79 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 November 2001 (01.11.2001)

PCT

(10) International Publication Number

WO 01/82279 A2

G09G

(51) International Patent Classification’:

(21) International Application Number: PCT/US01/13167

(22) International Filing Date: 24 April 2001 (24.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/199,147
60/230,958

24 April 2000 (24.04.2000)
7 September 2000 (07.09.2000)

UsS
Us
(71) Applicant (for all designated States except US): THE
TRUSTEES OF COLUMBIA UNIVERSITY IN THE
CITY OF NEW YORK [US/US]; 116th Street and
Broadway, New York, NY 10027 (US).

(72)
(75)

Inventors; and

Inventors/Applicants (for US only): BELL, Blaine, A.
[US/US]; Columbia University, Dept. of Computer Sci-
ence, 500 West 120th Street, New York, NY 10027 (US).
FEINER, Steven, K. [US/US]; Columbia University,
Dept. of Computer Science, 500 West 120th Street, New
York, NY 10027 (US).

(74) Agents: TANG, Henry et al.; Baker Botts LLP, 30 Rock-
efeller Plaza, New York, NY 10112-0228 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TI, ™™, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR DYNAMIC SPACE MANAGEMENT OF A DISPLAY SPACE

o (57) Abstract: A method for space management of a workspace provided on a display includes defining a first data structure of
full-space rectangles present on the workspace, wherein at least a portion of the full-space rectangles are permitted to overlap. A
~~ second data structure of largest empty-space rectangles available on the workspace is also defined to complete the representation of
the workspace. The methods include performing an operation on at least one full-space rectangle on the workspace and redefining
the first data structure and the second data structure in accordance with the workspace resulting from the operation performed. The
operations can include adding a new full-space rectangle, moving an existing full-space rectangle and deleting an existing full full-
space rectangle from the workspace. Generally, the workspace is a display device coupled to an electronic device such as a personal
computer, personal digital assistant, electronic book viewer and the like.

=

10

15

20

25

WO 01/82279 PCT/US01/13167

SYSTEM AND METHOD FOR DYNAMIC SPACE MANAGEMENT
OF A DISPLAY SPACE

Statement of Government Rights

The present invention was made in part with support from the National
Library of Medicine, Grant No. 5-R01 LM06593-02 and the Office of Naval
Research, Contract Nos. N00014-97-1-0838, N00014-99-1-0249 and N00014-99-1-
0394. Accordingly, the United States government may have certain rights to this

invention.

Claim for Priority to Related Applications

This application claims the benefit of U.S. Provisional Patent Application
serial No. 60/199,147, filed on April 24, 2000, entitled DYNAMIC SPACE
MANAGEMENT FOR USER INTERFACES and U.S. Provisional Patent
Application serial No. 60/230,958, filed on September 7, 2000, also entitled
DYNAMIC SPACE MANAGEMENT FOR USER INTERFACES

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to user display interfaces, and
more particularly relates to a system and method for dynamic space management of a
user display interface which efficiently manages available empty-space during both

add and remove operations of full-space rectangles.

Background of the Related Art

Computer graphics systems which are commonly used today generally
provide a representation of the workspace, or display screen, occupied by the various
elements of the scene. For example, in the case of a graphical user interface (GUI),
such as a window manager for the Microsoft Windows® operating system, various
icons and working windows are placed about the display space. In such an
environment, it is often desirable to automatically allocate space for a new or

modified object while avoiding intersecting or overlaying other objects which have

10

15

20

25

30

WO 01/82279

PCT/US01/13167

already been allocated on the workspace. This generally either requires adjusting the
size of the new object to fit within a selected space or more desirably, finding an
available position on the display which maintains the size and aspect ratio of the
object to be placed without overlapping previously placed objects. While several
systems and methods for simplistic space management of a display have been used
previously, such as simple window managers which use automatic tiling or cascading
of objects, these systems have shortcomings.

One aspect of effective space management is the modeling and use of
the empty-space which is available on the workspace. One method of modeling the
empty-space, such as on a user display, is described in the article "Free Space
Modeling for Placing Rectangles without Overlapping" by Bernard et al, which was
published in the Journal of Universal Computer Science, 3(6), pp 703-720, Springer-
Verlag, June 1997. Bernard et al. describe a method of computing the free space
available on a workspace, representing the free space as a set of empty-space
rectangles, and using this representation to determine the placement of a new full-
space rectangle on the display space in a non-overlapping manner. The modeling of
the free space as a set of largest empty-space rectangles as disclosed by Bernard et al.
provides an effective representation of the free space. Bernard et al. also disclose
managing the workspace and adding new objects in the context of non-overlapping
rectangles. However, Bernard et al. do not address the management of the display
when two full-space objects overlap and do not provide a process for efficiently
updating the empty-space model upon removal of a full-space rectangle from the
display workspace. Accordingly, there remains a need for a dynamic space manager
which efficiently models the available free space of a workspace in the presence of
overlapping objects and during both add and remove operations affecting the

workspace.

OBJECTS AND SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method of
managing a workspace during the addition and removal of objects from the

workspace.

10

15

20

25

30

WO 01/82279 PCT/US01/13167

It is another object of the invention to provide a method of managing a
workspace, such as a display space, using largest empty-space rectangles to represent
the free space and efficiently updating the empty-space representation after an object
addition or object deletion operation.

It is a further object of the present invention to provide a method of
managing a workspace, such as a display space such that full-space rectangles can be
added to existing empty-space or removed from the workspace in an efficient manner.

It is another object of the invention to provide a method of managing a
workspace, such as a display space, using largest empty-space rectangles to represent
the free space of the workspace where at least some of the full-space objects on the
display space overlap.

In accordance with a first method for space management of a
workspace provided on a display, a first data structure representing at least a portion
of the full-space rectangles present on the workspace is defined and maintained. At
least a portion of the full-space rectangles on the workspace are permitted to overlap.
A second data structure of largest empty-space rectangles available on the workspace
is also defined and maintained. The method further includes performing an operation
on the workspace involving at least one full-space rectangle and redefining the first
data structure and the second data structure in accordance with the workspace
resulting from performing the operation.

The operation which is performed on the workspace can include
adding a new full-space rectangle, deleting an existing full-space rectangle, moving
an existing full-space rectangle, and modifying an existing full-space rectangle on the
workspace. The addition of a new full-space rectangle can include unrestricted
manual placement of the rectangle by a user. The addition of a new full-space
rectangle can also include automatic placement of the rectangle in a final position on
the workspace.

An undoable operation can be implemented by storing a copy of at
least a portion of the first and second data structure prior to redefining the first and
second data structures, accordingly. In such a case, it is preferred that only the

portions of the first and second data structures which are altered by the operation are

10

15

20

25

30

WO 01/82279 PCT/US01/13167

copied and stored. For example, in an undoable add operation, those empty space
rectangles which are removed as a result of the add operation can be saved and those
new empty space rectangles which are added to the workspace representation can be
marked in the data structure. To undo the add operation, the marked entries in the
data structure are removed and the previously removed empty space rectangles are
reinstantiated in the second data structure.

In the case where the operation includes adding a new full-space
rectangle to the workspace, the step of redefining the first and second data structures
can further include adding an entry representing the new full-space rectangle to the
first data structure; removing entries from the second data structure representing
largest empty space rectangles which are intersected by the new full space rectangle;
and adding entries to the second data structure representing the set of new largest
empty-space rectangles resulting from the placement of the new full space rectangle.

The full-space rectangles are generally defined, at least in part, by a
parameter of the content to be displayed in a full space rectangle. The parameter is
generally user defined and can include an area required for the content, a minimum
width, a maximum width, a minimum height, a maximum height, an original size, an
aspect ratio and the like. The second data structure can be queried to determine the
set of available candidate largest empty-space rectangles which can receive the full-
space rectangle in accordance with the user parameter.

In the case where there are a number of candidate largest empty-space
rectangles which satisfy the user parameter(s), a user defined quality factor can be
used to select among the candidate largest empty space rectangles. For example, in
the case where a number of largest empty space rectangles are available which have a
suitable size and aspect ratio available to receive the full-space rectangle, the user
parameter can provide that the empty-space rectangle closest in position to an initial
placement of the full-space rectangle is selected to receive the full-space rectangle.
Alternatively, the smallest of the available empty-space rectangles with a suitable size
and aspect ratio can be selected to receive the full-space rectangle.

To add a degree of freedom in the automatic placement of a full-space

rectangle, the size of the full-space rectangle to be added can be reduced by an

10

15

20

25

30

WO 01/82279 PCT/US01/13167

amount up to a predetermined scaling factor. In this case, the available largest empty-
space rectangles include those empty-space rectangles which are at least as large as
the original size as reduced by the scaling factor.

