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WO 2010/039976 PCT/US2009/059255

SYSTEMS AND METHODS FOR MUFTI-PERSPECTIVE SCENE ANAFYSIS

Cross Reference to Related Application

This application claims the benefit of U.S. Provisional Patent Application No. 61/102670, 

filed October 3, 2008.

Related Applications

This application is also related to U.S. Provisional Patent Application No. 61/102618, filed 

October 3, 2008, and U.S. Provisional Patent Application No. 61/102625, filed October 3, 

2008.

Background

The human visual system is a capacity limited system in that it can only process a 

relatively small number of objects at any given time. This is true, despite the fact that 

there are many objects that may be visible at any given time. From the array of objects 

visible to a human, that human’s visual system will only attend to, or processes, one (or 

very few) objects at any given time. When a human looks at an image or a scene, his 

visual system will shift attention (and mental processing) from one object to another.

There has been a substantial amount of research in the area of human visual attention.

This research has generated numerous studies directed toward understanding the behavior 

of human visual attention, as well as many computational models of visual attention. 

These computation models (sometimes called visual attention models, eye-gaze prediction 

models, attention models, or saliency models) predict where, given visual stimuli (for 

example, a picture or a scene), a person will allocate their visual attention or gaze.

These models provide predictions about the objects or regions within the scene that will

attract visual attention. Typical real world scenes, however, are often highly dynamic.

The image projected to the human will change when, for example, the person’s vantage
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point changes, the objects within a scene change positions or orientation, or the lighting 

changes (casting different shadows). Furthermore, the observer himself may introduce 

uncertainty into the predictions (the observer may be pre-occupied, or otherwise disposed 

to a particular attention pattern). Any variability in the image projected from a scene, or 

variability across observers, or even small changes to the scene itself, can significantly 

change the predictions made by these models. This can be problematic when using visual 

attention models in applied settings.

Summary

Systems and methods for using visual attention modeling techniques to evaluate a scene 

from multiple perspectives. In exemplary embodiments, a plurality of images are taken 

from a scene (or otherwise generated). Objects within the scene are identified in each of 

the images, then the scenes are analyzed using a visual attention model. The objects 

predicted by the visual attention model are tracked, such that predictions can be made 

about the saliency of objects from a plurality of vantage points in an area. In other 

exemplary embodiments, multi-perspective scene analysis may be combined with the 

techniques and systems related to optimizing a scene. For example, permissible changes 

to objects may be defined, then multiple images, taken from different vantage points, may 

be taken or generated, then analyzed. These images may include changes made to the 

objects. Additionally, in some embodiments, robustness may also be used as a factor in 

multi-perspective scene analysis. For example, a 3D scene may be analyzed and said to be 

robust (or a robustness value calculated), or an object within a 3D scene may be 

determined to be robust.

In one embodiment, a computer-implemented method is described, comprising: receiving 

a plurality of images taken from within a 3D scene; receiving input identifying at least 

some of the objects appearing in the plurality of images; analyzing the plurality of images 

with a visual attention model; and, based on the analysis, determining identified objects 

that will tend to receive visual attention in the plurality of images. In addition to having a

2
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plurality of images taken from within a 3D scene, a number of images could be generated 

from different perspectives of a common set of objects.

In another embodiment, a computer-implemented method is described, comprising:

5 defining at least one visual goal for a 3D scene, the scene comprised of a plurality of 

objects, the visual goal specifying at least one object in the scene which is desired to be 

predicted to be attended to by a visual attention model, and additionally specifying the 

perspective from which the at least one object should be attended from; receiving a 

plurality of images from a plurality of perspectives within the 3D scene; receiving input

10 defining allowable changes to at least some objects within the scene, assigning a cost 

estimate to at least some of the allowable changes; automatically modifying some of the 

plurality of objects consistent with the defined allowable changes so as to produce 

modified images; evaluating the modified images with a visual attention model; and, 

determining, based on the evaluation, at least some of the modified scenes that achieve the

15 at least one visual goal for the scene.

In another embodiment, a computer system is described, comprising: a processor and 

memory; and, a multi-perspective scene analysis module, operative to at least:(l) receive a 

plurality of images taken from within a 3D scene; (2) identify at least some objects

20 appearing in the images; (3) apply a visual attention module the images, the visual

attention module operative to predict objects within the image that will tend to receive 

visual attention; and, (4) determine which of the identified objects are predicted by the 

visual attention module.

25 In another embodiment, there is provided a computer-implemented method comprising: 

receiving, by a processing system, a plurality of images taken from distinct

perspectives of a 3D scene;

receiving, by the processing system, input identifying at least some of the objects 

appearing in the plurality of images;

30 analyzing, by the processing system, the plurality of images with a visual attention

model; and,
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13 based on the analysis, the processing system determining the extent to which the 

identified objects will tend to receive visual attention across the distinct perspectives of the 

3D scene.

5 In a further embodiment, there is provided a computer-implemented method comprising:

defining at least one visual goal for a 3D scene, the scene comprised of a plurality

of objects, the visual goal specifying at least one object in the scene which is desired to be 

predicted to be attended to by a visual attention model, and additionally specifying the 

perspective from which the at least one object should be attended from;

10 receiving, by a processing system, a plurality of images from a plurality of

perspectives within the 3D scene;
receiving, by the processing system, input defining allowable changes to at least 

some objects within the scene;

assigning, by the processing system, a cost estimate to at least some of the 

15 allowable changes;
automatically modifying, by the processing system, some of the plurality of objects 

consistent with the defined allowable changes so as to produce modified images;

evaluating, by the processing system, the modified images with a visual attention 

model; and

20 determining, based on the evaluation, by the processing system, at least some of

the modified scenes that achieve the at least one visual goal for the scene.

In a further embodiment, there is provided a computer system comprising: 

a processor and memory;

25 an optimisation module operative to at least:

automatically modify objects within an image of a 3D scene to produce a

plurality of modified images; and

evaluate the modified images with a visual attention model and using cost 

estimates of changes to the objects to determine a modified 3D scene that achieves

30 a visual goal; and
a multi-perspective scene analysis module, operative to at least:

(1) obtain a plurality of images taken from distinct perspectives of the

modified 3D scene;
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(2) identify at least some objects appearing in the plurality of images;

(3) apply the visual attention module to the images, the visual attention 

module operative to predict objects within the plurality of images that will tend to 

receive visual attention; and

5 (4) determine which of the identified objects, predicted by the visual

attention module, will tend to receive visual attention across the distinct 

perspectives of the modified 3D scene.

In a further embodiment, there is provided a computer-implemented method comprising:

10 automatically modifying objects within an image of a 3D scene to produce a

plurality of modified images;

evaluating the plurality of modified images with a visual attention model and using 

cost estimates of changes to the objects to determine a modified 3D scene that achieves a 

visual goal;

15 obtaining a plurality of images taken from distinct perspectives of the modified 3D

scene;

identifying at least some objects appearing in the plurality of images; 

applying the visual attention module to the plurality images, the visual attention

module operative to predict objects within the plurality of images that will tend to receive 

20 visual attention; and

determining which of the identified objects, predicted by the visual attention 

module, will tend to receive visual attention across the distinct perspectives of the 

modified 3D scene.

25 In a further embodiment, there is provided a computer system comprising: 

a processor and memory; and 

an optimisation module operative to at least:

define at least one visual goal for a 3D scene, the scene comprised of a

plurality of objects, the visual goal specifying at least one object in the scene which

30 is desired to be predicted to be attended to by a visual attention model, and

additionally specifying the perspective from which the at least one object should be

attended from;

-3B-
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receive a plurality of images from a plurality of perspectives within the 3D

scene;

receive input defining allowable changes to at least some objects within the

scene;

5 assign a cost estimate to at least some of the allowable changes;

automatically modify some of the plurality of objects consistent with the

defined allowable changes so as to produce modified images;

evaluate, by the processing system, the modified images with a visual

attention model; and

10 determine, based on the evaluation, by the processing system, at least some

of the modified scenes that achieve the at least one visual goal for the scene.

Brief Description of Drawings

15 FIG. 1 is a flowchart illustrating high-level functioning of a representative visual attention 

module.

FIG. 2 is a sketch of a representative scene.

FIG. 3A is an artist's rendering of output from a visual attention module.

FIG. 3B is an artist's rendering of output from a visual attention module.

20 FIG. 4 is a graph showing properties of two example objects.

- 3C -
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FIG. 5 shows how a billboard object can be set against different background scenes.

FIG. 6 is a diagram of functional modules in a system for evaluating the robustness of a 

scene, or objects within a scene.

FIG. 7 is an illustration showing example scene modifications.

FIG. 8 shows an alternative embodiment of the visual attention robustness assessment 

system, in which the visual attention robustness assessment system additionally includes 

web server module.

FIG. 9 is a high-level flowchart illustrating one embodiment of the process the visual 

attention robustness assessment system may employ to evaluate the robustness of an 

object within a scene or a scene itself.

FIG. 10 is a flowchart showing the high level process of scene optimization.

FIG. 11 is a graph illustrating two different reward structures as a function of the serial 

position of the attentional saccade to the object of interest.

FIG. 12 is a diagram of functional modules in a system for scene optimization.

FIG. 13A and 13B are an artist’s rendering of two respective scenes.

FIG. 14A and 14B are an artist’s rendering of two respective scenes.

FIG. 15 is a high level flowchart showing multi-perspective scene analysis.

FIG. 16 is a diagram of a conference room.

FIG. 17A and 17B show different perspectives of the conference room.

FIG. 18 is a graph illustrating three different example analyses done to various objects in 

the conference room.

FIG. 19 is a diagram of a multi-perspective scene analysis system.

Detailed Description

VISUAL ATTENTION MODELS

Visual attention models determine the extent to which regions within a scene differ with 

respect to the likelihood that they will attract visual attention or attract eye movements. A 

scene is any form of input (for example, graphical image) that is amenable to evaluation 

by a visual attention model, and may, for instance, be a digital photograph, a virtual 3D 

scene, a web page, a document, or a video.

4
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A visual attention model’s disposition to an object refers to how a model of visual 

attention characterizes the relative saliency of an object within a scene. For example, 

some visual attention models will superimpose a trace line around predicted objects.

Other visual attention models will generate heat maps that may be superimposed over the 

image or viewed separately from the image. Even others may generate and assign a value 

to a particular object and/or region, with the value representing that object’s saliency in 

relative terms. In the context of trace lines, the disposition of an object may be considered 

as “selected” (when traced) or “not selected” by the model. In the context of heat maps, 

the disposition of an object is the degree to which the algorithm has selected the object (or 

not selected the object). And in the context of a saliency number, the disposition of the 

object may be the saliency number itself.

There are many visual attention models that predict where within a scene human visual 

attention will be allocated. Generally, these visual attention models take a single image of 

an environment as input and generate predictions about where attention will be allocated 

within that scene. Empirical approaches expose human subjects to a scene and track their 

eye movement. This empirical approach is resource intensive, however, so a number of 

mathematic models have been developed that attempt to predict attention by analysis, at 

least in part, of the scene. That said, empirical approaches could also be used as part of 

the systems and methods described herein, and as used herein an empirical approach is 

deemed to be a type of visual attention modeling.

The basic methodology of one of these models is represented in FIG. 1, which is that 

proposed by Itti, F. & Koch, C. (2000), A saliency-based search mechanism for overt and 

covert shifts of visual attention, Vision Research, vol. 40, pages 1489-1506. At a high 

level, FIG. 1 shows how a prediction is made for visual attention by assessment of 

“bottom-up” features such as color, motion, luminance, edges, etc. which serve as building 

blocks of the visual representations mediating some aspects of human vision. First, a 

scene, in the form of a digital photograph, is provided to a computer-implemented version 

of the Itti and Koch model (step 10). Next, a feature extraction process analyzes the 

digital photograph for colors, intensity, orientations, or other scene cues, such as motion,

5
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junctions, terminators, stereo disparity, and shape from shading (step 11). The feature 

extraction process yields a plurality of feature maps (step 12), which are combined to 

produce a saliency map (step 13). In the case of the Itti and Koch model, the saliency data 

is provided to a user as a rendering of the original digital photograph with the “brightest” 

objects being to which the model has predicted visual attention will be next allocated.

