发明名称
光学玻璃、压模用成型玻璃材料、光学元件
和制造光学元件的方法

摘要
公开了一种具有高折光率和高色散性能且几乎没有色的光学玻璃，所述玻璃含有玻璃组分的P₂O₅、Nb₂O₅和TiO₂，含以除Sb₂O₃外的玻璃组分的总含量为大于0 重量％但不大于1 重量％的Sb₂O₃，具有1.91或更大的折光率(nd)和21或更低的阿贝数(vd)，并且在500nm或更短的波长处具有70％的透光率。
1. 一种光学玻璃，包括 P₂O₅、Nb₂O₅ 和 TiO₂ 作为玻璃组分，
 含有基于除 Sb₂O₃ 外的玻璃组分的总含量计为大于 0 重量％但不大于 1 重量％的 Sb₂O₃，其折射率 nd 为 1.91 或更大，阿贝数 vd 为 21 或更小，且在 500nm 或更短的波长下具有达到 70％的透光率。

2. 权利要求 1 的光学玻璃，其合作为任选组分的 WO₃ 和 Bi₂O₃，且 TiO₂/(Nb₂O₅+TiO₂+WO₃+Bi₂O₃) 重量比为 0.11 或更大。

3. 权利要求 1 的光学玻璃，其含有按重量％计为 17-30％的 P₂O₅、30-60％的 Nb₂O₅ 和大于 0％但不大于 20％的 TiO₂。

4. 权利要求 1 的光学玻璃，合作为任选组分的 WO₃ 和 Bi₂O₃，并具有以下玻璃组成，其中所述组分的含量按重量％计为：
 - P₂O₅ 17-30％
 - Nb₂O₅ 30％或更多
 - TiO₂ 大于 0％但不大于 20％

 条件是 TiO₂/(Nb₂O₅+TiO₂+WO₃+Bi₂O₃) 重量比为 0.11 或更大。

5. 权利要求 3 或 4 的光学玻璃，其还含有按重量％计为 0-3％的 SiO₂、1-8％的 B₂O₃、0-12％的 Na₂O、0-10％的 K₂O、大于 0％但不大于 25％的 BaO 和 0-5％的 ZnO。

6. 如权利要求 1 或 4 的光学玻璃，其含有基于除 Sb₂O₃ 外的玻璃组分的总含量计为大于 0.1 重量％但不大于 1 重量％的 Sb₂O₃。

7. 权利要求 1 或 4 的光学玻璃，其在熔融态玻璃成型并冷却的状态下，具有在 500nm 或更短的波长下达到 70％的透光率。

8. 一种压模用成型玻璃材料，其是用权利要求 1 或 4 的光学玻璃形成的并可供压模。

9. 一种光学元件，是由权利要求 1 或 4 的光学玻璃形成的。

10. 权利要求 9 的光学元件，该光学元件为透镜或棱镜。

11. 一种制造光学元件的方法，该方法包括在加热下使权利要求 8 中的压模用成型玻璃材料软化，并对其进行压模。
光学玻璃、压模用成型玻璃材料、光学元件
和制造光学元件的方法

技术领域

本发明涉及一种光学玻璃、压模用成型玻璃材料、光学元件和制造该光学元件的方法。更具体地说，本发明涉及一种具有高折射率和高色散性能且几乎没有着色的光学玻璃、由上述光学玻璃形成的成型玻璃材料、由上述光学玻璃形成的光学元件和制造上述光学元件的方法。

背景技术

近年来，对具有高折射率和高色散性能的光学玻璃的需求逐年增加。作为这种玻璃，已知的是这样一种光学玻璃，该光学玻璃具有作为基质材料的磷酸盐基玻璃组成，并含相对大量的提供高折射率的组分如TiO₂等（例如，见JP-A-6-345481）。

然而，上述玻璃含相对大量的、提供高折射率的组分如TiO₂等，同时使磷酸盐基玻璃组成作为基础，因此，该玻璃易于着色，并且从着色度的观点看具有问题。在上述JP-A-6-345481的发明中，试图热处理该光学玻璃以改善玻璃的着色。然而，在这种情况下，需要热处理步骤，因此操作就不可避免地变复杂。而且，还有这样另一个问题，即难以赋予整个玻璃均匀的着色度。

发明内容

在这种情况下，本发明的目的是提供一种具有高折射率和高色散性能且几乎没有着色的光学玻璃、由上述光学玻璃形成的压模用成型玻璃材料、由上述光学玻璃形成的光学元件和制造上述光学元件的方法。

为了实现上述目的，本发明人进行了勤奋的研究，并发现可以通过这样一种光学玻璃实现上述目的，该光学玻璃具有特定的组成，并在某一波长值或更短的波长值下具有达70%的透光率。已经基于此发现完成了本发明。