The operation performed on the workspace can also be a deletion
operation where a full-space rectangle is removed from the workspace. For a deletion
operation, the step of redefining the second data structure can include the steps of
identifying the edges of the full-space rectangle to be deleted; selecting a first edge of
the full-space rectangle to be deleted; identifying each empty-space rectangle in the
second data structure which is adjacent to the selected edge; merging the adjacent
empty-space rectangles with empty-space generated by deleting the full-space
rectangle; adding the merged empty-space rectangle to the second data structure if the
merged empty-space rectangle is a largest empty-space rectangle; dropping the
merged empty-space rectangle if it is a subset of a previously identified largest empty-
space rectangle; and saving the merged empty-space rectangle for a subsequent
merging operation if the merged empty-space rectangle is not added or dropped. The
next edge of the removed full space rectangle is selected and the saved merged empty
space rectangles are used as input empty space rectangles, such that the combination
of empty space rectangles progresses in a recursive fashion.

An alternate method in accordance with the invention is applicable to
operating a display device in a computer system. The method includes providing a
display workspace on the display device wherein content to be displayed to a user is
defined in a plurality of full-space rectangles positioned on the workspace. At least a
portion of the full-space rectangles are permitted to overlap on the workspace. A first
data structure representing at least a portion of the plurality of full-space rectangles
present on a workspace of the display device is stored in computer readable media. A
second data structure of largest empty-space rectangles available on the workspace is
also stored in computer readable media. The largest empty space rectangles are
defined by the placemeﬁt of the portion of the plurality of full-space rectangles stored
in the first data structure and the boundaries of the workspace. A user operation is

performed on at least one full-space rectangle on the workspace and the first data

10

15

20

25

WO 01/82279 PCT/US01/13167

structure and the second data structure stored in the computer readable media are
redefined in accordance with the workspace resulting from the performing step.

A further method for space management of a workspace provided on a
display includes defining a first data structure for representing at least a portion of
full-space rectangles to be present on the workspace. At least a portion of the full-
space rectangles are permitted to overlap on the workspace. The method also includes
defining a second data structure of largest empty-space rectangles available on the
workspace. An operation to be performed on the workspace involving at least one
full-space rectangle which is to be added to the first data structure is initiated and the
second data structure is queried to determine the candidate largest empty-space
rectangles on the workspace which can accommodate the operation to be performed.
One of the candidate largest empty-space rectangles is then selected based on at least
one selection parameter and the operation is performed. After performing the
operation, the first data structure and the second data structure are redefined in
accordance with the workspace resulting from the performing step.

These and other objects and features of the invention will become
apparent from the detailed description of preferred embodiments which is to be read

in connection with the appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and
advantages thereof, reference is now made to the following description taken in
conjunction with the accompanying drawings, wherein like reference numerals
represent like parts, in which:

Figures 1A-1E are pictorial diagrams illustrating the representation of
the empty-space of a workspace as a set of four largest empty-space rectangles.

Figures 2A-2F are pictorial diagrams illustrating the effect of adding
an overlapping full-space rectangle to the empty-space representation of Figure 1.

Figure 3 is a flow chart illustrating an overview of the operation of the

present method of space management for a user interface.

10

15

20

25

WO 01/82279 PCT/US01/13167

Figure 4 is a flow chart illustrating the process of adding an additional
full-space rectangle to the workspace and redefining the resulting empty-space
representation of the workspace.

Figures 5A-5I are pictorial diagrams illustrating the representation of
the empty-space of a workspace after a second, overlapping full-space rectangle is
added to the workspace.

Figure 6 is a flow chart illustrating the process of determining whether
an empty-space rectangle is a largest empty-space rectangle.

Figure 7 is a pictorial flow diagram illustrating the recursive
combination process performed to redefine the empty-space representation of the
workspace upon removal of a full-space rectangle from the workspace.

Figure 8 is a flow chart illustrating the process of removing a full-
space rectangle from the workspace.

Figure 9 is a pictorial diagram illustrating the removal of an
overlapping full-space rectangle.

Figures 10A and 10B are pictorial diagrams illustrating an exemplary
application of the present space management methods in connection with an
information visualization system.

Figures 11A and 11B are pictorial diagrams illustrating an exemplary
application of the present space management methods in connection with the
placement of insertable content within a webpage.

Figure 12 is a pseudo-code representation of an exemplary
implementation of the method of adding a full space rectangle to the representation of
the workspace.

Figure 13 is a pseudo-code representation of an exemplary
implementation of the incremental deletion of a full space rectangle from the
representation of the workspace described in connection with Figures 7-9.

Figures 14A, 14B, 14C and 14D are pictorial representations of a

computer display in an embodiment of the present invention as a window manager.

10

15

20

25

30

WO 01/82279 PCT/US01/13167

Figure 15 is a pseudo-code representation of an exemplary

implementation of the method of combining empty space rectangles to form largest

. empty space rectangles.

DETAILED DESCRIPTION QF PREFERRED EMBODIMENTS

The present method for managing a workspace, such as display space
on a user interface, represents both the full space which is allocated to content being
provided on the workspace and the empty-space which is available on the workspace.
The full-space representation is a list of full-space rectangles which are placed on the
workspace and for which an area of the workspace is allocated. The empty-space of
the workspace is generally represented in a data structure which describes a set of
largest empty-space rectangles. The largest empty-space rectangles are generally
automatically determined based on the placement of the full-space rectangles on the
workspace.

The workspace is generally an electronic display, such as cathode ray
tube (CRT), liquid crystal display (LCD), and the like, which is operatively coupled
to a computer system or other electronic device. However, it will be appreciated that
the workspace is not limited to real time display units and can also include such things
as hard copy print outs and data provided to other processes The workspace can also
take the form of a number of such electronic displays which are operated in a
cooperative fashion as a single display system.

In the present invention in the context of a two-dimensional
workspace, full-space rectangles are rectangular regions which represent the
rectangular extents of content being displayed on the workspace. Thus, full-space
rectangles designate regions of the workspace which are allocated for particular
content. Such full space rectangles can generally be permitted to overlap on the
workspace, if desired by a user. Generally, while not required, for the sake of
simplicity the full-space rectangles are axis-aligned with the workspace. In higher
order dimensional workspaces, such as 3D, 4D and the like, the term full-space
rectangle means a unit of content which is defined by mutually orthogonal axes, such

as cuboids in a 3d spatial workspace.

10

15

20

25

30

WO 01/82279 PCT/US01/13167

An empty-space rectangle is a rectangular region of a 2D workspace
which is not occupied by a full-space rectangle. A largest empty-space rectangle is an
empty space rectangle whose height and width are at maximums while not
overlapping portion of any full-space rectangle on the workspace. As such, each
largest empty-space rectangle is bounded by either one or more edges of a full-space
rectangle or a border of the workspace. As with full-space rectangles, the concept of
the largest empty space rectangle is extensible into n-dimensions of a workspace.

It should be noted that not every object displayed or provided on the
workspace needs to be represented in the data structure which defines the set of full
space rectangles. For example, if a user wishes to provide content on a display, but
does not care if other content is allowed to overlap this content, there does not need to
be any alteration of the full space representation or empty space representation of the
workspace.

Figure 1A is a pictorial diagram illustrating a 2D workspace 100 with a
single full-space rectangle 102 placed therein. Figures 1B-1E illustrate the four largest
empty-space rectangles 104, 106, 108 and 110, respectively, which result from the
placement of full-space rectangle 102 on the workspace 100 and adding the full space
rectangle to the full-space representation of the workspace. This set of largest empty-
space rectangles represents the available areas for the placement of additional full-
space rectangles. In the event a new full-space rectangle were to be placed on the
workspace, placement parameters of the full-space rectangle, such as the area,
dimensions and/or aspect ratio of the new full-space rectangle, can be compared to the
empty-space rectangles 104, 106, 108, 110 to determine if any of these empty-space
rectangles are candidates to accept the new full-space rectangle.

As illustrated in Figures 2A-2F, the present methods also allow for
full-space rectangles to be placed in an overlapping manner by a user. For example,
Figure 2A is essentially the same as that illustrated in Figure 1A, where a single full-
space rectangle 102 defines four largest free-space rectangles 104, 106, 108, 110.
Figure 2B represents the workspace after a user has placed a second full-space
rectangle 200 onto the workspace 100 in an overlapping relationship with full-space

rectangle 102. Referring to Figures 2C and 2D, it is apparent that this placement

10

15

20

25

30

WO 01/82279 PCT/US01/13167

does not intersect with empty-space rectangles 106, 104, respectively. Accordingly,
this portion of the empty-space representation does not need to be altered. However,
referring to Figures 2E and 2F, the new full-space rectangle does intersect with
empty-space rectangles 108, 110 and that these empty-space rectangles must be
reduced to define a new set of largest empty-space rectangles for the empty-space
representation of the workspace.

Figure 3 is a flow chart illustrating an overview of the operation of the
present method of space management for a user interface. Starting with a blank
workspace 100, such as a computer display, electronic book viewing device, personal
digital assistant or the like, a first full-space rectangle 102 is placed at an arbitrary
position within the workspace. If the user desires that this full space rectangle is to be
added to the representation of the workspace and considered in modifying the empty
space representation, the full space rectangle is added to the data structure of full
space rectangles which are allocated area on the workspace (step 300). As illustrated
in Figures 1B-1E, this results in a reduction of the available empty-space in the
workspace 100 which is represented by a set of empty-space rectangles (step 305).
From the set of empty-space rectangles, the set of largest empty-space rectangles is
then determined (step 310). It will be appreciated that various methods of
determining the set of largest empty space rectangles can be used. It will also be
appreciated that steps 305 and 310 may be combined such that the set of largest empty
space rectangles is determined in a single operation.

