

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-536167
(P2004-536167A)

(43) 公表日 平成16年12月2日(2004.12.2)

(51) Int.C1.⁷

C 11 B 3/10
B O 1 J 20/26
B O 1 J 20/34
C 11 B 7/00

F 1

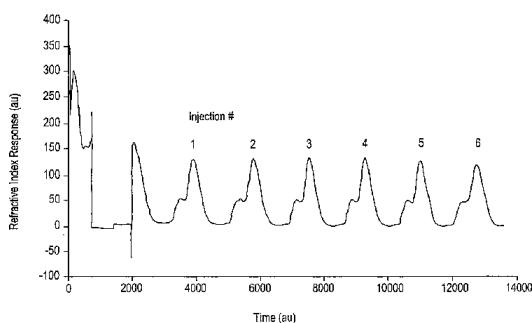
C 11 B 3/10
B O 1 J 20/26
B O 1 J 20/34
C 11 B 7/00

テーマコード(参考)

4 G 0 6 6
4 H 0 5 9

審査請求 未請求 予備審査請求 有 (全 47 頁)

(21) 出願番号 特願2002-583555 (P2002-583555)
(86) (22) 出願日 平成14年3月21日 (2002.3.21)
(85) 翻訳文提出日 平成15年9月30日 (2003.9.30)
(86) 国際出願番号 PCT/US2002/008708
(87) 国際公開番号 WO2002/086039
(87) 国際公開日 平成14年10月31日 (2002.10.31)
(31) 優先権主張番号 60/285,464
(32) 優先日 平成13年4月20日 (2001.4.20)
(33) 優先権主張国 米国(US)


(71) 出願人 502141050
ダウ グローバル テクノロジーズ イン
コーポレイティド
アメリカ合衆国, ミシガン 48674,
ミッドランド, ワシントン ストリート,
1790 ビルディング
(74) 代理人 100099759
弁理士 青木 篤
(74) 代理人 100077517
弁理士 石田 敏
(74) 代理人 100087413
弁理士 古賀 哲次
(74) 代理人 100111903
弁理士 永坂 友康

最終頁に続く

(54) 【発明の名称】植物油トリグリセリド混合物の固体床吸着による分離

(57) 【要約】

種子油を2種の実質的に純粋のトリグリセリド分画に分離するための固体床吸着方法。この方法は、種子油、例えばひまし油、好ましくは濃縮物を床中の約40ミクロンより大きな粒子サイズを有する吸着剤に接触させる工程、及びそれに次ぐ、好ましくは最低流れ条件下で、この吸着剤を脱着剤に接触させて、主に第2トリグリセリドを含むラフィネート出力流と主に第1トリグリセリドを含む抽出出力流とを得る工程を含む。ひまし油、ベルノニア油及びレスケレラ油から得られる精製された脂肪酸トリグリセリドエステルは、化学供給原料の再生可能な非石油系供給源を提供する。

【特許請求の範囲】**【請求項 1】**

トリグリセリドエステル混合物を含む植物油の分離方法であって、(a)その脂肪酸組成物がリシノール酸、ベルノール酸及びレスクレラ酸から選択される一種の主脂肪酸を主として含む種子油を、前記種子油中の主脂肪酸に各々一致する3種の脂肪酸を有することに特徴を有する第1のトリグリセリド生成物が、前記種子油中の主脂肪酸に一致する2種又は1種の脂肪酸を有するかあるいは一致する脂肪酸は有さないかのいずれかであることと特徴を有する第2のトリグリセリド生成物に比べて、より選択的に吸着剤に吸着されるよう、床中にある約40ミクロンより大きい粒子径を有する吸着剤に吸着条件下に接触させる工程、(b)第2のトリグリセリド生成物を主として含有するラフィネート流を吸着剤から引き抜くことにより第2のトリグリセリド生成物を除去する工程、及び(c)第1のトリグリセリド生成物と脱着剤を主として含む抽出流が得られるのに十分な脱着条件下に、第1のトリグリセリド生成物を含む吸着剤を脱着剤に接触させることにより、第1のトリグリセリド生成物を脱着する工程、を含む方法。

10

【請求項 2】

第2のトリグリセリド生成物が種子油中の主脂肪酸と一致する2種の脂肪酸を有することに特徴のある、請求項1に記載の方法。

20

【請求項 3】

種子油がひま植物、ベルノニア植物及びレスクレラ植物から選択される、請求項1又は2に記載の方法。

30

【請求項 4】

種子油がひまし油であり、このひまし油が、質量基準で、85～90%のリシノール酸、3～5%のリノレン酸、2～5%のオレイン酸、1～3%のパルミチン酸、1～2%のステアリン酸及び1(±0.3)%のジヒドロキシステアリン酸を含む脂肪酸組成物を有する、請求項3に記載の方法。