即，本发明提供：

（1）一种光学玻璃，包括作为玻璃组分的P₂O₅、Nb₂O₅和TiO₂，
含以除 Sb_2O_3 外的玻璃组分的总含量计，大于 0 重量 % 但不大于 1 重量 % 的 Sb_2O_3，折射率（nd）为 1.91 或更大，阿贝数（vd）为 21 或更小，具有在 500nm 或更短的波长下达 70 % 的透光率 (在下文称为“光学玻璃 I”)，

(2) 如上面 (1) 中列举的光学玻璃，其含作为任选组分的 WO_3 和 Bi_2O_3，且 $\text{TiO}_2/(\text{Nb}_2\text{O}_5+\text{TiO}_2+\text{WO}_3+\text{Bi}_2\text{O}_3)$ 重量比为 0.11 或更大，

(3) 如上面 (1) 或 (2) 中列举的光学玻璃，其含 17 - 30 重量 % 的 P_2O_5、30 - 60 重量 % 的 Nb_2O_5 和大于 0 重量 % 但不大于 20 重量 % 的 TiO_2，

(4) 一种光学玻璃，含作为必要组分的 P_2O_5、Nb_2O_5 和 TiO_2，含作为任选组分的 WO_3 和 Bi_2O_3，并具有以下玻璃组成，其中所述组分的含量按重量 % 计为:

$$
\begin{align*}
\text{P}_2\text{O}_5 & \quad 17 - 30 \% \\
\text{Nb}_2\text{O}_5 & \quad 30 \% \text{或更多}
\end{align*}
$$

$$
\text{TiO}_2 \quad \text{大于 0 \% 但不大于 20 \% ,}
$$

条件是 $\text{Nb}_2\text{O}_5/(\text{Nb}_2\text{O}_5+\text{TiO}_2+\text{WO}_3+\text{Bi}_2\text{O}_3)$ 重量比为 0.11 或更大，

并加入以除 Sb_2O_3 外的玻璃组分的总含量计，大于 0 重量 % 但不大于 1 重量 % 的 Sb_2O_3，

该光学玻璃的折射率（nd）为 1.91 或更大，阿贝数（vd）为 21 或更小 (在下文称为“光学玻璃 II”)，

(5) 如上面 (4) 中列举的光学玻璃，其具有在 500nm 或更短的波长下达 70 % 的透光率，

(6) 如上面 (3) 或 (4) 中列举的光学玻璃，其含按重量 % 计 0 - 3 % 的 SiO_2、1 - 8 % 的 B_2O_3、0 - 12 % 的 Na_2O、0 - 10 % 的 K_2O、大于 0 % 但不大于 25 % 的 BaO 和 0 - 5 % 的 ZnO，

(7) 如上面 (1) - (6) 中任一项列举的光学玻璃，其含以除 Sb_2O_3 外的玻璃组分的总含量计，大于 0.1 重量 % 但不大于 1 重量 % 的 Sb_2O_3，

(8) 如上面 (1) - (7) 中任一项列举的光学玻璃，在模制并冷却熔融玻璃的状态下，其具有在 500nm 或更短的波长下达 70 % 的透光率，

(9) 一种压模用成型玻璃材料，其是用上面 (1) - (8) 中任一项列举的光学玻璃形成的并供以压模，
（10）一种光学元件，是由上面(1) - (8)中任一项列举的光学玻璃形成的，和

（11）一种制造光学元件的方法，该方法包括在加热下使上面(9)中列举的压模用成型玻璃材料软化，并对其进行压模。

根据本发明，能够提供一种具有高折射率和高色散性能且与具有相似折射率的其它玻璃相比，几乎没有着色或着色降低的光学玻璃。由上述光学玻璃形成的，用于通过压模法获得光学元件的成型玻璃材料，由上述光学玻璃形成的光学元件和制造上述光学元件的方法。

具体实施方式

本发明的光学玻璃包括两个实施方案，光学玻璃I和光学玻璃II。首先将说明光学玻璃I。

光学玻璃I是一种包含P$_2$O$_5$、Nb$_2$O$_5$和TiO$_2$作为必要组分的玻璃，该玻璃包含以除Sb$_2$O$_3$外的玻璃组分的总含量占、大于0重量％但不大于1重量％的Sb$_2$O$_3$，折射率(nd)为1.91或更大，阿贝数(vd)为21或更小，在500nm或更短的波长下具有达70％的透光率。