It should be noted that not all content which is presented on the
workspace needs to be represented as full-space in the workspace representation. For
example, certain content may be displayed as background for other objects which are
intended to be placed in an overlapping fashion over the background. Thus, while the
background includes content to be displayed, it does not necessarily alter the empty-
space representation of the workspace.

Once the empty-space has been represented by the set of largest
empty-space rectangles, several subsequent operations are possible. Manual
placement of an additional full-space rectangle on the workspace by a user is one such

possible operation (step 315). In this case, the placement can be unrestricted as to

10

10

15

20

25

30

WO 01/82279 PCT/US01/13167

placement on the workspace 100 such that two or more full-space rectangles are
permitted to overlap to any degree. After the manual placement of a full-space
rectangle is selected, the full-space rectangle is added to the data representation (step
300) and the representation of fhe empty-space available on the workspace is again
determined by repeating steps 305 and 310.

In addition to manually adding an additional full-space rectangle, an
existing full-space rectangle can be removed from the workspace (step 320). Once a
full-space rectangle is removed, the full-space rectangle is removed from the
representation of the full-space (step 321) and the representation of the empty-space
available on the workspace is again determined by repeating steps 305 and 310. In
the case of removal, the operations involved in determining the set of free space
rectangles (step 305) and determining the set of largest free-space rectangles (step
310) are generally performed in accordance with Figures 7-9, and 13 which are
described in further detail below.

A third possible operation on the workspace is to place a new full-
space rectangle within an available empty-space on the workspace using computer
assistance (step 325). If a new full-space rectangle is to be automatically positioned,
at least one placement parameter associated with the content is determined (step 330).
Numerous parameters can be established by a user to determine the placement of the
full-space rectangle. For example, the content may require a certain amount of area
on the workspace. The parameter can also include a minimum and/or maximum
constraint on the width or height. Further parameters can include the size and aspect
ratio of the full-space rectangle. Also, if the user has dropped or dragged the full-
space rectangle to an initial approximate position on the workspace, this initial
position can also be determined and used as a placement parameter. The parameters
described above are merely examples of the types of relevant parameters which a user
can apply to the placement of a full space rectangle Yto the workspace.

Following step 330, the empty-space representation is queried to
determine which, if any, of the available largest empty-space rectangles can receive a
full space rectangle which satisfies the placement parameter(s) which are in effect

and, therefore, are suitable candidates to receive the full-space rectangle (step 335).

11

10

15

20

25

30

WO 01/82279 PCT/US01/13167

For example, the query may provide which largest empty-space rectangles have a size
and aspect ratio which can accommodate the new full-space rectangle.

In step 340, if there is one or more candidate largest empty-space
rectangles available, one of the candidate largest empty-space rectangle which most
closely satisfies a user defined quality measure can be selected from the available
candidates. As with the placement parameters, the quality measure for selecting
among candidate empty space rectangles is largely determined by the specific
application and the user’s preference. For example, the quality measure may be such
that the empty space rectangle which is closest to the initial position of the new full-
space rectangle is selected. As another example, quality factor can be such that the
largest empty-space rectangle that most closely matches the area or the size and
aspect ratio of the new full-space rectangle may be selected. It will be appreciated
that these are merely examples and that any number of such user-preference based
quality factors can be applied to the selection of the largest empty-space rectangle
from a number of available candidates.

If in step 340, there was no suitable candidate empty space rectangle
available, the user can be given the option to place the full space rectangle with some
degree of overlap with other objects on the workspace (step 342). If the user elects to
place with overlap, the process returns to step 300. If the user elects not to place the
full space rectangle, the procedure terminates at step 343.

If in step 340 a suitable largest empty space rectangle is selected, the
full-space rectangle can be sized and/or positioned within the selected largest empty
space rectangle (step 347). Again, user preferences can be used in determining the
extent to which the full space rectangle is resized and positioned within the confines
of the selected largest empty-space rectangle. Examples include maximizing the size
without altering the aspect ratio, maximizing the width or the height, justifying the
full space rectangle with respect to one or more borders, etc. Once the size and
position are determined, the full space rectangle is added to the workspace
representation (step 300) and the empty-space representation of the workspace is

redetermined (steps 305, 310).

12

10

15

20

25

30

WO 01/82279 PCT/US01/13167

The operation of determining the set of empty-space rectangles (step
305) after a full-space rectangle is added to the workspace will be described further in
connection with Figure 4 and Figures 5A-5I. Referring to the flow chart of Figure 4,
after a full-space rectangle is positioned on the workspace, the empty-space
representation is queried to generate a list of largest empty-space rectangles which are
adjacent to or overlap the new full space rectangle (step 400). Each edge of the full-
space rectangle is identified (step 402). A first edge of the full-space rectangle is
selected and is compared against the largest empty-space rectangles in the list of
empty-space rectangles to determine if the selected edge intersects any of these
rectangles (0) (step 405). If the selected edge (e) intersects an empty-space rectangle
(0) in the list, a determination is made as to whether the edge (e) is collinear with an
edge of the empty-space rectangle (step 410). If the edge intersects an empty-space
rectangle in the list and is not collinear with an edge of the selected largest empty-
space rectangle (o), then the empty-space rectangle must be reduced to create new
empty-space rectangles (step 415). The new empty-space rectangles will be bounded
by the selected edge (e) and either the boundary of the workspace or the edges of the
existing empty-space rectangle.

Steps 405 through 415 are repeated for each edge of the full-space
rectangle identified in step 400. This can be performed, for example by determining
if there are additional edges to be tested (step 420), and if so, selecting the next
identified edge (425). Ifin step 405 it is determined that the edge (e) did not intersect
the current empty-space rectangle, then step 420 would be performed to test another
edge of the full-space rectangle. Similarly, if in step 410 it is determined that the
current edge is collinear with an edge of the empty-space rectangle, than no reduction
is required and the process again advances to step 420 to determine if all edges of the
full-space rectangle have been tested against the current empty-space rectangle.

After each edge of the full-space rectangle has been tested against the
first selected largest empty-space rectangle from the empty-space representation, the
empty-space representation is evaluated to determine if there are additional empty-
space rectangles to be tested (step 430). If so, the next empty-space rectangle is
selected from the empty-space representation (step 435) and steps 400 through 425

13

10

15

20

25

30

WO 01/82279 PCT/US01/13167

are repeated as described above. When this process is complete for all largest empty-
space rectangles of the empty-space representation, the resulting empty-space
rectangles are evaluated and those which are not largest empty-space rectangles are
removed from the representation (step 440).

The process of Figure 4 can be visualized with reference to the
pictorial diagrams of Figure 2. Referring to Figures 2C and 2D, it can be seen that no
edge of full-space rectangle 200 intersects largest empty-space rectangles 106, 104,
respectively. Accordingly, each edge of rectangle 200 which was tested against
largest empty-space rectangles 106, 104 would fail step 405, with the result that no
reduction of these spaces is required. To the contrary, in Figures 2E and 2F, three of
the edges of rectangle 200 intersect with largest empty-space rectangles 108 and 110.
Thus, for each of these rectangles, the process of Figure 4 will advance through step
415 to reduce the empty-space rectangles.

Referring to the pictorial diagrams of Figure 5A, Figure 5B, Figure 5C
and Figure 5D, the effect of the intersection of full-space rectangle 200 with empty-
space rectangle 108 is demonstrated in accordance with the process illustrated in
Figure 4. Referring to Figure 5B, edge 502 intersects with empty-space rectangle 108
(step 405) in a non-collinear manner (step 410). Accordingly, a new empty-space
rectangle 510 is created which is bounded by edge 502 and three boundaries of
empty-space rectangle 108, which in this case coincide with the boundaries of the
workspace 100. Similarly, empty-space rectangle 512 is defined by the intersection of
edge 504 with empty-space rectangle 108 and empty-space rectangle 514 is defined
by the intersection of edge 508 with empty-space rectangle 108. In the same manner,
empty-space rectangles 516, 518 and 520 are defined by the non-collinear intersection
of edges 502, 504, 506 with largest empty-space rectangle 110.

Empty-space rectangles 510, 512, 514, 516, 518 and 520 are the set of
empty-space rectangles generated by the reduction of largest empty-space rectangles
108, 110. However, the largest empty-space rectangles which will make up the
representation of the resulting empty-space are a subset of the resulting set of empty-
space rectangles. For example, in Figure 5C, edge 522 of empty-space rectangle 512
is not bounded by either a full-space rectangle or the boundary of the workspace.

14

10

15

20

25

30

WO 01/82279 PCT/US01/13167

Accordingly, rectangle 512 is not a largest empty-space rectangle and is dropped from
the representation, as indicated by the X through Figure 5C. Similarly, edge 524 of
rectangle 516 is not bounded by either a full-space rectangle or the boundary of the
workspace and is also dropped from the final empty-space representation. Thus, after
the full-space rectangle 200 is added to the workspace, the resulting representation of
the empty-space includes largest empty-space rectangles 104, 106, 510, 514, 518 and
520.