30

【請求項 5】

種子油がベルノニア植物油であり、このベルノニア植物油が、質量基準で、60～77%のベルノール酸、0.1～0.4%のリノレン酸、9～13%のリノール酸、4～20%のオレイン酸、及び2～4%のステアリン酸を含む脂肪酸組成物を有する、請求項3に記載の方法。

40

【請求項 6】

種子油がレスクレラ植物油であり、このレスクレラ植物油が、質量基準で、50%より多く75%までのレスクレラ酸、1～13%のリノレン酸、3～8%のリノール酸、11～27%のオレイン酸、1～6%のステアリン酸及び1～6%のパルミチン酸を含む脂肪酸組成物を有する、請求項3に記載の方法。

【請求項 7】

植物油が吸着剤に対して生の液体として適用される、請求項1～6のいずれか一項に記載の方法。

【請求項 8】

植物油が吸着剤に対して溶液として適用され、その溶液が植物油を50容積%より高い濃度で含有する、請求項1～6のいずれか一項に記載の方法。

【請求項 9】

その溶液がC₁₋₁₀脂肪族炭化水素とC₁₋₆アセテートの混合物から選択される溶媒を用いて調整される、請求項8に記載の方法。

【請求項 10】

吸着剤がシリカ、アルミナ、シリカ-アルミナ、クレー、分子篩、ゼオライト、結晶性メソポーラスアルミノシリケート及び網目状合成ポリマー樹脂から選択される、請求項1～9のいずれか一項に記載の方法。

【請求項 11】

吸着剤がシリカである、請求項1～10のいずれか一項に記載の方法。

50

【請求項 1 2】

吸着剤が直径又は断面寸法で 4 5 オングストロームより大きく、 2 0 0 オングストローム未満の孔径の多孔性である、請求項 1 ~ 1 1 のいずれか一項に記載の方法。

【請求項 1 3】

吸着剤、又は吸着剤と接着剤から形成された複合体が、直径（又は限界寸法）で 7 0 ミクロンより大きく、 8 0 0 ミクロン未満の粒径を有する、請求項 1 ~ 1 2 のいずれか一項に記載の方法。

【請求項 1 4】

脱着剤が脂肪族炭化水素、塩素化脂肪族炭化水素、芳香族炭化水素、塩素化芳香族炭化水素、アルコール、エステル、ケトン及びそれらの混合物から選択される、請求項 1 ~ 1 3 10 のいずれか一項に記載の方法。

【請求項 1 5】

脱着剤が C₁₁~10 脂肪族炭化水素と C₁~6 アセテートの混合物である、請求項 1 ~ 1 4 のいずれか一項に記載の方法。

【請求項 1 6】

吸着及び脱着工程が 1 8 より高く、 1 3 0 未満の温度で行われる、請求項 1 ~ 1 5 のいずれか一項に記載の方法。

【請求項 1 7】

吸着及び脱着工程が 1 . 0 a t m (1 0 1 k P a) 以上で 1 0 0 a t m (1 0 , 1 1 8 k P a) 未満の圧力下で行われる、請求項 1 ~ 1 6 のいずれか一項に記載の方法。 20

【請求項 1 8】

供給混合物の容積に対する脱着剤の容積が 0 . 5 / 1 より大きく、 1 0 0 / 1 未満である、請求項 1 ~ 1 7 のいずれか一項に記載の方法。

【請求項 1 9】

この方法が移動床又は擬似移動床流動装置内で行われる、請求項 1 ~ 1 8 のいずれか一項に記載の方法。

【請求項 2 0】

第 1 のトリグリセリド生成物がトリリシノレインであり、第 2 のトリグリセリド生成物がジリシノレインである、請求項 1 ~ 1 9 のいずれか一項に記載の方法。

【請求項 2 1】

第 1 のトリグリセリド生成物が約 9 5 質量 % より高い純度で得られ、又第 2 のトリグリセリド生成物が約 9 5 質量 % より高い純度で得られる、請求項 1 ~ 2 0 のいずれか一項に記載の方法。 30

【請求項 2 2】

ひまし油から得られるトリグリセリド混合物の分離方法であって、ひまし油を生の液体として床中の、 4 0 ミクロンより大きく、 8 0 0 ミクロン未満の粒子径を有し、選択肢として、直径 4 5 オングストロームより大きく、 2 0 0 オングストローム未満の孔径を有する、シリカ吸着剤と接触させ、その接触が第 1 のトリグリセリド、トリリシノレインが第 2 のトリグリセリド、ジリシノレインに比べて吸着剤に選択的に吸着されるような吸着条件で実施される工程、その吸着剤をヘキサンとエチルアセテートの混合物を含む脱着剤と接触させる工程、それに続いて前記吸着剤から 8 0 % を超える純度を有するジリシノレインと脱着剤を主として含有するラフィネート出力流を引き出す工程、及びそれに続き、前記吸着剤から 8 0 % を超える純度を有するトリシノレインと脱着剤を主として含有する抽出流を引き出すのに十分な脱着条件下に、ヘキサンとエチルアセテートの混合物を含む脱着剤を前記吸着剤と接触させる工程、を含む方法。 40

