FIG. 7

(57) Abrégé/Abstract:
A packer on a tubing string and diverting material pumped down the tubing string may be used to isolate a fracture cluster in a multizone horizontal wellbore that has been previously hydraulically fractured. Once hydraulically isolated, fluid may be pumped
(57) Abrégé(suite)/Abstract(continued):

down the tubing string to re-fracture the previously fractured fracture cluster in an effort to increase hydrocarbon production from the horizontal wellbore. The tubing string may include a testing device used to determine whether a specific fracture cluster within the horizontal wellbore should be re-fractured. Diverting material may be pumped down the tubing string and positioned adjacent a fracture cluster to hydraulically isolate the fracture cluster during the re-fracturing process. The diverting material may be cleaned out of the horizontal wellbore after all desired fracture clusters along the horizontal wellbore have been individually re-fractured.
Title: SYSTEM AND METHOD FOR RE-FRACTURING MULTIZONE HORIZONTAL WELLBORES

Abstract: A packer on a tubing string and diverting material pumped down the tubing string may be used isolate a fracture cluster in a multizone horizontal wellbore that has been previously hydraulically fractured. Once hydraulically isolated, fluid may be pumped down the tubing string to re-fracture the previously fractured fracture cluster in an effort to increase hydrocarbon production from the horizontal wellbore. The tubing string may include a testing device used to determine whether a specific fracture cluster within the horizontal wellbore should be re-fractured. Diverting material may be pumped down the tubing string and positioned adjacent a fracture cluster to hydraulically isolate the fracture cluster during the re-fracturing process. The diverting material may be cleaned out of the horizontal wellbore after all desired fracture clusters along the horizontal wellbore have been individually re-fractured.
SYSTEM AND METHOD FOR RE-FRACTURING MULTIZONE HORIZONTAL WELLBORES

Field of the Disclosure

[0001] The embodiments described herein relate to a system and method for re-fracturing select locations, such as prior perforations, prior fractures, and/or prior fracture clusters, of the formation of a multizone horizontal wellbore. The formation may also re-fracture the formation through a sliding sleeve left open during a prior hydraulic fracturing process.

BACKGROUND

Description of the Related Art

[0002] Natural resources such as gas and oil may be recovered from subterranean formations using well-known techniques. For example, a horizontal wellbore may be drilled within the subterranean formation. After formation of the horizontal wellbore, a string of pipe, e.g., casing, may be run or cemented into the well bore. Hydrocarbons may then be produced from the horizontal wellbore.

[0003] In an attempt to increase the production of hydrocarbons from the wellbore, the casing may be perforated and fracturing fluid may be pumped into the wellbore to fracture the subterranean formation. The fracturing fluid is pumped into the well bore at a rate and a pressure sufficient to form fractures that extend into the subterranean formation, providing additional pathways through which fluids being produced can flow into the well bores. The fracturing fluid typically includes particulate matter known as a proppant, e.g., graded sand, bauxite, or resin coated sand, may be suspended in the fracturing fluid. The proppant becomes deposited into the
fractures and thus holds the fractures open after the pressure exerted on the fracturing fluid has been released.

[0004] Another method to increase the production of hydrocarbons from a wellbore is to attempt to fracture the formation through ported collars or tubulars within the wellbore. Typically, these ported collars may be selectively closed by a sliding sleeve, which may be actuated to an open position by various means such as by the use of a shifting tool or by the application of a pressure differential. Once the port is opened, fracturing fluid may be pumped down the well and out the port in an attempt to fracture the formation to increase production of hydrocarbons.

[0005] A production zone within a wellbore may have been previously fractured, but the prior fracturing may not have adequately fractured the formation leading to inadequate production from the production zone. Even if the formation was adequately fractured, the production zone may no longer be producing at adequate levels. Over an extended period of time, the production from a previously fractured horizontal wellbore may decrease below a minimum threshold level. One technique in attempting to increase the hydrocarbon production from the wellbore is the addition of new fractures within the subterranean formation. One potential problem in introducing new fractures in the formation is that fracturing fluid pumped into the wellbore may enter prior fractures formed in the subterranean formation instead of creating new fractures. Expandable tubulars or cladding procedures have been used within a wellbore in an attempt to block the flow path of the fracturing fluid to the old fractures, instead promote the formation of new fracture clusters. The use of expandable tubulars or cladding may not adequately provide the desired results and further, may incur too much expense in the effort
to increase products from the wellbore. A more efficient way to increase the production of a horizontal wellbore is needed.