This predicted object is identified to be visually salient (step 14) in a “winner-take-all” 

type algorithm (step 15), and the process then repeats until a plurality of objects are 

identified by the model.

FIG. 2 is an artist’s rendering of a scene 201 that could be provided to a visual attention 

model such as Itti and Koch. It is a simplified scene included here for illustrative purpose 

only; in practice the scenes are often actual digital photographs, or videos, and are much 

more complex. FIG. 2 includes a number of objects within the scene, such as the star 202, 

flower 203, face 204, star 205, arrow 206, and cup 207.

FIG. 3A is an artist’s rendering representing how output from the Itti and Koch model 

could be represented. The highlighted (and in this representative illustration, encircled) 

objects are those that the model predicts to be visually salient. For example, star 202 is in 

this figure within highlight border 208; flower 203 is within border 209; face 204 is within 

border 210; star 205 is within border 211; arrow 206 is within border 212; and cup 207 is 

within border 213. Thus the model in this instance has determined six objects that are, 

relative to other objects, more visually salient. This particular model also predicts how 

attention will move among the objects determined to be above some visual saliency 

threshold. For example, visual attention pathway 301, 302, 303, 304, and 305 show a 

predicted visual attention pathway.

FIG. 3B is a second artist’s rendering showing a further manner in which output from the 

Itti and Koch model is sometimes represented. In addition to what is shown in FIG. 3A, 

FIG. 3B includes the sequence of predicted visual attention. For example, star 202 is 

labeled “1” (attention sequence number 214), and flower 203 is labeled “2” (attention 

sequence number 215) and so forth.

6
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Of course, FIG. 3 A and FIG. 3B are just one manner in which a visual attention prediction 

may be conveyed to a user; different models represent this information (or some subset of 

it) in different ways. For example, not every model determines a predicted attention 

sequence, though such an attention sequence could be arrived at by determining the object 

with the highest level of visual saliency, then eliminating that object and finding the next 

highest, etc.

Itti and Koch’s model is representative of a “bottom-up” visual attention model, in that it 

makes its predictions based on analysis of the particulars of the scene. Other bottom-up 

visual salience models are described in these references: Gao, Mahadevan, and 

Vesconcelos (2008).

Besides bottom-up models, there is another class of models referred to as “top down” 

models of visual attention. In contrast to bottom-up models, these models start with a 

scene and either an explicit task (for example, avoiding obstacles and collecting objects) 

or prior knowledge of the world that will influence where attention will be allocated 

during a specific search task (for example, chairs tend to be on the floor and not on the 

ceiling). This knowledge (both task- and scene-based) is used in conjunction with the 

bottom-up features to direct attention to objects within the observed scene. Some 

exemplary top-down models are described in Rothkopf, C.A., Ballard, D.H. & Hayhoe, 

M.M. (2007), Task and context Determine Where You Look, Journal of Vision 7(14):16, 

1-20; and also in Torralba, A., Contextual Modulation of Target Saliency, Adv. in Neural 

Information Processing Systems 14 (NIPS), (2001) MIT Press, 2001. For example, 

Torralba’s model of visual attention has prior knowledge about the features that comprise 

a particular type of object and information about the absolute and relative locations of 

these objects within the scene. This prior knowledge provides “top-down” influences on 

searching for specific targets within a scene.

The art has evolved to include hybrid visual attention models that have features of both

bottom-up and top-down design, and adapted for differences in the types of scenes the

models will be exposed to (for example video versus still images, outdoor images versus

web pages, and so forth).

7
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ROBUSTNESS

Robustness refers to the sensitivity of predictions output from a visual attention model to 

either of, or some combination of:

(a) changes and/or variability within the visual properties of a scene, which 

includes, for example, the arrangement of objects within the scene, lighting of the objects, 

the color of objects, etc. (referred to as “external variability”); or,

(b) changes and/or variability within an observer, or the model of observation

(referred to as “internal variability”).

The term object as use herein refers to either a thing or area or region within a scene, as 

the case may be, or the regions within a scene that are analyzed by a visual attention 

model. The term object is used interchangeably with “area” or “region” as the case may 

be.

The two types of changes (a) and (b) are referred to collectively as internal or external, or 

IE, changes, and various methods of introducing, then evaluating, such changes are 

discussed further below.

Robustness evaluation is a method for measuring the effect of IE changes on where 

attention will be allocated within a scene. Robustness of an object within a scene, then, is 

the degree to which a visual attention model’s predicted disposition of a particular object 

changes, or does not change, despite IE changes.

The robustness of a group of objects is the degree to which a visual attention model’s 

disposition to more than one object (a collection of objects) changes or does not change 

with IE changes.

Robustness of a scene is a measure of the degree to which the visual attention model’s

disposition of objects in the scene will change, or not change, despite IE changes. For

example, if a visual attention model predicts that attention or fixations will be made to the

same four objects within a scene, and these four objects tend to remain predicted by the

8
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visual attention model despite IE changes, the scene tends to be more robust than a if the 

four objects changed following IE changes.

VISUAL ATTENTION ROBUSTNESS ASSESSMENT SYSTEM

FIG. 6 is a diagram showing exemplary functional modules in visual attention robustness 

assessment system 403, which is a system for evaluating the robustness of a scene, or the 

robustness of objects within a scene, or the robustness of objects across multiple scenes.

Of course, these methods may also be practiced manually. Visual attention robustness 

assessment system is, in the embodiment shown in FIG. 6, within computer system 408. 

Computer system 408 may be any general purpose or application-specific computer or 

device. It may be a stand-alone laptop computer, or a plurality of networked computers. 

Further, computer system 408 may be a handheld computer, digital camera, or a tablet PC, 

or even a cellular telephone. Computer system 408, in one embodiment, has various 

functional modules (not shown in FIG. 6) that comprise an operating system. Such an 

operating system facilitates the visual attention robustness assessment system’s access to 

the computer system’s resources. Computer system 408 has a processor and memory, and 

various traditional input/output interfaces.

Visual attention module 403 is any embodiment of any visual attention model or 

combination of models. As mentioned earlier, there are different types of visual attention 

models, but they all, to some extent, predict an object or area within a scene to which 

visual attention will tend to be allocated. Visual attention module 403 is shown in FIG. 6 

as part of visual attention robustness assessment system 402, but visual attention module 

403 in another embodiment operates as a stand-alone computer process or even as a 

service provided over any type of computer network (such as the World Wide Web) at a 

remote computer.

VAM modification module 404 is the visual attention module modification module. VAM

modification module 404 modifies aspects of the visual attention module’s parameters or

architecture. This modification can by accomplished in many ways depending on the

implementation of the visual attention module 403. For example, visual attention module

9
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403 may itself support function calls that modify aspects of how the visual attention 

module works. In one embodiment, visual attention module 403 may support a function 

call that modifies weighting given to certain aspects of the scene (brightness, for example). 

In another embodiment, if the visual attention module is invoked via command line, 

various switches could be employed to change variables that are within the visual attention 

module. Alternatively, if the visual attention module 403 is embodied in a script or 

programming code, the IE modification module could modify the script or programming 

code itself. In another embodiment, the entire visual attention model is replaced by 

another visual attention model. The particular ways in which the VAM modification 

module 404 modifies the visual attention module 403 ’s underlying visual attention model 

(or the application of such a model to a scene) is discussed further below, but one example 

might be to modify the weights associated with the plurality of feature maps that are used 

to generate the saliency map. This could be accomplished through a function call that 

would modify these values based upon a distribution of acceptable values.

Scene modification module 405 modifies the scene that will be provided to the visual 

attention module 403 for analysis. The scene changes are the changes that are associated 

with the external environment that simulate the dynamic nature of the environment. Such 

external variability may include, for example, moving objects within the scene (for 

example, the placement of pedestrians), changes in shadows due to changes in lighting 

direction, or changes in atmospheric conditions (for example, dust in the air). This 

variability can be generated in a number of ways. One method is to place a camera within 

the scene and capture an image at different times. This would capture the natural 

variability of a real scene. Another method is to capture a single image of the scene and 

specify possible changes that could be made to the individual elements and objects within 

that scene. An illustration of such a technique is shown in FIG. 7. Scene 801 is a 

representation of an original scene. Scene 802 shows the objects from scene 801 replaced 

with scene variability elements, such as shadows and other objects (for example, cars or 

birds - any object that can be placed within the scene). Scene 803, 804, 805, and 806 

show different combinations of the original scene 801 with scene variability elements.

One skilled in the art will appreciate there are uncountable different approaches to

modifying a scene, such as using commercially available image editing software such as
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that marketed by Adobe Systems of San Jose, California, under the trade name

“Photoshop.” A few have been presented herein as non-limiting examples only.

Scene modification module 405 adds external variability to a scene, which will in turn 

result in multiple versions of the scene, or scene instances. The collection of scene 

instances, in one embodiment, captures the variability within the scene. To measure the 

robustness of an object or the robustness of the scene, each scene instance is submitted to 

visual attention module 403 to produce a prediction as to where visual attention will be 

allocated within each scene instance (that is, to which objects). Information pertaining to 

each run is saved in database 407, then robustness assessment module 409 evaluates the 

data to generate statistics based upon objects to which the model predicted attention would 

be allocated, across these different instances (and as was described in further detail 

earlier).

Graphical user interface module 406 facilitates interaction with user 401. Graphical user 

interface module 406 may, for example, call on operating system resources (from 

computer system 408) to build a graphical user interface to solicit input from user 401. 

This input in one embodiment includes the location of the scene, as well as other operating 

parameters for the visual attention robustness assessment system. This input, in one 

embodiment, would specify regions and/or locations within the scene that user 401 is 

interested in evaluating. In addition to specifying such locations, user 401 could specify 

what types of variability is to be considered by the visual attention module 403. This may 

include general or specific internal variability, or general or specific external variability. 

For example, one specific type of external variability might be changing the image due to 

variations in lighting direction. As light changes, the shadows produced will change. This 

is a specific type of external variability because it does not consider other factors such as 

dynamic objects, atmospheric aberrations, and so forth. An example of general internal 

variability would be a condition in which the weights for each feature map are allowed to 

vary independently. An example of specific internal variability is when the weights of one 

set of feature maps vary (for example, brightness) but the others do not. Graphical user 

interface module 406 also facilitates getting input, possibly from the user, regarding from
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where images of the scene should be acquired. Possible locations include, for example, a 

database, or a flat file.

Robustness assessment module 409 controls the interaction of the other modules in order 

to evaluate the robustness of objects within a scene or the robustness of the scene itself.

For example, the robustness assessment module 409 invokes the visual attention module 

403 as necessary, as well as the VAM modification module 404 and the scene 

modification module 405. The manner in which the robustness assessment module 409 

invokes the various modules may be modified by input from user 401, provided to the 

robustness assessment module 409 via, for example, graphical user interface module 406. 

Robustness assessment module 409 also evaluates data provided by other modules and 

generates reports as necessary.

Database 407 handles the data storage needs of the visual attention robustness assessment 

system 402. Among other things, database 407 may hold images of the scene. Database 

407 may be any computer memory. It may be random access memory, or a flat file, or one 

or more database management systems (DBMS) executing on one or more database 

servers. The database management systems may be a relational (RDBMS), hierarchical 

(HDBMS), multidimensional (MDBMS), object oriented (ODBMS or OODBMS) or 

object relational (ORDBMS) database management system. Database 407, for example, 

could be a single relational database such as SQL Server from Microsoft Corporation.

User 401 is any user of the visual attention robustness assessment system. In some 

embodiments, the visual attention robustness assessment system 402 is easy enough to use 

that a person unfamiliar with visual saliency theory could use the system to evaluate the 

robustness of an object, region, or scene. User 401 may be a consultant hired by, or an 

employee who works for a commercial entity to evaluate positioning of signs and non-sign 

objects within their environment. User 401 may also be a content designer interested in 

evaluating the design and placement of a digital object (such as advertisement) on a web 

page in which the visual properties of the page may change.
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FIG. 8 shows an alternative embodiment of the visual attention robustness assessment 

system, in which the visual attention robustness assessment system additionally includes 

web server module 501. Web server module 501 is shown, for convenience, as part of 

visual attention robustness assessment system 402. Web server module may, however, be 

embodied as a software module running on computer system 408, in separate memory 

space. Or web server module 501 may be on a separate computer system coupled, via 

network, to the visual attention robustness assessment system 402.