【請求項 2 3】

移動床又は擬似移動床装置内で実施される、請求項 2 2 に記載の方法。

【発明の詳細な説明】**【技術分野】****【0 0 0 1】**

本発明は、トリグリセリド混合物、特に植物油から得られるトリグリセリド混合物の固体床吸着分離に関する。

【背景技術】

【0002】

植物油、例えばひまし油、ベルノニア(*vernonia*)油、レスケレラ(*lesquerella*)油から得られるトリグリセリド脂肪酸エステルは、非石油系化学原料の再生性供給源を提供できる。ひまし油、例えばリシノール酸グリセリドから得られる不飽和長鎖脂肪酸エステルは、エチレンのごとき低級オレフィンを用いて例えば複分解(*metathesize*)して、還元鎖状-オレフィン、例えば4-ヒドロキシ-1-デセン、及び末端エステル基を有する還元鎖状-オレフィン、例えば-デセノエートの末端ジグリセリドエステル及びトリグリセリドエステルを製造できる。この不飽和エステルは、酸化割裂(*cleave*)して、対応する-、-不飽和カルボン酸を製造することができる。-オレフィン及びエステル又は酸官能化-オレフィンは、ポリ(オレフィン)の製造におけるモノマー及び熱硬化性樹脂における鎖延長剤としての用途がある。その他に、-オレフィンは、対応する-エポキシドに転化することができて、このエポキシドも又、熱硬化性樹脂の製造において有用である。ひまし油から分離したトリグリセリドの場合、対応する-オレフィンの複分解生成物は、ジエポキシド及びトリエポキシドに転化でき、これらは、エポキシ樹脂を製造するのに非常に有用である。

10

20

30

40

50

【0003】

ポリマー工業の化学原料の再生可能供給源として植物油の利点を得るために、植物油は、まずその成分のトリグリセリド脂肪酸エステルの実質的に純粋画分に分離しなければならない。以前には、固体床吸着クロマトグラフィー及び高圧液体クロマトグラフィーを用いて混合物を分離していた。典型的には、これらの分離方法は、供給混合物の希釈溶液を吸着床に適用する工程、その後、供給混合物の成分を分離するのに十分な脱着条件下で、前記吸着床から大量の脱着材料を抽出する工程及び各成分の実質的に純粋の流れを回収する工程を含む。高度分離を行うために、脱着剤は、通常小粒子サイズ、典型的には約30ミクロン(μm)未満で提供される。小粒子サイズの吸着剤が工業的規模の吸着床で用いられると、小粒子サイズのものは、不都合なことに有意の圧力降下を吸着床に発生させ、それは、プラッギング、吸着床の上流端部の早期過飽和及び流れ上の問題点を起こすことなり得る。先行技術方法の他の側面において、吸着剤に適用された希釈供給溶液は、典型的には、供給混合物及び溶媒の全容積に基づいて、約0.1~約10容積%の供給混合物を含む。又、典型的には、供給混合物に対する脱着剤の容積比は、約1000/1より大きい。従って、これらの従来の吸着床方法は、大量の液体溶媒と脱着剤を取り扱うように設計された装置を必要とする。そのような操作方法は、回収される抽出量の割には経費が高く、操作が複雑である。これらの固有の欠点のせいで、供給混合物を分離する吸着床方法は、典型的には、小規模分析の実験室レベルで使用されるが、工業的規模の大規模操業に採用するには適当でない。

【0004】

米国特許第4,770,819号明細書には、リチウム、カルシウム又は水素イオン-交換ゼオライト又はシリカ吸着剤を用いて、トリグリセリドからジグリセリドを分離する方法が開示されている。ジグリセリドが、トリグリセリドを実質的に除いて、選択的に吸着されることが教示されている。この吸着剤は、約16~約60U.S.メッシュ(約1,305ミクロン(μm)~約250 μm)の範囲の粒子サイズを有することが開示されている。又、この方法は、移動床又は擬似移動床流装置(simulated moving bed flow system)に適用可能であり、又商業規模装置に適用できることが開示されている。米国特許第4,770,819号明細書には、トリグリセリド混合物の分離については明らかにされていない。

【0005】

上記観点において、特に植物油、例えばひまし油、ベルノニア(*vernonia*)油、レスケレラ(*lesquerella*)油から得られるトリグリセリド混合物を分離する固体床吸着方