SUMMARY

[0006] The present disclosure is directed to a method and system for re-fracturing select locations of a formation in a multizone horizontal wellbore that have been previously fractured or were attempted to be fractured that overcomes some of the problems and disadvantages discussed above.

[0007] One embodiment is a method for re-fracturing a location of a formation of a multizone horizontal wellbore comprising hydraulically isolation a first location from a portion of the multizone wellbore uphole from the first location, the first location having been previously hydraulically fractured at least once and hydraulically re-fracturing the first location. The method comprises providing a first diverting material proximate to the first location after the first location has been hydraulically re-fractured, wherein the first diverting material hydraulically isolates the re-fractured first location from the multizone horizontal wellbore uphole of the first location. The method comprises hydraulically isolating a second location from a portion of the multizone horizontal wellbore uphole of the second location, the second location having been previously hydraulically fractured at least once and hydraulically re-fracturing the second location. The method comprises providing a second diverting material proximate to the second location after the second location has been re-fractured, wherein the second diverting material hydraulically isolates the re-fractured second location from a portion of the multizone horizontal wellbore uphole of the second location.
[0008] The first location may be a fracture cluster farther downhole of the multizone horizontal wellbore and wherein hydraulically isolating the first location may include creating a seal with a packing element connected to a coiled tubing string to seal an annulus between the coiled tubing string and a casing of the multizone horizontal wellbore uphole of the first location. The method may include cleaning out at least a portion of the multizone horizontal wellbore prior to hydraulically isolating the first location. The method may include cleaning out at least a portion of the multizone horizontal wellbore after re-fracturing the first and second locations to remove the first and second diverting materials from the multizone horizontal wellbore. The method may include producing hydrocarbons from the re-fractured first and second locations of the multizone horizontal wellbore. The first and second diverting material may comprises one or more of a thermoset plastic, a thermoset polymer, a sand plug, disintegrating frac balls, a gel, a cross-linked gel, frac balls, dissolving material, fiber laden diversion fluid, particulates, or a bridge of degradable particles. The method may include determining whether to hydraulically re-fracture the first location prior to hydraulically re-fracturing the first location and determining whether to hydraulically re-fracture the second location prior to hydraulically re-fracturing the second location. The method may include logging the first and second locations with a logging tool. There may be at least one fracture cluster positioned between the first location and the second location. Hydraulically isolation the second location may include providing a third diverting material between the first and second locations and creating a seal with a packing element connected to a coiled tubing string to seal an annulus between the coiled tubing string and a casing of the multizone horizontal wellbore uphole from the second location, wherein the third diverting material is provided prior to creating the seal uphole from the second location.
[0009] One embodiment is a system for re-fracturing a plurality of locations within a multizone horizontal wellbore comprising a first tubing string positioned within a multizone horizontal wellbore, the first tubing string extending from a surface location to a first location in the multizone horizontal wellbore. The first location being a lowermost previously fractured location along the multizone horizontal wellbore. The system comprises a packing element connected proximate to an end of the first tubing string, the packing element adapted to repeatedly seal an annulus between the first tubing string and a casing of the multizone horizontal wellbore, the end of the first tubing string being adapted to permit the hydraulic re-fracturing of selected locations within the multizone horizontal wellbore. The system comprises a plurality of diverting material, each of the plurality of diverting material positioned proximate to a previously fractured location to selectively hydraulically isolate the previously fractured location.

[0010] The first tubing string may be a coiled tubing string. The first tubing string may be comprised of a section of rigid tubing connected to a lower end of a coiled tubing string. The system may include a testing device connected to a second tubing string, the testing device adapted to determine whether a previously fractured location should be re-fractured, wherein the second tubing string is positioned within the multizone horizontal wellbore prior to the first tubing string being positioned within the multizone horizontal wellbore. The testing device may be a logging device.