上述透光率指的是当玻璃样品具有彼此平行且经抛光的表面，由此提供厚度为10.0 ± 0.1mm的玻璃样品，并使光垂直进入上述抛光面时获得的光谱透射比。上述的表面抛光指的是使表面变平，并光滑成这样一种状态，其中相对于测量波长区域的波长，表面的粗糙度足够小。上述光谱透射比是在280 - 700nm的波长范围内测量的。当假设透光率5%处的波长为λ$_5$时，透光率随着波长从λ$_5$增加而增加，并且当透光率达到至少70%时，将保持至少70%的高透光率直至波长到达700nm。当假设透光率70%处的波长为λ$_70$时，要求λ$_70$为500nm或更小，其优选为490nm或更小。虽然λ$_70$的下限没有特别限制，但为了实现除透光率以外的性能的提高，优选地，λ$_70$在包括350nm及更大波长的范围内。

当光学玻璃的组成范围是如上所述的范围时，该光学玻璃可以具有1.91或更大的显著高的折射率(nd)。然而，当含P$_2$O$_5$的玻璃包含高折射率组分如Nb$_2$O$_5$或TiO$_2$时，这种组分将被还原，从而产生棕色至紫色的颜色，因此透光率下降。为了降低此现象并获得上述透光率，引入Sb$_2$O$_3$是必要的。然而，当增加Sb$_2$O$_3$的含量时，由于Sb$_2$O$_3$吸收，玻璃将着色。因此，将Sb$_2$O$_3$的含量限于上述以除Sb$_2$O$_3$外的玻璃组分的总
量计，大于 0 重量%但不大于 1 重量%的范围。以除 Sb₂O₃ 外的玻璃组分的总含量计的 Sb₂O₃ 的含量优选为 0.01 - 1 重量%，更优选大于 0.1 重量%但不大于 1 重量%，更加优选 0.11 - 1 重量%，还更加优选 0.11 - 0.7 重量%，特别优选 0.11 - 0.5 重量%。如上所述，Sb₂O₃ 的含量指的是以除 Sb₂O₃ 外的所有玻璃组分的总含量为基础计算的含量。

本发明的光学玻璃 I 具有显著高折射率和高色散性能这些高附加值，为了进一步提高这些附加值，折射率（nd）优选为 1.92 或更大。而且，光学玻璃 I 的阿贝数（vd）优选为小于 20，更优选为 19 或更小，更加优选为 18.5 或更小。

虽然该折射率（nd）没有确定任何特定的上限值，但为了保持光学玻璃的高质量并能够稳定生产，优选将折射率（nd）的上限确定为 2.01 或更小，更优选确定为 2.00 或更小。而且，虽然阿贝数（vd）没有确定特定的下限值，但出于相同的观点，将阿贝数（vd）确定为 17 或更大，更优选确定为 17.5 或更大。

希望本发明的光学玻璃 I 不含 PbO 和 As₂O₃。PbO 可以增加玻璃的折射率，但具有环境问题。As₂O₃ 具有高的消泡或澄清效果，并且也对预防玻璃着色有大的效果，但具有环境问题。因此，在本发明中，希望从玻璃中排除这些物质。

其次，本发明的光学玻璃 II 包括作为必要组分的 P₂O₅，Nb₂O₅ 和 TiO₂，包合作为任选组分的 WO₃ 和 Bi₂O₃，并具有以下玻璃组成，其中必要组分的含量以重量%计为：

P₂O₅ 17 - 30%
Nb₂O₅ 30%或更多
TiO₂ 大于 0%但不大于 20%

条件是 TiO₂/(Nb₂O₅+TiO₂+WO₃+Bi₂O₃) 重量比为 0.11 或更大，且加入以除 Sb₂O₃ 外的玻璃组分的总量计为大于 0 重量%但不大于 1 重量%的 Sb₂O₃，该光学玻璃的折射率（nd）为 1.91 或更大，阿贝数（vd）为 21 或更小。

对于光学玻璃 II 中 Sb₂O₃ 的量、折射率（nd）和阿贝数（vd）以及透光率，可以适用针对包括其优选范围的上述光学玻璃 I 所做的解释。

下面将说明光学玻璃 II 的组分以及对其含量限制的原因。在下文
中，用\%表示的含量代表用重量\%表示的含量。以下对光学玻璃II中组成范围的说明同样适用于光学玻璃I中优选的组成范围。

在磷酸盐玻璃中，P₂O₅是必要的玻璃形成组分。磷酸盐玻璃具有以下特征，即与硅酸盐玻璃相比，其可以在低的温度下熔化，并且其在可见光区有高的透光率。因此，要求引入至少17\%的P₂O₅。另一方面，当P₂O₅的含量超过30\%时，就难以获得任何高折射率性能。因此，将P₂O₅的含量调整至17－30\%。P₂O₅的含量优选为18－28\%，更优选为21－28\%。

