which have been fully migrated and are fully held on the first

storage apparatus 300 and/or for newly created files and/or newly created directories.

Similarly, in all of the above configurations, for backup of data, it will not be necessary to
perform data backup from the storage unit 320 of the first storage apparatus 300 to the backup
storage unit 330 as long as all data modifying user access to the file system(s) by the clients 100 will
be passed through to the second storage apparatus 400, when the still canonical version of the file
system(s) will be held still on the second storage apparatus 400, and backup of the canonical
version will be performed from the storage unit 420 of the second storage apparatus 400 to the

backup storage unit 430.

However, in some other embodiments in which migration is started already during (or after

10

15

20

25

30

35

WO 2015/000502 -19- PCT/EP2013/063910
virtualization), and modifying user access is not passed through anymore to the second storage
apparatus 400 for file system objects which have been fully migrated and are fully held on the first
storage apparatus 300, and/or for creation of new files and/or new directories being only performed
in the file system(s) being managed by the first storage apparatus 300, i.e. when the file systems
may start to differ, additional data backup to the remote storage unit 330 may become desirable at
least for file system objects which have been fully migrated and are fully held on the first storage

apparatus 300 and/or for newly created files and/or newly created directories.

Fig. 2 exemplarily shows a schematic view of the structure of the file system management
unit 310. The file system management unit 310 comprises a host interface unit 311 comprising a
plurality of host interfaces 311a to 311g for connection to plural host devices (such as client
computers 100) via the network 200 and a storage interface unit 312 comprising a plurality of
storage interfaces 312a to 312g for connection to plural storage devices of the storage units 320
and 330. In addition, the file system management unit 310 comprises a processing unit 313
comprising one or more central processing units, a memory unit 314 for temporarily storing data
used for processing including management data, and a storage device 315 for storing application

data and management data.

Fig. 3 exemplarily shows a schematic functional view of a virtualization and migration unit
340 of the file system management unit 310, which can be realized by hardware, software, or a

combination thereof.

The virtualization and migration unit 340 comprises a virtualization management information
table 341 for managing virtualization management data and migration management data (stored in
the memory unit 314 and/or the storage device 315) and a virtualization management information
backup unit 342 for performing backup of virtualization management data and migration

management data (to the storage device 315 and/or to storage units 320 and/or 330).

For communication purposes, the virtualization and migration unit 340 comprises a
communication unit 348 having a client communication unit 348A for receiving access requests
from clients 100 and for responding to access requests from clients 100 and a file system
communication unit 348B for issuing access requests to the file system management unit 410 of
the second storage apparatus 400 and for receiving responses from the file system management

unit 410 of the second storage apparatus 400.

For performing virtualization and migration, the virtualization and migration unit 340

comprises a crawling unit 343 for automatically crawling (observing) the file tree structure of the file

10

15

20

25

30

35

WO 2015/000502 -20- PCT/EP2013/063910
system(s) managed by the file system management unit 410 of the second storage apparatus 400,
and for creating virtualization jobs for instructing virtualization of file system objects discovered in
the file system(s) managed by the file system management unit 410 of the second storage

apparatus 400.

The virtualization and migration unit 340 further comprises a virtualization unit 344 for
executing virtualization jobs for virtualizing file system objects discovered by the crawling unit 343,
and for creating migration jobs for instructing migration of virtualized file system objects, and a
migration unit 345 for executing migration jobs for migrating file system objects virtualized by the

virtualization unit 344.

The virtualization and migration unit 340 further comprises a plurality of job queues 346A,
346B and 346C for subsequently storing jobs for file system crawling, file system object

virtualization, and for file system object migration.

For example, the first job queue 346A may hold directory information jobs, the second job
queue 346B may hold virtualization jobs and the third job queue 346C may hold migration jobs. That
is, the virtualization and migration may be performed in a multi-threaded and/or parallelized manner
in that different units are provided for file system crawling (crawling unit 343) based on jobs held in
the job queue 346A, for file system object virtualization (virtualization unit 344) based on jobs held
in the job queue 346B, and for file system object migration (migration unit 345) based on jobs held
in the job queue 346C.

The above-mentioned units may be multi-threaded in that the crawling unit 343 may be
adapted to execute plural crawling jobs (e.g. directory information jobs as discussed further below)
taken from the job queue 346A in parallel, the virtualization unit 344 may be adapted to execute
plural virtualization jobs taken from the job queue 346B in parallel, and the migration unit 345 may

be adapted to execute plural migration jobs taken from the job queue 346C in parallel.

The present invention is, however, not limited to the use of three queues as described above,
and there may be provided plural job queues for each of directory information jobs, virtualization
jobs and migration jobs, or less than three queues, e.g. in that one queue is provided for all of
directory information jobs, virtualization jobs and migration jobs. In the latter case of only one queue,
the crawling unit 343, the virtualization unit 344, and the migration unit 345 may be realized as a
single multi-threaded unit being adapted to execute a plurality of jobs taken from the single job
queue, and adding all newly created jobs (including directory information jobs, virtualization jobs and

migration jobs to the same queue).

10

15

20

25

30

35

WO 2015/000502 -2l PCT/EP2013/063910

A “directory information job” is a job associated with a certain directory of the file system(s)
managed by the file system management unit 410 of the second storage apparatus 400 which has
been discovered by the crawling unit 343, the “directory information job” instructing the crawling
unit 343 to observe the file system objects (including subdirectories and files) in the certain directory
of the file system(s) managed by the file system management unit 410 of the second storage

apparatus 400.

A “virtualization job” is a job associated with a certain file system object (such as a file or
directory) of the file system(s) managed by the file system management unit 410 of the second
storage apparatus 400 which has been discovered by the crawling unit 343, the “virtualization job”
instructing the virtualization unit 344 to virtualize the certain file system object on the first storage

apparatus 300.

Basically, virtualization of a directory discovered by the crawling unit 343 means that a
corresponding directory (having the same name) will be created in the file system(s) managed by the
first file system management unit 310, while virtualization of a file or similar object (such as a hard
linked file) discovered by the crawling unit 343 means that a virtual object, referred to as external
link object (abbreviated as XLO in the following), will be created in the directory of the file system(s)
managed by the first file system management unit 310 corresponding to the directory of the file

system(s) managed by the second file system management unit 410 having the corresponding file.

An “external link object” is an object existing in the file system(s) managed by the first file
system management unit 310 being associated with a file or similar object (such as a hard linked
file). An “external link object” does not store any actual user data of the corresponding file but
includes an external reference to the corresponding file in the file system(s) managed by the second
file system management unit 410 such that the “external link object” of the file system(s) managed
by the first file system management unit 310 represents the corresponding file of the file system(s)
managed by second file system management unit 410 in the file system(s) managed by the first file

system management unit 310 and allows access to the corresponding file.

An “external link object” may at least comprise information on a remote object ID used for
the corresponding file in the file system(s) managed by the second file system management unit 410
and information on a remote path of the file in the file system(s) managed by the second file system

management unit 410.

A “migration job” is a job associated with a certain file or similar object (such as a hard linked

10

15

20

25

30

35

WO 2015/000502 "22- PCT/EP2013/063910
file) of the file system(s) managed by the file system management unit 410 of the second storage
apparatus 400 which has been virtualized by the virtualization unit 344, the “migration job”
instructing the migration unit 345 to migrate the certain file or similar object to the first storage
apparatus 300. That is, by executing the migration job” instructing the migration unit 345 to migrate
the certain file, the actual user data as content of the file is transferred to the first storage apparatus
300 to be stored in the storage unit 320.

In case jobs are created while the job queues become occupied with jobs, there is provided a
buffer unit 347 for temporarily storing directory information jobs, virtualization jobs and migration
jobs when one or more of the job queues 346A to 346C are occupied. When jobs are held by the
buffer unit 347, the jobs will be added to the respective job queues once another job is executed

and removed from the job queues.

Further exemplary details in connection with terms “virtualization”, “migration”, “external link
object”, “directory information job”, “virtualization job”, and “migration job” will become apparent in

the discussion of the more detailed description and examples below.

Fig. 4 shows an example of a file system tree structure of a file system as exemplarily
managed by the second file system management unit 410 of Figs. 1A and 1B. Specifically, it is
exemplarily assumed that the file system managed by the second file system management unit 410
and stored on the storage unit 420 of Fig. 1A has the structure of Fig. 4 at the time of disconnecting
the second storage apparatus 400 and interconnecting the first storage apparatus 300 before start
of virtualization of the file system on the first storage apparatus 300 to be managed by the first file

system management unit 310.

The exemplary file system of Fig. 4 has a highest order directory /root and plural
subdirectories. Specifically, the child directories /dirl and /dir2 exist in the /root directory in addition
to files “filel” and “file2”. That is, the /root directory represents the parent directory of the child
directories /dirl and /dir2. The directory /dirl has child directories /dirll and /dirl2 and the
directory /dir2 has one child directory /dir21 and the file “file3”. In the child directory /dirl11 of
directory /dirll, there exist files “file9” and “filel0”. Further, a file “file4” is stored in directory
/dirl1, while files “fileb” and “file6” exist in the directory /dirl2. Finally, the directory /dir21 has
files “file7” and “file8".

Once the first storage apparatus 300 is interconnected between the clients 100 and the
second storage apparatus 400 as e.g. shown in Figs. 1B, 1C or 1D, virtualization of the file system

managed by the second file system management unit 410 and stored on the storage unit 420 of Fig.

10

15

20

25

30

35

WO 2015/000502 "23- PCT/EP2013/063910
1A can be initiated as soon as an initial virtualization path is created, which virtualization path
associates one newly created directory in the file system managed by the first file system
management unit 310 of the first storage apparatus 300 (e.g. a highest order directory) with a
highest order directory of the portion of the file system managed by the second file system

management unit 410 of the second storage apparatus 400 to be virtualized and/or migrated.

For example, in case no previous file system exists on the first storage apparatus 300, a new
highest order directory /root can be created in the file system managed by the first file system
management unit 310 of the first storage apparatus 300 and be associated by a newly established
virtualization path with the highest order directory /root of the file system managed by the second
file system management unit 410 of the second storage apparatus 400, resulting in virtualization of

the tree structure of all file system objects having a lower order than the /root directory.

Fig. DA shows an example of a virtualized file system tree structure based on the tree
structure of Fig. 4 in which the highest order directory /root of the file system managed by the first
file system management unit 310 is associated with the highest order directory /root of the file
system managed by the second file system management unit 410 according to a first virtualization

path <storage apparatus 300>:/root -> <storage apparatus 400>:/root.

After complete virtualization of the file system of the second file system management unit
410 according to the first virtualization path, the first file system management unit 410 will manage
a file system having a tree structure according to Fig. 5A in which each of the directories /dird, /dir2,
/dirdd, /dirl2, /dir21 and /dirll1l of the file system managed by the second file system
management unit 410 will have been created also in the file system as managed by the first file
system management unit 310, having the same tree structure in that directories /dirl and /dir2 are
created as child directories of the highest order directory /root, directories /dirll and /dirl2 are

created as child directories of the directory /dirl and so on.

However, regarding the files (and similar objects such as hard linked files), the file system
managed by the first file system management unit 310 in the first storage apparatus 300 will not
have the actual files after virtualization but have a respective external link object XLO for each file of
the file system managed by the second file system management unit 410 in the second storage

apparatus 300.

Accordingly, after virtualization being completed, the external link objects XLO1, XLO2, XLO3,
XLO4, XLO5, XLO6, XLO7, XLO8, XL0O9, and XLO10 will exist in the file system managed by the first

file system management unit 310 in the first storage apparatus 300 instead of the respective files

10

15

20

25

30

35

WO 2015/000502 "24- PCT/EP2013/063910
filed, file2, file3, file4, fileb, file6, file7, file8, file9, and filel0 of the file system managed by the
second file system management unit 410 in the second storage apparatus 400. It is to be noted that
the external link objects in the first file system will be presented as files to the clients, i.e. the clients
will not be able to see the external link objects in the first file system but will see the actual file
names, e.g., “filel”, “file2”, “file3”, “filed”, “fileb”, “file6”, “file7”, “file8”, “file9”, and “file10”. Each
of the respective external link objects will exist in the directory of the file system managed by the first
file system management unit 310 in the first storage apparatus 300 that corresponds to the
respective directory of the file system managed by the second file system management unit 410 in

the second storage apparatus 400 having the respective file.