Web server module 501 provides an interface by which user 401 may communicate with 

visual attention robustness assessment system 402 via client computer 503 and via 

network 502. In one configuration, web module 501 executes web server software, such 

as Internet Information Server from Microsoft Corporation, of Redmond, Washington. 

Web server module 501 provides a mechanism for interacting with remote user 401 

through the use of, for example, Active Server Pages, web pages written in hypertext 

markup language (HTML) or dynamic HTML, Active X modules, Lotus scripts, Java 

scripts, Java Applets, Distributed Component Object Modules (DCOM) and the like.

Although illustrated as “server side” software modules executing within an operating 

environment provided by computer system 408, the functional modules that comprise the 

visual attention robustness assessment system 402 could readily be implemented as 

“client-side” software modules executing on computing devices, such as client computer 

503, as used by user 401. Visual attention robustness assessment system 402 could, for 

example, be implemented as Active X modules executed by a web browser executing on 

client computer 503.

Network 502 may be any kind of network, public or private. In one embodiment network 

502 is the Internet.

User 401 in FIG. 7 and 8 may be any user of the Internet. In one embodiment, user 401

may have pre-arranged, via a license, to access functionality of the visual attention

robustness assessment system.
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FIG. 9 is a high-level flowchart illustrating one embodiment of the process the visual 

attention robustness assessment system 402 may employ to evaluate the robustness of an 

object within a scene or a scene itself First, the visual attention module is invoked and 

provided scene input (step 601). Predicted objects from within the scene are then received 

from the visual attention module (step 602). Next, some indication of the

locations/objects/regions that the model predicts to have high relative saliency is saved to 

a database (step 603). Precisely what will be stored in the database depends largely on the 

type of output received from the visual attention module in step 602. The database, in one 

embodiment, stores information about the objects that reached a threshold saliency value. 

In another embodiment, the database stores a matrix of values, one for each object 

identified in the image, and stores, for example, the number of times that the object 

reached a threshold saliency value. Next, a check is made to see if the process is complete 

(step 605). In one embodiment, this check might determine if the current iteration exceeds 

the number of iterations initially set by user 401. In another embodiment, the number of 

iterations may be determined by the algorithm. In yet another embodiment, the number of 

iterations may be determined by properties of the scene or statistics concerning the 

robustness measure. For example, if one were attempting to determine which of two 

advertisements would be better at a particular site, one could run the algorithm until there 

was a statistically reliable effect between the two advertisement’s robustness values.

If robustness evaluation is not complete (“no” at step 605), IE changes will be introduced 

into either the visual attention module’s visual attention model, or the scene input. IE 

changes may be divided into two categories: structured and random. Random variability 

is variability that is uncorrelated. For example, random variability in a scene might 

include random variations in the individual pixel colors and/or intensities. In such case, 

the pixel variations are uncorrelated. In contrast, structured variability has correlation 

between the elements being modified. For example, a scene modified by simulating the 

movement of an object within the scene, or adding or removing an object within a scene 

would constitute structured scene variability. In such case, the changes in the pixel 

modifications are correlated. Random internal variations might include random variations 

in the attention model used by the visual attention module. Structured variability, on the 

other hand, might be programmatic biases for attention in one part of the attention map
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over another. The types methods of generating variability are summarized in Table 1. 

The sub-processes that introduce IE changes are further detailed below.
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Internal External

Structured There are many ways to generate

Internal Structured variability.

This type of variability is defined

by co-variation over maps or

spatial regions. One method

would be to vary the weighting of

the different feature maps to the

saliency map. The weighting

values may vary slightly from

one trial to the next, simulating

an individual preferences or

expectations of color, orientation,

luminance, etc. Another method

is to have the model bias one

region of the saliency map (for

example, lower hemisphere) in

which all of the locations are

given a saliency ‘boost’.

Variability in the image in which

collection of pixels co-vary. This

co-variation can be generated by

defining a region (or regions)

within the image and modifying

the RGB values within such

region. All of the pixels within a

particular region would be

modified to the same degree. The

amount of variation from region-

to-region, or trial-to-trial may be

set by the standard deviation of a

Gaussian distribution. A second

parameter might be the “size” of

the region that can co-vary.

Random Random variation is added to the

output of the saliency map before

the visual attention model

determines where attention will

be allocated. The variability

could be in the form of any

probability distribution, but the

one example practice is to use a

Gaussian distribution in which

the mean of the Gaussian is set at

the expected saliency value and

the width of the Gaussian is set

by an appropriate standard

deviation.

Pixel-by-pixel variation in which

the RGB values are randomly

modified. The degree of

modification may be specified by

the standard deviation of a

Gaussian distribution in which

the mean of the Gaussian is set to

the “true” RGB value. Other

methods for variability can also

be used.

Table 1

Once the IE changes have been made, the process returns to step 601.
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Once the process is complete (“yes” at step 605), analysis is done on how, and the degree 

to which, the objects predicted by the visual attention module changed in successive 

iterations (step 606). This analysis is further described below.

Finally, output indicative of robustness is generated (step 607). In one embodiment, this 

output is provided to a user via graphical user interface module 406. However, the output 

may also be provided in other forms to, for example, other programs or calling functions.

CHANGES TO THE VISUAL ATTENTION MODEL

One example of modifying the visual attention model (a type of change that could be 

introduced in step 604 in FIG. 9, discussed above) is to programmatically introduce a bias 

toward a particular feature within the scene, or a particular area within the scene. Such 

variability to the visual attention model will have an effect on where attention will be 

allocated and will simulate variability between observers and/or variability between 

human observers experiencing a scene from one time to another. As an example, one 

might use the Itti and Koch bottom-up visual saliency model to evaluate visual attention 

robustness of a scene. With such a model, a saliency “map” is generated by combining the 

input from the different visual feature maps. For example, in some instantiations there are 

three feature maps: a first that is sensitive to color, another to orientation and a third 

associated with luminance. The input to the saliency map is a weighted combination of 

these three maps. Typically, these three maps have equal weights into the saliency map 

indicating that there is no bias for one type of feature over another and can be represented 

as a weighting vector (for example, [1 1 1] for an equal weight of the three feature maps). 

One method for generating variability in the observer’s biases is to modify these weights 

simulating a viewer that might be biased toward one feature over another. For example, 

one could bias the model toward brighter items in the environment by setting the weights 

to [0.5 0.5 2], One method of generating internal variability (or simulating viewer 

variability) is to generate a collection of models that have different weighting values. This 

could be done by randomly setting the values for each model.
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Another approach is to randomly modify the model’s internal representation of the scene. 

For example, the neurons in the human visual system are somewhat noisy in that their 

activation will vary even with the presentation of the same image. Simulating this 

variability can be done by perturbing the internal representation of the values associated 

with the individual feature maps (for example, color, shape, orientation, brightness) a 

visual attention model develops in response to a scene.

Another method is to perturb the values in the saliency map that is used to identify which 

regions of the image are most salient. For example, one could perturb the internal 

representation following each fixation calculation, or perturb the values independently 

each time a scene is presented.

CHANGES TO THE SCENE

The scene is changed by creating a new image using a graphical editor (e.g., Photoshop), 

3D representation of a scene (for example, virtual reality model), or video (again, all 

collectively called “scene” herein), based on the previously existing scene in which the 

properties of the scene are varied. For example such varied properties could include 

simulated (or real) changes in lighting, or newly added or removed objects (real or 

virtual), or varying the pixel colors randomly.

There are many different ways to change a scene. Deciding what external changes to 

make can vary from situation to situation. One method for deciding what types of changes 

to make to a scene is to determine the types of scene variability that typically occur within 

the scene and introduce those changes to the images that are analyzed. For example, in a 

hotel lobby people will be moving through the scene. Sometimes the guests will be 

standing at the counter, sometimes standing at the elevator, or walking from one place to 

another. Simulating these situations provides a method for capturing the variability in the 

actual scene.

One may want to vary and/or measure the degree to which the external variability is added

to the scene. One method for quantifying the degree of external variability is to vary the
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number of objects manipulated in the scene. For example, returning to the hotel lobby 

example with pedestrians, one may vary the number of pedestrians in the scene. Few 

pedestrians would translate to a small amount of variability while a large number of 

pedestrians would translate to large variability. Another method for measuring variability 

is to measure the pixel variation for all of the images that are generated. One example 

measure of pixel variability is to measure the average variance of each pixel for the set of 

images that are generated. Once the variability of each pixel is calculated, a single number 

could be produced by computing the mean variance of all of the pixels. Again, as the 

variability of the within the image increases, this value will also increase.

One method for generating changes is to make changes to an image by digitally modifying 

the image using commercially available image editing software such as that marketed by 

Adobe Systems Inc. of San Jose under the trade name “Photoshop.” Using this method 

one can modify the scene by digitally placing objects, removing objects, or simulating 

lighting changes. These changes would then be translated into a collection of images that 

would be read and analyzed by the model. These changes can also be applied to images 

automatically by superimposing layers onto images algorithmically.

Another method for generating external structural variability is to generate virtual 

representations of the scene. Using this approach one can easily modify the locations of 

objects, object properties, and lighting conditions. From these virtual representations, 

images can be generated in which the objects, their properties, their poses, and lighting 

conditions have been changed.

Thus far, approaches to changing the scene could be said to be “synthetic” - that is, they 

are changes to representations of the scene, rather than to the scene itself. Another 

approach to modifying the scene is to modify the actual scene. For example, one could 

take a series of time-delayed images (for example, a picture every 300 seconds for a 

defined period). This series of pictures could then be used for successive iterations of the 

visual attention robustness assessment system. Such analysis (multi-image across time) 

would provide a measure of the external structure variability. Furthermore, given such 

variability (people and objects moving, along with changes in lighting direction due to
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changes in, for example, the sun’s position) one could analyze where attention will

typically be allocated within the environment.

In addition to adding external and internal variability “blindly” one could also introduce 

variability that is dependent upon the visual saliency of the different objects in the scene. 

For example, one may want to decrease the degree of variability where attention is 

allocated and increase it for those regions where attention is not allocated.

EVALUATING ROBUSTNESS

There are a number of methods for characterizing the robustness of a scene, such as using 

a “heat map” graphical representation, an internal entropy value, a robustness index, or 

robustness value. One basic approach to summarizing the integrated results from 

repeatedly applying a visual attention model to a scene, while for each iteration applying 

some type of IE change, is to generate a graphical representation of the relevancy values 

or regions that are overlaid onto a representation of the scene. Such an approach yields 

something akin to a heat map, with “brighter” objects being more robust to the variability 

in question.

In addition to evaluating the effect of noise on which objects a visual attention model 

predicts, another method for evaluating robustness is to measure the variability in the 

model’s internal representation of the scene. For example, the Itti & Koch model uses an 

internal “saliency map” representation to determine the locations that visual attention will 

be allocated. One could (but not the only method) measure the amount of change, or 

entropy, in this internal representation of the saliency map as a function of IE changes, as 

a metric for robustness. One could also look at the responses of the individual feature 

maps, or other internal representation of a visual attention model to measure the effects of 

IE changes.

Another method for generating a robustness metric is when the IE changes can be

parameterized. This would be the case, for example, where one adds random luminance

noise to the scene (thus changing the amount of noise by modifying the luminance energy
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of the noise relative to the luminance energy in the image). Or one could increase the 

variability of the connection weights of the visual attention model and characterize the 

degree of change as a measure of entropy. Another method for characterizing the 

robustness of an object, group of objects, or scene is to determine the amount of noise that 

these objects can tolerate while retaining their visual saliency hierarchy. The method for 

this metric is to measure the likelihood that an object will be attended as a function of the 

amount of variability generated. Those objects and/or scenes that are highly robust will 

tolerate large amounts of noise before attention begins to be attracted to the noise elements 

and not to the objects/regions. The resulting metric would be the level of noise that the 

object could tolerate before attention was drawn away from the object and toward the 

noise.