Nb₂O₅是用于获得高折射率和高色散性能的必要组分，并且其具有提高玻璃化学耐久性的作用。当Nb₂O₅的含量小于30\%时，不再能够获得想要的高折射率和高色散性能，因此引入30\%或更多的Nb₂O₅。而且，当Nb₂O₅的含量超过60\%时，玻璃的耐失透性趋于变差，因此将其含量调整至60\%或更少。Nb₂O₅的含量优选为32－57\%，更优选为40－57\%，更加优选为45－57\%。

引入TiO₂，因为它是用于获得想要的高折射率和高色散性能的必要组分，并非常有效地提高玻璃的化学耐久性。当TiO₂的含量超过20\%时，玻璃的耐失透性下降，并且玻璃的着色度极大恶化。因此，将TiO₂的含量限制为不大于0%但不大于20%。TiO₂的含量优选为0.5－19\%，更优选为2－18\%。

WO₃和Bi₂O₃是用于实现一些高折射率和高色散玻璃所需的光学常数的任选组分。在本发明中，不引入WO₃或Bi₂O₃，或不引入WO₃和Bi₂O₃也可以实现本发明的目的。当引入WO₃时，其含量优选为0－12\%，更优选为0－11\%。当引入Bi₂O₃时，其含量优选为0－15\%，更优选为0－10\%。

为了获得所需的光学常数，特别是高折射率性能，并获得几乎没有着色的玻璃，将TiO₂与Nb₂O₅、TiO₂、WO₃和Bi₂O₃总含量的重量比（TiO₂/（Nb₂O₅+TiO₂+WO₃+Bi₂O₃））调整至0.11或更大。即，具有预定含量的Sb₂O₃和具有根据上述关系式确定的含量的Nb₂O₅、TiO₂、WO₃和Bi₂O₃共存于光学玻璃II中，这样可以将透光率70\%的波长调整至500nm或更短。TiO₂/（Nb₂O₅+TiO₂+WO₃+Bi₂O₃）重量比优选为0.11或更大，更优选为0.14或更大，更加优选为0.15或更大。

BaO是一种高度有效提高玻璃耐失透性的组分。而且，它还是一种提高折射率且即使当大量引入时也不使着色度变差的组分。可以将BaO的含量调整至大于0%但不大于25%。BaO的含量优选为0.2－20\%。
更优选为0.2~10%，更加优选为0.2~6%，还更优选为0.2~5%。

当适量加入时，Li₂O、Na₂O和K₂O可以降低玻璃的熔化温度并可以降低玻璃的液相线温度（LT）。然而，当Li₂O+Na₂O+K₂O的总含量超过15%时，难以获得理想的高折射率性能。因此，Li₂O+Na₂O+K₂O的总含量优选为15%或更少，更优选为2~12%，更加优选为2~10%。

Li₂O的含量优选为0~3%，更优选为0~1%。Na₂O的含量优选为0~12%，更优选为0~10%，更加优选为0.1~10%。K₂O的含量优选为0~10%，更优选为0~9%，更加优选为0.1~9%。作为碱金属氧化物，优选的是只引入Na₂O，只引入K₂O或兼引入Na₂O和K₂O。更加优选的是只引入K₂O或兼引入Na₂O和K₂O。更加优选的是引入Na₂O和K₂O。

当适量加入时，作为任选组分的CaO、SrO和ZnO高度有效地降低玻璃的液相线温度（LT）并提高玻璃的耐失透性。然而，当过量引入CaO、SrO和ZnO时，将难以获得理想的高折射率和高色散性能。因此，优选将CaO的含量调整至0~6%，更优选为调整至0~3%。优选将SrO的含量调整至0~6%，更优选为调整至0~3%。优选将ZnO的含量调整至0~5%，更优选为调整至0~3%。

B₂O₃具有这样一种特性，即当适量加入时，其提高玻璃的耐失透性。当向含P₂O₅、Nb₂O₅和TiO₂的光学玻璃中引入适量的B₂O₃时，显著提高玻璃的耐失透性。因此，优选的是引入大于0%的B₂O₃，然而，当B₂O₃的含量超过8%时，难以获得任何高折射率性能。因此，优选的是将B₂O₃的含量调整至1~8%。B₂O₃的含量更优选为1~6.5%。

上述玻璃可以合成为任选组分的SiO₂和ZrO₂。SiO₂和ZrO₂当均少量引入时都用于降低着色，并且提高耐失透性。当适量加入它们时，难以获得理想的高折射率性能。因此，优选将SiO₂的含量调整至0~3%，优选将ZrO₂的含量调整至0~4%。更优选地，SiO₂的含量为0~2%，ZrO₂的含量为0~2%。