[0011] One method is a method for selectively re-fracturing one or more previously fractured locations within a wellbore comprising positioning a packing element uphill of a first previously fractured location, the packing element being connected to a tubing string and actuating the packing element to seal an annulus between the tubing string and a casing uphill of the first
previously fractured location. The method comprises pumping fluid down the tubing string to re-fracture the first previously fractured location and providing a first diverting material proximate the re-fractured first previously fractured location. The method comprises unsetting the packing element and positioning the packing element uphill of a second previously fractured location. The method comprises actuating the packing element to seal the annulus between the tubing string and the casing uphill of the second previously fractured location and pumping fluid down the tubing string to re-fracture the second previously fractured location. The method comprises providing a second diverting material proximate the re-fractured second previously fractured location.

[0012] The method may include positioning a testing device proximate to the first previously fractured location and determining that the first previously fractured location should be re-fractured prior to re-fracturing the first previously fractured location and positioning the testing device proximate to the second previously fractured location and determining that the second previously fractured location should be re-fractured prior to re-fracturing the second previously fractured location. The method may include removing the first and second diverting materials and producing hydrocarbons from the re-fractured first and second previously fractured locations. The method may include determining a third previously fractured location should not be re-fractured prior to positioning the packing element uphill of the second previously fractured location, wherein the third previously fractured location is positioned between the first previously fractured location and the second previously fractured location. The method may include providing a third diverting material proximate the third previously fractured location prior to positioning the packing element uphill of the second previously fractured location.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 shows a tubing string positioned in a portion of a multizone horizontal wellbore that includes a plurality of locations that previously have been hydraulically fractured;

[0014] FIG. 2 shows a tubing string providing a cleanout procedure on a portion of a multizone horizontal wellbore that includes a plurality of locations that previously have been hydraulically fractured;

[0015] FIG. 3 shows an actuated packer on a tubing string creating a seal above the lowermost location of a multizone horizontal wellbore that has previously been hydraulically fractured;

[0016] FIG. 4 shows re-fracturing the lowermost fracture location of a multizone horizontal wellbore;

[0017] FIG. 5 shows the placement of a diverting material to hydraulically isolate the lowermost location after it has been re-fractured;

[0018] FIG. 6 shows an actuated packer on a tubing string creating a seal above a location that has previously been hydraulically fractured;

[0019] FIG. 7 shows re-fracturing a location of a multizone horizontal wellbore;

[0020] FIG. 8 shows the placement of a diverting material to hydraulically isolate a location that has been re-fractured as shown in FIG. 7;

[0021] FIG. 9 shows a portion of a multizone horizontal wellbore that has been re-fractured with the tubing string removed, the diverting material has been removed from the multizone horizontal wellbore permitting the production of hydrocarbons from the re-fractured locations within the horizontal wellbore;
[0022] FIG. 10 shows a tubing string comprised of coiled tubing and rigid tubing positioned within a portion of a multizone horizontal wellbore with diverting material hydraulically isolating a location that is not to be re-fractured; and

[0023] FIG. 11 shows re-fracturing a location of a multizone horizontal wellbore.

[0024] While the disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Rather, the intention is to cover all modifications, equivalents and alternatives falling within the scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION

[0025] FIG. 1 shows a schematic of a multizone horizontal wellbore 1 within a well formation 5. The horizontal wellbore 1 includes a plurality of zones A, B, and C that each may contain a plurality of locations 10a, 10b, 10c, 20a, 20b, 20c, 30a, 30b, and 30c that have been previously fractured. The locations 10a, 10b, 10c, 20a, 20b, 20c, 30a, 30b, and 30c may be prior fractures, fracture clusters, or perforations within a casing. As discussed herein, each location may include one or more fracture clusters that have been previously fractured or were attempted to be previously fractured. Although the figures only show a multizone horizontal wellbore with cemented casing, the location may also be a fracture port in a ported completion that has been left open after a prior fracturing operation in an attempt to fracture the formation behind the fracture port. For example, the system and method disclosed herein may be used to re-fracture the formation 5 through the ported completion disclosed in U.S. patent application no. 12/842,099 entitled Bottom Hole Assembly With Ported Completion and Methods of Fracturing
Therewith, filed on July 23, 2010 by John Edward Ravensbergen and Lyle E. Laun, which is incorporated by reference herein in its entirety.