FIG. 4 is a graph showing the probability of attending to an object versus the degree of 

variability for two objects, the first object 451 having a low noise tolerance (low 

robustness value) and a second object 452 having high noise tolerance (high robustness 

value). The graph shows the effect of variability on whether attention will be allocated to 

object 451 and object 452, each with different respective robustness indexes. In this 

example, adding a small amount of variability significantly affects the probability that the 

model will predict that attention will be allocated to Object 451. This is illustrated in FIG. 

4 by the drop in probability with only a small amount of variability. By contrast, Object 

452 is unaffected by small amounts of variability. This is illustrated by a “Drop-off’ point 

occurring with a much greater level of variability. By measuring these “drop-off’ points 

one can quantify, in terms of a robustness index, different objects within a scene.

Rather than, or in addition to, the heat map approach just described, it may be useful, at 

times, to quantify the robustness of a particular object (or plurality of objects) within a 

scene. Such quantification may allow for subsequent analysis such as determining the 

degree (or the robustness index value) of IE changes that begin to reduce the degree of 

saliency of a particular object within a scene.

It may also at times be useful to evaluate and/or quantify the robustness of the scene itself.

This distinction between object and scene robustness opens the door to many types of
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interesting subsequent analysis. For example, it is possible that a scene has a low 

robustness value (that is, the set of objects that the model predicts will receive visual 

attention vary as a function of IE changes) while an object within that scene has a high 

robustness value. An example of a “high” object robustness value and a “low” scene

5 robustness value would be, for example, when the target object is always in the top three 

attention fixations, but the other objects being considered vary significantly.

Table 2 provides exemplary data in which a target object has a high and low robustness 

value crossed with scenes that have low and high robustness values. In this table, one

10 possible robustness metric is shown in which a normalized likelihood value, called a 

Robustness Value below, is calculated for each object. For each scene the left column 

indicates the percentage of time that the object appeared in the first three saccades when 

there are IE changes. In the example shown in Table 2, there are 14 objects within the 

scene, one target object and 13 distractors, distractors being non-target objects or regions

15 having saliency. If the model were to choose three objects randomly, each object would 

have a 21.42% chance of being selected (3 x 1/14=0.2142). This would be the condition 

in which there is very little object and/or scene robustness, and thus it serves as an 

important baseline by which to compare the robustness of the scene. This is because 

robustness declines as probability approaches that of chance. In this example, the

20 Robustness Value is mathematically the % Attended divided by the % chance of being

selected, thus the first Robustness Value of 4.6667 = 100%/21.42%. One method for 

calculating a robustness value for the scene is to calculate the average robustness value for 

the top K objects (number of attention selections). At the bottom Table 2 is the average 

robustness value for the top 3 objects.

25
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Robustness Target Object=High

Scene=Low

Target

Object=High

Scene=High

Target

Object=Low

Scene=High

Target

Object=Low

Scene=Low

Object ID Attended Robustness
Value

Attended Robust
Value

Attended Robust
Value

Attended Robust
Value

Target Object 100% 4.6667 100% 4.6667 5% 0.2333 9% 0.4200

Distractor 1 15% 0.7000 90% 4.2000 97% 4.5267 30% 1.4000

Distractor 2 15% 0.7000 5% 0.2333 5% 0.2333 26% 1.2133

Distractor 3 17% 0.7933 2% 0.0933 2% 0.0933 15% 0.7000

Distractor 4 14% 0.6533 80% 3.7333 88% 4.1067 32% 1.4933

Distractor 5 13% 0.6067 3% 0.1400 91% 4.2467 28% 1.3067

Distractor 6 21% 0.9800 2% 0.0933 2% 0.0933 22% 1.0267

Distractor 7 18% 0.8400 1% 0.0467 1% 0.0467 32% 1.4933

Distractor 8 19% 0.8867 4% 0.1867 4% 0.1867 33% 1.5400

Distractor 9 16% 0.7467 2% 0.0933 2% 0.0933 38% 1.7733

Distractor 10 20% 0.9333 1% 0.0467 1% 0.0467 18% 0.8400

Distractor 11 14% 0.6533 2% 0.0933 2% 0.0933 17% 0.7933

Distractor 12 18% 0.8400 8% 0.3733 8% 0.3733 9% 0.4200

Distractor 13 19% 0.8867 0% 0.0000 0% 0.0000 30% 1.4000

Scene Robustness

Value 2.1933 4.2000 4.2933 1.6022

Table 2

Table 2 categorizes the locations where attention is allocated, by objects. But as 

mentioned before, the term object is loosely defined as a region or area in an image (or

5 scene). The methods and systems described herein are not limited, however, to an object- 

based approach - other, similar approaches would also work. For example, a grid could of 

equal size regions could be defined over the scene, or regions of the scene defined based 

upon properties of the human visual system (for example, the size of the fovea of the 

viewer).

10

ASSESSING ACROSS SCENE ROBUSTNESS

Given the above methods for evaluating the robustness of an object or a scene, it is next

possible to extend the evaluation of robustness in other ways. For example, “across scene

23



WO 2010/039976 PCT/US2009/059255

5

10

15

20

25

30

robustness” is a measure of how the robustness of an object (or a group of objects) 

changes across different scenes. By providing a robustness metric for an object (as 

discussed above), separate from the scene, one can evaluate the robustness of a particular 

object in different scenes. For instance, consider the situation in which an advertiser is 

deciding between two different pieces of advertisement content that will be placed on 

three different billboard signs that are in three different scenes. FIG. 5 provides an 

illustration of an example of this scenario. Scene 703 includes billboard 700. Billboard 

700 repeats in scene 704 and 705. Similarly, billboard 706 is seen in scenes 707, 708, and 

709.

Using methods described earlier (for example superimposing the advertisement content in 

a graphical representation of the scene) one can determine a robustness value for each 

billboard in each of the three scenes—generating six different object robustness values. 

The customer may then select the advertisement (object) that has the highest average 

robustness value (or other metric based upon the collection of robustness values).

One can also use similar analysis when one has a set of objects but needs to select from a 

set of scenes in which to place the object or objects. If we continue with the billboard 

advertising example, the customer may have a single advertisement that they want to place 

in two of three different scenes. One can employ the techniques described above to 

generate the digital images that can be used to generate the robustness value for each 

advertisement in the three different scenes. To facilitate the scene selection, the customer 

could choose the two scenes (with the advertisement superimposed within the scene) that 

have the highest robustness values.

In addition to selecting a single object (for example, advertisement billboard) from a 

collection of objects for a fixed set of scenes, or a set of scenes (from a collection of 

scenes) for a single object, one could also assign objects to specific scenes based upon a 

robustness value. For example, a customer might have three different advertisements (the 

content that is placed on a billboard) that they have developed and twenty different 

billboards that these signs could be placed upon. By generating robustness values for each 

of the three advertisements placed in the twenty scenes, the customer could then choose to
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use the advertisement that has the highest robustness value for each individual scene. 

Additionally, one could assign the best advertisements to the ten scenes with the highest 

robustness value.
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Although the examples thus far illustrate how a robustness metric could be used to 

improve choices made with regard to billboards and advertisements, the benefits of a 

robustness metric are not limited to this domain, and could be used in any domain in 

which one has a collection of contexts (scenes) and a collection of visual stimuli (objects) 

to select between, such as digital signs within a store or hotel, static signs, product signs, 

product packaging configuration, or web sites.

Note that the systems and methods described herein for evaluating the robustness of 

objects within a scene, or the robustness of a scene itself, are not dependant on any 

particular methodology for determining visual attention. Rather, they can generally be 

used with any model for assessing visual attention, and in some embodiments multiple 

different visual attention models may be used for evaluating robustness of an object or a

scene.

ROBUSTNESS AND ATTENTIONAL FIXATION SEQUENCE

The discussion up to this point has mostly focused on the robustness of an object in a 

scene or the robustness of the scene or a collection of objects within the scene without 

consideration of the order in which the objects are attended to. For example, analyses up 

until this point have evaluated only whether or not the model actually predicted that 

attention was allocated to the object or not. There are, however, situations in which the 

order of the elements actually does matter. For example, for a multi-object scene, one 

may want to know how often one object appears before another object, and whether there 

are intervening objects that are attended to in between the attention to two separate objects 

(so-called intervening objects).

Using the methods described above related to introducing variability to a scene one will

have available to them a collection of attention fixation sequences. Using this data one can
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identify all of the sequences in which the target order (for example, attending to Object-A 

before Object-B) is achieved. A sequence robustness analysis could use the probability of 

achieving the target sequence as a measure of sequence target robustness. One example 

method for measuring sequence target robustness is to compute the likelihood that the

5 target order (that is, Object-A before Object-B) would occur if one were to randomly 

select the objects. The sequence target robustness value would be the probability that the 

target sequence was achieved divided by the likelihood that it occurred by chance. The 

principles behind this metric are similar to the principles behind the robustness value 

described above.

10

Considering a first case where the relative order of attention does matter, but intervening 

objects do not. The objective is to have attention drawn to Object-A before Object-B, as 

would be the case for example where a company is advertising a dinner special for a

15 restaurant on a billboard near the restaurant itself. The company may be considering two 

discreet advertisements the dinner special. The goal is to get people who are passing by to 

first attend to the dinner special advertisement followed by attending to the restaurant 

itself. Using the methods described above to evaluate the two different advertisements 

(that is, digitally inserting the advertisements in a digital image so they appear as if on the

20 billboard), as positioned within the scenes they will be placed) then applying IE changes, 

one can calculate how often the billboard receives visual attention before the restaurant. 

Tables 3 and 4 provide possible likelihoods showing the relative ordering of Object-A and 

Object-B along with whether they received attention at all (Object-# Not Att.). From these 

tables we see that Object-A before Object-B occurred 65% of the time with Advertisement

25 Content-1 but only 40% with advertisement Content-2. Thus, if this sequence was 

important the customer might be inclined to choose Advertisement Content-1.
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Advertisement Content-1

Object-A Pos 1

Object -B Pos. 1

2. Object -B Pos 2. 65%

Object -B Not Att. 2%

Table 3

Object-B Pos. 2

Advertisement Content-2

Object-A Pos 1

Object -B Pos. 1

2. Object -B Pos 2. 40%

Object -B Not Att. 5%

Table 4

Object-B Pos. 2

ROBUSTNESS AND MULTI-SAMPLE CONDITIONS

10 The discussions thus far have focused when observing an object from a single location. 

However, the world is highly dynamic, and often times the observer is moving through 

space. As the observer is moving through space, the observer can have multiple chances 

to “process” a particular object. However, this movement generates another important 

aspect to the robustness analysis which is the amount of time, or the number of fixations,

15 in which an object will be visible, can vary. We will refer to this as the visibility duration 

- how long a particular scene or object is visible by an observer. One method for 

capturing the visibility duration is by using a model that reports a predicted sequence of 

visual attention locations. With these models the visibility duration can be specified by 

limiting the number of fixations that the model considers for the robustness evaluation for

20 the scene (this also applies to scene optimization, discussed below). Longer visibility

durations correspond with more fixations, while shorter visibility durations would

correspond to fewer fixations. Changes in the visibility duration can have a significant

effect on the robustness analysis.
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When the number of fixations that can process a scene is limited, whether an object will 

receive attention or not will depend on where it is in the visual attentional sequence. For 

example, a customer may place a digital sign within a hotel. The digital sign is presenting 

two pieces of content—one after the other. One piece of content is presented for 3 

seconds and the second for 6 seconds. Given its limited visibility duration the 3-second 

piece of content needs to appear earlier in the attentional sequence than the 6-second piece 

of content. If for example, people make 2 fixations per second, the model has to predict 

that attention will be drawn to the object in the first six fixations. By contrast, the 6- 

second piece of content has to receive visual attention in the first 12 fixations. Given these 

dynamics, and others like them, not considering visibility duration can lead to inaccurate 

predictions about the objects that people will attend to in a scene.