只要不损害本发明的目的，也可以引入诸如La₂O₃、Y₂O₃、Cd₂O₃、Ta₂O₅、MgO、Cs₂O等这样的组分。然而，不引入这些组分中的任何一种也可以实现本发明的目的。

可以组合上述组分的优选含量，并可以加入相对该组合具有优选含量的上述Sb₂O₃。

下面将显示优选组成范围的实例。
（优选的光学玻璃II-1）
光学玻璃II含
17 - 30 % \(\text{P}_2\text{O}_5 \),
30 - 60 % \(\text{Nb}_2\text{O}_5 \),
大于 0 % 但不大 20 % \(\text{TiO}_2 \),
\(\text{TiO}_2 / (\text{Nb}_2\text{O}_5+\text{TiO}_2+\text{WO}_3+\text{Bi}_2\text{O}_3) \) 重量比为 0.11 或更大，
0 - 3 % \(\text{SiO}_2 \),
1 - 8 % \(\text{B}_2\text{O}_3 \),
0 - 12 % \(\text{Na}_2\text{O} \),
0 - 10 % \(\text{K}_2\text{O} \),
大于 0 % 但不大于 25 \(\text{BaO} \), 和
\%
0 - 5 % \(\text{ZnO} \),
以上面组分的总含量计，加入大于0 % 但不大于1 % 的\(\text{Sb}_2\text{O}_3 \)。

（优选的光学玻璃II-2）
光学玻璃II含
18 - 28 % \(\text{P}_2\text{O}_5 \),
32 - 57 % \(\text{Nb}_2\text{O}_5 \),
大于 0 % 但不大 20 \(\text{TiO}_2 \),
\%
\(\text{TiO}_2 / (\text{Nb}_2\text{O}_5+\text{TiO}_2+\text{WO}_3+\text{Bi}_2\text{O}_3) \) 重量比为 0.11 或更大，
0.2 - 20 % \(\text{BaO} \),
0 - 3 % \(\text{Li}_2\text{O} \),
0 - 10 % \(\text{Na}_2\text{O} \),
0 - 9 % \(\text{K}_2\text{O} \),
\(\text{Li}_2\text{O} \)、\(\text{Na}_2\text{O} \) 和 \(\text{K}_2\text{O} \) 的总含量为 15 % 或更少，
0 - 6 % \(\text{CaO} \),
0 - 6 % \(\text{SrO} \),
0 - 5 % \(\text{ZnO} \),
1 - 6.5 % \(\text{B}_2\text{O}_3 \),
0 - 2 % \(\text{SiO}_2 \), 和
0 - 2

ZrO₂.

(优选的光学玻璃II-3)
光学玻璃II含
21 - 28%
P₂O₅,
40 - 57%
Nb₂O₅,
0.5 - 19%
TiO₂,
TiO₂/(Nb₂O₅+TiO₂+WO₃+Bi₂O₃) 重量比为 0.14 或更大，
0.2 - 10%
BaO,
0 - 1%
Li₂O,
0 - 10%
Na₂O,
0 - 9%
K₂O,
Li₂O、Na₂O 和 K₂O 的总含量为 2 - 12%，
0 - 3%
CaO,
0 - 3%
SrO,
0 - 3%
ZnO,
1 - 6.5%
B₂O₃,
0 - 2%
SiO₂, 和
0 - 2
ZrO₂.

(优选的光学玻璃II-4)
光学玻璃II含
21 - 28%
P₂O₅,
45 - 57%
Nb₂O₅,
2 - 18%
TiO₂,
TiO₂/(Nb₂O₅+TiO₂+WO₃+Bi₂O₃) 重量比为 0.15 或更大，
0.2 - 6%
BaO,
0 - 1%
Li₂O,
0.1 - 10%
Na₂O,
0.1 - 9%
K₂O,
Li₂O、Na₂O 和 K₂O 的总含量为 2 - 10%,
0 - 3%
CaO,
0 - 3% SrO,
0 - 3% ZnO,
1 - 6.5% B_2O_3,
0 - 2% SiO_2, 和
0 - 2 ZrO_2.