法を開発することが所望されている。そして、そのような方法は、小粒子サイズの吸着剤を必要とせず、その代わりに工業的規模の装置の操業に適用できる大きな粒子径の吸着剤により受容できる程度の分離が提供できればなお好ましい。その方法が従来技術の方法に比べて比較的に少量の溶媒及び脱着剤を利用するなら、それは、その方法に必要とされる装置の規模を減少させ、複雑さを減らし、また経費を下げる効果を有するので、更に一層好ましい。最後に、その分離が混合物のトリグリセリド成分の実質的に純粋の画分を得るのに十分であれば、最も望ましい。上記の特性を全て有する固体床吸着方法は、植物油から有用な脂肪酸エステルの実質的に純粋な分画を得て、これらの植物油を非石油系再生性化学供給材料の良好な供給源とするのに有利に利用できる。

【発明の開示】

10

【0006】

発明の要約

本発明は、植物油から得られるトリグリセリド混合物の新規な分離方法を提供する。この方法は、その脂肪酸成分がリシノール酸、ベルノール酸 (vernolic acid) 及びレスケロール酸 (lesquerolic acid) から選択される一つの主脂肪酸から主として構成される種子油を、吸着条件下で床中の約40ミクロンを超す粒子径を有する吸着剤と接触させることを含む。本発明の製造方法において、それぞれが植物油中の主脂肪酸と同じである、3種の脂肪酸を有することに特徴のある、第1のトリグリセリド生成物は、第2のトリグリセリド生成物に比べてより選択的に吸着剤により吸着される。第2のトリグリセリド生成物は、その植物油中の本源脂肪酸と同一の脂肪酸が2種、1種又はそれを含まないの内のいずれかであることにより特徴付けられる。第2のトリグリセリドは、主に第2のトリグリセリド生成物を含むラフィネート流 (raffinate stream) を吸着剤から引き出すことにより第1のトリグリセリド生成物の前に除去される。その後、そのラフィネート流から、精製された第2のトリグリセリド生成物が得られる。第2のトリグリセリド生成物の引き出し後、第1のトリグリセリド生成物が脱着される。第1のトリグリセリド生成物の脱着は、第1のトリグリセリドを含む吸着剤を、第1のトリグリセリドと脱着剤を主に含む抽出流を得るのに十分な脱着条件下に脱着剤と接触させることにより実施でき、又その抽出流からは精製された第1トリグリセリド生成物が得られる。用語「脱着剤 (desorbent)」、「ラフィネート流 (raffinate stream)」及び「抽出流 (extract stream)」並びに本発明に関連して使用される他の技術用語は、以降に詳細に定義し又説明する。

20

【発明の効果】

30

【0007】

本発明の独創的な方法において、例えばひま植物、ベルノニア植物、レスケレラ植物から得られるトリグリセリドエステル混合物を含む種子油は、2種の精製されたトリグリセリド分画に分離される。有利なことに、本発明の方法は、大きな粒子サイズの吸着剤を使用することができるので、吸着床に不必要的圧力低下をさせないで工業的規模の装置の操業が可能となる。更に有利なことには、好ましい実施形態において、本発明の方法は、高濃度の植物油を吸着床に適用して、供給物をその吸着床に適用するときに必要な溶媒量を減少させることができる。更により有利なことには、工業的規模の用途を目的とした好ましい実施形態において、本発明の方法は、従来技術の方法に比べて、極少量の脱着剤流を用いることができる。極少量の溶媒と極少量の脱着剤流は、有利なことに必要とされる装置のサイズ、その経費、及び液相を取り扱うことの複雑さを減少させる。上記効果の全ては、本発明の方法を工業的規模での操業において適用可能にしている。従って、本明細書記載の方法は、植物から得られる、非石油系化学的供給原料の再生可能の供給源である、精製されたトリグリセリドを得るための魅力的方法である。

40

【0008】

発明の詳細な説明

本発明の新規な方法において、トリグリセリド混合物を含む種子油は、固体床吸着方法により2種の精製されたトリグリセリド分画に分離される。この新規な方法は、その脂肪酸組成物がリシノール酸 (ricinoleic acid)、ベルノール酸 (vernolic acid) 及びレスケ