The process of adding a full space rectangle to a workspace, as
described above in connection with Figures 4 and 5, is further represented in Figure
12, which is a pseudo code listing representing an embodiment of the process. It will
be appreciated that this embodiment is merely illustrative and that various
programming implementations can be used in any number of programming languages
to implement the present invention.

The process of determining whether an empty-space rectangle is a
member of the set of largest empty-space rectangles is further illustrated in the flow
chart of Figure 6. The process of Figure 6 is repeated for each empty-space rectangle
that is created when a new full-space rectangle is added to the workspace (step 605).
The process starts with the selection of a first edge of a first selected empty-space
rectangle (step 610). This edge is analyzed to determine if it is collinear with any
edge of a full-space rectangle already placed in the workspace (step 615). If not, then
the edge is tested to determine whether the edge is collinear with a boundary of the
workspace (step 620). If both steps 615 and 620 fail, than the selected empty-space
rectangle can be discarded as not being a largest empty-space rectangle (step 625). If
additional empty-space rectangles are present, a next empty-space rectangle is
selected and the process returns to step 610 for the newly selected rectangle.

If the selected edge is bounded by either a full-space rectangle (step
615) or the boundary of the workspace (step 620), then testing of the empty-space
rectangle continues. If all four edges of the empty-space rectangle have been tested
(step 630), the current empty-space rectangle is added to the set of largest empty-
space rectangles (step 635). If all four edges of the empty-space rectangle have not

yet been tested, a next untested edge of the rectangle is selected and the process

15

10

15

20

25

30

WO 01/82279 PCT/US01/13167

returns to step 615 (step 640). The process of Figure 6 adds an empty-space rectangle
to the set of largest empty-space rectangles only if all four edges of the rectangle are
bounded either by a full-space rectangle or the boundary of the workspace. It will be
appreciated that the relative order of testing of these conditions is not critical and that
steps 615 and 620 can be interchanged without substantially altering the performance
of the method.

Another aspect of the present space management method includes
generating an empty-space representation of the workspace after a full-space rectangle
is deleted from the workspace. This entails removing the full-space rectangle, F, from
the list of full-space rectangles in the representation. It also involves identifying those
empty-space rectangles that are included within or are adjacent to the boundaries of F.
The empty-space rectangles that are presented by the removal of a full-space rectangle
are then analyzed and recursively combined until the maximum extents of the
combined empty-space rectangles are obtained. Those combined empty-space
rectangles are then evaluated to determine which of the combined empty-space
rectangles are largest empty-space rectangles which will be stored in the empty-space
representation.

The pictorial flow diagram of Figure 7 illustrates an example of the
recursive combination of empty-space rectangles which takes place following the
deletion of a full-space rectangle. In the individual workspace representation
diagrams that form this flow diagram, rectangles 704, 706, 708 and 710 represent full-
space rectangles that remain in the workspace. Rectangle 712, delineated by dotted
lines, represents a full-space rectangle to be removed from the workspace. The edges
of rectangle 712 are analyzed one by one against the largest empty-space rectangles in
the empty-space representation to determine where there is adjacent empty-space
which can be combined.

Operation 700 illustrates the processing relating to empty-space
rectangles 714 and 716 which each have an edge that is collinear with the left edge of
rectangle 712. The workspace representation 702 graphically illustrates the input for
the combination of rectangles 712 and 714. Workspace representation 718 represents

the output state for this combination where empty-space rectangle 720 is formed. The

16

10

15

20

25

30

WO 01/82279 PCT/US01/13167

workspace representation 722 illustrates the output which results from the
combination of rectangles 712 and 716 illustrated in workspace representation 704 to
yield empty-space rectangle 724. As noted above, the combination process is a
recursive operation. Thus, empty-space rectangles 720, 724 which are the output
solutions for operation 700 on the left edge of rectangle 712 are used as the input
rectangles for operation 727 with respect to the right edge of rectangle 712.
Workspace representations 726, 728 illustrate the intersection of
rectangle 720 with the free space rectangles 730, 732, respectively, which abut the
right edge of removed full-space rectangle 712. Workspace representation 734
illustrates empty-space rectangle 736 which results from the combination of empty-
space rectangles 720, 726. Similarly, workspace 738 illustrates the combination of
rectangles 720, 732 to generate empty-space rectangle 740. In a similar fashion,
workspace representations 742, 746 illustrate right edge processing of rectangle 724
with empty-space rectangles 744, 748, respectively, which have an edge abutting the
right edge of rectangle 712. As there is no intersection or abutment between empty-
space rectangle 724 and empty-space rectangle 748, there is no combination operation
among these two empty-space rectangles, as illustrated by the solid X through
workspace representation 746. Workspace representation 750 illustrates the
formation of rectangle 752 from the combination of rectangles 724 and 744.
Operation 755 illustrates pfocessing related to the bottom edge of
removed full-space rectangle 712. The input rectangles for operation 755 are
rectangles 736 and 740 from operation 726 which each have an edge coincident with
the bottom edge of rectangle 712. Note that rectangle 752 in workspace 750 of
operation 726, does not have any component which intersects with or is coincident
with the bottom edge of rectangle 712 and, therefore, is not an input parameter for
operation 755. The combination of empty-space rectangles 736 and 756 in workspace
representation 754 yield empty-space rectangle 760 depicted in workspace
representation 758. The combination of empty-space rectangles 736 and 762 in
workspace representation 764 yields empty-space rectangle 766 depicted in
workspace representation 768. The combination of empty-space rectangles 740 and

770 in workspace representation 772 yields empty-space rectangle 774 depicted in

17

10

15

20

25

30

WO 01/82279 PCT/US01/13167

workspace representation 776. Empty-space rectangle 774 is bounded on the right
side by the workspace boundary, on the top edge by full-space rectangle 706, on the
left edge by full-space rectangle 710 and on the bottom edge by full-space rectangle
708. Accordingly, as indicated in Figure 7 by the circle around workspace
representation 776, empty-space rectangle 774 is a largest empty-space rectangle
which will be added to the empty-space representation and no further processing on
this rectangle is required.

Workspace representation 780 illustrates the combination of empty-
space rectangles 740 and 778 to yield empty-space rectangle 782 of workspace
representation 784. However, rectangle 782 is a subset of rectangle 766 illustrated in
workspace representation 768 and, therefore, is not a largest empty-space rectangle.
Accordingly, rectangle 782 is dropped from subsequent processing, as illustrated by
the dotted X through workspace representation 784.

Operation 785 illustrates the continued processing of empty-space
rectangles which are coincident with the top edge of rectangle 712. The input
rectangles for this processing operation include empty-space rectangles 760 and 766
from operation 754 as well as empty-space rectangle 752 resulting from operation
726. Workspace representation 786 illustrates the combination of empty-space
rectangles 788 and 760 to yield empty-space rectangle 790 of workspace
representation 792. Workspace representation 794 illustrates the combination of
empty-space rectangles 760 and 796 to generate empty-space rectangle 798 of
workspace representation 800. Workspace representation 802 illustrates the
combination of empty-space rectangles 804 and 766 to yield empty-space rectangle
806 of workspace representation 808. As indicated by the circles around workspace
representations 792, 800 and 808, empty-space rectangles 790, 798 and 806 are
largest empty-space rectangles which will be added to the empty-space representation.

Workspace representation 810 illustrates the combination of empty-
space rectangles 752 and 812 to yield empty-space rectangle 814 of workspace
representation 816. However, empty-space rectangle 814 is fully included in empty-

space rectangle 798 shown in workspace representation 800 and is not a largest

18

10

15

20

25

30

WO 01/82279 PCT/US01/13167

empty-space rectangle. This is also evident as the bottom edge of rectangle 814 is not
bounded by either a full-space rectangle or a boundary of the workspace.

Workspace representation 818 illustrates the combination of empty-
space rectangles 752 and 820 to yield empty-space rectangle 822 of workspace
representation 824. As indicated by the circle around the workspace representation
824, rectangle 822 is a largest full-space rectangle which will be added to the empty-
space representation.

Figure 15 is a pseudo code listing illustrating one example of an
implementation of the process for combining empty space rectangles, which takes
place during the operation of deleting a full space rectangle from the workspace
representation. It will be appreciated that this embodiment is merely illustrative and
that various programming implementations can be used in any number of
programming languages to implement the present invention.

Figure 8 is a flow chart which further describes the process of
redetermining the empty-space representation of a workspace upon removal of a full-
space rectangle. The four edges of the full-space rectangle to be removed are
identified (step 850). As described in connection with Figure 7, as the rectangles are
generally axis aligned with the workspace, the edges can be described as left, right,
bottom and top. As the process is applicable to those environments which allow
overlapping full-space rectangles, the process also identifies edges of underlying full-
space rectangles which are within the extents of the rectangle to be removed (step
855). This is further illustrated in Figure 9, where full-space rectangle 915 which
overlaps full-space rectangles 910 and 920 is to be removed. Upon removal of full-
space rectangle 915, only a portion of the area underlying full-space rectangle 915 is
empty-space. The edges of full-space rectangles 910, 920 which are within the
extents of full-space rectangle 915 will limit the combination of free space rectangles.
For example, in processing the left edge of rectangle 915, the combination of empty-
space rectangle 925 and the region of full-space rectangle 915 will only extend to the
point of intersection with the left edge of full-space rectangle 920, as illustrated by the
hatching indicating output rectangle 930.