For example, while file10 exists in the remote path /root/dirl/dirl1/dir111/file10 in the file
system managed by the second file system management unit 410 in the second storage apparatus
400, the corresponding external link object XLO10 exists in the corresponding local path
Jroot/dirl/dirl1/dirl11/XLO10 in the first file system management unit 310 of the first storage
apparatus 300, and XLO10 represents filel0 and allows external access to filelO when a user
attempts to access file 10 in the file system at the first storage apparatus 300 by means of an
access request. That is, preferably, the local paths names will be the same as the remote paths, and
from the viewpoint of the clients, the virtualized first file system will be appearing to the clients

undistinguishable from the second file system.

Fig. 5B shows an example of another virtualized file system tree structure based on the tree
structure of Fig. 4 in accordance with another possible virtualization path. For example, in a situation
in which current users only access files and directories existing below /dirl while filed, file2 and all
objects existing below directory /dir2 are not accessed anymore, another virtualization path may be
set such as <storage apparatus 300>:/root -> <storage apparatus 400>:/root/dirl resulting in the
virtualized tree structure of Fig. BA in which only objects below directory /dirl can be accessed after

virtualization.

Fig. 5C shows an example of a corresponding virtualized tree structure according to a
virtualization path <storage apparatus 300>:/root -> <storage apparatus 400>:/root/dir2. Further, it
is possible to divide the one single file system of Fig. 4 into two separate file systems according to
Figs. 5B and 5C in case the contents of /dirl and /dir2 shall be organized in separate file systems

managed by the file system management unit 310.

In the above example, the second file system is virtualized in that it is identically rebuilt in the
first file system in that each directory of the second file system is created under the similar path in

the first file system and each file of the second file system is associated with a respective external

10

15

20

25

30

35

WO 2015/000502 "25- PCT/EP2013/063910
link object under the similar path in the first file system. However, in some embodiments, there may
be provided additionally implemented mechanisms to ensure that directories and files related to
user data in the second file system are virtualized in the first file system, while other file system
objects of the second file system, such as for example temporary directories, snapshot directories or
other file system objects that behave differently than user-data related file system objects, are not
virtualized in the first file system. For example, directories such as temporary directories or snapshot

directories of the second file system may not be created in the first file system in such embodiments.

Fig. 6 shows an exemplary flow chart of a method for virtualization initialization. The method
comprises a step S1 of blocking all user/client access from clients 100 to the second storage
apparatus 300 (in a situation similar to e.g. Fig. 1A) and a step S2 of interconnecting the first

storage apparatus 300 between the second storage apparatus 400 and the clients 100.

Furthermore, the method for virtualization initialization comprises a step S3 of creating a
highest order directory in the file system managed by the first file system management unit 310 and
a step S4 of creating (setting) a virtualization path associating the highest order directory created in
step S3 with a highest order directory of the portion of the file system managed by the second file
system management unit 410 that is to be virtualized (e.g. the highest order directory or one of the

lower directories as illustrated in connection with Figs. 5A to 5C).

Furthermore, the method for virtualization initialization comprises a step S5 of creating a
directory information job for the highest order directory set in step S3. The method further comprises
a step S6 of enabling automatic background virtualization and another step S7 of enabling user
access dependent on-demand virtualization before directly enabling client access to the first storage
apparatus 300 in step S8. It is to be noted that the order of steps S1 to S7 can be interchanged in
plural different manners, with the conditions that step S1 is performed before step2, steps S4 and
S5 are performed after step S3, steps S6 and S7 are performed after step S4, and step S8 is
performed after step S7.

Most importantly, user access to the file system can be enabled (step S8) immediately as
soon as the second storage apparatus is interconnected (step S2), a virtualization path is set (step
S4) and on-demand virtualization is enabled (step S7). Specifically, as soon as a user tries to access
a notyet-virtualized file system object in the file system, the respective file system object will be
virtualized by means of the enabled on-demand virtualization (as exemplarily described in more
detail below) so as to allow access to the file system object via the virtualized file system object, and
in case the user tries to access an already virtualized file system object, the respective file system

object can be accessed via the respective virtualized file system object.

10

15

20

25

30

35

WO 2015/000502 "26- PCT/EP2013/063910

Accordingly, a data storage system according to the above aspect can immediately enable
user access to the file system very shortly after interconnecting the first storage apparatus 300
under the condition that a virtualization path has been created and on-demand virtualization has
been enabled independent of whether automatic background virtualization (as exemplarily described
in more detail below) has yet begun and independent of the status of automatic background
virtualization. That is, access to the file system by clients 100 can be enabled again advantageously
very shortly after the single interruption for interconnecting the first storage apparatus 300 in

between the clients 100 and the second storage apparatus 400.

In the following description, exemplary aspects of automatic background virtualization
(enabled in step S6 above) will be described in more detail below. The automatic background
virtualization is performed automatically and will lead to a result that the complete file tree structure
of the file system(s) managed by the second file system management unit 410 of the second storage
apparatus 400 will be virtualized completely (i.e. will be reconstructed completely in the virtualized

manner as described in connection with Figs. 5A to 5C above) on the first storage apparatus 400.

The principle exemplary aspects of automatic background virtualization will be first described
in connection with automatically background virtualizing the file tree of Fig. 4. The automatic
background virtualization can be performed by the crawling unit 343 and the virtualization unit 344
of Fig. 3 above. And first, the crawling unit 343 will execute the directory information job created in
the step S5 above. Specifically, upon execution of step S5, the job queue 346A will contain the
directory information job for the highest order directory in the file system managed by the file system
management unit 310 according to the virtualization path set in step $4 (e.g. the two respective

/root directories in the above example of Figs. 4 and 5A).

Fig. 7 shows an illustration of information exchange between the first and second file system
servers (embodying the first and second file system management units 310 and 410) for automatic

background virtualization.

Upon executing the directory information job for the /root directory by the crawling unit 343,
the first file system management unit 310 will issue a request for /root directory information
(“request /root information”) in connection with the /root directory of the file system of Fig. 4 (the
highest order directory of the file system managed by the second file system management unit 410
as indicated by the set virtualization path, i.e. for the virtualization paths of Figs. 5B and 5C, the first
issued directory information request would already directed to /dirl and /dir2, respectively) to the

second file system management unit 410.

10

15

20

25

30

35

WO 2015/000502 -2t PCT/EP2013/063910

In response to the request for /root directory information, the second file system
management unit 410 responds by providing /root directory information including information on the
child directories /dirl and /dir2 and the files “filel” and “file2”. Specifically, the response will
indicate at least that directories /dirl and /dir2 and the files “filel” and “file2” exist in the /root

directory of the file system managed by the second file system management unit 410.

Upon receipt of the response indicating that directories /dirl and /dir2 and the files “file1l”
and “file2” exist in the /root directory of the file system managed by the second file system
management unit 410 at the first file system management unit 310, the crawling unit 343 will
update the virtualization management information table 341 for registering that it was discovered
that directories /dirl and /dir2 and the files “filel” and “file2” exist in the /root directory of the file
system managed by the second file system management unit 410, and that these directories /dirl

and /dir2 and the files “filel” and “file2” need virtualization by the virtualization unit 344.

Fig. 8 shows an example of a virtualization management information table at a first point of

time during virtualization after receiving the response of Fig. 7.

Exemplarily, the virtualization management information table includes various information
about each file system object which has been discovered by the crawling unit 343 including a name
of the file system object as used by the client 100 and the second file system management unit 410,
an object type thereof (e.g. indicating whether the file system object is a directory or a file), an object
ID thereof as used by the second management file system management unit 410, a virtualization

status of the file system object, and an object status of the file system object.

In addition to the above, the virtualization management information table may store further
information such as parent directory of the respective file system object, remote path location of the

respective file system object, one or more attributes of the respective file system object and so on.

As an “object ID”, the virtualization management information table preferably stores an
object ID that uniquely identifies the respective file system object in the file system as managed by
the second management file system management unit 410. Such object IDs may be represented by
or include information on IDs such as file handles, Inode numbers, server identifiers, device numbers
and the like, and identify uniquely the respective file system object independent of name and remote
path location. Such object IDs typically exist in file systems managed by known file system servers
because any object needs to be uniquely identified independent of the name and path location (e.g.

in case a file is renamed and/or moved from one particular path location to another path location,

10

15

20

25

30

35

WO 2015/000502 "28- PCT/EP2013/063910

the object ID may remain the same while name and/or path location thereof ma change).

Under “virtualization status”, the current status of virtualization of the discovered file system
object may be indicated, and a newly discovered file system object will be labeled as “needs
virtualization” so as to indicate that the file system object needs to be virtualized, i.e. that a
corresponding directory needs to be created for a discovered directory and that a corresponding

external link object needs to be created for a discovered file.

Once the respective file system object has been virtualized, i.e. when a corresponding
directory has been created for a discovered directory or a corresponding external link object has
been created for a discovered file, the virtualization status in the virtualization management

information table is updated to “virtualized”.

In Fig. 8, the /root directory has been created already in step S3 of Fig. 6 above, and is
labeled as “virtualized” already with respect to its virtualization status. On the other hand all other
discovered file system objects, i.e. directories /dirl and /dir2 and files “file1” and “file2” have just
been discovered and no corresponding virtualized file objects yet exist in the file system as managed
by the first file system management unit 310 so that the objects are referred to as having the

virtualization status “needs migration”.

Under “object status”, the current status of the discovered file system object may be
indicated, and a newly discovered file is labeled as “needs migration” indicating that no user data
(file content) corresponding to the respective file yet exists on the storage units 320 and 330 of the
first storage apparatus 300 and that the file needs to be migrated to the first storage apparatus 300
(after migration will be enabled), and a newly discovered directory is labeled as “Incomplete”
indicating that not all of the file system objects existing directly below the respective directory have
been virtualized yet. It is to be noted that all file system objects (/dirl, /dir2, filel and file2) that
exist in the /root directory according to the tree structure of Fig. 4 have been discovered already, but
since these objects have not been virtualized yet, the /root directory remains to be labeled as having

the object status “Incomplete”.

Once the directories /dirl and /dir2 have been created in the /root directory of the file
system managed by the first file system management unit 310 and the external link objects XLO1
and XLO2 have been created in the /root directory of the file system managed by the first file system
management unit 310, the /root directory can be updated to have the object status “Complete” (see

below).

10

15

20

25

30

35

WO 2015/000502 "29- PCT/EP2013/063910

It is to be noted that in addition to updating the virtualization management information table
as described above after receiving the response of Fig. 7, the crawling unit 343 of the first file
system management unit 310 will automatically create virtualization jobs for each of the newly
discovered file system objects which can be added to the virtualization job queue 346B to be
executed by the virtualization unit 344 (e.g. a virtualization job for /dird, a virtualization job for /dir2,
a virtualization job for filel, and a virtualization job for file2), and will automatically create directory
information jobs for each of the newly discovered child directories which can be added to the crawler
job queue 346A to be executed by the crawling unit 343 (e.g. a directory information job for /dirl

and a directory information job for /dir2).

Accordingly, virtualization of already discovered file system objects and discovering new file
system objects can be performed in a highly efficient manner in parallel to each other in that existing
virtualization jobs can be executed by the virtualization unit 344 while further directory information
jobs can be executed, in parallel, by the crawling unit 343 for discovering new file system objects
and for creating new virtualization jobs and/or directory information jobs for these newly discovered

objects.

Fig. 9 shows an example of a partially virtualized file system tree structure. Specifically, once
the directories /dirl and /dir2 have been created in the /root directory of the file system managed
by the first file system management unit 310 and the external link objects XLO1 and XLO2 have
been created in the /root directory of the file system managed by the first file system management
unit 310 by executing all four virtualization jobs created by the crawling unit 343, the tree structure
of the file system being managed by the first file system management unit 310 will be as shown in
Fig. 9. Because each of the file system objects /dirl, /dir2, filel and file2 that directly exists below
the /root directory as a parent directory have been virtualized according to Fig. 9, the object status of

the /root directory can be updated as being “Complete” as indicated in Fig. 10.

In the above example, the number of file system objects existing below the/root directory as
a parent directory is rather low, and, in principle, it must be assumed that a large number of file
system objects may exist below a certain parent directory, e.g. in some file systems, millions of files
and child directories may exist below a certain parent directory. In typical file system communication
protocols, standard requests for receiving directory information (such as e.g. READDIR or
READDIRPLUS in NFS-based file system communication protocols), the number of entries to be
returned in the response may be limited to a maximum number so that not all entries may be known
already after issuing a single directory information request. In such scenarios, the crawling unit 343
may repeatedly issue directory information requests to the same parent directory of the file system

until all file system objects thereof (child entries including files and child directories) have been

10

15

20

25

30

35

WO 2015/000502 -30- PCT/EP2013/063910

returned.