50

レラ酸 (lesquerolic acid) から選択される 1 種の主脂肪酸を主として含む種子油を、床中にある約 40 ミクロンより大きい粒子径を有する吸着剤に吸着条件下に接触させる工程を含む。この場合、この用語「主として (predominantly)」は、脂肪酸の全質量に基づいて約 50 質量 % より多いことを意味すると解釈されるべである。本発明の方法において、第 1 トリグリセリド生成物 (均質生成物) は、前記種子油中の主脂肪酸に各々一致する 3 種の脂肪酸を有することに特徴を有していて、第 2 のトリグリセリド生成物に比べて、より選択的に吸着される。第 2 のトリグリセリド生成物 (不均質生成物) は、前記種子油中の主脂肪酸に一致する 2 種又は 1 種の脂肪酸を有するかあるいは一致する脂肪酸は有さないかのいずれかであることに特徴を有する。好ましい実施形態において、第 2 のトリグリセリド生成物は、前記種子油中の主脂肪酸に一致する 2 種脂肪酸及びその種子油中の脂肪酸から選択される第 3 の脂肪酸 (但し、主脂肪酸を除く) を有することに特徴を有する。本発明の方法において、第 2 のトリグリセリド生成物は、後述のとおり、第 2 のトリグリセリド生成物を主として含有するラフィネート流を吸着剤から引き出すことにより第 1 のトリグリセリド生成物の前に除去される。その後、所望により、第 2 のトリグリセリド生成物は、ラフィネート流から実質的に純粋の形態で得ることができる。ラフィネート流を引き抜いた後、後述のとおり、第 1 のトリグリセリド生成物と脱着剤を主として含む抽出流が得られるのに十分な脱着条件下に、第 1 のトリグリセリド生成物を含む吸着剤を脱着剤に接触させることにより、第 1 のトリグリセリド生成物を脱着させる。所望により、実質的に純粋の第 1 のトリグリセリド生成物をその抽出流から得ることができる。

10

20

30

【0009】

本発明の好ましい実施形態において、ひま植物 (castor plants) の種子から得ることができるリシノール酸 (ricinoleic acid) を約 50 質量 % より多く含む脂肪酸組成物を有する種子油を、固体床吸着法により 2 種の実質的に純粋のトリグリセリド分画、つまりトリリシノlein (triricinolein) 及びジリシノlein (diricinolein) に分離する。トリリシノlein は、3 種のリシノール脂肪酸分子から由来する。ここでジリシノlein は、2 種のリシノール脂肪酸分子及びひまし油中に存在する脂肪酸から選択される第 3 の脂肪酸分子 (但し、リシノール酸は除く) から由来する。この好ましい実施形態において、この方法は、吸着条件下で床中の約 40 ミクロンより大きい粒子サイズを有する吸着剤に前記ひま植物から得られる前記種子油を接触させる工程を含む。この好ましい実施形態において、トリリシノlein はジリシノlein に対して選択的に吸着される。従って、ジリシノlein は、その吸着剤から主としてジリシノlein を含むラフィネート流を引き出すことによりトリリシノlein の前に除去される。このジリシノlein は、その後、所望により、ラフィネート流から実質的に純粋の形態で得ることができる。ラフィネート流を引き抜いた後、このトリリシノlein は、第 1 のトリリシノlein と脱着剤を主として含む抽出流が得られるのに十分な脱着条件下に、トリリシノlein を含む脱着剤に接触させることにより、脱着される。所望により、実質的に純粋のトリリシノlein が抽出流から得られる。

40

50

【0010】

本発明の他の好ましい実施形態において、この吸着剤は、約 70 μm (210 U.S メッシュ) より大きい粒子サイズを有する。より好ましい実施形態において、この吸着剤は、約 70 μm (211 U.S メッシュ) より大きく、約 800 μm (22 U.S メッシュ) より小さい粒子サイズを有するシリカである。本発明の更に他に好ましい実施形態において、この方法は、後述するとおり、移動床又は擬似移動床流装置において実施される。

【0011】

本明細書に上記したとおり、本発明は、種子油をトリグリセリド生成物に分離することを含む。1 つの生成物は、その種子油の主脂肪酸と同一の 3 種の脂肪酸を有するトリグリセリドである。第 2 の生成物は、その種子油の主脂肪酸成分に一致する 2 種又は 1 種の脂肪酸を有するかあるいは一致する脂肪酸は有さないかのいずれかであるトリグリセリドである。好ましい実施形態において、前記種子油の主脂肪酸成分に一致する 2 種の脂肪酸及び前記種子中に存在する脂肪酸から選択される第 3 の脂肪酸 (但し、主脂肪酸を除く) を有

する。本発明に関する考え方において、第2生成物が前記種子油の主脂肪酸成分に一致する唯1種の脂肪酸及び前記種子中に存在する脂肪酸から個々に選択される2種の脂肪酸(但し、主脂肪酸を除く)を有するトリグリセリドであるとき、その分離が同様に行われる。本発明に関する他の考え方において、第2生成物が前記種子油中に存在する主脂肪酸成分から個々に選択される3種の脂肪酸(但し、主脂肪酸を除く)を有するトリグリセリドであるとき、その分離が同様に行われる。これに代替する実施形態において、第2のトリグリセリド生成物は、主脂肪酸のいずれも含まない。これ以降、本発明は、主脂肪酸に一致する3種の脂肪酸を有する第1のトリグリセリド生成物、及びその種子油中に存在する脂肪酸に一致する2種の脂肪酸とその種子油中に存在する脂肪酸(但し、主脂肪酸を除く)から選択される第3の脂肪酸を有する第2のトリグリセリド生成物を分離することを含む特定の用途に関して記述する。この明細書の詳細な記載に基づいて、当業者は、主脂肪酸に一致する3種の脂肪酸を有する第1トリグリセリド生成物及び主脂肪酸を唯1種有するか又は主脂肪酸を1種も有さない第2のトリグリセリド生成物を分離するためにいかに本発明の方法を実施するかを容易に理解できるであろう。