19

10

15

20

25

30

WO 01/82279 PCT/US01/13167

Returning to Figure 8, after the interior intersecting edges of full-space
rectangles are identified, the first edge of the full-space rectangle to be removed from
the workspace is selected (step 860). All largest empty-space rectangles in the empty-
space representation which are adjacent to the selected edge are identified (step 865).
Each of the identified empty-space rectangles are selected in turn and to the extent
that the rectangles are adjacent and define a larger rectangular empty-space, the
rectangles are nierged to generate output empty-space rectangles (step 870).

Each merged empty-space rectangle of step 870 is tested to determine
if it is a subset of any other empty-space rectangle (step 875). If the answer in step
875 is yes, then the empty-space rectangle of step 870 is dropped from further
processing (step 880). Processing continues by testing the set of largest empty-space
rectangles adjacent to the current edge to determine if all empty-space rectangles have
been testéd (step 885). Ifnot, the next empty-space rectangle adjacent to the current
edge is selected (step 886) and processing returns to step 870. If in step 885, all
empty-space rectangles adjacent to the current edge have been tested, the set of edges
of the full-space rectangle to be removed is tested to determine if all edges have been
processed (step 887). If not, the next edge is selected (step 888) and processing
returns to step 865. If all edges of the full-space rectangular have been evaluated,
then processing is complete.

Returning to step 875, if the resulting empty-space rectangle is not a
subset of another empty-space rectangle, the output empty-space rectangle from step
870 is then tested to determine whether it is a largest empty-space rectangle (step
890). The testing of step 890 can be performed in a manner substantially as described
in connection with Figure 6. If the output rectangle is a largest empty-space
rectangle, it is added to the empty-space representation (step 892) and processing
continues by determining if more adjacent empty-space rectangles are available for
processing (step 885). If in step 890 the current output rectangle is not a largest
empty-space rectangle, the output rectangle is retained as an input parameter for
subsequent recursive processing operations (step 894). Thus, the output rectangle is
added to the set of empty-space rectangles which are evaluated in subsequent

iterations of step 865.

20

10

15

20

25

30

WO 01/82279 PCT/US01/13167

Figure 13 is a pseudo code listing illustrating one example of an
implementation of the process for deleting a full space rectangle from the workspace
representation. It will be appreciated that this embodiment is merely illustrative and
that various programming implementations can be used in any number of
programming languages to implement the present invention.

There are any number of ways of storing and querying the
representation of the workspace. Various known data structures may offer benefits
regarding storage space efficiency or query efficiency. In one embodiment, the space
management method maintains a first data structure for storing data relating the full-
space rectangles in the workspace and a second data structure for storing data relating
the largest empty-space rectangles in the work space. In the case of a two
dimensional workspace, the first and second data structures can take the form of a 2D
interval tree. For higher order dimensional workspaces of dimension n, an n-
dimensional interval tree can be used.

In the operation of adding a full-space rectangle as described above,
the representation of the empty-space prior to the add operation is generally
overwritten by the new representation. In such a case, the ability to efficiently undo
an add or delete operation is lost. An undoable add operation can be implemented by
saving a copy of at least a portion of the data structures of the work space
representation prior to the add operation. To the extent that computer memory or
other digital storage is available, several prior versions of the data structures of the
work space representation can be stored, such that a multi-operation undo can also be
implemented. Preferably, only the affected portions of the data structures need to be
copied and saved. For example, in an undoable add operation, those empty space
rectangles which are removed as a result of the add operation can be saved and those
new empty space rectangles which are added to the workspace representation can be
marked in the data structure. To undo the add operation, the marked entries in the
data structure are removed and the previously removed empty space rectangles are
reinstantiated in the data structure.

In addition to providing an efficient way to restore a previous display

state of the workspace, the undoable add operation can be used to animate selected

21

10

15

20

25

30

WO 01/82279 PCT/US01/13167

objects more quickly than if the objects were repeatedly added and deleted as
discussed above. For example, a full-space rectangle having an object to be animated
is first deleted from the workspace. Next an undoable add operation is used to place a
modified version of the object in accordance with a frame of the animation. The
undoable add operation is then undone, and a newly modified object is added in its
place, again using an undoable add operation for the next frame of the animation.

The present space management methods are suitable for a wide range
of graphics applications, such as window manager programs, graphical data
presentation tools, electronic book displays and the like.

In the case of a window manager program, such as illustrated in the
exemplary embodiments of Figure 14A, Figure 14B, Figure 14C, and Figure 14D, the
current dynamic space management methods enable several features with respect to
adding, deleting and moving content on the display. Figure 14A illustrates a
workspace 1400, which in this case is a computer display for a window based
operating system. On the workspace are displayed a number of full-space rectangles,
including 1402, 1404, 1406, 1408, 1410, 1412 and 1414. In this initial placement, a
number of the rectangles 1404, 1406, 1408, 1410, 1412 and 1414 are placed in an
overlapping fashion. Figure 14B illustrates the conventional placement of the
rectangles if a user simply moves rectangle 1402 to a new position which overlaps
rectangles 1404, 1406, 1408, 1410, 1412 and 1414.

Figure 14C illustrates an example of an overlap avoidance drag
operation in accordance with the invention which repositions rectangle 1402 from the
position in Figure 14B to the closest non-overlapping position illustrated in Figure
14C. In this case, the rectangles 1404, 1406, 1408, 1410, 1412 and 1414 are not
repositioned. Figure 14D illustrates the workspace resulting from an alternate
embodiment of an overlap avoidance drag operation in accordance with the invention.
In this case, the system maintains the placement of the dragged rectangle 1402 but
rearranges the rectangles 1404, 1406, 1408, 1410, 1412 and 1414 to new positions to
avoid overlap. The selection of placement parameters for rectangle 1402, and those
rectangles which would be affected by a drag operation of rectangle 1402, are

generally user established parameters which are based on user preferences and

22

10

15

20

25

30

WO 01/82279 PCT/US01/13167

application specific requirements. For example, a first user may prefer the results of
Figure 14C whereas a second user would prefer the results of Figure 14D. In either
case, the present method of managing a workspace provides a data structure
representing the available empty space which can be queried to determine a set of
possible positions for a given object of full space. The user parameters are then used
to select among the available empty-space rectangles and to establish a final position
of the full-space on the workspace. This enables the arrangement of full-space to
accommodate a vast range of user preferences.

As noted above, the current methods maintain a representation of the
full-space and the empty-space of the workspace. When a full-space rectangle is to be
moved or resized, it is first deleted from the full-space representation and the empty-
space representation is updated. During the move, space management for overlap
avoidance can take place continuously throughout the move operation or can be
performed at the end of the move operation. In the first case, as the user selects a full-
space rectangle and drags the selected rectangle to a new position on the work space,
any other full-space rectangles which are in the drag path and would intersect the
selected full space rectangle can be dynamically moved out of the way into other
empty-space regions. Alternatively, the space management can take place after a user
completes the move. In this later case, automatic positioning can involve either
moving any full-space rectangles which are overlapped by the new placement of the
moved object or by adjusting the final position of the moved object, such as into the
closest available position that will satisfy the current placement parameters set by the
user, such as, size and aspect ratio of the full-space rectangle.

If desired, the system can be allowed to alter the size and or aspect
ratio within predefined limits set by a user to provide for placement during a move
operation. For example, if a predetermined size scaling factor of 0.8 is used, than the
system would be allowed to place a moved rectangle in an empty-space rectangle
having a suitable aspect ratio and a size in the range of 0.8 to 1.0 of the size of the
original full-space rectangle. Alternatively, if the user established that the position of
a full-space rectangle was critical, than the system could be provided with an option

of maintaining the position and aspect ratio of the full-space rectangle and scaling the

23

10

15

20

25

30

WO 01/82279 PCT/US01/13167

size of the full-space rectangle to fit the available empty-space rectangle at the
selected position. Other positioning and sizing parameters can also be set by a user to
control the final placement of the full space rectangle on the workspace, such as total
area, minimum and/or maximum dimensions, and even relative parameters such as
“next to rectangle x,” “above rectangle y,” and the like, where x and y can represent
objects already placed on the workspace.