To illustrate this, we will extend the billboard example (but this same concept applies to 

any display that is dynamically changing). Fet us consider a long straight road in which 

there are multiple signs along the road. Furthermore, the road is flat and there are no other 

objects other than the billboards. Under these conditions all of the billboards would have 

the same visibility duration. That is, the amount of time that the visual system processes 

any particular billboard is the same and will be determined by the speed of the car, the size 

of the sign and any atmospheric aberrations in the scene.

Let us now consider this same road in which there is a row of trees 500 feet in front of one 

of the last billboard on the road. All of the other billboards would have equal visibility 

durations, but this final billboard would have shorter visibility duration. Given this change 

in the visibility duration one would want to limit the number of fixations that the model 

would consider for the robustness evaluation. The first set of billboards might have a high 

number of fixations, while when considering the duration for the final billboard one might 

consider fewer frames from a movie or fewer fixations in an image.

This aspect of visibility duration can play an important role when one considers the

situation where there are multiple objects within a scene. Under some conditions one may

want to distribute the attention capturing elements such that the objects are salient enough
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to be processed (or capture attention) but not so salient that they distract from other objects 

within the scene. (Note: this concept also relates to scene optimization, which concerns 

modifying a scene in a way that achieves particular goals. Scene optimization is discussed 

further below.) Given this, one would want to consider the visibility duration when 

analyzing the robustness of an object, a collection of objects or a scene. For example, for 

an object that has a short visibility duration on a path, one may want to increase the 

saliency elements (for example, motion, brightness, color contrast, etc.) to increase the 

likelihood that a particular object will be processed during that short visibility duration. 

However, for another object that is visible along that same path, but has a longer visibility 

duration, one may be able to take advantage of the fact that there are more opportunities to 

process that object and thus one can allocate fewer (or weaker) saliency elements to that 

object.

The visibility duration would be factored into the robustness analysis by considering 

whether the object received visual attention anywhere along the path. Thus particular 

objects that have longer visibility durations than others would have more attentional 

fixations associated with them, and if attention was allocated to the object anywhere along 

that sequence then it would be considered a “hit.” Therefore, objects with longer visibility 

durations would have more samples and would have a higher likelihood of being 

processed and thus may require a lower level of saliency to be processed. An object with 

shorter visibility duration would have fewer samples and thus would be less likely to be 

attended and thus, may require higher level of saliency elements to be detected during that 

shorter sequence.

SCENE OPTIMIZATION

Up until this point, the disclosure has focused on robustness. Now we turn to other visual 

attention modeling related concepts that, in some embodiments, may benefit from the 

robustness-related methods and systems described earlier, but do not necessarily require 

assessment of robustness. One such related concept is that of scene optimization.
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As discussed earlier, visual attention models exist that may predict where a subject will 

allocate his or her visual attention within a scene. However, such models do not provide 

any mechanism for identifying how a scene can be modified to achieve a specific visual 

goal. Because a human’s visual system does not actually process the entire viewable area 

of a scene, but instead only processes those regions in which attention is drawn, it is 

desirable in many real-world situations not only to get people to ‘view’ specific objects 

within a scene, but to have them ‘attend’ to specific objects.

A visual goal, then, refers to the desired manner in which a subject will attend to objects 

within a scene. For example, a visual goal could be simply a desire that particular objects 

are attended to (that is, the collection of objects within a scene that one determines as 

important (from a visual attention perspective) in addition to the collection of objects that 

are deemed unimportant or even detrimental. Or, it could be a desire to have particular 

objects attended to in a particular sequence or at a particular time, or it could be a desire to 

have particular objects attended to from a particular viewing point, but not necessarily 

from others. The remainder of this section discusses ways in which one could utilize a 

computational model of visual attention to optimize a scene in order to achieve a visual 

goal. Some of the methods that will be discussed utilize an assessment or robustness, as 

discussed earlier, but some do not.

Referring to Fig. 10, once a visual goal has been defined (step 1201), scene optimization 

starts by assigning an explicit cost/reward structure on the objects within the scene (step 

1205). Such assignment defines, quantitatively, the visual goal. The cost/reward structure 

defines which objects within the scene are high value objects, low value objects and even 

objects that the user views as distracting or detrimental to the visual goal. The user will 

place “attention utility” values on to each of the objects that are deemed to be part of the 

visual goal (positive rewards) or are detrimental (negative costs). Or, the user can place 

priorities specifying which elements are “more” valuable to the visual goal than others.

Next, a number of possible changes to the scene are defined (step 1210). These could be

simple changes such as lighting, color of objects, positioning of objects, etc. or more

complex design changes such as where within a lobby a reception area should be built. Of
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course, ideally, the time to evaluate something as fundamental as positioning of the 

reception area is best done before building a hotel lobby, so it is expected one utility of the 

scene optimization methods described herein will be for evaluating synthetic, or partially 

synthetic, scenes and design / layout choices within such scenes.
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The actual real-world “cost” (or estimate) is then associated with each possible scene 

change (step 1215). For example, in the case of a hotel lobby, where the goal is for 

patrons to attend to a particular sign, changing the color of the sign may be relatively 

inexpensive (could be assigned an estimated change value of $200), while changing the 

color of the granite floor would be expensive (could be assigned an estimated change 

value of $20,000). Assigning real-world cost estimates makes it possible to associate a 

price figure with a plurality of changes. For example, a range of possible changes to a 

scene could be considered, some of which meet all goals, some of which meet most goals, 

some of which meet goals and do so the most inexpensively, and others of which meet 

90% of the defined goals, and to achieve the other 10% of goals, it may be found it takes a 

disproportionate investment capital. In other words, associating real-world costs with 

possible changes may, in some embodiments, allow for a much more useful assessment of 

options. In the end, the method provides the scene configuration that maximizes the 

attentional utility while minimizing the cost associated with the object feature 

configurations (step 1220).

Note that real-world costs are just an example of how relative costs of particular changes 

could be co-associated - other systems, such as point systems with higher points 

correlating with higher costs for particular changes, and lower points being less expensive 

changes, could just as easily be used.

A graphical editor with the ability to track and manipulate discrete objects may be useful 

in defining possible changes to a scene. For example, a sign in a scene that is being 

viewed within such a graphical editor could be identified (right-clicked with a mouse, for 

example), and the user would be able to select the changeable properties of that object. 

These changeable properties might include color, lighting, positioning within layers (for 

example, the object could be put in front of or behind some other object), contrast, 

shadow, size, etc. In addition to selecting the individual properties that may be changed,
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the user may also have the ability to define the allowed scope of change or other relevant 

parameters. For example, with respect to color, the only colors a client or user may find 

acceptable for a particular wall that is within a scene may be shades of tan. Thus the color 

attribute is defined to only be varied within the specified spectral range. Similarly, if the 

attribute is size, there may be an obvious limit to the size a particular object may grow to 

(or be reduced to) before the size of the object is not acceptable to the client or user. As 

mentioned earlier, the real-world cost estimate is associated with each possible change. 

Where there is a range of possible changes, a user may define the cost of exemplary points 

within the range and the supporting computer system (later described) will extrapolate a 

best-fit curve for the example points. The user may be presented with a number of 

possible best-fit algorithms and thus be asked to select which one to use. For example, the 

user may just want to define, with respect to the size of a sign, that the smallest allowable 

sign costs $100, and the cost of the intermediate signs increase linearly (based on size) 

between these two cost points.

With goal (or plurality of goals) defined, the attentional utility for the goals, the possible 

scene changes, and the costs of the possible scene changes defined, the next step is to 

evaluate the benefit of possible changes to the scene and attempt to find the scene 

configurations that achieve the visual goal defined in step 1201. This is done, in one 

embodiment, by algorithmically modifying properties of the scene to maximize the 

expected reward, or the scene configuration that minimizes costs while maximizing 

rewards, or the scene configuration that simply meets the defined goals for the least cost. 

The expected reward is calculated as the likelihood that a particular object will receive 

attention and the reward/cost for attending to those objects. In addition to the reward/cost 

for attending to the location in the scene, the optimization routine also factors in the 

cost/reward for making specific types of changes to the scene (for example, changing the 

color and/or position of an object within the scene). One method for calculating the 

likelihood of an object receiving attention may be determined using the robustness 

analysis described in the previous section.

Equation 1 provides one example of how to formulate a utility function using a 

computational model of visual attention.
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Equation 1

F is the set of changeable attributes for the objects within the scene. For example, it 

would include the color, texture, or position for each of the objects within the scene. A is 

the set of attentional fixations that the model predicts given this feature configuration F. 

R(Oxy) is the reward (both positive and negative) for attending to the object at the position 

(xy) with the feature set f. a(xy) is the likelihood that the model predicts that attention will 

be allocated to location xy. For some models and approaches of visual attention a(xy) can 

be a binary value (0 or 1 indicating whether attention will or won’t be allocated to the 

location), while for other models and approaches, this might be a likelihood that attention 

will be allocated to this location (0... 1). Either way, this part of the equation specifies the 

reward for the allocation of attention for the current object feature set.

The other part of the function specifies the cost for using feature set/for object o. R(O/) 

specifies the reward/cost for using feature set f on object o. In some cases the cost for a 

particular feature might be 0.0 (for example, this might be the case for the current feature 

set for object o). However, one may want the model to consider all possible feature 

combinations being equally difficult. In this case the rewards for all features would be 

equivalent (or most easily 0.0). However, in some situations (for example, changing the 

color of the carpet in a scene versus moving a vase) there will be constraints on the 

allowable feature configurations. In such situations, one could specify these values in 

terms of costs/rewards on the object (o) and the features (/), or they could simply refrain 

from defining the non-allowable feature configurations as an allowable change.

Using this reward function, the solution space is explored for a feature configuration that

optimizes the stated reward function. There are a number of methods for achieving the

optimal solution once the reward functions are specified. These methods include, but are

not limited to, using closed form equations, Monte Carlo Simulations, Simulated
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Annealing, Genetic Algorithms, and Stochastic Gradient Descent. In addition to these 

approximation approaches, for some visual attention models, one could implement a 

closed form analysis.
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The solutions from the solution space that meet the goals, and associated cost information, 

is then available to be evaluated.

Note that many of the examples thus far focus on optimizing a scene by increasing the 

visual saliency of objects within that scene. Note, however, that some visual goals may be 

achieved by reducing the visual attention (or distraction) from other objects. The scene 

optimization method described herein, depending on how the cost model has been set up, 

may result in muting aspects of the scene (not always making the objects more visually 

salient).

SCENE OPTIMIZATION AND ATTENTION SEQUENCE

As mentioned above, some goals may not consider the order in which objects are attended 

to. Under such conditions, the reward/cost for attending to an object will be unaffected by 

either its position in the sequence and/or the objects that were attended to before or after a 

current attentional fixation. However, there are situations in which the attention fixation 

order of objects within a scene may be important. For example, order tends to matter 

when a subject is following a specific sequence of instructions.

To deal with this more complicated visual goal, the expected reward function above 

(Equation 1) may be expanded to optimize the feature configuration such that the expected 

reward is order dependent. This can be done by taking advantage of a variable reward 

structure as a function of saccade number. Note that in Equation 1 the reward for 

attending to an object is indexed by the individual attentional saccade (Ra). By specifying 

a different reward based upon the saccade’s sequential position (a) one can generate a 

method by which the scene is optimized by the predicted saccade order. Fig. 11 is a graph 

illustrating two reward structures. One reward structure is represented by invariant with
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saccade position (line 1225) and the second is dependent upon saccade position (line 

1230). The saccade dependent reward structure specifies that the expected reward for 

attending to this particular object is very high if it occurs early, but it declines as attention 

is allocated later in the sequence. This type of reward structure might be associated with 

“high value” objects, such as pedestrians in a construction zone scene.

Rather than basing a reward on how early the object is attended in the attentional sequence 

(as Fig. 11 illustrates), one could also base the reward on a sequence-based goal, where an 

object’s reward is based on the objects that have received attention before it and after it. 

For example, a hotel owner may have two outdoor signs. One advertises a special in their 

restaurant and the second displaying the name and logo of their hotel. The hotel owner 

decides that it is important that the advertising special sign should be seen before the 

hotel’s sign. Given this visual goal the analysis would place a very high reward on when 

the “restaurant special” sign is attended to before the hotel name. Furthermore, a low 

reward would be given for when the hotel name is attended to before the “special 

advertising” sign and no reward may be given if either one is attended without the other. 