Preferably, in such scenarios as discussed in the above paragraph, the crawling unit 343
may further update the virtualization management information table after each response before
issuing the next directory information request in connection with the same parent directory, and/or
the crawling unit 343 may already create directory information jobs for each of the child directories
discovered so far and/or virtualization jobs for all file system objects discovered in the respective
parent directory so far after each response before issuing the next directory information request in

connection with the same parent directory.

Furthermore, in order to be able to restart the directory crawling by the crawling unit 343 at a
correct crawling start position after an undesirable interruption of the crawling process, the crawling
unit 343 preferably further updates the object status of the respective parent directory upon receipt
of each response so as to add information indicating the entry position up to which the respective
parent directory has been read (which may correspond to a position indicating data item provided by

the last response, such as a position indicating cookie).

Fig. 11 shows another illustration of information exchange between the first and second file
system management units 310 and 410 for automatic background virtualization. Specifically, as
discussed already above, it is assumed that the crawling unit 343 has created a respective directory
information job for each of the child directories /dirl and /dir2 upon receipt of the response of Fig, 7
and upon updating the virtualization management information table as shown in Fig. 8). Next, when
returning to the next job in the directory information job queue 346A, the crawling unit 343 will be
able to obtain the directory information job for directory /dirl, and will then issue a request for

directory information with regard to the /dirl directory.

Specifically, upon executing the directory information job for the /dirl directory by the
crawling unit 343, the first file system management unit 310 will issue the request for /dirl directory
information (“request /dirl information”) in connection with the /dirl directory of the file system of
Fig. 4 as managed by the second file system management unit 410. In response to the request for
/dirl directory information, the second file system management unit 410 responds by providing
/dirdl directory information including information on the child directories /dirll and /dirl2. The
response may indicate at least that directories /dirll and /dirl2 exist in the /dirl directory of the

file system managed by the second file system management unit 410.

Upon receipt of the response indicating that directories /dirll and /dirl2 exist in the /dirl

directory of the file system managed by the second file system management unit 410 at the first file

10

15

20

25

30

35

WO 2015/000502 -31- PCT/EP2013/063910
system management unit 310, the crawling unit 343 will update the virtualization management
information table 341 for registering that it was discovered that directories /dirl1l and /dirl2 exist in
the /dirl directory of the file system managed by the second file system management unit 410, and
that these directories /dirl1l and /dirl2 need virtualization by the virtualization unit 344, please see

the correspondingly updated virtualization management information table as shown in Fig, 12.

As shown in Fig. 12, all directories for which not all child entries have been discovered and
virtualized are labeled as having the object status “Incomplete”, and all non-virtualized file system
objects are referred to as having the virtualization status “needs virtualization”. Accordingly, in case
of interruption of the virtualization procedure, file system virtualization can be reliably and efficiently
started at a convenient starting point and does not need to be reset completely, even in the worst
case in which all or at least some existing jobs in the job queues may be lost, in that the
virtualization procedure may continue, after the undesirable interruption, easily by creating a
virtualization job for each file system object indicated as “needs virtualization” in the virtualization
management information table 341, and by creating a directory information job for each directory

indicated as being “Incomplete” in the virtualization management information table 34 1.

As exemplarily shown in Fig. 12, the virtualization management information table 341 can be
stored in blocks 341a and 341b (which also can be referred to as chunks) of a pre-determined
number of file system object entries. In the example of Fig. 12 there are only 5 entry lines per block
341a and 341b but it is to be noted that this is only for explanatory reasons, and the entry number

per block may much larger for an actual implementation.

Storing the virtualization management information in blocks (chunks), however, provides the
advantage that the separate blocks can be conveniently written from the memory 314 (where the
data contents of the virtualization management information table 341 may be stored for purposes of
ongoing virtualization processing and updating by the crawling unit 343, the virtualization unit 344
and the migration means 345) to the storage device 315 for backup purposes by the virtualization

management information backup unit 342.

Specifically, backup can be performed more efficiently without significantly affecting the
ongoing crawling and virtualization or migration processing by the crawling unit 343, the
virtualization unit 344 and the migration means 345, in that only the one block to be currently
backup-copied to the storage device 315 needs to be temporarily blocked by the virtualization
management information backup unit 342, while all other blocks of the virtualization management
information table 341 will be read- and write-accessible by the crawling unit 343, the virtualization

unit 344 and the migration means 345.

10

15

20

25

30

35

WO 2015/000502 "32- PCT/EP2013/063910

Preferred aspects in connection with backup processing for backup of the virtualization
management information table 341 in backup blocks 341a and 341b will be described in more

detail further below.

In addition to the above, upon receiving the response of Fig. 11, the crawling unit 343
creates directory information jobs for each of the directories /dirll and /dirl2 to be added to the
queue 346A and virtualization jobs for each of the directories /dirll and /dirl2 to be added to the
queue 346B. Once the virtualization jobs for the directories /dirll and /dirl2 will have been
executed by the virtualization unit 344, the directories /dirll and /dirl2 will exist directly below the
respective parent directory /dirl in the file system managed by the first file system management unit
310 under the similar local path corresponding to the respective remote path in the file system

managed by the second file system management unit 410.

Fig. 13 shows an example of the respective partially virtualized file system tree structure in
which the child directories /dirll and /dirl2 of parent directory /dirl have been created for

virtualization.

Complete and reliable automatic background virtualization may be achieved efficiently and
reliably by being continued according to the above aspects including parallel loops of executing
directory information jobs by the crawling unit 343, updating of the virtualization management
information table 341 by the crawling unit 343, creating new directory information jobs and
virtualization jobs by the crawling unit 343, executing virtualization jobs by the virtualization unit 344
and so on, until the complete tree structure of the file system managed by the second file system
management unit 410 is virtually reconstructed completely in the file system managed by the first

file system management unit 310.

That is, the complete tree structure of the file system managed by the second file system
management unit 410 is virtually reconstructed completely in the file system managed by the first
file system management unit 310, when there exists a corresponding directory in the file system
managed by the first file system management unit 310 for each directory of the file system managed
by the second file system management unit 410 and when there exists a corresponding external link
object in the file system managed by the first file system management unit 310 for each file (or
similar object such as hard linked files) of the file system managed by the second file system

management unit 410.

While the above description was made with reference to a specific example of a file tree

10

15

20

25

30

35

WO 2015/000502 -33- PCT/EP2013/063910
structure as shown in Fig. 4, a more general aspects of a virtualization procedure will be given in

connection with the below flow charts.

Fig. 14 shows an exemplary flow chart of automatic background virtualization management

as may be performed by the crawling unit 343.

The automatic background virtualization management method of Fig. 14 comprises a step
51001 of checking for a next job in the job queue. Specifically, in case multiple job queues are
provided as exemplarily shown in Fig. 3, the crawling unit 343 may search for a next directory
information job in the job queue 346A. In the next step S1002, the crawling unit 343 can observe a
new directory information job for a certain previously discovered directory existing in the file system
as managed by the second file system management unit 410 (or in case no child directories have
been discovered yet, e.g. at the beginning of the virtualization phase, the crawling unit 343 will at

least observe the directory information job created in step S5 of Fig. 6 above).

In the step S1003, the crawling unit 343 checks the virtualization management information
table 341 for the target directory of the directory information job obtained in step $1002.
Specifically, when the target directory is already present in the virtualization management
information table 341, the crawling unit 343 checks the object status of the target directory in the
virtualization management information table 341 as to whether the target directory is indicated as

being Complete or Incomplete.

If the target directory exists in the virtualization management information table 341 and is
already indicated as being Complete (i.e. all child entries have been virtualized already), i.e. when

step $1004 returns NO, the crawling unit 343 will check the job queue for a next job in step S1005.

On the other hand, if the target directory is not yet complete (or does not exist yet in the
virtualization management information table 341), i.e. when step S1004 returns YES, the crawling
unit 343 requests directory information for the target directory in a next step S1006 in that it issues
one or more directory information requests in connection with the target directory to the second file

system management unit 410 of the second storage apparatus 400.
In step S1007, the corresponding one or more responses from the second file system
management unit 410 of the second storage apparatus 400 are received, providing the directory

information indicating all or at least of some of the child entries of the target directory.

In the next step S1008, the crawling unit 343 updates the virtualization management

10

15

20

25

30

35

WO 2015/000502 -34- PCT/EP2013/063910
information table 341 and writes the received directory information for the target directory to the
virtualization management information table 341. Specifically, for each child entry (e.g. an entry
indicating a file existing in the target directory or an entry indicating a child directory existing in the
target directory) included in the information received in step S1007, a corresponding entry will be
added to the virtualization management information table 341 as discussed above, the object status
and the virtualization status being indicated according to the type of file system object, i.e.
virtualization status “needs virtualization” for each file system object and object status “incomplete”
for discovered child directories or object status “needs migration” for discovered files or similar

objects such as hard linked files.

Furthermore, the crawling unit 343 creates a respective virtualization job for each of the
newly discovered child objects in step $1009 and further creates a respective directory information
job for each newly discovered child directory in step S1010, and adds the newly created jobs to the

respective job queue or job queues.

If all child objects of the target directory up to the last child object have been observed in
step S1007 (step S1011 returns YES), the crawling unit 343 will continue with the next job in the job
queue (step S1005), and otherwise steps S1006 to S1010 will be repeated until all child objects of
the target directory have been observed. Alternatively to the loop of steps S1006 to S1010, the
crawling unit 343 may also just create a new directory information job for the same target directory
when step $1011 returns NO and then continue with step S1005, allowing for further parallelization

of job execution.

As previously discussed further above, in case the crawling unit 343 did already previously
receive directory information for some of the child entries of the respective target directory, e.g. in
connection with previous jobs for the same target directory or when repeating steps S1006 to
51010 in a loop after step S1011 returned NO (e.g. due to a limitation in the number of returned
child entries according to the used file system communication protocol), the crawling unit 343 may
further repeatedly update a start position (e.g. based on a position indicated in the response of step
S$1007 or by using, for example, a cookie) for the request for directory information for the target
directory in the virtualization management information table 341 in step $1008, allowing to request
directory information for the next not-yet-discovered child entries by using the start position in the
request of step $1006.

Due to new directory information job creation in step S1010, the automatic background
virtualization will be performed continuously until all directory information jobs are executed and no

further directory information jobs exist, indicating that all directories of the file system have been

10

15

20

25

30

35

WO 2015/000502 -35- PCT/EP2013/063910
observed, and all child entries (files and further child directories) have been discovered, so that a
respective virtualization job as created in step S1009 exists (or has been already executed) for each

of the discovered file system objects.

In parallel to the above procedure, the virtualization unit 344 will automatically execute
virtualization jobs created by the crawling unit 343 as discussed further below. However, for very
large directories, there may occur a problem when the crawling unit 343 creates a very large number
of virtualization jobs in the loop of steps S1006 to S1010, in particular in the repeating of step
51009 for all of the various child objects. It may, therefore, be desirable that the crawling speed of
the crawling unit 343 is variable and can be automatically (and/or manually) decreased depending

on the conditions.

For example, when it is detected that the data buffer unit 347 for temporarily storing jobs as
soon as one or more of the job queues are occupied, becomes occupied itself (e.g. when the number
of jobs held in the data buffer unit 347 exceeds a threshold, when the available storage space in the
data buffer unit 347 falls below a threshold, or when the ratio of available buffer storage space to
the buffer capacity exceeds a threshold, or the like), the processing speed of the crawling unit 343
may be decreased, and the crawling unit 343 may even be stopped until the data buffer unit 347
becomes less occupied (e.g. when the number of jobs held in the data buffer unit 347 falls below
another threshold, when the available storage space in the data buffer unit 347 exceeds another
threshold, or when the ratio of available buffer storage space to the buffer capacity falls below

another threshold, or the like).

Also, when the communication between the storage apparatus 300 and the storage
apparatus 400 is realized by a Fibre channel connection having a plurality of parallel Fibre channels,
it may be desirable to control the processing speed of the crawling unit 343 based on Fibre channel
availability, in that the processing speed of the crawling unit 343 is increased for increasing Fibre
channel availability and in that the processing speed of the crawling unit 343 is decreased for
decreasing Fibre channel availability (allowing for more efficient connections for communications
due to actual user access and on-demand virtualization, and for more efficient connections for
communications in connection with virtualization jobs and/or migration jobs). Also, in order to allow
for efficient user access, the processing of the crawling unit 343 may be paused in case the Fibre
channel availability falls below a threshold in order to avoid delays in user access communications

due to limited Fibre channel availability.