【0012】

本発明の方法に使用される種子油は、その脂肪酸組成物がリノール酸、ベルノール酸及びレククレラ酸から選択される1種の脂肪酸を主として含む全ての種子油ができる。前記のとおり、この場合、用語「主として(predominantly)」は、主脂肪酸が約50質量%より多いことを意味する。好ましくは、種子油の脂肪酸は、リノール酸、ベルノール酸及びレスクレラ酸から選択される1種の脂肪酸を約70質量%より多くを含み、より好ましくはリノール酸、ベルノール酸及びレスクレラ酸から選択される1種の主脂肪酸を約85質量%より多く含む。典型的には、この条件を満たす種子油は、ひま植物、ベルノニア植物及びレスクレラ植物から得られる種子油を含む。これらの植物は、自然に、特にインド及びアフリカの熱帯生育地において栽培され、発見される。そのような油は、原材料油、精製油、漂白油及び/又は脱臭油を含めて、いかなる等級のものでも本発明の方法に用いることができる。

【0013】

より具体的に説明すると、ひまし油には、それぞれがグリセロール、三価アルコールと3種の脂肪酸との縮合により得られる2タイプのトリグリセリドの混合物が含まれる。トリグリセリド成分、「トリリシノレイン」の一つにおいて、グリセロールは、リシノール酸(12-ヒドロキシ-cis-9-オクタデセン酸)、この場合における主脂肪酸の三分子とエステル化される。第2のトリグリセリド成分「ジリシノレイン」において、グリセロールは、リシノレイン酸の二分子とエステル化される。ジリシノレイン中の第3ヒドロキシ官能基とひまし油中に典型的に存在する全ての脂肪酸(リシノール酸は除く)とエステル化される。好ましくは第3脂肪酸は、オレイン酸及びパルミチン酸から選択される。典型的なひまし油組成物は、質量に基づいて、以下の、リシノール酸約85~約90%、リノレン酸約3~約5%、オレイン酸約2~5%、パルミチン酸約1~約3%、ステアリン酸約1~約2%及びジヒドロキシステアリン酸約1%(±0.3)を含む。ひまし油は、ひま植物油(*Ricinus communis*)の豆から入手可能である。

【0014】

同様に、ベルノニア油は、下記の典型的な質量の組成物のグリセロール及び脂肪酸から得られるトリグリセリド混合物を含む:ベルノール酸約60~約77%、リノレン酸約0.1~約0.4%、シノール酸約9~約13%、オレイン酸約4~約20%、及びステアリン酸約2~約4%。ベルノニア油において、1種のトリグリセリドは、この場合の主脂肪酸である、ベルノール酸分子(12,13-エポキシ-cis-9-オクタデセン酸)から得られる。ベルノニア油中の第2のトリグリセリドは、2種のベルノール酸、及びベルノール酸を除くベルノニア油中に存在する他の脂肪酸のいかなるものからでも得られる第3の脂肪酸を含む。ベルノニア油は、例えば、ベルノニアヒメノレプシス(*Vernonia hymenolepsis*)、ベルノニアガリメンシス(*Vernonia galimensis*)、ストケシアラビス(*Stokesia lavis*)、及びユウホルビアラガセ(*Euphorbia lagasae*)を含む数種類の植物種

10

20

30

40

50

から入手できる。

【0015】

同様に、レスケレラ油は、下記の典型的な質量の組成物のグリセロール及び脂肪酸から得られるトリグリセリド混合物を含む：レスケレラ酸約10～約75%、リノレン酸約1～約13%、リノール酸約3～約8%、オレイン酸約11～約27%、ステアリン酸約1～約6%及びパルミチン酸約1～約6%。より明確には、レスケレラ酸を約50質量%より多く含有するレスケレラ油が本発明の方法に使用される。レスケレラ油中の1種のトリグリセリドが、この場合において主酸であるレスケレラ酸（14-ヒドロキシ-*cis*-11-エイコサン酸）の3分子から得られる。レスケレラ油中の第2のトリグリセリドは、2種のレスケレラ酸、及びレスケレラ酸を除くレスケレラ油中に存在する他の脂肪酸のいかなるものからでも選択される第3の脂肪酸を含む。レスケレラ油は、例えば、エルデンシピリア（*L. densipilia*）及びエルフエンデュレリ（*L. fendleri*）を含む数種の植物種から入手できる。