（优选的光学玻璃II-5）
含0.2 - 5% BaO的光学玻璃II-4。

为了满足上述各种要求，P_2O_5、 Nb_2O_5、 TiO_2、BaO、B_2O_3、Na_2O、K_2O、
SiO_2、WO_3和Bi_2O_3的总含量优选为95%或更多，更优选98%或更多，更
加优选99%或更多，特别优选100%。Sb_2O_3的含量是以除Sb_2O_3外的所
有玻璃组分的总含量为基础计算的含量，因此，其不包括在上述的总
含量内。

而且，含特定Sb_2O_3含量的本发明光学玻璃可以以在成型并冷却其
熔融玻璃的状态下具有上述透光率的光学玻璃的形式获得。即，本发
明的光学玻璃具有在成型并冷却其熔融玻璃的状态下显示上述透光率
的组成。因此，在一旦将其成型玻璃冷却凝固后，不热处理该玻璃（例
如，再加热该玻璃至高于比其玻璃转变温度低100℃的温度）就可以
赋予本发明光学玻璃以上述透光率。

当热处理常规的玻璃以降低其着色时，由于待热处理的玻璃的尺
寸和形状或用于热处理的气氛造成难以均匀地降低整体玻璃的着色。
例如，可能造成这样一个问题，即玻璃中央部分的着色度大于靠近玻
璃表面部分的着色度。当将这种玻璃用于制造光学元件如透镜时，透
过率依光经过的部分而不同，因此可以造成光学元件出现问题。增加
玻璃的尺寸会加重这类问题。然而，本发明的光学玻璃不进行热处理
就具有优异的透光率，因此，无须注意上述问题。

而且，希望本发明光学玻璃的液相线温度为1,150℃或更低。当
玻璃在上述高温区中具有稳定性时，当将熔融状态的玻璃成型为成型
材料时，玻璃的可成型性进一步提高。

而且，本发明光学玻璃具有的玻璃粘度处于适合于使其熔融玻璃
成型的粘度范围内，因此可以提供具有优异高温可成型性的光学玻
璃。
可以按以下方法制造由本发明提供的、具有上述组成的光学玻璃。

关于用于制造本发明光学玻璃的玻璃原材料，可以将磷酸（H₃PO₄）、偏磷酸、五氧化二磷等用于P₂O₅，可以将碳酸盐、硝酸盐、氧化物等用于其它组分。按照预定称量这些原材料并混合以制备调合原材料。将该调合原材料装入在约1,000 - 1,250℃下加热的熔化炉中，熔化、澄清，然后搅拌以使其均化。然后，将该均化的材料浇注到模具中并逐渐冷却，由此可以获得本发明的光学玻璃。

在这种情况下，可以将氧加入到熔化炉中的气氛中以提高氧分压。而且，可以将氧化性气体如氧气吹到熔化炉中以进行鼓泡，这样可以制造具有优异透过率性能的高折射率玻璃。

下面将说明本发明提供的压模用成型玻璃材料和制造它的方法。压模用成型玻璃材料指的是使压模的玻璃材料，其具有的质量基本等于压模制品质量，并且是由本发明的光学玻璃形成的。

首先，使充分澄清并均化的熔融态玻璃连续从流出管流出，并将该浇注到模具中。通过冷却来固化浇注到模具中并以平板形式扩展的熔融态玻璃，从而形成平板玻璃。连续从模具中取出这样形成的平板玻璃，由此可以获得具有恒定宽度和恒定厚度的平板玻璃。退火此玻璃以降低应变，然后按所需的尺寸切割以制备称为切片的大量玻璃片。对各切片进行加工如鼓式抛光等以调整该切片，使它具有的质量等于压模产品的质量，由此获得压模用成型玻璃材料。由于上述压模用成型玻璃材料是由具有恒定透光率的平板玻璃制造的，所以可以容易地获得具有恒定透光率的成型玻璃材料。

可以使用另一种方法，其中将具有预定重量的熔融态玻璃从流出的熔融态玻璃中分离，用成型模具接收并成型为玻璃块，由此获得压模用成型玻璃材料。在此方法中，可以对玻璃块进行加工如鼓式抛光以精加工该压模用成型玻璃材料，或可以将上述分离的熔融态玻璃块成型为成型材料，同时在所述成型模具之上将气体压力用于玻璃。

下面将说明本发明的光学元件及制造它的方法。

本发明的光学元件是由上述光学玻璃形成的。本发明光学元件的例子包括透镜、棱镜，光学基板等。透镜的例子包括各种透镜如球面透镜、非球面透镜，透镜阵列等。具有高折射率的本发明光学玻璃特
别适用于数码相机用图像传感（image-sensing）透镜、数字摄像机用图像传感透镜、集成到移动电话中的照相机的图像传感透镜、集成到笔记本计算机中的照相机的图像传感透镜、液晶投影仪的投影仪内置透镜如投影透镜等。