[0026] For illustrative purposes only, FIG. 1 shows three zones or segments of the multizone horizontal wellbore 1. Likewise, FIG. 1 shows three previously fractured locations per zone or segment, for illustrative purposes only. A multizone horizontal wellbore 1 may include a various number of zones or segments such as A, B, and C that have been previously fractured, as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure. Likewise, the number of previously fractured locations within each zone or segment may vary. As discussed above, the previously hydraulically fractured locations may comprise a perforation through casing that was attempted to be fractured, a fracture or fracture cluster in the formation, or a fracture port in a completion. A previously fractured location includes any location within a wellbore that has been previously subjected to a fracturing treatment, in an attempt to fracture the formation at that location, whether or not the formation actually fractured. Hereinafter, the previously fractured locations will be referred to as a fracture cluster, but such locations should not be limited to those previously fractured locations that resulted in a fracture cluster and may include any of the above noted, or other fracture locations.

[0027] A production zone may have as few as a single fracture cluster or may include more than ten (10) fracture clusters. The multiple zones of a multizone horizontal wellbore 1 may include a plurality of fracture clusters 10, 20, and 30 that extend into the formation 5 that surrounds the casing 6 of the multizone horizontal wellbore 1. As discussed above, the formation 5 is fractured by a plurality of fracture clusters 10, 20, and 30 to increase the production of hydrocarbons from the wellbore. When the rate of production from the horizontal
wellbore decreases below a minimum threshold value it may be necessary to re-fracture selected fracture clusters 10, 20, and 30 within the wellbore 1, as discussed below.

[0028] A tubing string 7 may be positioned within the casing 6 of the horizontal wellbore 1. Fluid may be pumped down the tubing string 7 and out the end 9 of the tubing string and reverse circulated up the annulus to clean out the horizontal wellbore 1 prior to the re-fracturing process as shown in FIG. 2. The tubing string 7 may include a testing device 50 that may be used to determine whether a fracture cluster, such as 10a, 10b, 10c, 20a, 20b, 20c, 30a, 30b, or 30c, should be re-fractured. For example, the testing may be a logging device. The testing device 50 may indicate that a fracture cluster should be skipped in the re-fracturing process. The testing device 50 may determine various parameters that may be helpful to determine whether a location should be re-fractured such as casing integrity, wellbore characterization, formation evaluation, and/or production analysis.

[0029] After the horizontal wellbore 1 has been cleaned out, a tubing string 7 may be positioned within the casing 6 of the horizontal wellbore 1 having a packer or sealing element 8, hereinafter referred to as a packer. The packer 8 may be actuated to create a seal in the annulus between the tubing string 7 and the casing. The tubing string 7 may be comprised of various tubulars that permit locating and operating a packer or sealing element, as discussed below, within the horizontal wellbore 1 and also permit the pumping of fluid down the tubing string 7 to a desired location along the horizontal wellbore 1. For example, the tubing string 7 may be coiled tubing that extends from the surface to the location of the fracture cluster 10a positioned farthest downhole of the horizontal wellbore 1. Another example is a tubing string 7 comprised of a rigid tubular section 70 connected to coiled tubing 75, as shown schematically in FIG. 10. It may be preferred use only a relative short length of rigid tubing 70 in comparison to the overall
length of the tubing string 7 due to the greater weight of rigid tubing 70 in comparison to coiled tubing 75.

[0030] The packer 8 may be positioned uphole of the lowermost fracture cluster 10a and actuated to create a seal between the tubing string 7 and the casing 6 of the horizontal wellbore 6. FIG. 3 shows the packer 8 actuated to hydraulically isolate the lowermost fracture cluster 10a from the portion of the horizontal wellbore 1 located above the actuated packer 8. Various packers and/or sealing elements may be used to in connection with the tubing string 7 to hydraulically isolate the fracture cluster 10a as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.

[0031] The packer 8 includes a sealing element may be repeatedly actuated and/or energized to create a seal between the tubing string 7 and the wellbore casing 6. Debris within the annulus may potentially interfere with the repeated actuation of the packer 8. In an effort to minimize interference from debris within the wellbore 1, the packer 8 may include a debris exclusion device, such as one or more cups, positioned downhole from the packing element, which may help to prevent debris and/or material within the wellbore from interfering with the creation of a seal by the sealing element of the packer 8. One example of such a packing element is discussed in U.S. Patent No. 6,315,041 to Stephen L. Carlisle and Douglas J. Lehr entitled Multi-zone Isolation Tool and Method of Stimulating and Testing a Subterranean Well, which is incorporated by reference herein in its entirety.