Fig. 15 shows an exemplary flow chart of automatic background virtualization as performed

by the virtualization unit 344. In a first step $1101, the virtualization unit 344 checks the job queue

10

15

20

25

30

35

WO 2015/000502 -36- PCT/EP2013/063910
for a next job, and obtains a virtualization job for a certain file system object in step S1102. If the
target file system object of the respective virtualization job is a directory (step S1103 returns
directory), the method continues with step S1104, and, if the target file system object of the
respective virtualization job is a file (step S1103 returns file), the method continues with step
S1112.

For a directory of the file system managed by the second file system management unit 410
to be virtualized, the virtualization unit 344 creates a new directory in the file system managed by
the first file system management unit 310 in a local path location within the parent directory, which
corresponds to the respective parent directory of the directory to be virtualized within the file system

managed by the second file system management unit 410.

The new directory is created with the same name as the directory to be virtualized so as to be
able to present the same file tree structure to clients 100. Not creating a virtual directory but already
creating true directories even during the virtualization phase has the advantage that a directory
corresponding directory can be created in the file system of the first storage apparatus 300 having
the identical path tree structure than the file system of the second storage apparatus 400 to be
virtualized, and all external link objects of the file system in the first storage apparatus 300 can be
stored already in the correct directory tree structure, so that both file systems will have the identical
tree structure after virtualization. Also, creating the directories allows to additionally store directory

metadata and file metadata already in association with the created directory.

When creating the directory in step $1104 (or already before-hand during steps $1006 and
51007), all directory attributes of the directory to be virtualized are transferred from the second
storage apparatus 400 to the first storage apparatus 300, and are stored in association with the
newly created directory in the file system as managed by the first file system management unit 310.
This has the advantage that user requests directed to attributes of the respective directory can be
handled locally by the first file system management unit 310 and do not necessarily require

communication with the second storage apparatus 400.

According to some aspects of the invention, it may be desirable to be able to locally return
user requests which inquire about the link count of the respective directory after virtualization
thereof even during ongoing virtualization. In principle, the real underlying link count of any directory
in a typical file system can be calculated as N + 2, wherein N is the total number of child directories
of the particular directory. The reason is that the parent directory of the particular directory includes,
of course, a link to the particular directory and the particular directory itself includes a child entry

which represents a self-reference link to the particular directory (sometimes referred to as the on-

10

15

20

25

30

35

WO 2015/000502 -37- PCT/EP2013/063910
dotdink or /.), and each of the child directories of the particular directory includes a link to their

respective parent directory (sometimes referred to as the double-dot-link or /..).

However, during virtualization phase, when a particular directory is created in the file system
managed by the first file system management unit 310, the corresponding child directories in the file
system managed by the second file system management unit 410, may not be discovered
completely yet by the crawling unit 343 or, if discovered, may not be virtualized yet, so that no
corresponding child directories or at least not all of the corresponding child directories may exist yet

in the file system managed by the first file system management unit 310.

In order to be able to reliably, efficiently and correctly handle attribute request relating to the
link count of a virtualized directory locally on the first storage apparatus 300, when creating a
directory during virtualization thereof in step S1104, the method continues (in any possible order)
with the optional steps $S1105 of creating a self-reference link in the respective directory, S1106 of
calculating a fake link count, S1107 of writing directory metadata, S1108 of creating a parent
directory link, and S1109 of decrement the fake link count in the metadata of the parent directory by

one.

Accordingly, when creating the particular directory in step S1104 in its respective parent
directory, the link to the particular directory inside of the parent directory will be automatically
created by way of directory creation, and the self-reference link (such as the single-dot-link or /.) will
be created in step S1105, leading to a real link count of 2 (because no child directories with parent
directory links /.. have been created yet), while the underlying actual link count of the corresponding
directory in the file system as managed by the second file system management unit 410 is N + 2, N

being the number of child directories of the particular directory.

Therefore, a fake link count will be calculated in step S1106 based on the number N of child
directories of the particular directory in the file system as managed by the second file system
management unit 410, e.g. by requesting the real link count of the particular directory from the
second file system management unit 410 and subtracting 2, and is written to the directory metadata
in step S1107. Then, when a user requests the link number of the particular directory, the first file
system management unit 310 can efficiently handle the request locally without requiring further
communication with the second storage apparatus 400 by just adding the real link count as
observed on the file system as managed by the first file system management unit 310 and the fake
link count as stored in the directory metadata, and by returning the sum of the real link count and

the fake link count.

10

15

20

25

30

35

WO 2015/000502 -38- PCT/EP2013/063910
For the above procedure, the fake link count stored in the metadata of a virtualized directory
needs to be updated whenever child directories thereof are created for purposes of their own
virtualization. That is, in the method of Fig. 15, the virtualization of a directory further includes the
steps $1108 of creating the parent directory link in the particular directory (i.e. the double-dot link or
/..) and S1109 of decrementing the fake link count as stored in the metadata of the parent directory

by one.

For example, in the Fig. 9 above, directory /dir has already been created in the virtualized file
system tree structure, and its real link count is 2 (for the self-reference link in /dirl and the /dirl link
in the /root directory) but the actual link count that needs to be returned to a user inquiring about
the link count of directory /dirl is 4 because the directory /dir in Fig. 4 additionally has two more
links, namely, one additional parent directory link /.. from each of the child directories /dirl1 and
/dirl2. Therefore, in Fig. 9, the fake link count of directory /dirl will be calculated as 2. Once
directory /dirll and the parent directory link /.. therein will be created upon execution of a
virtualization job for directory /dirll, the real link count will be 3 and, thus, the fake link count will
be decremented by one resulting in 1. Still, the sum of real link count and the fake link count is 4

and returns the correct true link count of the directory /dirl in Fig. 4.

Once all child directories of a particular directory have been virtualized, the fake link count of
the particular directory should have become 0, and if the fake link count of a directory for which no
further virtualization jobs exist or a directory which is indicated to have the object status “Complete”
is still larger than zero, such situation may indicate about a problem that not all child directories
have been discovered, and a directory information job can be created again for the particular

directory in order to guarantee the completeness of the virtualized directory.

Vice versa, it is possible to detect whether a directory is complete in that it is checked
whether the fake link count of the parent directory of the particular directory as created in step
51104 has become O, and if step S1110 returns YES, when the parent directory is indicated as
being “Incomplete”, the virtualization management information table 341 is updated in that the
object status of the parent directory is updated to “Complete”. Thereafter (or directly after step
51110 returns NO), the virtualization status of the particular directory is updated to “virtualized” in
step S1114, and the virtualization unit 344 checks the job queue for the next job (step S1115,
corresponding to step $1101).

On the other hand, when step S1103 returns “file” when the object to be virtualized
according to the virtualization job of S1102 is a certain file, the virtualization unit 344 creates a

respective external link object, referred to as XLO, representing the certain file and allowing access

10

15

20

25

30

35

WO 2015/000502 -39~ PCT/EP2013/063910
to the certain file of the file system managed by the second file system management unit 410, in the
local path location corresponding to the remote path location of the file, i.e. in the virtualized
directory that corresponds to the directory of the file system managed by the second file system

management unit 410 in which the certain file exists.

On the other hand, instead of steps $S1112 and S1113 of Fig. 14 as described above, a more
detailed method as described exemplarily with reference to Fig. 16 below may optionally be
implemented for file virtualization so as to be able to enable more efficient handling of hard linked
files, also referred to as hard links. It is to be noted that “hard links” may refer to a group of files

which are associated with the same actual user data.

That is, while each hard link of a group of hard links from the view point of the user(s) has the
appearance of an independent file, the hard links potentially having different names and/or different
path locations, each hard link points to the same actual user data stored on the storage unit 410.
And, if that user data were to be modified, e.g. by writing data to one of the hard linked files, the
underlying data were to be modified for all hard links, and, if one or more of the hard links were to be
renamed and/or moved to different path locations, other hard links would not recognize such moving

or renaming of hard links (which is different for so-called soft links).

When the crawling unit 343 discovers a file which represents one hard link of a group of hard
links pointing to the same file data content, the crawling unit 343 still cannot easily discover the
other hard links of the group of hard links, but the crawling unit 343 or the virtualization unit 344
can determine the total number of hard links by reading the link count from the file attributes in the
metadata for the discovered hard link. Similar to the situation in connection with link counts of
directories, it is desirable that the first file system management unit 310 can return link counts of
hard links locally upon virtualization of only one of the link counts, and it is desirable to efficiently

handle virtualization of hard links.

Fig. 16 shows another exemplary flow chart of automatic background migration for more
efficiently and reliably handling hard linked files (hard links). Steps $1101, $1102, S1112, S1113,
$1114 and S1115 are similar to the steps of the same reference numeral in Fig. 15 as described

above.

Upon obtaining the virtualization job for a certain file, the link count N of the file is
determined in step S1120 (e.g. by requesting the link count information for the respective file from
the second file system management unit 410 or by receiving metadata indicating the link counts of

files already with the responses of step S1007 of Fig. 14), and it is checked whether the link count is

10

15

20

25

30

35

WO 2015/000502 -40- PCT/EP2013/063910
larger than one (step S1121). When step $1121 returns NO, the method continues similar to the file
virtualization of Fig. 15 (i.e. steps S1112, 51113, 51114 and S1115/51101).

However, when the link count N of the particular file to be virtualized is larger than one (i.e.
when there exists at least one other hard link) and step $1121 returns YES, the object ID of the file
is determined (step $1122) and a hidden index directory, which has been created previously in the
file system managed by the first file system management unit 310, is checked for the existence of a
subdirectory which is associated with the object ID of the hard link/file (step $1123).

As will become apparent in the following, the existence of the subdirectory, which is
associated with the object ID of the hard link/file in the hidden index directory, would indicate that
another hard link of the same group of hard links (having the same object ID but differing names
and/or remote path locations) was already discovered previously by the crawling unit 343. On the
other hand, if no such associated subdirectory exists in the hidden index directory, this indicates that

no other hard link of the same group of hard links was previously discovered.

Accordingly, if no associated subdirectory exists in the hidden index directory, indicating that
no other hard link of the same group of hard links was previously discovered, an index subdirectory
being associated with the object ID of the discovered hard link (i.e. of the particular file) is created in
the hidden index directory in step S1125 and within the created associated index subdirectory, N-1
hard links are created within the associated index subdirectory in step S1126, and the external link
object that is created in the local path location corresponding to the remote path location of the
file/hard link to be virtualized in step $S1112 is created as another hard link of the group of hard
links as created in step $1126. Therefore, the actual link count of the external link object created in
step S1112 is N-1 + 1 = N and corresponds identically to the underlying actual link count N of the
file/hard link to be virtualized.

On the other hand, if it is determined in step S1124 that an index subdirectory being
associated with the object ID of the file/hard link to be virtualized already exists in the hidden index
directory (step S1124 returns YES), one of the hard links existing in the associated index
subdirectory is removed in step S1127 and a corresponding hard linked external link object is
created in the local path location corresponding to the remote path location of the file/hard link to
be virtualized in step S1112, the hard linked external link object being created as another hard link

of the group of hard links of the associated index subdirectory.

By steps S1127 and S$1112, the underlying true total link number remains the same in the

file system of the first storage apparatus 300, namely, the hard link number N of the corresponding

10

15

20

25

30

35

WO 2015/000502 ~41- PCT/EP2013/063910
hard link group in the second storage system 400, independent of whether all other hard links have

been discovered yet or not.

Instead of separately performing steps S1127 and S$1112, the similar effect may be
achieved even more efficiently by providing only one single step of a renaming operation in
connection with one of the hard links stored in the associated index subdirectory (the renaming
operation including changing the name of one hard link and/or moving that hard link from the index
subdirectory to the local target path location of the file to be virtualized according to the job of step
S$1102).

Finally, if no further hard links remain in the index subdirectory after step S1127 or after a
renaming operation as discussed above (step S1128 returns NO), the associated index subdirectory

may be removed (e.g. deleted) in step $S1129.

Fig. 17A shows an exemplary schematic data structure of an external link object 1100 for a
file (or hard linked file). The external link object 1100 exemplarily includes a first information section
1110 having metadata on the file regarding the external file system as managed by the second file
system management unit 410 including a name as used in the external file system, a remote path
location of the file in the external file system, a remote object ID as used in the external file system,
a remote Inode number as used in the external file system, a remote file system ID of the external
file system (e.g. in case plural file systems are handled by the second file system management unit
410), and a remote device ID indicating the device of the storage unit 420 in which the file data

content is stored.

By referencing the name and the remote path location and/or the remote object ID, the
external link object allows access to the file in the external file system, when a user tries to access
the file by access request referring to the name and the remote path location and/or the remote

object ID as used in the external file system.