Figures 10A and 10B are pictorial representations of an application of
the present space management methods in connection with a three dimensional
information visualization system. While such a system can be used in any number of
specific applications, the application will be described in the context of a medical
information system. The pictorial diagram of Figure 10A depicts a workspace 1000
which represents a patient treatment timeline. Along a time line grid 1005 a number
of folder icons 1010, 1015, 1020, 1025, 1030, 1035 are displayed on the workspace
which are indications that detailed information regarding the patient, such as signs,
symptoms, indications, treatment rendered, medication provided and the like, is
available for a particular time period. In order to access the information, one of the
folders can be selected to be brought to the foreground and enlarged. However, since
the time line features other important patient data in other folders which may need to
be accessed simultaneously, it would be disadvantageous for the folder which was
brought forward to overlap another folder displayed on the background. As set forth
above, it is not required, and in some cases not desired, that all content which is
displayed on the workspace participate in the data structures which define full space
and empty space on the workspace. In this case, the background timeline grid 1005 is
content which is intended to have other objects placed in an overlapping relationship
to it. Therefore, the full space rectangle which defines the background timeline grid
1005 can either be displayed without ever adding it to the full-space representation or
it can added initially and then deleted from the full space representation without
removing the content from the display. The space maﬁager can query the empty
space representation, which includes the area of the background timeline grid 1005,
for the largest available empty-space rectangle to receive the enlarged folder. The

folder can then be dynamically enlarged, while generally maintaining the original

24

10

15

20

25

30

WO 01/82279 PCT/US01/13167

aspect ratio, to fit within the selected empty-space rectangle. This is illustrated in
Figure 10B where folder 1035 of Figure 10A has been selected, brought to the
foreground and enlarged as folder 1040.

The present space management methods are also well suited to various
electronic publishing and online content management applications. Figures 11A and
11B illustrate the use of the present space management methods for use in dynamic
placement of advertising content within a web page. The workspace 1100 of Figure
11 illustrates a typical web browser page with various content from an Internet
Service Provider (ISP) being displayed. It is well known that advertising can be
inserted into such web pages, such as through banner advertisements which are
generally placed in a predetermined portion of the content page specifically reserved
for such content. Using the present dynamic space management methods, an empty-
space representation can be generated for a webpage to identify those areas which are
available to receive advertising or other insertable content without specifically
reserving a portion of the display for such content. For example, largest empty space
rectangles 1102, 1104, 1106, 1108 and 1110 are representative empty-space
rectangles which are available to receive insertable content. Referring to Figure 11B,
a block of advertising content 1112 can be inserted as a full space rectangle having a
defined size and aspect ratio which can be received by empty space rectangle 1110.

The various systems and methods can be implemented as computer
software which can be operated by any number of conventional computing platforms.
For example, an IBM® compatible personal computer operating with an Intel
Pentium ITI ® processor, having 256MB of RAM and operating the Windows® 2000
operating system has been found suitable for applications such as those illustrated and
described in connection with Figures 10 and 11. Suitable software can be generated
in any conventional programming language or environment, such as Java 1.2. It will
be appreciated that such software can be embodied in computer readable media such
as various forms of computer memory, hard disk drives, CD-ROM, diskette and the
like.

The invention has been described in the context of a two dimensional

work space represented by a list of full space rectangles and a list of empty space

25

10

15

20

25

30

WO 01/82279 PCT/US01/13167

rectangles to represent the workspace. However, the invention is not limited to
applications in two dimensions. The methods described are well suited for extension
to three or more (n) dimensions. In the 3D case, rather than using planar rectangles in
the representation, 3D axis-aligned cuboid bounds can be used as the basis of
representation. The 3D full-space cuboids are then processed to generate a list of
empty-space cuboids that represent the empty space in 3D.

One application of 3D space management is to represent 3D physical
space. For example, warehouse management systems could use such a representation
to maximize space utilization while still maintaining enough space to physically
retrieve inventory. In general, given a 3D layout, the present methods for
representing and managing a workspace makes it easy to compute the placement or
movement of objects in the empty space.

In addition, while the dimensions of the workspace have generally
been described as spatial, one or more of the dimensions in the representation can
represent nonspatial dimensions. For example, one dimension could be mapped to
time. Thus, in a 3D system, the use of two spatial dimensions and one temporal
dimension could enable queries for finding an optimal place for storing an object
based on its 2D footprint and the duration for which it must be stored. In a exemplary
4D space manager, three dimensions might be devoted to space and one to time. Of
course, this can be extended to further dimensions and dimensional parameters, as
required.

The workspace has generally been considered to be planar for the sake
of simplicity in the explanation. However, this is not required. The current methods
can also be applied to a workspace that is continuous, or that "wraps around" the left
and right edges of the rectangular workspace. Alternatively, the rectangular space
manager can be mapped to the surface of a sphere or a cylinder. This enables
modeling such objects as the surface of the earth, or the space above the earth, or
processing a cylindrical or spherical wrap-around information space for an immersive
wearable user interface. Wrapping the bottom and top edges of the workspace also

allows the present methods to be extended to model toroidal information surfaces.

26

WO 01/82279 PCT/US01/13167

Although the present invention has been described in connection with
several exemplary embodiments, it will be appreciated that various changes and
modifications may be suggested to one skilled in the art. It is intended that the
present invention encompass such changes and modifications as fall within the scope

of the appended claims.

27

10

15

20

25

WO 01/82279 PCT/US01/13167

CLAIMS

1. A method for space management of a workspace comprising:

allocating at least one full-space rectangle of the workspace;

defining a first data structure for representing at least a portion of full-
space rectangles to be present on the workspace, wherein said at least a portion of the

full-space rectangles are permitted to overlap;

defining a second data structure of largest empty-space rectangles

available on the workspace;

performing an operation on the workspace involving at least one full-

space rectangle; and

redefining the first data structure and the second data structure in

accordance with the workspace resulting from the performing step.
!

2. The method of space management according to claim 1, wherein the operation
performed on at least one full-space rectangle is selected from the group consisting of
adding a new full-space rectangle, deleting an existing full-space rectangle and

moving an existing full-space rectangle.

3. The method of space management according to claim 1, wherein the operation
performed includes adding a new full-space rectangle to the workspace and the step of
redefining the first and second data structures further comprises:

adding an entry representing the new full-space rectangle to the first
data structure;

removing entries from the second data structure representing largest

empty space rectangles which are intersected by the new full space rectangle; and

adding entries to the second data structure representing the set of new
largest empty-space rectangles resulting from the placement of the new full space

rectangle.

28

10

15

20

25

WO 01/82279 PCT/US01/13167

4, The method of space management according to claim 1, wherein the step of
redefining the second data structure further comprises removing entries which are

intersected by a full space rectangle following performing the operation.

5. The method of space management according to claim 2, wherein the operation

is the addition of a new full-space rectangle which is manually placed by a user.

6. The method of space management according to claim 2, wherein the operation
is the addition of a new full-space rectangle which is automatically placed in a final

position on the workspace.

7. The method of space management according to claim 6, wherein the operation
of automatically placing the full-space rectangle further comprises:
querying the second data structure to identify candidate largest empty

space rectangles which satisfy at least one user defined placement parameter;
selecting one of the candidate largest empty space rectangles; and

placing the full-space rectangle within the selected candidate largest

empty space rectangle.

8. The method of space management according to claim 7, wherein the
placement parameter includes a minimum area for the full-space rectangle being

placed.

9. The method of space management according to claim 7, wherein the
placement parameter includes a minimum linear dimension for the full-space

rectangle being placed.

29

10

15

20

25

WO 01/82279 PCT/US01/13167

10. The method of space management according to claim 7, wherein the

placement parameter includes an aspect ratio for the full-space rectangle being placed.

11. The method of space management according to claim 7, wherein if a plurality
of candidate largest empty-space rectangles are available, the selecting operation is

performed in accordance with at least one user defined quality measure.

12, The method of space management according to claim 11, wherein the quality
measure is the empty-space rectangle which is closest in position to an initial

placement of the full-space rectangle.

13. The method of space management according to claim 11, wherein the quality
measure is the empty-space rectangle which is the smallest candidate empty space

rectangle.

14. The method of space management according to claim 7, wherein the size of
the full-space rectangle to be added can be reduced by an amount up to a
predetermined scaling factor and wherein the candidate largest empty-space
rectangles include those empty-space rectangles which are at least as large as the

original size reduced by the scaling factor.

15. The method of space management according to claim 7, wherein if not largest
empty space rectangles satisfy the user defined placement parameter, the user can

optionally place the full space rectangle on the workspace. '

16. The method of space management according to claim 1, further comprising the
operation of retaining a copy of at least a portion of the first and second data

structures prior to performing said redefining step.

30

10

15

20

25

30

WO 01/82279 PCT/US01/13167

17. The method of space management according to claim 16, further comprising
performing an undo operation of the performed operation by redefining the first and
second data structures in accordance with the retained copies of the at least a portion

of the first data structure and second data structure.

18. The method of space management according to claim 17, wherein the
operation is an undoable add operation, and wherein the at least a portion of the
second data structure which is copied is a set of rectangles which are removed from
the second data structure as a result of the operation, and wherein empty space
rectangles added to the second data structure as a result of the operation are marked

for a subsequent removal in the event of an undo operation.