[0032] FIG. 4 shows that fluid is pumped down the tubing string 7 and out the end 9 of the tubing string 7 to hydraulically re-fracture cluster 110a, which was previously fractured fracture cluster 10a (shown in FIG. 1-3). After re-fracturing cluster 110a, a diverting material 40 may be placed within the horizontal wellbore 1 proximate to the re-fractured cluster 110a as shown in
FIG. 5. The diverting material 40 hydraulically isolates the re-fractured cluster 110a from subsequent re-fracturing procedures within the horizontal wellbore 1. The diverting material 40 may be various materials that may be positioned within the wellbore 1 using the tubing string 7 that hydraulically isolates a fracture cluster from the portion of the wellbore 1 uphole from the diverting material 40. The diverting material 40 may be, but is not limited to, thermoset plastics, thermoset polymers, sand plugs, disintegrating frac balls such as this offered for sale by Baker Hughes under the trademark IN-TALLIC™, gels, cross-linked gels, frac balls, dissolving material, fiber laden diversion fluid, particulates, and/or a bridge of degradable particles as would be recognized by one of ordinary skill in the art having the benefit of this disclosure. The diverting material 40 is pumped down the tubing string 7 and positioned proximate to the re-fractured cluster 110a to hydraulically isolate the re-fractured cluster 110a during the re-fracturing process of an additional fracture cluster within the horizontal wellbore 1.

[0033] After the placement of diverting material 40 to isolate a re-fractured cluster 110a the tubing string 7 may be moved uphole to position the packer 8 above the next fracture cluster 10b that is to be re-fractured. As discussed below, the adjacent fracture cluster may not be the next fracture cluster to be re-fractured. Instead, a fracture cluster or multiple fracture clusters may be passed over during the re-fracturing process. Diverting material may be pumped down the tubing string 7 to isolate a passed over fracture cluster during the re-fracturing of the next fracture cluster.

[0034] FIG. 6 shows the packer 8 actuated to hydraulically isolate the fracture cluster 10b from the uphole portion of the horizontal wellbore 1. The diverting material 40 positioned adjacent the lower re-fractured cluster 110a in combination with the actuated packer 8 hydraulically isolates fracture cluster 10b from the rest of the horizontal wellbore 1. Once the
fracture cluster 10b is isolated, fluid may be pumped down the tubing string 7 to re-fracture the cluster 110b as shown in FIG. 7. Diverting material 40 may be positioned adjacent the re-fractured cluster 110b after the re-fracturing process has been completed to hydraulically isolate the re-fracture cluster 110b from the uphole portion of the horizontal wellbore 1, as shown in FIG. 8. Hydraulically isolating the re-fractured cluster 110b permits the re-fracturing of another fracture cluster uphole from the re-fractured cluster 110b. This process of using a packer and diverting material may be repeated to re-fracture all desired fracture clusters, as would be recognized by one of ordinary skill in the art having the benefit of this disclosure.

[0035] The diverting material 40 placed within the horizontal wellbore 1 to hydraulically isolate sections of the horizontal wellbore needs to be removed once it is desired to produce from the hydraulically isolated clusters and/or once all of the desired fracture clusters have been re-fractured. FIG. 9 shows a horizontal wellbore 1 from which all of the diverting material 40 adjacent re-fractured clusters 110a and 110b has been removed permitting production of hydrocarbons from re-fractured clusters 110a and 110b. The diverting material 40 may be removed by various means as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure. For example, the diverting material may be removed by performing a clean-out procedure in the horizontal wellbore 1. Alternatively, the diverting material may be adapted to dissolve over a predetermined amount of time or dissolve upon the injection of a particular chemical into the horizontal wellbore.