The external link object 1100 exemplarily further includes a second information section
1120 having metadata on the file regarding the internal (local) file system as managed by the first
file system management unit 310 including a name as used in the local file system, a local path
location of the external file object in the internal file system, a local object ID as used in the internal
file system, a local Inode number as used in the internal file system, a local file system ID of the
internal file system (e.g. in case plural file systems are handled by the first file system management
unit 310), and a local device ID indicating the device of the storage unit 320 in which the file data

content is stored or in which data blocks may be allocated already for later migration of data.

10

15

20

25

30

35

WO 2015/000502 S42- PCT/EP2013/063910

In addition, the second information section 1120 may indicate an object store length
corresponding to the size of file content data already stored in the storage unit 420 (i.e. when the
object store length of the file corresponds to the length of the file on the external file system, this
means that all data of the actual file content has been fully migrated). Before initiating migration,
since no actual file content data will be transferred, the object store length will remain to be zero

during virtualization.

The external link object 1100 exemplarily further includes a third information section 1130
having metadata on attributes of the file including a current time stamp (indicating time of last
modifying access to the file), a link count of the file, a length of the file (in the external file system),
and further file attributes. Since file attributes are stored with the external link object in the third
information section 1130, attribute requests sent from the users via clients 100 can be conveniently
and efficiently handled locally by the first file system management unit 310 as soon as the external

link object is created, i.e. as soon as the file is virtualized.

Fig. 17B shows an exemplary schematic data structure 1200 of metadata for a virtualized
directory. The directory metadata 1200 exemplarily includes a first information section 1210 having
metadata on the directory regarding the external file system including a name as used in the
external file system, a remote path location of the directory in the external file system, a remote
object ID as used in the external file system, a remote Inode number as used in the external file
system, a remote file system ID of the external file system (e.g. in case plural file systems are
handled by the second file system management unit 410), and a remote device ID indicating the

device of the storage unit 420 in which the directory is stored.

The directory metadata 1200 exemplarily further includes a second information section
1220 having metadata on the directory regarding the internal (local) file system as managed by the
first file system management unit 310 including a name as used in the local file system, a local path
location of the directory in the internal file system, a local object ID as used in the internal file
system, a local Inode number as used in the internal file system, a local file system ID of the internal
file system (e.g. in case plural file systems are handled by the first file system management unit
310), and a local device ID indicating the device of the storage unit 320 in which the directory is

stored.

The directory metadata 1200 exemplarily further includes a third information section 1230
having metadata on attributes of the directory including a current time stamp (indicating time of last

modifying access to the directory), a real link count of the directory, a fake link count of the directory,

10

15

20

25

30

35

WO 2015/000502 ~43- PCT/EP2013/063910
and further directory attributes. Since directory attributes are stored with the directory metadata in
the third information section 1230, attribute requests sent from the users via clients 100 can be
conveniently and efficiently handled locally by the first file system management unit 310 as soon as

the directory and its metadata are created, i.e. as soon as the directory is virtualized.

While the above description related to the automatic background virtualization, further
preferable aspects of the present invention may relate to automatic on-demand virtualization as
described below which may be triggered by receiving access request from a client 100 directed to a

certain file system object.

Fig. 18 shows an illustration of information exchange between the first and second file
system management units 310 and 320 for on-demand virtualization. For example, when a request
is received from a client 100 directed to file8 in a situation of virtualization according to Fig. 13,
neither file8 nor the corresponding virtualized external link object XLO8 will exist in the directory
/dir21 and /dir21 will not exist either. Therefore, when receiving the access request to file 8, which
was not yet virtualized by automatic background virtualization, the first file system management unit
310 will block access to file8 for the client 100 and issue a request for looking up the remote path
as indicated by the user (e.g. /root/dir2/dir21/file8).

Since /dir2 was previously discovered and virtualized already during automatic background
virtualization, the first file system management unit 310 will issue subsequently requests to the
second file system management unit 410 for looking up (e.g. a LOOKUP request in NFS-based file
system communication protocols) all remaining unknown file system objects in the remote path of
the target file “file8”, i.e. it will issue look up requests with respect to directory /dir21 in /dir2 and
file8 in /dir21 and wait for the respective responses. Then, once the existence of /dir21 and file8
are confirmed by responses from the second file system management unit 410, the first file system
management unit 310 performs user-triggered on-demand virtualization of /dir21 and file8 in that it
locally creates /dir21 in the previously virtualized /dir2 and an external link object XLO8 in the newly
created /dir21. Thereafter, user access to file8 is enabled immediately via the newly created
external link object XLO8, before virtualizing all other remaining file system objects in /dir2 and
/dir21.

Fig. 19 shows an example of a partially virtualized file system tree structure after on-demand
virtualization according to Fig. 18. Accordingly, the directory /dir21 and the external file system

object XLOS8 exist in the file system locally managed by the first file system management unit 310.

Fig. 20 shows an exemplary flow chart of a method for enabling user file access during

10

15

20

25

30

35

WO 2015/000502 S44- PCT/EP2013/063910

virtualization (including on-demand virtualization, if the target file has not yet been virtualized).

When an access request is received from a user via a client 100 directed to a particular
target file in the file system in step $2001, the first file system management unit 310 checks the
virtualization management information table 341 as to whether the target file has been virtualized
yet (step S2002). If step S2002 returns YES, user access to the target file in the file system is
immediately enabled through the external link object corresponding to the target file (step S2008).

On the other hand, in case the target file has not yet been virtualized (step $S2002 returns
NO), the first file system management unit 310 will look up the target file in the remote path of the
target file as indicated in the access request received in step S2001. If the existence of the target
file (or any of the directories of the remote path) is not confirmed by the second file system
management unit 410 (e.g. when the user has provided an incorrect remote path) and step 52004

returns NO, an 1/0 error is returned to the client 100 which sent the access request.

If the existence of the target file is confirmed by the second file system management unit
410 by response to the look up request(s) of step S2003 (step $2004 returns YES), the first file
system management unit 310 will create virtualization jobs for each of the non-virtualized objects of
the remote path (i.e. for all non-virtualized directories in the remote path and for the target file) in
step S2006. In further preferred aspects, the first file system management unit 310 may additionally
create directory information jobs for each of the non-virtualized directories of the remote path. And
the above-mentioned jobs may be added ad-hoc to the same job queue(s) as used for the automatic

background virtualization as mentioned above.

Once all previously non-virtualized objects of the remote path, including the target file, have
been virtualized (step S2007 returns YES), the user access to the target file in the file system is

enabled through the external link object corresponding to the target file (step S2008).

Fig. 21 shows an exemplary flow chart of a method for enabling attributes access during

virtualization (including on-demand virtualization, if the target object has not yet been virtualized).

When an attribute information request is received from a user via a client 100 directed to a
particular file system object in the file system in step 52101, the first file system management unit
310 checks the virtualization management information table 341 as to whether the target object
has been virtualized yet (step $2102). If step S2102 returns YES, the request is handled locally and
the requested attribute information is returned based on attribute information stored in connection

with the external link object or the directory metadata (step S2108).

10

15

20

25

30

35

WO 2015/000502 "45- PCT/EP2013/063910

On the other hand, in case the target object has not yet been virtualized (step $2102 returns
NO), the first file system management unit 310 will look up the target object in the remote path of
the target object as indicated in the attribute information request received in step $2101. If the
existence of the target object (or any of the directories of the remote path) is not confirmed by the
second file system management unit 410 (e.g. when the user has provided an incorrect remote

path) and step $2104 returns NO, an error is returned to the client 100 which sent the request.

If the existence of the target object is confirmed by the second file system management unit
410 by response to the look up request(s) of step $2103 (step $2104 returns YES), the first file
system management unit 310 will create virtualization jobs for each of the non-virtualized objects of
the remote path in step S2106. In further preferred aspects, the first file system management unit
310 may additionally create directory information jobs for each of the non-virtualized directories of
the remote path. And the above-mentioned jobs may be added ad-hoc to the same job queue(s) as

used for the automatic background virtualization as mentioned above.

Once all previously non-virtualized objects of the remote path, including the target object,
have been virtualized (step S2107 returns YES), the request is handled locally and the requested
attribute information is returned based on attribute information stored in connection with the

external link object or the directory metadata (step $2108).

Fig. 22A shows an exemplary flow chart of a method for enabling user directory access
during virtualization (including on-demand virtualization, if the target directory has not yet been

virtualized).

When an access request is received from a user via a client 100 directed to a particular
target directory in the file system in step S2201, the first file system management unit 310 checks
the virtualization management information table 341 as to whether the target directory has been
virtualized yet (step $2202). If step S2202 returns YES, the method continues with step $2209

according to this exemplary aspect (described further below).

On the other hand, in case the target directory has not yet been virtualized (step $2202
returns NO), the first file system management unit 310 will look up the target directory in the remote
path of the target directory as indicated in the access request received in step $2201. If the
existence of the target directory (or any of the directories of the remote path) is not confirmed by the
second file system management unit 410 (e.g. when the user has provided an incorrect remote

path) and step S2204 returns NO, an I/0 error is returned to the client 100 which sent the access

10

15

20

25

30

35

WO 2015/000502 -46- PCT/EP2013/063910

request.

If the existence of the target directory is confirmed by the second file system management
unit 410 by response to the look up request(s) of step S2203 (step S2204 returns YES), the first file
system management unit 310 will create virtualization jobs for each of the non-virtualized objects of
the remote path (i.e. for all non-virtualized directories in the remote path) in step S2206. According
to this exemplary aspect, the method continues with step $2207 of additionally create virtualization
jobs for each of the child objects of the target directory (including all child directories of the target

directory and all files contained in the target directory).

In further preferred aspects, the first file system management unit 310 may additionally
create directory information jobs for each of the non-virtualized directories of the remote path and/or
directory information jobs for each of the child directories of the target directory. And the above-
mentioned jobs may be added ad-hoc to the same job queue(s) as used for the automatic

background virtualization as mentioned above.

Once all previously non-virtualized objects of the remote path, including the target directory,
have been virtualized (step S2208 returns YES), and all child directories of the target directory have
been virtualized (step $2209 returns YES), the method goes to step $2210 and updates the object
status of the target directory to “Complete”. Thereafter, client access to the target directory is
enabled in step S2211.

However, if step $S2209 returns $2209 (e.g. when not all jobs created in step S2207 have
been yet executed, or in case the method went from step $2202 to $2209), the method waits or
may even return to step S2207 for precautionary reasons. On the other hand, if step S2209 returns
NO, the method may just wait because the virtualization jobs have been previously created in step
$2209 or upon virtualization of the target directory according to step S1009 of the automatic
background migration, when step S2202 returns YES.

In the above, while it may be desirable to have virtualized all child directories of the target
directory before enabling user access to the target directory (because all lookup and directory
information requests from the user can be conveniently handled locally), such method may lead to

undesirable delays for target directories having a large number of child entries.

In order to avoid such undesirable delays for target directories having a large number of child
entries, another alternative method may be provided in which the child directories of the target

directory are not necessarily virtualized before enabling user access to the target directory.

10

15

20

25

30

35

WO 2015/000502 “AT- PCT/EP2013/063910
Accordingly, Fig. 22B shows an alternative exemplary flow chart of a method for enabling user
directory access during virtualization. Steps $2201, $2202, §2203, $2204, 52205, $2206, S2207,
$2208, and $2211 are the same as in Fig. 22A described above, however, steps S2209 and 52210

are omitted.

Accordingly, even for target directories having a large number of child entries (such as
millions of entries), user access to the target directory can be enabled without any undesirable
delays due to virtualization of the large number of child entries immediately upon virtualization of the

target directory. Still, due to step S2207, background migration of the child entries will be ongoing,

Regarding directory information requests sent from the user, it needs to be determined
whether the request can be handled locally or needs to be passed through to the second storage
apparatus 300. For example, when a file system communication protocol used does limit the
number of child entries that are returned in response to a directory information request to a
maximum number M so that a list of M child entries is typically returned in response to a directory
information request, and the request does not indicate any start position, the request needs to
respond by a list of the first M child entries, and it can be handled locally if already at least the first

M child objects have been virtualized yet.

If less than M child objects of the target directory have been virtualized yet, the request must
be passed through to the second file system management unit 410, and the response of the second
file system management unit 410 is returned to the requesting client 100. Similarly, when the
directory information request indicates a start position (e.g. indicating that the list of returned entries
shall start with a P-th child entry), and the request can be handled locally if already at least the first
M + P child objects have been virtualized yet, and otherwise the request needs to be passed
through.

Fig. 23 shows an exemplary flow chart of a method for virtualization management table
backup. As described above, the virtualization management information table 341 is stored in

blocks (chunks) 341a to 341d of a predetermined size (i.e. having a certain number of entry lines).