本发明提供的制造光学元件的方法包括加热上述压模用成型玻璃材料并压模该玻璃材料。本发明提供的制造光学元件的方法的例子包括这样一种方法，其中加热下使具有光滑表面的压模用成型玻璃材料软化，并在含氮或氢与氧的气体混合物的非氧化性气氛中用压模精密压模；和这样一种方法，其中在大气中、在加热下使压模用成型玻璃材料软化，用压模进行压模，研磨并抛光该压模产品，从而制造光学元件。

本发明提供的压模用成型玻璃材料和光学元件均是由几乎没有着色的光学玻璃形成的，因此它们几乎也没有着色。而且，它们具有高的折射率并具有高色散的性能，因此它们有高的利用价值。

实施例

在下文中，将参考实施例进一步详细说明本发明，虽然本发明并不受这些实施例的限制。

在实施例中，通过以下方法测量光学玻璃的物理性能。

（1）折射率（nd）和阿贝数（vd）
测量以30℃/小时的降温速率冷却的光学玻璃。

（2）液相线温度（LT）
将光学玻璃置于50毫升、由铂制造的坩埚中，盖上该坩埚，然后在炉中保持2小时，使玻璃在坩埚中冷却，然后，通过100倍放大的显微镜观察玻璃的内部。基于其中是否存在晶体来确定液相线温度。

（3）λ_{70}
在根据本说明书上上述方法测量的光谱透射比中，将透过率为70%处的波长确定为λ_{70}。

实施例1-14

根据常规方法制备实施例1-14中的光学玻璃，这样它们具有表1和2所示的组成。即，在各实施例中，使用磷酸（H₃PO₄）、偏磷酸、
五氧化二磷等作为p₂o₅用原材料，使用碳酸盐、硝酸盐、氧化物等作为其它组分用原材料。称量预定量的这些原材料，并混合以制备配合的原材料，将该配合的原材料装到加热至1,000－1,250℃的熔炉中，熔化，澄清，然后搅拌，从而形成均匀的材料。然后，将该均匀的材料浇注到模具中，逐渐冷却该浇注产品，从而产生光学玻璃。可以将熔化气氛中的氧分压调整至高于大气中氧分压的压力，并且可以在熔炉中在熔融态玻璃中鼓氧气泡。

表1和2示出了这样获得的光学玻璃的光学性能。

表1和2示出，在实施例1－14中获得的光学玻璃显示500nm或更短的λ₇₀，具有由1.91或更大的高折射率（nd）表示的高折射率性能，并具有由21或更小的阿贝数（vd）表示的高色散性能。而且，它们具有1,150℃或更低的液相线温度。另外，在将熔融态玻璃冷却至固体的状态下（不再次加热玻璃的状态下），玻璃显示500nm或者更短的λ₇₀。

对比例1

用与实施例1－14相同的方法制备具有表2所示组成的光学玻璃。表2说明了该光学玻璃的光学性能。

在对比例1中，光学玻璃含Sb₂O₃，但其含量很小。用与实施例1－14相同的方法获得的光学玻璃强烈着色，其λ₇₀向长波长侧移动，并超过本发明中规定的λ₇₀。
<table>
<thead>
<tr>
<th>表 1</th>
<th>实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>玻璃组成</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>19.5</td>
</tr>
<tr>
<td>SiO₂</td>
<td>-</td>
</tr>
<tr>
<td>B₂O₃</td>
<td>2.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>16.0</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>37.5</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.0</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.0</td>
</tr>
<tr>
<td>CaO</td>
<td>-</td>
</tr>
<tr>
<td>SrO</td>
<td>-</td>
</tr>
<tr>
<td>BaO</td>
<td>20.5</td>
</tr>
<tr>
<td>ZnO</td>
<td>-</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>-</td>
</tr>
<tr>
<td>Sb₂O₃</td>
<td>0.75</td>
</tr>
<tr>
<td>其它</td>
<td></td>
</tr>
<tr>
<td>性能值</td>
<td></td>
</tr>
<tr>
<td>nd</td>
<td>1.9516</td>
</tr>
<tr>
<td>v d</td>
<td>19.5</td>
</tr>
<tr>
<td>λ 70 (nm)</td>
<td>468</td>
</tr>
<tr>
<td>L T. (℃)</td>
<td>1100</td>
</tr>
<tr>
<td>TiO₂/(Nb₂O₅+TiO₂ +WO₃+Bi₂O₃)</td>
<td>0.299</td>
</tr>
</tbody>
</table>