19. The method of space management according to claim 1, wherein the
operation is a deletion operation and wherein the step of redefining the second data
structure further comprises:

a. identifying the edges of the full-space rectangle to be deleted;

b. selecting a first edge of the full-space rectangle to be deleted,;

c. identifying each empty-space rectangle in the second data structure
which is adjacent to the selected edge;

d. merging the adjacent empty-space rectangles with empty-space
generated by deleting the full-space rectangle;

e. adding the merged empty-space rectangle to the second data structure
if the merged empty-space rectangle is a largest empty-space rectangle;

f. dropping the merged empty-space rectangle if it is a subset of a
previously identified largest empty-space rectangle;

g. saving the merged empty-space rectangle as an input empty space
rectangle for a subsequent merging operation of step d if the merged empty-space
rectangle is not added or dropped;

h. selecting a next edge; and

i repeating steps ¢ through h for each edge identified in step c.

31

10

15

20

25

WO 01/82279 PCT/US01/13167

20. The method of space management according to claim 1, wherein the

workspace is a three dimensional workspace.

21. The method of space management according to claim 20, wherein the

workspace is physical workspace.

22. The method of space management according to claim 20, wherein at least one

of the dimensions of the workspace is time.

23. A method of operating a display device in a computer system, the method
comprising:

providing a display workspace on the display device wherein content -
to be displayed to a user is defined in a plurality of full-space rectangles positioned on
the workspace wherein at least a portion of the full-space rectangles are permitted to

overlap;

storing in computer readable media a first data structure representing at
least a portion of the plurality of full-space rectangles present on a workspace of the

_display device;

storing in computer readable media a second data structure of largest
empty-space rectangles available on the workspace, the largest empty space
rectangles being defined, at least in part, by the placement of the portion of the
plurality of full-space rectangles stored in the first data structure;

performing a user operation on at least one full-space rectangle on the

workspace; and

redefining the first data structure and the second data structure stored
in the computer readable media in accordance with the workspace resulting from the

performing step.

32

WO 01/82279 PCT/US01/13167

24. A method for space management of a workspace provided on a display
comprising:

defining a first data structure for representing at least a portion of full-
space rectangles to be present on the workspace, wherein said at least a portion of the

5 full-space rectangles are perfnitted to overlap;

defining a second data structure of largest empty-space rectangles

available on the workspace;

initiating an operation to be performed on the workspace involving at

least one full-space rectangle which is to be added to the first data structure; and

10 querying the second data structure to determine the candidate largest
empty-space rectangles on the workspace which can accommodate the operation to be

performed;

selecting one of the candidate largest empty-space rectangles based on

at least one selection parameter;
15 performing the operation; and

redefining the first data structure and the second data structure in

accordance with the workspace resulting from the performing step.

33

WO 01/82279 PCT/US01/13167

1717

FIG.1B FIG. 1C

FIG. 1A
10{A 104l | 7° 1108
: /
. 1\02
F
|_—T L —————
102 | 102 102
\\ \
| 110
108— L

FI1G. 1D FIG. 1E

SUBSTITUTE SHEET (RULE 26)

PCT/US01/13167

WO 01/82279

2/17

00¢ A
L .
42 914 dc 9oid
A1 7T
N/O_‘ 00< Nnﬂ_‘
ONISS3004d d3NTT10ANI
S3UINOIYE _ 801l 502 ONISS3O08d ON
B — 20!
. / .
2 old | ST 02 914
\
—/
_ |
-/
[~ - 7 |
002 I
// . _I
201 “ _
g¢ 914 Ve 914

SUBSTITUTE SHEET (RULE 26)

WO 01/82279

PCT/US01/13167

17
> FIG. 3

300
ADD FULL SPACE
—* _RECTANGLE TO
REPRESENTATION
305 '
DETERMINE SET
OF EMPTY SPACE
RECTANGLES
310 DETERMINE SET
\ OF LARGEST EMPTY
SPACE RECTANGLES
315
MANUALLY
PLACE ADDITIONAL FULL

SPACE RECTANGLE ON
WORKSPACE ?

IS
SUITABLE
EMPTY SPACE RECTANGLE

FOR NEW FULL SPACE RECT-
ANGLE AVAILABLE

NO

SIZE AND POSITION
FULL SPACE RECTANGLE
WITHIN SELECTED EMPTY

SPACE RECTANGLE

321

REMOVE FULL SPACE

RECTANGLE FROM
REPRESENTATION

320

DELETE
FULL SPACE RECT~-
ANGLE FROM
WORK%PACE

325 343

POSITION NEW FULL
SPACE RECTANGLE

WAIT FOR DISPLAY
S OPERATION

DETERMINE PLACEMENT
PARAMETERS OF FULL
SPACE RECTANGLE

!
EVALUATE EMPTY SPACE
REPRESENTATION FOR
SUITABLE EMPTY-SPACE
RECTANGLES AVAILABLE

:

| 335

PLACE W/
OVERLAP?

342 .

YES

v
TO STEP
300

SUBSTITUTE SHEET (RULE 26)

WO 01/82279

a/17

PCT/US01/13167

CREATE LIST OF LARGEST
EMPTY SPACE RECTANGLES
INTERSECTED BY OR
ADJACENT TO NEW FULL
SPACE RECTANGLE

400

I

IDENTIFY EACH EDGE (E)

OF NEW FULL SPACE
RECTANGLE (F)

—»

| —402

E INTER-
SECTS EMPTY SPACE
RECTANGLE (0) IN
LIST ?

COLLINEAR WITH
EDGE OF EMPTY SPACE
RECTANGLE IN

410

405

YES

CREATE NEW EMPTY SPACE

RECTANGLE BOUNDED BY E |— 12
42\5 AND THREE EDGES OF O
NEXT EDGE
435 420
NEXT
RECTANGLE
MORE 430
T INTERSECTED EMPTY
| SPACE RECTANGLES IN
LIST?
440—_| DETERMINE SET OF LARGEST

EMPTY SPACE RECTANGLES

SUBSTITUTE SHEET (RULE 26)

FIG. 4

PCT/US01/13167

WO 01/82279

S5/ 17

HG 914 9G¢ 9l4d 4G 914 g 9l
\ ‘mﬂm/ K\Nﬁmm
02G
oL —T"
mOm/v vlc ¢S wOm 016 80—
) .
7 \ B e — \\
i \ / | \ /
228 +0g £0G /@Om 002
002
asé 9i4d 26 914 gc 9Old vG 914

SUBSTITUTE SHEET (RULE 26)

WO 01/82279 PCT/US01/13167

e/17

FOR EACH EMPTY SPACE 605
RECTANGLE, DO

SELECT FIRST Epee |— 810

615
COLLINEAR WITH

FULL SPACE —»
RECTANGLE P
NO
| 620
OLLINEAR WITH
BOUNDARY OF —» 630

WORKSPACE ?

ALL FOUR
EDGES TESTED

DISCARD EMPTY
SPACE RECTANGLE

625 NEXT EDGE

635 640

AN

ADD LARGEST EMPTY
RECTANGLE TO
REPRESENTATION

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US01/13167

WO 01/82279

ve8 _ 818

@)
o
N~
Al
0
N~

|
| ~
_
=N oEk 822 N
 pe r~q K _ / \ | |/ /& _ s “
- v o i =~ | =R | Hipa=§ \
. i — | N — R _ - _ T‘ —3 I/_/ — ==
o8 | = | s AT N H}u iD= l_lm“:. h ok
\.\l. \ L [25w ! 1
Sl | E=N G, os = =
Sl 2 Sl Iy s R 0L == vv_m/zm s NI N AN
prg—d =l 2le A B e PN TSR] V= B 841 eor VO
_ W llois\ |l L-4 |] A= VoL e K P g\mNN 0gs | /

908 — ..lmg _ 1 X1 “ \ = Ae=rl _ .- I_/E N I/ﬂ/ _“H_/ " nnl.rh_..!_ Ok
~ Degey)) (ool T e gell = O S
N A | fO9 _ B +..L//_7 — _ | ﬁ..-. LT
S Nk Debeln 18 = b | el 222 [T o = | vh

zonal[L_t Ehvos|(] L | oes LR kg LT
808 N Rt G el WA= \\ | SIS et IR N 4/
IS vl mrlA L | e 8is | 1704 %,
iR e ey | R N WA A 902
008~ |4 H=* o [ER Ly I =\ |y 994082) 022] L1NdLNO | LndNI
86. e
L= ” =\ umm\./mmt 1ndLno | Lndni m |
= | vse | _ _ 1331
2 N1 ll|” | 882 o092 | LHOIY 0021
26| .1 ! T.r.. “ 1Ndino | LndNi | T3
e I — _ l ~
062 “o @P \ww\._ WOL 108
— ——
R 7 |
1Nd1NO 1NdNI | lZ 914

SUBSTITUTE SHEET (RULE 26)

WO 01/82279

888

\ |

8/17

IDENTIFY EDGES OF FULL
SPACE RECTANGLE

I

IDENTIFY FULL SPACE
RECTANGLES OVERLAPPING

REMOVED RECTANGLE

.