During virtualization (and/or migration) processing, the virtualization management
information table 341 will be held in the memory 314, but the virtualization management
information backup unit 342 is adapted to repeatedly or even periodically perform creating backup
copies of the virtualization management information table 341 and copying the created backup

copies to the storage device 315.

10

15

20

25

30

35

WO 2015/000502 ~48- PCT/EP2013/063910

However, since plural threads of the multi-threaded crawling unit 343, virtualization unit 344,
and migration unit 345 may very often access the virtualization management information table 341
for updating the same, and since the total number of entries in the virtualization management
information table 341 may become very large for file systems having millions to milliards (thousands
of millions) of file system objects, backup execution can be made more efficient when the
virtualization management information table 341 is not backup-copied as a whole but in units of the
blocks 341a to 341d, wherein when access 1o a certain one block, which is currently backed up, is
blocked, the crawling unit 343, virtualization unit 344, and migration unit 345 may still efficiently

read-write-access all other blocks.

According to backup processing according to Fig. 23, virtualization management information
table backup is enabled in step $S2301 and the backup processing performed by the virtualization
management information backup unit 342 goes to the next (or first) virtualization management

information table block in step S2302.

In step $2302, it is checked whether that virtualization management information table block
contains any directory that is indicated as having the object status “Complete”. If no such directory
exists (e.g. in case all entries in the block relate to files or file-like objects such as hard links or in
case all directories indicated in the block have the object status “Incomplete”) and step $2303
returns NO, the backup method immediately continues with step $S2308 of creating a backup copy of
the current virtualization management information block and storing the copy to the storage device
315 (and/or to a remote backup storage device). Then, the method continues with the next block in
step $2302.

On the other hand, if step $2303 returns YES, it is checked whether there does exist a
previous backup version of the respective block, and if it exists, the previous backup version is
checked for each directory being indicated as “Complete” in the current block as to whether the
same directory was previously indicated as “Incomplete” in the previous backup version of that
particular block (step S2305). If step S2305 returns NO, i.e. if all directories indicated as being
Complete in the current block have been indicated as being Complete already in the previous
backup version of that particular block, the method continues with step S2308 of creating a backup
copy of the current virtualization management information block and storing the copy to the storage
device 315 (and/or to a remote backup storage device). Then, the method continues with the next
block in step S2302.

However, if step S2305 returns YES, i.e. when at least one directory that has been indicated

as being “Incomplete” in the previous backup version of that particular block but is now indicated as

10

15

20

25

30

35

WO 2015/000502 ~49- PCT/EP2013/063910
being “Complete” in the current version of the particular block, then the backup processing
performed by the virtualization management information backup unit 342 first determines, in step
52306, all other table blocks of the virtualization management information table 341 which do
contain at least one entry relating to a child directories of the directory (or directories) determined in
step 52305, and performs backup of all the other table blocks as determined in step $2307 before
performing backup of the current table block in step S2308.

Accordingly, even in case of interruption of the virtualization and loss of the data in the
memory 314 including the data of the virtualization management information table 341 and data in
the job queues 346A to 346C, the virtualization (and migration) could be restarted reliably in that the
virtualization management information table 341 could be restored from the backup copies and a
respective virtualization job could be created for all objects indicated as “needs virtualization” and a
respective directory information job could be created for each directory having the object status

“Incomplete”, without the requirement of restarting the complete virtualization.

However, if blocks containing information of just completed directories were used for backup
without also performing preliminary backup of the blocks having information on the child directories,
objects being contained in the child directories could be missed. Specifically, when a directory is
indicated as being COMPLETE, it means that all child objects have been virtualized, and all child
directories do actually already exist (in the file system as well as in the virtualization management
table), however, when data loss in the job queues leads to the situation in which the directory
information request directed to one or more of these child directories are lost and their table blocks
were not yet backed up since they were added to the table blocks, child entries of these child

directories might never be virtualized by automatic background virtualization.

On the other hand, by performing backup of table blocks of completed directories not before
performing also backup in connection with each further table block that contains at least on child
directory entry, such undesirable situations can be reliably avoided even in worst case scenarios of
virtualization interruption and data loss in the job queues and the virtualization management

information table.

Fig. 24 shows an example of the virtualization management information table 341 upon
completion of virtualization of the file system tree of Fig. 4. The table is exemplarily divided into four
data blocks 341a to 341d, and contains one entry for each of the file system objects of the file
system tree structure of Fig. 4. Each of the file objects indicated in the table 341 of Fig. 24 has the
virtualization status “virtualized” indicating that a respective external link object exists for each of

the files of the file system as managed by the second file system management unit 410 according to

10

15

20

25

30

35

WO 2015/000502 -50- PCT/EP2013/063910
the structure of Fig. DA, and each file object has the object status “needs migration” indicating that
none of the actual file content data has been yet migrated from the storage unit 420 of the second

storage apparatus 400 to the storage unit 320 of the first storage apparatus 300.

Each of the directory objects indicated in the table 341 of Fig. 24 has the virtualization status
“virtualized” indicating that a respective directory of the same name exists for each of the directories
of the file system as managed by the second file system management unit 410 according to the tree
structures of both of Figs. 4 and b5A, and each directory object has the object status “Complete”

indicating that all child objects thereof have been virtualized as well.

In a second phase of migration, the crawling unit 343 may then re-walk the whole
virtualization management information table 341 in order to create a respective migration job for
each file object indicated as “needs migration” to be added to the job queue 346C, so that the
migration unit 345 may successively execute one or more migration (e.g. in parallel as a multi-
threaded migration unit 345) and migrate actual file content data to the storage unit 320 of the first

storage apparatus 300.

Alternatively, it is of course possible to initiate the migration phase even before the
completion of the virtualization phase. Then, the crawling unit 343 or also the virtualization unit 344
may create migration jobs already during virtualization, e.g. together with or after one of steps
§1007, S1008, S1009, S1010, S1112, S1113, or S1114 discussed above.

As described above in connection with Fig. 6, user access to the file system(s) handled by the
second storage apparatus 400 will be indirectly enabled through the first storage apparatus 300
(step S8) almost immediately after interconnecting the second storage apparatus 400 (step S2) and
enabling on-demand virtualization (step S7), wherein on-demand virtualization may be performed
according to Figs. 20 to 22B. Then, user access to virtualized objects may be enabled as discussed

in the following in connection with Figs. 25A to 25H.

Fig. 25A shows an illustration of information exchange between a client 100, the first and
second file system management units 310 and 410 for write access to a virtualized file. When a
write request is received for a target file (e.g. file8 of Fig. 4) at the first file system management unit
310, the write request is passed through via the corresponding external link object (e.g. XLO8 of Fig.
BA) by issuing a corresponding write request for the target file from the first file system management

unit 310 to the second file system management unit 410.

Upon receipt of the write acknowledgement from the second file system management unit

10

15

20

25

30

35

WO 2015/000502 -51- PCT/EP2013/063910
410 at the first file system management unit 310, the metadata of the corresponding external link
object is updated (e.g. by updating the length of the file, the time stamp or other file attributes that

changed by the write operation), and then the write is acknowledged to the client 100.

Fig. 25B shows an illustration of information exchange between a client 100, the first and
second file system management units 310 and 410 for read access to a virtualized file. When a read
request is received for a target file (e.g. file8 of Fig. 4) at the first file system management unit 310,
the read request is passed through via the corresponding external link object (e.g. XLO8 of Fig. 5A)
by issuing a corresponding read request for the target file from the first file system management unit

310 to the second file system management unit 410.

Upon receipt of the read response (including the read data) from the second file system
management unit 410 at the first file system management unit 310, the received read data is

transferred to the client 100 in response to the read request.

Fig. 25C shows an illustration of information exchange between a client 100, the first and
second file system management units 310 and 410 for attribute access to a virtualized file or
directory. When a read attribute request is received for a target file (e.g. file8 of Fig. 4) at the first file
system management unit 310, the corresponding attributes are read locally from the corresponding
external link object (e.g. XLO8 of Fig. 5A), and the requested attributes are efficiently and
conveniently returned to the client 100 in response to the client’s read attributes request without

any delays from communication with the second file system management unit 410.

For directories, read attribute requests are similarly handled locally at the first file system
management unit 310 by reading the corresponding attributes from the directory metadata, and the
read attributes are efficiently and conveniently returned to the client 100 in response to the client’s
read attributes request without any delays from communication with the second file system

management unit 410.

In case of an inquiry on the link count of the directory, the first file system management unit
310 does not return the actual link count of the corresponding directory on the file system as
managed by the first file system management unit 310 but returns the actual link count of the
corresponding directory on the file system as managed by the second file system management unit

410 by returning the sum of the real link count and the fake link count as described above.

Fig. 25D shows an illustration of information exchange between a client 100, the first and

second file system management units 310 and 410 for deleting a virtualized file. When a delete

10

15

20

25

30

35

WO 2015/000502 -52- PCT/EP2013/063910
request is received for a target file (e.g. file8 of Fig. 4) at the first file system management unit 310,
the delete request is passed through via the corresponding external link object (e.g. XLO8 of Fig. 5A)
by issuing a corresponding delete request for the target file from the first file system management

unit 310 to the second file system management unit 410.

Upon deletion of the target file (e.g. file8) by the second file system management unit 410
and receipt of the deletion acknowledgement from the second file system management unit 410 at
the first file system management unit 310, the corresponding external link object (e.g. XLO8) is
deleted and the corresponding entry in the virtualization management information table 341 is
removed in order to avoid creation of a migration job for the deleted file, and then the deletion of the

target file is acknowledged to the client 100.

Fig. 25E shows an illustration of information exchange between a client 100, the first and
second file system management units 310 and 410 for file creation. When a file creation request is
received at the first file system management unit 310 for creating a new file in a target path
location, a corresponding new external link object is created in the local path corresponding to the
target path location, and the file creation request is passed through by issuing a corresponding file
creation request for the target file in the target path location from the first file system management

unit 310 to the second file system management unit 410.

Upon creation of the new file in the remote path corresponding to the target path location
and receipt of the file creation acknowledgement from the second file system management unit 410
at the first file system management unit 310 (and potentially after updating the metadata of the
corresponding external link object), the file creation of the target file is acknowledged to the client
100.

Fig. 25F shows an illustration of information exchange between a client 100, the first and
second file system management units 310 and 410 for changing attributes. When a change
attribute request is received for a target file (e.g. file8 of Fig. 4) at the first file system management
unit 310, the change attribute request is first executed in that the attributes in the corresponding
external link object (e.g. XLOS8 of Fig. 5A) are changed according to the change attribute request, and
the change attribute request is then passed through via the corresponding external link object (e.g.
XLO8) by issuing the corresponding change attribute request for the target file from the first file

system management unit 310 to the second file system management unit 410.

Upon change of the attributes of the target file by the second file system management unit

410 and receipt of the attribute change acknowledgement from the second file system management

10

15

20

25

30

35

WO 2015/000502 -83- PCT/EP2013/063910
unit 410 at the first file system management unit 310, the attribute change is acknowledged to the
client 100. Similarly, when receiving a change attribute request for a target directory at the first file
system management unit 310, the directory metadata of the virtualized directory is updated for
changing the attributes according to the request, and then the change attribute request is

transferred to the second file system management unit 410.

Fig. 25G shows an illustration of information exchange between a client 100, the first and
second file system management units 310 and 410 for directory creation. When a directory creation
request is received at the first file system management unit 310 for creating a new empty directory
in a target path location, a corresponding new empty directory and its directory metadata is created
in the local path corresponding to the target path location and the new directory is indicated as being
COMPLETE, and the directory creation request is passed through by issuing a corresponding
directory creation request for the target directory in the target path location from the first file system

management unit 310 to the second file system management unit 410.

Upon creation of the new empty directory in the remote path of the file system managed by
the second file system management unit 410 corresponding to the target path location and receipt
of the directory creation acknowledgement from the second file system management unit 410 at the
first file system management unit 310 (and potentially after updating the metadata of the
corresponding directory metadata), the directory creation of the target directory is acknowledged to
the client 100.

Fig. 25H shows an illustration of information exchange between a client 100, the first and
second file system management units 310 and 410 for directory renaming. When a directory
rename request (changing name and/or path location of the directory) is received at the first file
system management unit 310 for renaming an existing directory, the corresponding directory is
renamed in accordance with the directory rename request in the file system as managed by the first
file system management unit 310, and the directory rename request is passed through by issuing a
corresponding directory rename request for the target directory from the first file system

management unit 310 to the second file system management unit 410.

Upon renaming the target directory in accordance with the directory rename request in the
file system as managed by the second file system management unit 410 and upon receipt of the
rename acknowledgement at the first file system management unit 310 from the second file system
management unit 410, the directory renaming of the target directory is acknowledged to the client
100.