[0036] FIG. 10 schematically shows a tubing string 7 that is comprised of a coiled tubing 75 connected to a rigid tubular section 70. Due to the length of the horizontal wellbore, it may not be practical to for the entire string 7 to be comprised of rigid tubulars 70, which is heavier than coiled tubing 75. Instead, a short section, in comparison to the length of the horizontal wellbore
1, of rigid tubing 70 may be connected to another type of tubing string, such as coiled tubing 75. As discussed above, a tubing string 7 may include a testing device 50 may have already been used to determine whether a fracture cluster, such as 10a, 10b, 10c, 20a, 20b, 20c, 30a, 30b, or 30c, should be re-fractured. For example, the testing may be a logging device. The testing device 50 may indicate that a fracture cluster should be skipped in the re-fracturing process. For example, FIG. 10 shows that fracture cluster 10b was not re-fractured, but instead fracture cluster 10c was re-fractured as re-fractured cluster 110c. Diverting material 40 is positioned proximate to fracture cluster 10b to isolate fracture cluster 10b during the re-fracturing of fracture cluster 110c. Prior to pumping fluid down the tubing string 7, the packer 8 is energized above fracture cluster 10c. The actuated packer 8 in combination with the diverting material 40 adjacent to fracture cluster 10b isolates fracture cluster 10c during the re-fracturing process so that the fluid re-fractures cluster 110c and is not leaked off into fracture cluster 10b. Diverting material 40 may be used to isolation multiple fracture clusters that have been determined non-beneficial to re-fracture as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.

[0037] FIG. 11 shows the re-fracturing of a wellbore location 200b, which includes two fracture clusters 310b and 310c that have been previously fractured. Prior to re-fracturing location 200b, location 200a, which includes fracture cluster 310a, has been re-fractured. Diverting material 40 has been placed within the wellbore 1 to isolate location 200a during the re-fracturing of location 200b. After re-fracturing location 200b, diverting material may be positioned above location 200b and the packer 8 may be located above location 200c to permit the re-fracturing of location 200c. Location 200c may include a plurality of fracture clusters such as 220a, 220b, and 220c, as shown in FIG. 11. After re-fracturing location 200c, the
location 200c may be hydraulically isolated and the packer 8 may be positioned above the next location 200d that is to be re-fractured. The next location 200d may include a single fracture cluster or a plurality of fracture clusters 230a, 230b, and 230c, as shown in FIG. 11. After re-fracturing a location, such as location 200b, a location, such as location 200c, may be isolated from being re-fractured if it is determined that the location should be not be re-fractured as discussed above.

[0038] Although this invention has been described in terms of certain preferred embodiments, other embodiments that are apparent to those of ordinary skill in the art, including embodiments that do not provide all of the features and advantages set forth herein, are also within the scope of this invention. Accordingly, the scope of the present invention is defined only by reference to the appended claims and equivalents thereof.
TABLE OF REFERENCE NUMERALS FOR FIGURES 1-10

A – section of horizontal wellbore containing multiple fracture clusters
B – section of horizontal wellbore containing multiple fracture clusters
C – section of horizontal wellbore containing multiple fracture clusters
1 – multizone horizontal wellbore
5 – formation
6 – casing of horizontal wellbore
7 – tubing string
8 – packing element
9 – end of tubing string
10a – previously fractured location in section A
10b – previously fractured location in section A
10c – previously fractured location in section A
20a – previously fractured location in section B
20b – previously fractured location in section B
20c – previously fractured location B
30a – previously fractured location C
30b – previously fractured location C
30c – previously fractured location C
40 – diverting material
50 – downhole testing device
70 – rigid pipe string
75 – coiled tubing
110a – re-fractured location in section A
110b – re-fractured location in section A
110c – re-fractured location in section A
What is claimed is:

1. A method for re-fracturing a location of a formation of a multizone horizontal wellbore, the method comprising:
 - hydraulically isolating a first location from a portion of the multizone horizontal wellbore uphole from the first location, the first location having been previously hydraulically fractured at least once;
 - hydraulically re-fracturing the first location;
 - providing a first diverting material proximate to the first location after the first location has been hydraulically re-fractured, wherein the first diverting material hydraulically isolates the re-fractured first location from the multizone horizontal wellbore uphole of the first location;
 - hydraulically isolating a second location from a portion of the multizone horizontal wellbore uphole of the second location, the second location having been previously hydraulically fractured at least once;
 - hydraulically re-fracturing the second location; and
 - providing a second diverting material proximate to the second location after the second location has been re-fractured, wherein the second diverting material hydraulically isolates the re-fractured second location from a portion of the multizone horizontal wellbore uphole of the second location.

2. The method of claim 1, wherein the first location is a fracture cluster farthest downhole of the multizone horizontal wellbore and wherein hydraulically isolating the first location further comprises creating a seal with a packing element connected to a coiled tubing string to seal an annulus between the coiled tubing string and a casing of the multizone horizontal wellbore uphole of the first location.