【0016】

以下に本発明をより詳細に説明するに当り、明確にするために以降に定義する多くの用語を用いる。用語「供給混合物（feed mixture）」は、以下に示されるように、少なくとも1種の抽出成分と1種のラフィネート成分を得ることができるトリグリセリド混合物を含む種子油を表す。上述のとおり、この種子油の脂肪酸組成物には、約50質量%より多い、リシノール酸、ベルノール酸及びレスケロール酸から選択される1種の主脂肪酸も含有される。用語「原料流（feedstream）」は、本方法において吸着剤を通される種子油を含む流れを表す。用語「抽出成分（extract component）」は、吸着剤によってより選択的に吸着される供給混合物の成分を意味する。他方、用語「ラフィネート成分（raffinate component）」は、吸着剤によってより選択的に吸着されない供給混合物の成分を意味する。これらの抽出成分とラフィネート成分の定義は、「抽出物（extract）」が抽出された溶質を含む溶液と定義され、また「ラフィネート（raffinate）」が1種以上の成分が抽出により除去された後の残留供給溶液として定義される一般の化学的辞書編集法と一致している。（例えば、「化学技術者ハンドブック第5版（Chemical Engineer's Handbook, 5th ed.）」ロバートH.ペリー（Robert H. Perry）著、マックグローハill出版社（McGraw-Hill Book Company, ）1973、第15章第2頁、参照）。したがって、本発明の方法においては、その抽出成分は、種子油中の主脂肪酸と同じの3種の脂肪酸を有することに特徴のある第1のトリグリセリド生成物（均質トリグリセリド（homogenous triglyceride））である。本発明の方法において、ラフィネート成分は、第2のトリグリセリド生成物（不均質トリグリセリド（heterogenous triglyceride））、好ましくは、種子油中の主脂肪酸と同じの2種の脂肪酸と、その種子油中の、前記主脂肪酸を除いた、他の脂肪酸から選択される第3の脂肪酸を有することに特徴を有する。用語「抽出流（extract stream）」は、脱着された抽出成分が吸着剤から除去されるその流れを意味する。用語「ラフィネート流（raffinate stream）」は、ラフィネート成分が吸着剤から除去されるその流れを意味する。用語「脱着剤（desorbent material）」は、一般に、吸着剤から抽出成分を脱着することができる1種又は2種以上の液体成分を意味する。用語「脱着入力流（desorbent input stream）」は、脱着剤が吸着剤を通る流れを意味する。抽出流及びラフィネート流は、脱着剤をいくらか含有しているので、典型的の場合、抽出流及びラフィネート流は、個別に分離手段、例えば分別蒸留に供して、脱着剤を除去し、実質的に純粋のトリグリセリド画分を得る。したがって、用語「抽出生成物（extract product）」及び「ラフィネート生成物（raffinate product）」は、製造された生成物を意味し、その抽出流及びラフィネート流から脱着剤を除去する際、それぞれに対して第1トリグリセリド生成物及び第2トリグリセリド生成物を意味する。あるいは、その抽出流及びラフィネート流は、脱着剤を除去しないで、また精製された抽出物及びラフィネート生成物を単離しないで、そのまま下流操業に用いることができる。

【0017】

本発明の方法に従って、トリグリセリド混合物を含む種子油を生の液体（neat liquid）

10

20

30

40

50

として吸着剤に適用できる。あるいは、所望であれば、その種子油を溶液として吸着剤に適用できる。その溶液が用いられる場合、所定の要件が全体として満たされれば、どのような溶媒も使用できる。具体的に言えば、この溶媒は、実質的に不活性であり、つまり実質的に全ての種子油成分と実質的に非反応性である。この溶媒は、又分離方法を阻害してはならない。例えば、この溶媒は、溶媒が吸着剤に対して抽出成分の吸着を実質的にブロックするように、吸着剤に選択的に結合してはならない。それに加えて、溶媒がラフィネット流及び抽出流から除去されることが望ましいから、溶媒は、簡便な方法、例えば分別蒸留によりラフィネット流及び抽出流から容易に分離されるように選択できる。これらの性質を典型的に有する溶媒には、これに限定されるべきでないが、例えばペンタン、ヘキサン、ヘプタン、シクロヘキサン、及びオクタン、並びにそれらの各種異性体を含む脂肪族炭化水素；ベンゼン、トルエン、及びエチルベンゼン等の芳香族炭化水素；塩化メチレン、クロロホルム及びクロロベンゼン等の塩素化脂肪族化合物及び塩素化芳香族化合物；メタノール、エタノール、i-プロパノール、ブタノール、アミルアルコール、及びグリコールを含む極性溶媒；エチルアセテート及びブチルアセテート等のエステル；ジエチルエーテル及びジイソプロピルエーテル等のエーテル；アセトン及びメチルエチルケトン等のケトン、等が含まれる。上記溶媒の全ての混合物、好ましくは非極性及び極性溶媒の混合物も使用することができ、又脂肪酸のトリグリセリドエステルが非極性及び極性要素を有するので、それが好ましい。より好ましくは、この溶媒は、C₁₋₁₀脂肪族炭化水素及びC₁₋₆アセテートの混合物であり、更により好ましくは、n-ヘキサン及びエチルアセテートの混合物である。