SELECT FIRST EDGE OF
FULL SPACE RECTANGLE

TO BE REMOVED

4

NEXT EDGE

887

886

IDENTIFY ALL EMPTY SPACE
RECTANGLES ADJACENT TO

THE SELECTED EDGE

I

PCT/US01/13167

FIG. 8

865

FOR EACH ADJACENT EMPTY
SPACE RECTANGLE, MERGE TO

GENERATE OUTPUT RECTANGLES

|__—870

[S OUTPUT
RECTANGLE A SUBSET
OF ANOTHER OUTPUT

NEXT

RECTANGLE

885

DONE

MORE

ADJACENT
RECTANGLES?

RECTANGLE?

875

YES

DROP
OUTPUT
RECTANGLE

ADD TO EMPTY
SPACE
REPRESENTATION

892

894

\

r

USE OUTPUT RECTANGLE
AS INPUT TO NEXT LEVEL
(EDGE) PROCESSING

SUBSTITUTE SHEET (RULE 26)

2

WO 01/82279 PCT/US01/13167

S/17
905
\
910 :
&\ 915
Y
92\5 IF"“‘““*"“WI
| |
NI,
930 N
\
920
FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 01/82279

PCT/US01/13167
10717
1OC§)
J. BAKER .
Age: 2 MedHistory: Hypertension
Gender Male ‘ Diabetes
MRN: 4455667
1005
Type
]1010']1020’
e
I
@15 1030
—=
10395
[Time
FIG. 10A

SUBSTITUTE SHEET (RULE 26)

WO 01/82279 PCT/US01/13167

11/17
1000
J. BAKER _
Age: 72 - MedHistory: Hyper’rensmn
Gender Male Diabetes

.)
MRN: 4455667 (amtion 87

T e |
il

Time

FIG. 10B

SUBSTITUTE SHEET (RULE 26)

PCT/US01/13167

WO 01/82279

vil Old

12717

jouwiaul

:d44y abod bujuadQ

=

SWNasSN{\ PUD 41y SMI(

im3aN OUowiA

Yy A
oon_>">‘_omm+ouum_:+omn_

(Z4) diysaosua)d

() sJ9})as)008g

(t}) Spaomy

©) Aydoiay | siv
iM3N (621lg) SisI4AY
iM3N (£29) Ki0gsiH 447

puD ‘sa143||D9 ‘swnasn|y
(8¢) sainilisui

iM3N (L £lt) saljubwiny
(9614) S4UdAd

(G) +udwAojdw3

IM3IN (O6G) uoi4DINPT o

e B s i o e e A T A o s S e o o 0 o Pt S o w b e o = e et o+ o are i o ot et s

B S 1
_f1062400 painyooy | AN} | (1g1) UorBay kg -
11 s8LiS
S3IJIUDWINK PUD 534y 1007 _,I. IJL_ seli06840d
jooyoA eio0p
9DDSSS\ D 1SO0d
- SM3[UI[pPDaH e gniy) o
2194 4! Ang- .
ToosEs S6I. — SIUSAJ LON OAI] » | uIof™ 10 1ADIS +.m_r_o D UIOQ »
iS4ST{AD snowby -
jO0UDA @episu|
WO02'}.1D _l __ 8O l_ .
[1 ||l._ _ yoaDag _ _
L 90h ~ vOLl B
jooyoa A 04 pPY S44Y
[—_— auwon
L c0lLl |
.
| hipw3 3d8yd-digH
sHu 09 _| _ $S94ppY
KiogsiH S3.L110AD 4 youpag yopg
pues diaH S{00L $a41108D4 mMSIA 4P3 8F 4/
: OO0l

SUBSTITUTE SHEET (RULE 26)

PCT/US01/13167

WO 01/82279

13717

gil 91d

j8usa4uT

auoQ

=

SWNISN\ PUD 11y :SMBN

im3n Ouow

+ay
02piniRaobBatp) painypady

N S841S
Sa1{IuDWNH pub Sy [00D

jooupA 240W

218H 4! Ang-
uo1499)ag abapT}-
1S3SI}AD snowd -

Wo9'LID

puD ‘sa143]|09 ‘swnasnpy

(Z}) diysiosua) e

(8¢) Sa4n{IEsU]
iM3N (/L) SalfluDwny

() s13}j253%009g
(L) SPIDMY

(9614) S+udrl
(G) +uswhojdw3

©) Aydoiay] siav
iM3AN (621¢) StSI4+iV
IM3N (06G) uol4bINp3 » iM3N (LZ29) Rio4siH LY

[] (1g1) uotbay Ag «

pP4DQJ 4XaN

s2)40B68}1D)

295DSSa\ D 1S0d o

SMA[N Sul|pDoH e

gn|D o

SIUAAT LON OAIT] » U0l 10 JID1S “1DYD D ulop e

_ yoiDasg _

j00UDA episu|

ioouyox AW o4 PPY S44VY
BWOH
lIow3 yoayo-diaH
Syuil - 09 f ; ssaippy
A104SIH S31140AD 4 ylupag ®oog
puas diaH - S|1001 Sa4140AD4 MBIA HP3 d5

[23%

4/oo:

SUBSTITUTE SHEET (RULE 26)

WO 01/82279 PCT/US01/13167

14/17

SpaceManager.addFullRectangle(Rectangie F){

fullSpaceList.add(F)
CList = existing rectangles in largestEmptySpaceList

that intersect or are adjacent to F
Vector possibleLESList{4] = new Vector{4]
Vector adjacentLESLisf{4] = new Vector [4]

for each empty space O in CList{
if (O adjacent to any side e of F and external to F)

adjacentLESList{e].add(O)

eise {
largestEmptySpacelist.delete(O)

if (O.minx < F.minx)
possibleLESListiLEFT].add(
Rectangle(O.minX,F.minX,0.minY,0.maxY))
if (O.maxX > F.maxX)
possible LESLIsf{RIGHT].add(
Rectangle(F.maxX,0.maxX,0.minY,0.maxY))
if (O.minY > F.minY)
possible LESListiBOTTOM].add(
Rectangle(O.minX,0.maxX,0minY,F.minY))
if (O.maxY > F.maxY)

possible LESList[TOP).add(
Rectangle(O.minX,0.maxX,F.maxY,0.maxY))

}

}
for each Direction D in {LEFT,RIGHT,BOTTOM,TOPY
for each empty space P in possibleLESList{D{
if (P not enclosed by any space in
adjacentLESList[D] or any other space in
possibleLESList{D] |
largestEmptySpaceList.add(P)

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 01/82279 PCT/US01/13167

15/17

SpaceManager.deleteFullRectangle(Rectangle F) {
remove F from fullSpacelList
create new Space Manager S to represent area of F
get all full-space rectangles that intersect F
and add themto S ' ,
adjacentEmptySpaceList = all largest empty-space
rectangles adjacent to and external to F
/* Note: these are the only largest empty spaces external
to F that need to be processed in this algorithm */
* possibleLESList is a temporary list of
empty spaces that could possibly be largest empty
spaces; initialize it to the empty spaces in S */
possibleLESList = S.largestEmptySpacelList
for each edge e in (LEFT,RIGHT,BOTTOM,TOP) {
adjList = spaces in possibleLESList adjacent to edge e of F
for each empty space R in adjList {
for each empty space P in adjacentEmptySpaceList {
if (P adjacent to edge e of R and edge e of F)
possiblelESList.add(combineSpaces (R,P))
/* see Figure 15 for function combineSpaces */

}
if (any rectangle in possibleLESList encloses R)
remove R from possibleLESList
}
}
for each empty space R in adjacentEmptySpaceLis{
if (R enclosed by a rectangle in possibleLESList)
fargestEmplySpacelist.delete(R)
} f
for each empty space R in possibleLESList{
if (R not enclosed by any other space in

possibleLESList)
largestEmptySpacelist.add(R)

FIG. 13

SUBSTITUTE SHEET (RULE 26)

PCT/US01/13167

WO 01/82279

avl 9ld

00— Ezmmdd
80— == | _—2opl
Olpl— E—d = ==

ll—T s I

2]

........ | Soo oot

|
——— pe——
| ¢ I |
L L —— . pre
_ ———— =y
1 11 T |

16/17

POvL—]
Q0P|

80P
Olpl—]

.m:i\#

iyl

——

P

]

Q0P

P ——— _
i i i
_llllLflllL _

gyl 914

¥l 9id

POl

Q0PI
80vL

Oolbl—]
2l

yderds

fr o m el — a —— ———

—20b1

PO

801
Ol

Sivl

il

| bttt T et
H

I el

\\.NOW_‘

vl Ol

O0vl

SUBSTITUTE SHEET (RULE 26)

WO 01/82279 PCT/US01/13167

/17

Method combineSpaces(Rectangle R1, Rectangle R2) {
if (isAdjacentinX(R1,R2))
return (Rectangle (MIN(R7.minX,R2.minX),
MAX(R7.minY,R2.minY), -
MAX(R1.maxX,R2.maxX),
MIN(R1.maxY,R2.maxY))),
else if (isAdjacentinY(R1,R2))
return (Rectangle(MAX(R7.minX.R2.minX),
MIN(R1.minY,R2.minY),
MIN(R7.maxX,R2.maxX),
MAX(R1.maxY.R2.maxY)))

FIG. 15

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