The sequence could be a relative sequence (before versus after) or could be an absolute 

sequence (no reward for attending to objects A and B unless Object-A occurs as the first 

object that receives visual attention and Object-B is the second object that receives visual 

attention). There are, of course, many other ways in which reward structures could be 

formulated, as will be appreciated by a skilled artisan.

Thus far this section has discussed two possible reward functions in which the position of 

the saccade or the order of the saccades affects the reward. One skilled in the art will 

recognize one may define any arbitrary sequential reward function over the set of objects 

and the set of saccades. More generally one can define this sequential component of the 

reward structure by defining an M dimensional space (one dimension for each object) that 

is the length of the saccade sequence in question.

The optimization routine may be set up to provide the best configuration for a scene given

the reward structure, but one may find that the resulting scene “recommendation” not
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appropriate. For example, one might wonder how the attentional sequence changes if one 

were to modify the color of one object to make it more, or less, conspicuous. Making one 

object more conspicuous can have non-obvious, non-linear effects on the predicted 

sequence. This is due to the fact that attention allocation is by definition a zero-sum game: 

allocating attention to one object will necessarily mean that attention is allocated away 

from another object. Thus modifying the features of one object to increase its conspicuity 

will not only change the likelihood that this object will receive attention (and where in the 

attentional sequence it will receive attention) but it will also affect the likelihood that other 

objects will receive attention and where in the attentional sequence those objects receive 

attention.

Because one approach to the optimization routine is to automatically consider multiple 

feature configurations, many (or all) of the possible configurations that define the solution 

space will have been explored. The non-optimal solutions could be of great interest to a 

user or a client. For example, one might want to know what color to make a sign to move 

its position from, say, the 25th position in the saccade sequence to the top 5. The system 

could look through the stored attentional sequences in which the features of all the other 

objects are held constant and the object of interest falls in the top 5 saccades.

Robustness, discussed earlier, can also be used in scene optimization. For example, one 

could optimize a scene not only to the properties of that image, but to the scene as it might 

appear at different times of day, or to different viewers. That is, the optimization routine 

recommends scenes that are robust to the variability that the scene may experience. 

Previously we described methods for capturing and generating both internal and external 

variability to the input scene and model. The goal of these approaches was to simulate (or 

capture) the expected variation of the actual scene. For example, one method for 

capturing the variability of observers is to vary the parameters of the visual attention 

model (for example, the weights of the individual feature maps for calculating saliency) 

and running these models on the same image. Running each scene configuration through 

multiple instantiations of different model parameters (internal variability) would give 

multiple scores for a particular scene configuration—one attentional sequence for each 

model. By taking the average score for each model configuration, one could generate an
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expected score for the scene configuration with the given variability. One might

recommend the scene configuration that provides the best score on average.

Also, one may define a visual goal in terms of robustness, and then optimize a scene’s 

object (or objects) to particular robustness values.

Visibility Duration

As mentioned with respect to the robustness discussion, above, different objects or 

different scenes may have different visibility durations. As a reminder, visibility duration 

refers to the period of time that an object and/or scene will be viewed. Visibility 

durations, which may be specified in terms of time will typically be translated into the 

number of predicted attentional fixations (or salient regions) that will be considered in the 

optimization routine. The visibility duration would be used to limit the set of fixations 

that would be used for the analysis of the various scenes. More specifically, it will be used 

in the visual goal analysis.

The visibility duration may have an effect when considering multiple visual goals. As an 

example, one may have a document or content that has six visual goals with different 

rewards—say the reward values are 1,2,3,4,5,6. If the content is displayed on a digital 

sign for 5 seconds, and people make about 2 fixations per second, this translates to a 

visibility duration of 10 fixations. Given that the visibility duration is 10 fixations, the 

visibility duration is long enough to capture all of the visual goals. Under this condition, 

the model would make the saliency of the six items relatively equal (assuming no other 

objects in the scene and an equal cost for making changes). The reason the optimization 

routine with visibility duration will make the visual goals roughly equal, is that the model 

is more likely to attend to all of the targets under this condition. If the saliency of one of 

the targets (say the object with the highest reward) is significantly higher than that of one 

of the other objects (say the one with the lowest saliency) then most visual attention 

models will attend to the most salient object first, then the second most salient, but 

eventually, it will typically return to the most salient object again. If there is no additional 

reward for returning to a previous object, this attentional fixation will not increase the 

overall reward. However, by making the objects relatively equal in saliency, the model is 

more likely to attend to all of the target objects and thus achieve more (if not all) of the
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Fig. 12 is a high-level diagram of scene optimization system 1255. Like-named 

components in this figure are similar in functionality and capability to those modules 

discussed earlier. Scene optimization system 1255 includes database graphical user 

interface 1245, which receives input from user 401, via computer 503, over network 502, 

to define one or more visual goals for a scene, as well as possible changes to the scene. 

These possible changes to objects in the scene are stored in database 1235. Scene 

optimization module 1260 iterates explores the universe of possible scenes that meet the 

visual goal, and invokes scene modification module 1240 to modify scene input in ways 

consistent with the possible changes defined by user 401. This produces a modified scene, 

which is provided to visual attention module 403, which provides output relevant to visual 

attention, which is stored in database 1235. Scene optimization system 1255 may include 

web server module 1250 if user 401 is remote (and as shown in Fig. 12).

MULTI-PERSPECTIVE SCENE ANALYSIS

Up until this point the description has focused primarily on visual attention modeling 

utilizing a single, static image or a movie to predict where attention will be allocated 

within an image or images. These two approaches are often useful for many situations, 

but are limited in that they operate on a single two-dimensional view of what is in reality a 

complex three-dimensional scene.

In the 3D world in which we live, small changes in perspective (orientation and/or 

position) can have significant changes on the image that is projected upon the observer’s 

retina. Objects that are visible from one perspective may not be visible at all in another. 

Furthermore, the spatial relationships (that is, the position of the projected image of one 

object on the retina relative to a second object) between objects can change significantly 

from one perspective to another. Because changes in perspective can generate large
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variations in the images that are projected to the retina, they will also have significant 

effects on where human visual attention will be allocated within a scene. For example, 

Fig. 13A is an artist’s rendering of a hotel lobby scene including a reception desk having 

digital sign 1290 behind the desk. The scene has been analyzed by a visual attention 

model which predicted the two objects that draw the most attention in Fig. 13A are the 

digital sign 1290 and advertisement card 1285. Fig. 13B is the same reception area in the 

same hotel lobby, but digital sign 1290 is not among the several objects identified by the 

visual attention model. If the visual goal is to have patrons attend to the digital sign 1290 

and only the scene shown in Fig. 13A is analyzed, there will be a false sense of security 

that the visual goal is being consistently met. Thus there is a need to have an effective 

way to measure and evaluate scene content within a 3D scene.

Note that 3D scene evaluation (which herein we refer to as multi-perspective scene 

analysis) is not the same as merely extending 2D visual attention analysis to such things as 

movie sequences. Such an approach may provide data from many perspectives, but 

ultimately has limitations similar to that of the single image approach, in that it may 

provide one with an ability to analyze the allocation of attention for a particular movement 

through space, but it may not provide the ability to consider other paths and/or movements 

through the space. Neither a visual attention analysis of static scenes nor a plurality of 

static scenes in succession (videos) effectively deals with the fact that the images are 

derived from a 3D setting.

So, then, it may be useful to have a multi-perspective visual attention modeling process 

that accommodates three dimensions and the myriad ways in which an observer may 

traverse a geographic space that is the three dimensions.

Fig. 15 is a flowchart showing the multi-perspective visual attention modeling process. 

The process begins with site planning (step 1329), which consists of determining which 

locations and objects within the 3D scene one wants to analyze. In practice, this may 

mean acquiring or developing a floor plan of the 3D scene that will be analyzed, and 

determining locations in the floor plan that will be representative of the observing 

perspectives of users. Of course, absent a floor plan of the 3D scene, a less rigorous
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approach could be used, in which the user simply goes to the site and makes decisions 

about which locations are of interest and takes photographs from those locations. 

Additionally, the user might record the position and orientation of where the image was 

taken, which could be useful for reporting purposes.

Rather than photographs, video technology in which frames are captured from the video or 

video sequences could also be used. When frames (images from video) or images (from 

digital cameras, or example) are used, the user can also use view interpolation techniques 

to generate views that are between two different images. As mentioned earlier, the images 

are not limited to being generated from a real environment, but they can also be generated 

from synthetic (virtual) environments. However, in both cases, one must record or pre­

specify the locations in the environment where the images are taken from, and the 

perspective of the camera (which way the camera is pointed). A simple approach is to 

specify locations, then have each successive image be generated from a perspective that 

advances 90 degrees around the north, east, south, west axis (as is done in an example 

below). But absent pre-specifying locations and camera aiming protocol, the camera 

could instead be tracked using GPS tracking technology possibly in combination with 

optical tracking technology. For example, an instrument or instruments would be attached 

to the camera such that every time an image is taken, the system would record the three 

positional dimensions (Χ,Υ,Ζ) and the three orientation dimensions (yaw, pitch and roll) 

to provide an explicit representation of the viewpoint from which the image is captured. 

These six values would be stored in memory and associated with the image captured at 

that time. Of course, cameral position and orientation could be manually recorded.

With the 3D scene determined, next multiple images from the 3D environment are 

received, the multiple images representing a set of views that an observer may experience 

as the observer interacts and navigates through a 3D environment (step 1330). In one 

embodiment, this is accomplished by taking multiple photographs taken from multiple 

positions and orientations within the 3D scene (again, such as the lobby of a hotel). In 

another embodiment, a video is made of the 3D scene, with shots taken from multiple 

representative areas an observer might be expected to be at. In yet another embodiment, a 

virtual 3D model is used and views are generated by moving a virtual camera through the
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virtual 3D model. No matter how generated, the result is a plurality of 2D images from 

various positions within the 3D scene. Data representative of the location within the 3D 

environment and the camera orientation are also collected, if not pre-specified. This data 

will allow one to evaluate a scene from many perspectives along with evaluating many 

different paths that an observer might take through a 3D space.

Once images are collected, the regions of the two-dimensional image that correspond to 

the objects of interest are selected and identified (step 1335). This can be accomplished 

using a number of different methods which might include (but are not limited to) methods 

that automatically extract these objects, manual selection of regions, or even hybrid 

approaches that use both automated and manual tagging and labeling techniques. An 

illustration of graphical results of one method (manual) for accomplishing this process is 

shown Fig. 14A and Fig. 14B. The objects such as mural 1310, digital sign 1315, and 

vase 1320 have all been identified by a manual selection process.

Next, the images including the objects of interest are processed using a visual attention 

model to produce visual attention data (step 1340). As earlier mentioned, one such model 

is that described by Itti and Koch (2001), but any visual attention model could be used.

The two-dimensional locations where the model predicts that visual attention will be 

allocated when an observer is at each viewpoint are then recorded in, for example, a 

database. These locations are then compared to the regions that have been tagged and 

labeled for each viewpoint to determine which objects within the visible area the model 

predicts will receive attention.

After analyzing each individual viewpoint and computing which objects the model 

predicts will attract visual attention for each individual viewpoint, data concerning which 

objects will be attended from which locations is generated and stored. This data may then 

be used to, for example, determine the likelihood that a particular object will be viewed (at 

all) by a potential observer as she traverses the 3D scene; the percentage of potential 

observers that will in fact observe particular objects within the 3D scene; the likelihood of 

an object being attended to for a sub-set of particular views (may be useful for analyzing 

information about particular travel paths, such as entering a lobby versus exiting the
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lobby), or the likelihood that an object will be attended when that object is viewable (some 

objects may need to inconspicuous from most of the possible viewpoints within the 

environment, but for the viewpoints that the object is viewable, one may want to have a 

high degree of certainty that attention will be drawn to it), or the viewpoints within a 3D 

scene that an object is visible (or that the object will be attended to).