WO 2015/000502 -54- PCT/EP2013/063910

Features, components and specific details of the structures of the above-described
embodiments may be exchanged or combined to form further embodiments optimized for the
respective application. As far as those modifications are readily apparent for an expert skilled in the
art they shall be disclosed implicitly by the above description without specifying explicitly every

possible combination, for the sake of conciseness of the present description.

10

15

20

25

30

35

WO 2015/000502 -5~ PCT/EP2013/063910

CLAIMS

1. Apparatus for providing a virtualized file system enabling indirect access to a second
file system in a data storage system comprising a plurality of client computers, a second file system
managing unit for managing the second file system and enabling client access to the second file
system, and a first file system managing unit interconnected between the plurality of client
computers and the second file system managing unit,

the apparatus comprising the first file system managing unit adapted to:

- create a first directory in a first file system managed by the first file system managing unit;

- associate a first directory of the second file system with the first directory of the first file
system;

- enable on-demand virtualization of the second file system by the first file system managing
unit based on client requests received from the client computers at the first file system managing
unit and based on the association between the first directory of the first file system and the first
directory of the second file system; and

- enable indirect client access to the second file system through the first file system.

2. Apparatus according to claim 1, characterized in that

for executing on-demand virtualization, the first file system managing unit is adapted to:

- receive, from a client computer, an access request directed to a second directory of the
second file system in a second path location with respect to the first directory of the second file
system;

- create, upon receiving the access request directed to the second directory of the second file
system, a second directory in the first file system in the second path location with respect to the first
directory of the first file system; and

- store metadata of the second directory of the second file system in the first file system as

metadata of the second directory of the first file system.

3. Apparatus according to claim 2, characterized in that,

the first file system managing unit is adapted to:

when the access request is a request for modifying the second directory of the second file
system, modify the second directory of the first file system in accordance with the received access
request, send the access request to the second file system managing unit for modifying the second
directory of the second file system in accordance with the received access request by the second file
system managing unit; and,

when the access request is a request for reading attributes of the second directory of the

10

15

20

25

30

35

WO 2015/000502 -56- PCT/EP2013/063910
second file system, return requested attributes of the second directory of the second file system

based on metadata of the second directory of the first file system.

4, Apparatus according to any one of claims 1 to 3, characterized in that

for executing on-demand virtualization, the first file system managing unit is adapted to:

- receive, from a client computer, an access request directed to a first file of the second file
system in a first path location with respect to the first directory of the second file system;

- create, upon receiving the access request directed to the first file of the second file system,
a first external link object in the first file system in the first path location with respect to the first
directory of the first file system; and

- store metadata of the first file of the second file system in the first file system as metadata
of the first file together with the first external link object of the first file system;

wherein the external link object is a file system object of the first file system representing the
first file of the second file system in the first file system and enabling access to the first file of the
second file system, the first external link object including link data indicative at least of a unique
object ID of the first file in the second file system and the first path location with respect to the first

directory of the second file system.

5. Apparatus according to claim 4, characterized in that,

the first file system managing unit is adapted to:

when the access request is a request for modifying the first file of the second file system,
send the access request to the second file system managing unit on the basis of the link data of the
first external link object for modifying the first file of the second file system in accordance with the
received access request by the second file system managing unit; and,

when the access request is a request for reading attributes of the first file of the second file
system, return requested attributes of the first file of the second file system based on metadata of

the first external link object.

6. Apparatus according to any one of claims 1 to 5, characterized in that

the first file system managing unit is adapted to:

- enable automatic virtualization of the second file system by the first file system managing
unit independent of client requests received from the client computers at the first file system
managing unit and based on virtualization management information managed by the first file system
managing unit and based on the association between the first directory of the first file system and
the first directory of the second file system, the virtualization management information being at least

indicative of the first directory existing in the second file system.

10

15

20

25

30

35

WO 2015/000502 -57- PCT/EP2013/063910

7. Apparatus according to claim 6, characterized in that

for executing automatic virtualization, the first file system managing unit is adapted to:

- send, to the second file system managing unit, a directory information request directed to a
target directory of the second file system indicated in the virtualization management information for
requesting information indicative of child objects existing in the target directory of the second file
system;

- receive, from the second file system managing unit, information indicative of child objects
existing in the target directory of the second file system in response to the directory information
request; and

- update the virtualization management information based on the received information

indicative of child objects existing in the target directory of the second file system.

8. Apparatus according to claim 7, characterized in that

for executing automatic virtualization, the first file system managing unit is adapted to:

- create, for each child object existing in the target directory of the second file system as
indicated in the virtualization management information, an associated file system object in the first
file system in a path location with respect to the first directory of the first file system corresponding
to the path location of the associated child object with respect to the first directory of the second file

system.

o. Apparatus according to claim 8, characterized in that

said sending the directory information request is automatically repeated by the first file
system management unit for a plurality of target directories of the second file system, and

said creating, for each child object existing in the target directory of the second file system as
indicated in the virtualization management information, the associated file system object in the first
file system is repeated by the first file system management unit for each of the plurality of target

directories.

10. Apparatus according to claim 9, characterized in that

said repeatedly sending the directory information request for a plurality of target directories
of the second file system and said repeatedly creating the associated file system object in the first
file system for each of the child directories of the plural target directories are performed in parallel

by the first file system management unit.

11. Apparatus according to claim 10, characterized in that
an execution rate per unit time of said repeatedly sending the directory information request

for a plurality of target directories of the second file system is controlled by the first file system

10

15

20

25

30

35

WO 2015/000502 -58- PCT/EP2013/063910
management unit based on a storage occupancy of a buffer unit of the first file system managing

unit.

12. Apparatus according to claim 10 or 11, characterized in that

an execution rate per unit time of said repeatedly sending the directory information request
for a plurality of target directories of the second file system is controlled by the first file system
management unit based on a rate of availability rate of communication channels between the first

and second file system managing units.

13. Apparatus according to any one of claims 8 to 12, characterized in that
the created file system object is a third directory of the first file system when the associated

child object is a third directory of the second file system.

14, Apparatus according to claim 13, characterized in that

for executing automatic virtualization, the first file system managing unit is further adapted
to:

create a self-reference link in the created third directory of the first file system,

calculate a fake link count for the created third directory of the first file system based on the
number of child directories of the associated third directory in the second file system, and

store the calculated fake link count in the metadata of the created third directory of the first

file system.

15. Apparatus according to claim 14, characterized in that

the first file system management unit is adapted to:

decrement the fake link count stored in the metadata of the third directory of the first file
system associated with the third directory in the second file system, when automatically creating a
child directory in the third directory of the first file system being associated with a child directory of

the third directory of the second file system.

16. Apparatus according to claim 14 or 15, characterized in that

the first file system management unit is further adapted to:

- receive, from one of the client computers, a request for reading a link count of the third
directory of the second file system;

- calculate the link count of the third directory of the second file system by adding the fake
link count of the third directory of the first file system and a real link count of the third directory of
the first file system; and

- send the calculated link count to the client computer in response to the request.

10

15

20

25

30

35

WO 2015/000502 -9~ PCT/EP2013/063910

17. Apparatus according to any one of claims 8 to 16, characterized in that

the created file system object is a second external link object when the respective child
object is a second file of the second file system, the second external link object representing the
second file of the second file system in the first file system and enabling access to the second file of
the second file system, the second external link object including link data indicative at least of a
unique object ID of the second file in the second file system and a path location of the second file

with respect to the first directory of the second file system.

18. Apparatus according to any one of claims 6 to 17, characterized in that

the first file system management unit is further adapted to:

divide the virtualization management information into a plurality of data blocks, and
repeatedly generate, for each data block, a backup copy of each of the data blocks of the

virtualization management information.

19. Apparatus according to claim 18, characterized in that

a first data block of the plurality of data blocks includes management data associated with a
fourth directory of the second file system, and

one or more second data blocks include management data associated with child directories
of the fourth directory of the second file system,

wherein the first file system management unit is further adapted to generate a backup copy
of each of the one or more second data blocks before generating a backup copy of the first data
block.

20. Method for providing a virtualized file system enabling indirect access to a second file
system in a data storage system comprising a plurality of client computers and a second file system
managing unit for managing the second file system and enabling client access to the second file
system, the method comprising:

- interconnecting a first file system managing unit between the plurality of client computers
and the second file system managing unit;

- creating a first directory in a first file system managed by the first file system managing unit;

- associating a first directory of the second file system with the first directory of the first file
system;

- enabling on-demand virtualization of the second file system by the first file system
managing unit based on client requests received from the client computers at the first file system
managing unit and based on the association between the first directory of the first file system and

the first directory of the second file system; and

10

15

20

25

30

35

WO 2015/000502 -60- PCT/EP2013/063910

- enabling indirect client access to the second file system through the first file system.

21. A data storage system for providing a virtualized file system enabling indirect access
to a second file system in a data storage system comprising a plurality of client computers, a second
file system managing unit for managing the second file system and enabling client access to the
second file system, and a first file system managing unit interconnected between the plurality of
client computers and the second file system managing unit, the first file system managing unit being
adapted to:

- create a first directory in a first file system managed by the first file system managing unit;

- associate a first directory of the second file system with the first directory of the first file
system;

- enable on-demand virtualization of the second file system by the first file system managing
unit based on client requests received from the client computers at the first file system managing
unit and based on the association between the first directory of the first file system and the first
directory of the second file system; and

- enable indirect client access to the second file system through the first file system.

22. File system server for use in a data storage system according to claim 21, comprising
a first file system managing unit being further adapted to execute steps of a method according to

claim 20.

23. Computer program product comprising computer program code means being
configured to cause a processing unit of a file system management unit in a data storage system
comprising a plurality of client computers and a second file system managing unit for managing a
second file system and enabling client access to the second file system, when interconnecting a first
file system managing unit between the plurality of client computers and the second file system
managing unit, to execute the steps:

- creating a first directory in a first file system managed by the first file system managing unit;

- associating a first directory of the second file system with the first directory of the first file
system;

- enabling on-demand virtualization of the second file system by the first file system
managing unit based on client requests received from the client computers at the first file system
managing unit and based on the association between the first directory of the first file system and
the first directory of the second file system; and

- enabling indirect client access to the second file system through the first file system.

PCT/EP2013/063910

420 430

Glo

1/23

2o

220

%0

Lo

Fig. 1A

WO 2015/000502

T
e I
| |
8 “ | N
||||||||||||| o
“ f.T Q T T T T T T T |
R TR w N
s mm———m _ v ___]
m T~]
d B o “
" " “ N
| N =} U "
e ! 4 w T T T T T T T T T T 1
D // _ .|
o |
| T T T T T T T T T T 1
m 4
_ “
.
- &
2 o
i
T 2
o 2 S
= < =

A0 Ny
A00 A~y

A0V

WO 2015/000502 PCT/EP2013/063910
2/23

Fig. 1C o0
1o o SP
00 /Y Y
peony /\—/ A\ 4D
N60 Vv
Fig. 1D
== vi VI Y

900

WO 2015/000502 PCT/EP2013/063910
3/23

ma | |3Mb e ETE e, 2 g

o I~ A5

2, AN

2a 2820 | R41c | ({3120 e 3”-.(A2 %

]
vy
Fig. 3 Wo U ek R WLC
VR, v
[[[
I Al ||]
VIRTUALIZATION MANAGEMENT | |54 (&4l |, .
INFORMATION TABLE v 2|2 ziml |
¥ ZinlZ Al |1 |
2 Zinn% Al]
e Al 12 A]
VIRTUALIZATION MANAGEMENT | |EZZZ| | fli 'I
24 A NFORMATION BACKUP UNIT | | | |
[o NS]
CRAWLING UNIT DATA BUFFER UNIT Wt
Ny
22 ’
VIRTUALIZATION UNIT COMMUNICATION 1L LR
2 UNIT
'
1 ek | [2weR
MIGRATION UNIT
LS~

WO 2015/000502 PCT/EP2013/063910
4/23

Fig. 4
/root
/dir1 /dir2 file1 file2
/dir11 /dir12 /dir21 file3

/NN N

/dir111 file4 filedb file6 file7 filed

AN

file9 file10
Fig. 5A
[root
/dir1 /dir2 XLO1 XLO2
/dir11 /dir12 /dir21 XLO3

/NN N

/dir111 XLO4 XLO5 XLO6 XLO7 XLOS8

[N

XLO9 XLO10

WO 2015/000502 PCT/EP2013/063910
5/23

Fig. 5B

/root

/N

/dir11 /dir12

/N N\

/dir111 XLO4 XLOS5 XLO6

/N

XLO9 XLO10

Fig. 5C

/root

N\

/dir21 XLO3

N

XLO7 XLO8

WO 2015/000502

Fig. 6

Fig.7

6/23

PCT/EP2013/063910

Block client access

- SA

h 4

Interconnect first storage apparatus L SZ

Create highest order directory ~_. Y

Y

Create virtualization path /'\/3'1

v

Create directory information
job for /root directory

Y

Enable background virtualization"]

Y

Enable on-demand virtualization

Y

Enable client access to first
storage apparatus /\/S?