L T. = 液相线温度
<table>
<thead>
<tr>
<th>玻璃成分 (wt%)</th>
<th>P_2O_5</th>
<th>SiO_2</th>
<th>B_2O_3</th>
<th>TiO_2</th>
<th>Nb_2O_5</th>
<th>Na_2O</th>
<th>K_2O</th>
<th>CaO</th>
<th>SrO</th>
<th>BaO</th>
<th>ZnO</th>
<th>ZrO_2</th>
<th>Sb_2O_3</th>
<th>其他</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>19.5</td>
<td>0.5</td>
<td>3.0</td>
<td>8.5</td>
<td>45.5</td>
<td>45.5</td>
<td>1.0</td>
<td>1.5</td>
<td>0.2</td>
<td>-</td>
<td>0.20</td>
<td>0.15</td>
<td>1.9427</td>
<td>1.9333</td>
</tr>
<tr>
<td>10</td>
<td>18.5</td>
<td>2.5</td>
<td>2.5</td>
<td>6.5</td>
<td>40.5</td>
<td>48.5</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.9329</td>
<td>1.9333</td>
</tr>
<tr>
<td>11</td>
<td>23.5</td>
<td>6.5</td>
<td>1.0</td>
<td>12.5</td>
<td>6.0</td>
<td>5.5</td>
<td>-</td>
<td>0.40</td>
<td>0.11</td>
<td>0.30</td>
<td>0.01</td>
<td>0.11</td>
<td>1.9427</td>
<td>1.9538</td>
</tr>
<tr>
<td>12</td>
<td>27.0</td>
<td>6.5</td>
<td>1.0</td>
<td>13.5</td>
<td>6.5</td>
<td>2.0</td>
<td>0.2</td>
<td>1.95</td>
<td>0.30</td>
<td>0.01</td>
<td>0.11</td>
<td>0.11</td>
<td>1.9776</td>
<td>1.9376</td>
</tr>
<tr>
<td>13</td>
<td>18.5</td>
<td>6.5</td>
<td>1.0</td>
<td>6.5</td>
<td>6.5</td>
<td>4.0</td>
<td>0.2</td>
<td>1.95</td>
<td>0.30</td>
<td>0.01</td>
<td>0.11</td>
<td>0.11</td>
<td>1.9776</td>
<td>1.9376</td>
</tr>
<tr>
<td>14</td>
<td>20.5</td>
<td>6.5</td>
<td>1.0</td>
<td>6.5</td>
<td>6.5</td>
<td>3.5</td>
<td>0.2</td>
<td>1.95</td>
<td>0.30</td>
<td>0.01</td>
<td>0.11</td>
<td>0.11</td>
<td>1.9776</td>
<td>1.9376</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>功</th>
<th>λ(μm)</th>
<th>L. T. (℃)</th>
<th>TIO_2/（WO_3+BIO_2）</th>
<th>LT</th>
<th>重相相度</th>
</tr>
</thead>
<tbody>
<tr>
<td>玻璃</td>
<td>20.6</td>
<td>1100</td>
<td>0.218</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>材料</td>
<td>20.9</td>
<td>1080</td>
<td>0.157</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>钛酸玻璃</td>
<td>18.2</td>
<td>1120</td>
<td>0.218</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>钛酸</td>
<td>18.2</td>
<td>1120</td>
<td>0.218</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>钛酸玻璃</td>
<td>18.2</td>
<td>1120</td>
<td>0.218</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>钛酸</td>
<td>18.2</td>
<td>1120</td>
<td>0.218</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>钛酸玻璃</td>
<td>18.2</td>
<td>1120</td>
<td>0.218</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>钛酸</td>
<td>18.2</td>
<td>1120</td>
<td>0.218</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>钛酸玻璃</td>
<td>18.2</td>
<td>1120</td>
<td>0.218</td>
<td>0.157</td>
<td></td>
</tr>
</tbody>
</table>
实施例15

使熔融态玻璃分别以恒定的速率流出，并浇注到模具中，从而形成由实施例1－14的光学玻璃形成的玻璃板。退火各玻璃板以降低应力，然后切割成预定尺寸以制备切片。鼓式抛光实施例1－14的各光学玻璃的多个切片，从而将它们的质量调整至想要通过压模获得的目标产品的质量。将粉末脱模剂均匀施加到每个这样获得的压模用成型玻璃材料的整个表面上，在大气中，在加热下软化各成型玻璃材料，并用压模模压成与目标透镜相似的形状。

退火这样形成的压模产品，然后研磨并抛光它们以制造由实施例1－14的玻璃形成的透镜。肉眼观察这样获得的透镜，几乎没有着色。

虽然此实施例说明了作为例子的透镜，但也可以类似地制造其它光学元件如棱镜、光学基板等。

工业应用性

本发明的光学玻璃具有高折射率和高色散性能且几乎没有着色，因此其适用于压模用成型玻璃材料和各种光学元件。