This 3D visual attention modeling may be combined with the systems and methods 

discussed above with respect to scene optimization. The visual goals that could be defined 

with respect to 3D visual attention modeling, however, may be different. For example, the 

visual goals may be defined such that 90% of potential observers do in fact observe a 

particular digital sign at some point while traversing a hotel lobby.

As an example of applying 3D visual attention modeling combined with scene

optimization, consider a case where one may want an object to remain inconspicuous 

when observed from some viewpoint but be conspicuous from other viewpoints when the 

object becomes relevant. For example, a hotel that has three different forms of advertising 

content that it wants its customers to view and attend to during their visit. A first content 

is advertising a special on room upgrades; a second content is advertising a special on 

room service; and a third content is advertising tickets for a play that is being held in the 

ballroom of the hotel. These different forms of content are relevant at different times 

during the customer’s visit. The room upgrade is relevant when the customer is checking 

into the hotel but is not relevant at other times. Room service is relevant when the 

customer is going to their room, but not necessarily when the customer is leaving the 

hotel. The play tickets, in contrast, are relevant to customers at almost any time. Using 

the 3D visual attention modeling techniques combined with the scene optimization 

techniques (both described above) one can optimize the placement and content of these 

advertising materials in the following way. First, one can determine the locations in the 

hotel lobby where the information would be most relevant. For example, the room 

upgrade is relevant when the customer is checking into the hotel, which usually occurs 

when the customer is standing in front of the check-in counter. Areas next to an elevator 

might be best for general advertising (such as play tickets). Just as a hotel may want 

certain signs conspicuous from viewpoints corresponding to certain tasks (for example
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check-in, or going to one’s room), the hotel would also want signs that are not relevant to 

be inconspicuous (for example, room upgrade when waiting for an elevator). One may 

analyze the position and content of the advertising material based upon the set of positions 

and orientations that one might be in when standing at the check-in counter.

To test one embodiment of the above-described 3D visual attention modeling and scene 

optimization method we took as our test 3D scene a standard conference room, a diagram 

of which may be seen in Fig. 16. The conference room included a table 1345, a yellow 

sign 1350, green basket 1360, telephone 1355, purple sign 1365, as well as other typical 

things one would expect to find in a conference room (chairs, waste basket, screen). 

Representative points from which an observer might be expected to view the room were 

determined manually, yielding eight representative observing locations (observing 

locations 1366, 1377, 1378, 1379, 1380, 1381, 1382, and 1383). For this test, the 

observing locations were spaced approximately 4 feet apart throughout the unencumbered 

regions (no furniture) of the room. Four images were taken, using a digital camera, from 

each of the eight observing locations, to yield 32 images. The arrows extending outward 

from the observing locations indicate the general direction the digital camera was aimed 

for each picture - about a 90-degree orientation difference for each picture at each 

observing location. The location and orientation for each of the 32 different images was 

recorded.

We then identified and tagged the pixels associated with 12 different objects that were 

found in at least one of the 32 images. This was done by having a user select the polygon 

region that defined the 2D region encompassing the object of interest on each of the 32 

images. Fig. 17a and 17B shows an artist’s rendering of two of the 32 images, where 

polygons encircle objects of interest, such as green basket 1360 and yellow sign 1350. 

“Tagging” simply refers to naming the regions that comprise objects (such as “yellow 

sign”). Note that the polygons encircling the objects are representative of the tagging 

software’s purpose; the underlying images are not actually modified with the polygon; the 

identified regions, once specified by the user, are not signified in any way on the original 

image.

43



WO 2010/039976 PCT/US2009/059255

5

10

15

20

25

30

After tagging and labeling the images, the images were submitted to a visual attention 

model to collect the locations in the image where the model predicts visual attention will 

be allocated. After submitting all of the images, the computer recorded, for each image, 

the x,y coordinates where the model predicted that visual attention would be allocated.

The computer also calculated for each of these attention fixations whether it fell within a 

region of the image that was tagged and labeled by the user. The computer also recorded 

each image that included a tagged region that was not predicted to receive attention (a 

“miss”). All data was stored in a database, which was then used to generate a series of 

summaries concerning the conspicuity of the objects within the scene.

Fig. 18 shows graph 1395 illustrating three different example analyses that were done for 

the 12 objects 1400 tagged and labeled within the conference room. The first analysis is 

the likelihood that the object is visible or viewable (p(Visible)). This is the ratio of the 

images in which the object is in the image divided by the total number of images. 

p(Visible) is, then, a metric giving some indication of how well placed the object of 

interest is within the setting. The metric that is determined is the likelihood that the object 

was attended given that it was visible (p(Attended|Visible)), which was calculated by 

taking all of the images in which the object was visible and identifying whether the visual 

attention model predicted that a fixation would occur in the region defining the particular 

object. The metric calculated was the likelihood that a particular object will be attended at 

all (p(Attended)), which is calculated by taking the number of images in which the model 

predicted attention allocation to an object at least once, then dividing that value by the 

total number of images.

Multi-perspective scene analysis represents the fact that a target object can be viewed from 

many different distances. For example, consider the billboard example described above. 

As one is driving down a long flat road, there are many opportunities to attend to, and thus 

process the billboard. By contrast, for another billboard, there may be a hill or a group of 

trees that are occluding the sign until the very last minute. By taking into account these 

different viewpoints, one can more accurately analyze the likelihood that an object will 

receive visual attention from the different perspectives that it can be viewed. Without 

multi-perspectives, and using only a single view, one may incorrectly predict that an
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object will or will not receive visual attention given the number of perspectives that it 

could be attended.

Fig. 18 shows a subset of possible evaluations that one could carry out on data resulting 

from the analysis described above. There are a number of conclusions one could draw 

from the data. First, note that the PurpleSign object is visible (white bar on graph) less 

often than the Screen object (that is, it was in fewer of the images taken within the 

environment). However, if we look at the black bars for these two objects, we see that 

when the PurpleSign is visible (that is, it is present in the image) it is always attended 

(p(Attended|Visible)=l .0), but when the screen is visible, is never attended. This suggests 

that although the PurpleSign is located at a place where it won’t be seen very often, when 

it is in view the model predicts that attention will be allocated to it.

The PurpleSign object is, then, generating the types of properties that were discussed as 

desirable earlier in the context of the hotel lobby. That is, the sign is not visible from 

many locations (it is inconspicuous) but when people are in a location where it is visible 

(by the check-in counter), they will almost always attend to that object. This is illustrated 

by the fact that the probability that the PurpleSign object is visible (white bar) is about 

15%. But the probability that attention will be captured by the PurpleSign when it is 

visible (black bar) is 1.0.

Fig. 19 is a block diagram showing high-level functional modules that comprise a multi­

perspective scene analysis system 1415, which in various embodiments may perform the 

multi-perspective visual attention modeling process described with respect to Fig. 15. It 

resides, in one embodiment, in a computer system 408, which includes a number of other 

functional modules (such as an operating system), and hardware, such as a memory or 

processor (neither of which are represented in Fig. 19). Though shown in Fig. 19 as a 

single computer, in practice various portion of the functionality could be spread among 

several or many computers in a networked configuration. Multi-perspective scene 

analysis system 1415 includes visual attention module 403 (discussed above). It also 

includes multi-perspective scene analysis module 1425 which invokes, as needed, visual 

attention module 403 to do the analysis of interest (discussed earlier with respect to step
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1340 of Fig. 15), and receive results from the analysis (including which defined objects 

were identified by the visual attention module in which images), and stores these results, 

or summaries of the results, in database 1410. Database 1410 is any data storage device or 

system, such as a computer flat file, computer memory, or a database. Multi-perspective 

scene analysis system 1415 also includes graphical user interface module 1420, which 

facilitates the input of multiple images (acquired in step 1330 in Fig. 15), then, in this 

embodiment, facilitates the identification and tagging (step 1335 in Fig. 15) of objects of 

interest within the images.

User 1405 is any person or other computer system interested in interacting with the multi­

perspective scene analysis system. In one embodiment, user 1405 is a consultant hired by 

a company to analyze and recommend configuration changes to a 3D scene owned or 

controlled by the company.

Often times a viewer will remain in the same location for a reasonable period of time. For 

example, someone may be waiting in line to check out from a grocery store, a home 

improvement store or a hotel. During this time the individual may engage in a “visual 

foraging” task. Visual foraging is a situation in which observer is not looking for anything 

in particular, but simply looking around the environment for something that is interesting. 

During this visual foraging the person will attend to different pieces of information by 

moving his eyes and when his eyes reach the edge of their rotation axis, the person will 

move his head. Typically he will move his head and eyes such that the item of interest is 

at the center of fixation. Current state-of-the-art does not simulate this type of re-centering 

action on the images. Instead, when an image is analyzed, the center of the image always 

remains fixed. This is true even when the fixation point is at the edge of the image (or 

visual field). Without re-centering, the current state-of-the-art approach will only be able 

to fixate to the edge of the image but will never fixate beyond that point. Humans, by 

contrast, will attend to the edge of their visual field and rotate their head so their eyes are 

re-aligned to the center of gaze. This would allow the visual system to make another 

fixation in the same direction. With a single image, one cannot make a fixation in the 

same direction due to the fact that there is no more information off of the edge of the 

image.
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The systems and methods described herein can, in some embodiments, use multiple views 

of a scene or a single panoramic view to simulate the re-centering of the eyes during visual 

foraging. This could be done as follows:

1. Generating multiple images from a single viewpoint. The images are generated by 

using a 360-degree panoramic camera or multiple single images rotated around the 

viewing axis (vertical or otherwise). Multiple images may be taken in which the 

views “overlap” one another. The orientations of the views would also be assigned 

to each view.

2. An initial view (“starting view”) is given to the visual attention model. The view 

can be determined by the typical viewing orientation that someone starts their 

visual foraging (for example, in a store line, it might be looking “forward” toward 

the cashier). One can also start with a randomly selected orientation. In the case 

of a panoramic view, a “slice” of the panoramic view could be used centered on 

the “starting” view. In the case of multiple views/images, the image that is 

centered closest on the starting location would be used.

3. The “starting view” is analyzed with a visual attention model. The initial fixation 

is predicted by the model. The orientation of this fixation would be calculated (this 

can be done using trigonometry). If a panoramic view is used, a new “slice” of the 

panoramic view would be made centered on this new fixation. If multiple images 

are used, the image that is centered most closely to this new fixation would be 

used.

4. With the new view, the system would analyze for the next salient region.

a. The process then repeats (determine fixation, then center the viewpoint).

EXAMPLES

Several non-limiting examples are provided below which show how the aforementioned 

systems and methods may be put to practical use.

Example 1: Robustness Calculation Using External Variation
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Background: A hotel owner wants to install two digital signs in the hotel lobby. She 

wants them noticed by customers and can put them in any of 3 potential locations, 

resulting in 3 possible configurations of two digital signs (that is, signs at locations 1-2, 1­

3, or 2-3). Robustness is calculated to recommend the best sign locations to be noticed.

1. Capture an image of the hotel lobby using a digital camera, download the image to a 

computer capable of running an attention model. The computer has visual attention 

modeling software installed, (for example Koch & Itti), along with Matlab™ (available 

from The MathWorks, Natick, Massachusetts).

2. Modify the image to include simulated digital signs. Generate three modified images, 

each simulating two digital signs such that all combinations of two signs in the three 

potential locations are produced. Use a standard digital photograph manipulation program 

such as Photoshop™ (available from Adobe Co., San Jose, CA). Each simulated digital 

sign is properly scaled and has simulated content, such as a graphic of the hotel logo.

Store the image regions, as defined by pixel addresses, associated with each of the three 

digital sign locations in a file on the computer.

3. Run the modified images through the attention model. The output will include the 

predicted salient regions of the modified images. Each salient region is compared to the 

digital sign pixel addresses stored in Step 2. If the salient region falls within or overlaps 

with the stored pixel addresses, then the predicted attention goes to the desired location. 

Each of the three modified images shows the digital signs to be in the top ten fixations, 

thus confirming that any of the three locations is a good candidate.

4. Capture multiple images of the same scene, either using a series of still photos or using 

a video and sampling images from the video stream. Images are taken every 5 minutes 

over a 16 hour period, thus capturing the scene external variability resulting from a variety 

of lighting conditions and pedestrian movements. The goal is to have the sign locations 

robust to these types of variability (lighting and pedestrian movements). Load these
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images into the computer and modify them with simulated digital signs as described in 

Step 2.