1%t file server

~N8S

2" file server

Request /root information

|
t
| >
1 |
I . . . |
' Provide /root information |
- |
! /dir1 /dir2 file1 file2 !
Fig. 8
Name | Objecttype | ObjectID | Virtualization status | Object status
Iroot directory 001 virtualized incomplete
/dir1 directory 002 needs virtualization incomplete
/dir2 directory 003 needs virtualization incomplete
file1 file 004 needs virtualization needs migration
file2 file 005 needs virtualization needs migration

WO 2015/000502

Fig. 9

7/23

/root

N

PCT/EP2013/063910

/dir1 /dir2 XLO1 XLO2
Fig. 10
Name | Objecttype | ObjectID | Virtualization status | Object status
/root directory 001 virtualized complete
/dir1 directory 002 virtualized incomplete
/dir2 directory 003 virtualized incomplete
file1 file 004 virtualized needs migration
file2 file 005 virtualized needs migration
Fig.11

1% file server

Request /dir1 information

2" file server

-«

Provide /dir1 information

>

/dir11 /dir12

WO 2015/000502 PCT/EP2013/063910
8/23
Name | Objecttype | ObjectID | Virtualization status | Object status
[root directory 001 virtualized complete
/dir1 directory 002 virtualized incomplete gq,/m
/dir2 directory 003 virtualized incomplete ~
file1 file 004 virtualized needs migration
file2 file 005 virtualized needs migration
/dir11 directory 006 needs virtualization incomplete
/dir12 directory 007 needs virtualization incomplete /\,Z‘(,(b
Fig. 13
/root
/dir1 /dir2 XLO1 XLO2

/N

/dir12

/dir11

WO 2015/000502 PCT/EP2013/063910
9/23

Fig. 14

Check job queue for next job N§460/1

v

Obtain directory information job for a directory e SA0D).

v

Check virtualization management information table /" SAUD}

SlovY /J

Sa00S8

directory
incomplete?

Check job queue for next job

A

YES '/vs“"’6

Request directory information for incomplete directory <&

v

Sdwy ~t Receive directory information for incomplete directory

v

Write received directory information for incomplete
SA90¢ /directory to virtualization management information table

v

Sao08 T Create virtualization job for each object

v

S4040 v Create directory information job for each child directory

SA0(4
NO

all child objects
observed?

WO 2015/000502 PCT/EP2013/063910
10/23

Fig. 15

Check job queue for next job A SlLoA

v

Obtain virtualization job for an object

Y2

ALY

N

directory Object s file
or directory? AV WA
SAROY
| B od Y I
Create directory Create eXternal Link Object
/ \J
Create self-reference link pacly e Update object status to /\, J/W}
¢ ,heeds migration”
Calculate fake link count A
I N~Stop
Write directory metadata /\/QUO'-)—

v

Create parent directory link o {{40%

v

Decrement fake link count of
parent directory metadata A~ Mo%

Parent directory
complete?

Update object status of parent

directory to ,Complete” SMA‘{
\ A
| Updarte virtualization
status to ,virtualized* ¢
Check job queue for next job /\/SAM §

WO 2015/000502 PCT/EP2013/063910

11/23
Fig. 16
Check job queue for next job ~ SM'(M
Obtain virtualization job for a file mn SMolL
Determine link count N of file A S 4420
| Saa24
NO N>17?
y YES
P/.SUZZ

Determine object ID

v

Check hidden index directory for associated subdirectory /

M2

associated
subdirectiory
exists?

NO

Create associated index subdirectory Remove one hard link from \/ S/{“}

N

* associated index subdircetory

Create N-1 hard links in 4
associated index subdirectory I~ SANY

any hard

link left?

Remove associated index subdirectory

Y
Y > Create eXternal Link Object

N

in local target path location
9etp N C A4

Y

Updarte virtualization status to ,virtualized*
and object status to ,needs migration® N SMA}‘ SA't

N

y
Check job queue for next job

N Sns

-

- remote path location

- remote object ID

- remote Inode Number
- remote file system ID
- remote device ID

- local object ID

- local Inode Number
- local file system ID
- local device ID

A

WO 2015/000502 PCT/EP2013/063910
12/23

Fig. 17A ~ AE0

XLO o AAA0 V A0 » AA30
- name - local path location - time stamp
- remote path location - local object ID - link count
- remote object ID - local Inode Number - file attributes
- remote Inode number - local file system 1D - length of file
- remote file system ID - local device ID
- remote device ID - object store length
Fig. 17B ~ 1200

Directory metadata
- Name - local path location - tfime stamp

- real link count
- fake link count
- attributes

/

i
/

!

240 1220

g D)

WO 2015/000502 PCT/EP2013/063910

-«

13/23
Fig.18
client 1% file server 2" file server

i request access to file8 5 f
| > E
i block access | :
- | i
| | look up /dir21 |
5 I B
i i response |
| - I
| | look up file8 |
l ! -
E E response
; -

Create /dir21 and XLOS8 :

enable access via XLOS8 :

Fig. 19 /root
/dir1 /dir2
/dir11 /dir12 /dir21

N

XLO8

WO 2015/000502

14/23

Fig. 20

PCT/EP2013/063910

GlooA

r/

Receive access request for file

L2002

YES file

virtualized?

// S'Z/&"S

Look up file in remote path /

S04

(2008
./

file
confirmed?

7
Return error

Create virtualization job for each non-virtualized
object of the remote path

A §190(

all objects
virtualized?

Cre0%

Enable access to file via XLO to remote file

e

\-Cloog

WO 2015/000502 PCT/EP2013/063910
15/23
Fig. 21
AYZLL
Receive attribute information request for object !
1L
YES object §1
virtualized?
L S2403
Look up object path !
$2h0Y § 2405
, o
object 1
confirmed? Return error

object of the object path

Create virtualization job for each non-virtualized

)

nC 2406

object
virtualized?

S240?

Return object attributes

~J

Se10¢

WO 2015/000502
16/23

Fig. 22A

PCT/EP2013/063910

Receive access request for directory

N $2204

2202,

YES directory

virtualized?

N S0y

Look up directory in remote path

/

SLL0Y

20§
~

directory
confirmed?

7

Return error

Create virtualization job for each non-virtualized
object of the remote path

v

Create virtualization job for each child object

all path objects
virtualized?

Sty

NO

all child objects

virtualized?

S$2208

A S2240

Update object status to ,Complete”

v

Enable access to directory

N SZZ,{/,

WO 2015/000502

17/23

Fig. 22B

PCT/EP2013/063910

Receive access request for directory

b

v $2204

YES directory

virtualized?

S202.

N 10y

Look up directory in remote path

/

qlro4

directory
confirmed?

(LS
/\/

7

Return error

Create virtualization job for each non-virtualized

object of the remote path

3

N $2006

v

Create virtualization job for each child object

3\

1207

all path objects
virtualized?

S2208

Enable access to directory

™ 2244

WO 2015/000502 PCT/EP2013/063910
18/23

Fig. 23

Enable virtualization managment table backup /'\/ $2204

Y

—® Go to next virtualization managment table block

M~ 82302,

$2%02
NO

Table block
contains any directory
indicated as Complete?

$2%04
~

Check corresponding backup table block for each
directory indicated as Complete

v

2308

NO

ny complete director
indicated as Incomplete in
ackup table block?

2300

YES r

Determine all table blocks of child directories of
complete directories previously indicated Incomplete

* ,\/.52.307'
Backup all determined child directory table blocks

Y

Backup current virtualization managment table block [€—

l PN

€220%

WO 2015/000502 PCT/EP2013/063910
19/23
Fig. 24 A
Name | Objecttype | ObjectID | Virtualization status | Object status
Iroot directory 001 virtualized complete
/dir1 directory 002 virtualized complete
/dir2 directory 003 virtualized complete /\/ 'Z;‘Mq
file1 file 004 virtualized needs migration
file2 file 005 virtualized needs migration
/dir11 directory 006 virtualized complete
/dir12 directory 007 virtualized complete 5‘(/{6
/dir21 directory 008 virtualized complete /‘/
file8 file 015 virtualized needs migration
/dir111 directory 010 virtualized complete
filed file 01 virtualized needs migration
file9 file 016 virtualized needs migration B‘MO
file10 file 014 virtualized needs migration /‘/
file5 file 012 virtualized needs migration
file file 013 virtualized needs migration
file3 file 009 virtualized needs migration
file7 file 014 virtualized needs migration /\/?)‘Mol

WO 2015/000502 PCT/EP2013/063910

20/23
Fig.25A
client | 1% file server 2" file server
Write request file8 i
g

Pass through via XLO8

Write request file 8

Acknowledge

-

Update XLO8 metadata

|
|
|
1
1
f
]
I
!
1
!
!
I
!
l
!
1
1
1
|
|
|
|
|
!
|
|
|
|
|
|
|
|
1
|
|
|
!
I
I
|

Acknowledge i
- |

Fig.25B

client 1 file server 2" file server
|

Read request file8 ?
>

l
L

Pass through via XLO8 i

Read request file 8

-
Provide data

Provide data

I
I
)
I
|
|
1
1
}
i
I
1
I
|

WO 2015/000502 PCT/EP2013/063910

21/23
Fig.25C
client 1% file server 2" file server
Attribute request file8 i
B

Read attributes in XLO8

Return attributes i

Fig.25D

client 1%t file server 2" file server
|

Delete request file8)
>

{

Pass through via XLO8 E

Delete request file 8

Acknowledge

Delete XLOS8

Remove file8 from table

|
|
!
I
i
I
{
!
1
|
|
!
I
I
|
I
I
l
1
1
|
|
I
l
|
|
!
|
I
I
I
t
1
1
i
I
|
|
|
|
I
|
I
I
|
i
1
I
I
|
|
|
|
I
|
I
|

g

Acknowledge i

WO 2015/000502 PCT/EP2013/063910
22/23

Fig.25E

client 1% file server 2" file server

|
l
|
|

g

|

Create file request

|
|
|
|
|

Create XLO

Create file request

P

I
I
I
I
I
I
I
I
I
}
!
!
|
|
|

Create file

Acknowledge

]
|
|
|
1
1
|
|
1
!
|
|
|
|
|
l
!

<

Acknowledge

Fig.25F

client 1%t file server 2" file server
1

Change attributes of file8h§

Change attributes in XLO8

Change attributes of filei

of file8

| Change attributes

Acknowledge

id
Acknowledge |

A

T
|
|
|
1
1
I
]
I
|
|
|
|

WO 2015/000502 PCT/EP2013/063910
23/23

Fig.25G

client 1% file server 2" file server
Create empty directoryhi

Create empty directory

Directory set to COMPLETE

I
I
i
!
!
!
|
|
|
!
|
|
|
| |
I
I
I
I
|
!
I
I
I
I
I
!

Create empty directory»

Create empty
directory

Acknowledge

Acknowledge .‘ :
< | |

|
|
|
|
1
}
|
|
|
!
!
!
I
I
t
[
|
I
|
|
| |
| |
| !
! |
I

I !
I I
I |
I 1
I I
i |
| |
I |
! |
! |
I |
! }
i |
| |
|

! !
}

|

Fig.25H

client 1%t file server 2" file server

Rename directory i
>

Rename directory :
Rename directory |

Rename
directory

T

i
I
I
|
|
|
|
I
I
I
|
!

Acknowledge

A

Acknowledge

|
I
I
|
I
I
|
I
I

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2013/063910

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/06 GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y figures 1-4

29 May 2002 (2002-05-29)
figures 1-7

X US 2008/028169 Al (KAPLAN KEITH STUART
[US] ET AL) 31 January 2008 (2008-01-31)

paragraph [0031] - paragraph [0061]

paragraph [0010] - paragraph [0038]

1,6-23
2-5

Y EP 1 209 556 A2 (MICROSOFT CORP [US]) 2-5

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

13 December 2013

Date of mailing of the international search report

03/01/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Andlauer, J

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2013/063910
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008028169 Al 31-01-2008 NONE
EP 1209556 A2 29-05-2002 EP 1209556 A2 29-05-2002
JP 2002169712 A 14-06-2002
us 6850959 Bl 01-02-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - wo-search-report
	Page 86 - wo-search-report