3. The method of claim 1, further comprising cleaning out at least a portion of the multizone horizontal wellbore prior to hydraulically isolating the first location.
4. The method of claim 3, further comprising cleaning out at least a portion of the multizone horizontal wellbore after re-fracturing the first and second locations to remove the first and second diverting materials from the multizone horizontal wellbore.

5. The method of claim 4, further comprising producing hydrocarbons from the re-fractured first and second locations of the multizone horizontal wellbore.

6. The method of claim 1, wherein the first and second diverting material comprises one or more of a thermoset plastic, a thermoset polymer, a sand plug, disintegrating frac balls, a gel, a cross-linked gel, frac balls, dissolving material, fiber laden diversion fluid, particulates, or a bridge of degradable particles.

7. The method of claim 1, further comprising determining whether to hydraulically re-fracture the first location prior to hydraulically re-fracturing the first location.

8. The method of claim 7, further comprising determining whether to hydraulically re-fracture the second location prior to hydraulically re-fracturing the second location.

9. The method of claim 8, wherein determining whether to hydraulically re-fracture the first location and the second location further comprises logging the first and second locations with a logging tool.

10. The method of claim 1, wherein there is at least one fracture cluster positioned between the first location and the second location and hydraulically isolating the second location further comprises providing a third diverting material between the first and second locations and creating a seal with a packing element connected to a coiled tubing string to seal an annulus between the coiled tubing string and a casing of the multizone horizontal wellbore uphole from the second location, wherein the third diverting material is provided prior to creating the seal uphole from the second location.
11. A system for re-fracturing a plurality of locations within a multizone horizontal wellbore, the system comprising:

 a first tubing string positioned within a multizone horizontal wellbore, the first tubing string extending from a surface location to a first location in the multizone horizontal wellbore, the first location being a lowermost previously fractured location along the multizone horizontal wellbore;

 a packing element connected proximate to an end of the first tubing string, the packing element adapted to repeatedly seal an annulus between the first tubing string and a casing of the multizone horizontal wellbore, the end of the first tubing string being adapted to permit the hydraulic re-fracturing of selected locations within the multizone horizontal wellbore; and

 a plurality of diverting material, each of the plurality of diverting material positioned proximate to a previously fractured location to selectively hydraulically isolate the previously fractured location.

12. The system of claim 11, wherein the first tubing string comprises a coiled tubing string.

13. The system of claim 11, wherein the first tubing string comprises a section of rigid tubing connected to a lower end of a coiled tubing string.

14. The system of claim 11, further comprising a testing device connected to a second tubing string, the testing device adapted to determine whether a previously fractured location should be re-fractured, wherein the second tubing string is positioned within the multizone horizontal wellbore prior to the first tubing string being positioned within the multizone horizontal wellbore.

15. The system of claim 14, wherein the testing device is a logging device.
16. A method for selectively re-fracturing one or more previously fractured locations within a horizontal wellbore, the method comprising:

 positioning a packing element uphole of a first previously fractured location, the packing element being connecting to a tubing string;

 actuating the packing element to seal an annulus between the tubing string and a casing uphole of the first previously fractured location;

 pumping fluid down the tubing string to re-fracture the first previously fractured location;

 providing a first diverting material proximate the re-fractured first previously fractured location;

 unsetting the packing element;

 positioning the packing element uphole of a second previously fractured location;

 actuating the packing element to seal the annulus between the tubing string and the casing uphole of the second previously fractured location;

 pumping fluid down the tubing string to re-fracture the second previously fractured location;

 and

 providing a second diverting material proximate the re-fractured second previously fractured location.

17. The method of claim 16, further comprising positioning a testing device proximate to the first previously fractured location and determining that the first previously fractured location should be re-fractured prior to re-fracturing the first previously fractured location and positioning the testing device proximate to the second previously fractured location and determining that the second previously fractured location should be re-fractured prior to re-fracturing the second previously fractured location.

18. The method of claim 16, further comprising removing the first and second diverting materials and producing hydrocarbons from the re-fractured first and second previously fractured locations.
19. The method of claim 16, further comprising determining a third previously fractured location should not be re-fractured prior to positioning the packing element uphole of the second previously fractured location, wherein the third previously fractured location is positioned between the first previously fractured location and the second previously fractured location.

20. The method of claim 19, further comprising providing a third diverting material proximate the third previously fractured location prior to positioning the packing element uphole of the second previously fractured location.