5. Each modified image from step 4 is analyzed by the attention model and compared to 

the stored pixel addresses as described in Step 3. The series of modified images 

associated with sign locations 1 and 2 showed that predicted fixations went to both digital 

sign locations in 20% of the images. Similarly, locations 1 and 3 had 35% of fixations 

going to both sign locations, while locations 2 and 3 had 85% of fixations going to both 

sign locations. Having signs installed at locations 2 and 3 resulted in the most robust 

configuration, providing the best solution for the hotel. Recommend this solution to the 

hotel owner.

Example 2: Robustness Calculation Using Internal Variation

Background: A hotel owner wants to install two digital signs in the hotel lobby. She 

wants them noticed by customers and can put them in one of 3 potential locations, 

resulting in 3 possible configurations of two digital signs (that is, signs at locations 1-2, 1­

3, or 2-3). Robustness is calculated to recommend the best sign locations to be noticed.

1. Capture an image of the hotel lobby using a digital camera, download the image to 

general purpose computer capable of running an attention model. The computer has visual 

attention modeling software installed, (for example Koch & Itti), along with Matlab™ 

(available from The MathWorks, Natick, Massachusetts).

2. Modify the image to include simulated digital signs. Generate three modified images, 

each simulating two digital signs such that all combinations of two signs in the three 

potential locations are produced. Use a standard digital photograph manipulation program 

such as Photoshop™ (available from Adobe Co., San Jose, CA). Each simulated digital 

sign is properly scaled and has simulated content, such as a graphic of the hotel logo.

Store the image regions, as defined by pixel addresses, associated with each of the three

digital sign locations in a file on the computer.

49



WO 2010/039976 PCT/US2009/059255

5

10

15

20

25

30

3. Run the modified images through the attention model. The output will include the 

predicted salient regions of the modified images. Each salient region is compared to the 

digital sign pixel addresses stored in Step 2. If the salient region falls within or overlaps 

with the stored pixel addresses, then the predicted attention goes to the desired location. 

Each of the three modified images shows the digital signs to be in the top ten fixations, 

thus confirming that any of the three locations is a good candidate.

4. Begin with the basic visual attention model of Koch & Itti, as specified in Step 1. 

Specify the number of model variations to utilize in analyzing the modified images (for 

example, 100 model variations). Each visual attention model has three different feature 

maps (color, orientation, and luminance); the saliency map is computed as a weighted 

combination of each of these maps. The basic visual attention model sets the weighting 

parameters for each map as equal (1,1,1). To produce 100 model variations, randomly 

set the weighting vector for each model. This is completed by an algorithm that randomly 

sets each weight and normalizes the sum of the weights to 3

(3 * (RandW eights/sum(RandW eights)).

5. Analyze each image by the 100 visual attention model variations (defined by the 100 

random weighting values) and compare the results to the stored pixel addresses as 

described in steps 2 & 3. The series of modified images associated with digital sign 

locations 1 and 2 shows that predicted fixations go to both digital sign locations in 20% of 

the images. Similarly, locations 1 and 3 have 35% of fixations going to both sign 

locations, while locations 2 and 3 have 85% of fixations going to both sign locations. 

Having signs installed at locations 2 and 3 will result in the most robust configuration for 

the hotel. Provide this recommendation to the hotel owner.

Example 3: Scene Optimization

Background: A hotel owner wants to visually optimize her lobby and the content

displayed on two digital signs. Her specific visual goals are for customers to notice four

target objects: a first and a second digital sign, a static graphic sign advertising the hotel

restaurant, and the staff behind the check-in counter.
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1. To generate a score for optimization options, rewards are given for changes that draw 

attention to the target objects, and real-world costs are associated with permissible 

changes. An estimated cost in dollars relating to labor and supply costs is assigned to the 

potential changes being considered:

moving a painting currently located behind the check-in counter: $100, 

changing the lighting behind the restaurant sign: $2500, and 

redesigning content displayed on the two digital signs: $250 dollars each.

Reward values assigned for achieving the visual goals are as follows: 

drawing attention to the two digital signs: $500 each, 

drawing attention to the restaurant sign: $250, 

and drawing attention to the staff behind the check-in counter: $150.

2. Capture an image of the existing lobby using a digital camera, download the image to a 

computer capable of running an attention model. The computer has visual attention 

modelling software, e.g. Koch & Itti, along with Matlab™ (The MathWorks, Natick, 

Massachusetts).

3. Modify the image to reflect the changes being considered, so as to create a plurality of 

images associated with all possible combinations of possible changes. Use a standard 

digital photograph manipulation program such as Photoshop (Adobe, San Jose, CA). The 

pixel addresses of the target objects associated with the customer’s visual goals are also 

specified and stored in memory.

4. Analyze each image from Step 3 using the attention model and compare the salient 

objects predicted by the model to the stored pixel addresses for the target objects. A score 

is computed for each simulated configuration by subtracting the costs for changes from the 

reward values for achieving the visual goals in the modified image, indicated by an 

overlap of the predicted visual attention with the pixel addresses for the target objects. For 

example, when attention is allocated to the restaurant sign, using the change of moving the 

painting, the score is $250-$ 100 = $150. After analyzing all of the simulated images, the 

most cost effective solution found is to move the painting at a cost of $100 and to modify 

the color of one of the pieces of content at a cost of $250 (total cost $350). These changes

51



WO 2010/039976 PCT/US2009/059255

5

10

15

20

25

30

allow all of the visual goals to be achieved, yielding a reward score of $1400 and a total 

score of $1050.

Example 4: Multi-Perspective Scene Analysis

Background: Continuing from Example 3, recommended changes have been made. The 

hotel owner would like to understand the visual saliency of each target object as viewed 

from multiple perspectives in the hotel lobby.

1. Four locations of interest, distributed throughout the lobby, are identified and four 

digital photos are taken from each location by turning the camera in 90 degree increments, 

resulting in a total of 16 images, each image representing one perspective. The images are 

photos taken using a digital camera. The images are and downloaded to a computer 

capable of running an attention model. The computer has visual attention modeling 

software, for example Koch & Itti, along with Matlab™ (The MathWorks, Natick, 

Massachusetts). For each perspective, the pixel addresses for the target objects are 

identified and stored in the computer’s memory, and the target objects tagged with an 

identifier.

2. Each of the 16 images from Step 1 are analyzed using the attention model. For each 

image, it is determined by the visual attention model which target objects are visible and 

which target objects are predicted to draw attention.

3. The probability that each target object is visible across all of the images is computed, 

and the probability that it is attended to is also computed. This data is presented in a 

report to the hotel owner, providing a better understanding of the visual characteristics in 

the lobby from a variety of perspectives.

Note that the example applications for the methods and systems described herein have

broad application beyond the specific applications discussed. For example, these

applications include retail environments.
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Throughout this specification and the claims which follow, unless the context requires 

otherwise, the word "comprise", and variations such as "comprises" or "comprising", will 

be understood to imply the inclusion of a stated integer or step or group of integers or 

steps but not the exclusion of any other integer or step or group of integers or steps.

5

The reference in this specification to any prior publication (or information derived from 

it), or to any matter which is known, is not, and should not be taken as, an 
acknowledgement or admission or any form of suggestion that that prior publication (or 

information derived from it) or known matter forms part of the common general

10 knowledge in the field of endeavour to which this specification relates.
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The claims defining the invention are as follows:

1. A computer-implemented method comprising:

defining at least one visual goal for a 3D scene, the scene comprised of a plurality 

5 of objects, the visual goal specifying at least one object in the scene which is desired to be

predicted to be attended to by a visual attention model, and additionally specifying the 

perspective from which the at least one object should be attended from;

receiving, by a processing system, a plurality of images from a plurality of 

perspectives within the 3D scene;

10 receiving, by the processing system, input defining allowable changes to at least

some objects within the scene;

assigning, by the processing system, a cost estimate to at least some of the 

allowable changes;

automatically modifying, by the processing system, some of the plurality of objects 

15 consistent with the defined allowable changes so as to produce modified images;

evaluating, by the processing system, the modified images with a visual attention 

model; and

determining, based on the evaluation, by the processing system, at least some of 

the modified scenes that achieve the at least one visual goal for the scene.

20

2. A computer system comprising: 

a processor and memory;

an optimisation module operative to at least:

automatically modify objects within an image of a 3D scene to produce a

25 plurality of modified images; and

evaluate the modified images with a visual attention model and using cost

estimates of changes to the objects to determine a modified 3D scene that achieves 

a visual goal; and

a multi-perspective scene analysis module, operative to at least:
30 (1) obtain a plurality of images taken from distinct perspectives of the

modified 3D scene;

(2) identify at least some objects appearing in the plurality of images;
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(3) apply the visual attention module to the images, the visual attention 

module operative to predict objects within the plurality of images that will tend to 

receive visual attention; and

(4) determine which of the identified objects, predicted by the visual

5 attention module, will tend to receive visual attention across the distinct

perspectives of the modified 3D scene.

3. The computer system of claim 2, wherein the multi-perspective scene analysis module 

is further operative to determine identified objects that will tend to receive attention

10 throughout the plurality of images.

4. The computer system of claim 2 or 3, further comprising:

a robustness assessment module operative to determine whether, or the degree to 

which, identified objects or plurality of images are robust.

15

5. The computer system of any one of claims 2 to 4, wherein identifying at least some of 

the objects appearing in the plurality of images is done automatically.

6. The computer system of any one of claims 2 to 5, further comprising:

20 a user interface module operative to communicate to a user information indicative

of the at least some of the objects that are predicted across multiple images.

7. The computer-implemented method of claim 1, wherein images taken from within the 

modified 3D scene comprises multiple images taken of at least one object from a plurality

25 of perspectives.

8. A computer-implemented method comprising:

automatically modifying objects within an image of a 3D scene to produce a 

plurality of modified images;

30 evaluating the plurality of modified images with a visual attention model and using

cost estimates of changes to the objects to determine a modified 3D scene that achieves a 

visual goal;
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obtaining a plurality of images taken from distinct perspectives of the modified 3D

scene;

identifying at least some objects appearing in the plurality of images; 

applying the visual attention module to the plurality images, the visual attention

5 module operative to predict objects within the plurality of images that will tend to receive 

visual attention; and

determining which of the identified objects, predicted by the visual attention 

module, will tend to receive visual attention across the distinct perspectives of the 

modified 3D scene.

10
9. The computer-implemented method of claim 8, iurther including determining 

identified objects that will tend to receive attention throughout the plurality of images.

10. The computer-implemented method of claim 8 or 9, iurther including determining 

15 whether, or the degree to which, identified objects or images are robust.

11. The computer-implemented method of any one of claims 8 to 10, further including 

automatically identifying at least some of the objects appearing in the plurality of images.

20 12. The computer-implemented method of any one of claims 8 to 11, further including

communicating to a user information indicative of at least some of the objects that are 

predicted across multiple images.

13. A computer system comprising;

25 a processor and memory; and

an optimisation module operative to at least:

define at least one visual goal for a 3D scene, the scene comprised of a 

plurality of objects, the visual goal specifying at least one object in the scene which 

is desired to be predicted to be attended to by a visual attention model, and

30 additionally specifying the perspective from which the at least one object should be

attended from;
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receive a plurality of images from a plurality of perspectives within the 3D

scene;

receive input defining allowable changes to at least some objects within the

scene;

5 assign a cost estimate to at least some of the allowable changes;

automatically modify some of the plurality of objects consistent with the

defined allowable changes so as to produce modified images;

evaluate, by the processing system, the modified images with a visual

attention model; and

10 determine, based on the evaluation, by the processing system, at least some

of the modified scenes that achieve the at least one visual goal for the scene.

14. The computer system of claim 13, wherein images taken from within the 3D scene 

comprises multiple images taken of at least one object from a plurality of perspectives.

15

15. A computer-implemented method, substantially as hereinbefore described with 

reference to the accompanying figures.

16. A computer system, substantially as hereinbefore described with reference to the 

20 accompanying figures.
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