10

20

30

【0018】

溶媒混合物が使用される場合、その溶媒混合物が前記の特性と供給混合物を吸着剤に引き渡す機能を有する限り、溶媒混合物中の溶媒の相対量は、変えることができる。使用される溶媒成分の実際量は、特定の溶媒と用いられる特定の供給混合物に基づいて変えることができる。例えば、二溶媒系において、各溶媒の濃度は、約0容量%より多く、約100容量%より少ない範囲にあり、好ましくは約10容量%より多く、約90容量%より少ない範囲にある。当業者であれば、供給混合物の溶解性を最適化するように溶媒成分の相対量をいかに調整するかは知るところである。溶媒又は溶媒混合物を採用する場合、溶媒又は溶媒混合物中の供給混合物の濃度は、その混合物が所望のとおり吸着剤に引き渡されることを条件として、広範に変えることができる。一般に、溶媒又は溶媒混合物中の供給混合物の濃度は、供給混合物と溶媒との全容量を基準として約50容量%より多い。溶媒又は溶媒混合物中の供給混合物の濃度は、好ましくは、約70容量%より多く、より好ましくは90容量%より多く、更により好ましくは95容量%より多い。最も好ましい実施形態において、本質的に溶媒を含まない。

40

【0019】

本発明の方法において採用される吸着剤には、本明細書で記載してトリグリセリド混合物の分離により実質的に純粋のトリグリセリド分画を得られることを条件として、どのような公知の吸着剤も含まれる。適切な吸着剤の非限定的事例には、シリカ、アルミナ、シリカ-アルミナ、クレー、例えば、分子篩、ゼオライト、及びメソ多孔性アルミニウムケイ酸塩、を含む結晶性多孔質金属ケイ酸塩；並びに例えばジビニルベンゼン架橋ポリスチレンを含む架橋ポリスチレンのような、網状合成ポリマー樹脂が含まれる。これら吸着剤は、商取引の供給元から普通に入手可能である。好ましくは、吸着剤はシリカであり、より好ましくはシリカゲルである。好ましい実施形態において、吸着剤は多孔性であり、これは、吸着剤が、供給混合物、脱着剤及び使用されるあらゆる溶媒へのアクセスを提供する通路、孔又は穴を含むことを意味する。典型的には、吸着剤の平均孔サイズは、直径（又は非円形孔の場合、断面寸法）で、約45オングストロームより大きく、好ましくは約55オングストロームより大きい。典型的には、吸着剤の平均孔サイズは、直径（又は断面寸法）で、約500オングストロームより小さく、好ましくは約200オングストロームより小さい。

50

【0020】

本発明の吸着分離方法において使用される吸着剤は、粒子、例えば球体、凝集体、押出し物、タブレット、顆粒、又は他の規則的又は不規則的形状及び形態であってもよい。あるいは、吸着剤は、吸着剤粒子を凝集するためにバインダー材料又は無機マトリックス中に分散されてもよく、あるいは微粒子状でもよい。更に、バインダー又はマトリックスは、吸着剤粒子を補強できる。耐火性酸化物、例えばシリカ、アルミナ又はシリカ・アルミナは、バインダー又は無機マトリックスとして適切に利用できる。好ましくは、バインダー又はマトリックスは、吸着剤に液体をアクセスできるようにする多孔性物質、つまり通路、孔、及び／又は穴を有する材料である。バインダーとして適切な孔径は、通常、直徑（又は断面寸法）で約45オングストロームより大きく約200オングストロームより小さい範囲である。

10

【0021】

粒子サイズに関して、吸着剤粒子サイズが小さければ小さい程、混合組成物の分離がより良くなることが通常知られている。これに対して、大きな粒子サイズのものは、貧弱な分離結果となると一般に考えられている。したがって、約30ミクロン又はそれ以下のオーダーの吸着剤が分析規模の分離に対して用いられる。しかしながら、不利なことには、吸着剤粒子が小さければ小さい程、吸着床での圧力降下がより大きい。工業規模の分離装置においては、より小さな粒子径は吸着床において相当の圧力降下を生ずるので、不均一流速度、不均一流れ分布及び目詰まり等の流れに関する問題を生ずる。予期せぬことに、種子油のトリグリセリド成分の良好な分離は、吸着剤が大きな粒子サイズを有する場合になし得る。したがって、本発明の方法は、商業規模の分離装置に有利に適用できる。

20

【0022】

上記事項を参照して、本発明の方法において、吸着剤、又は吸着剤・バインダー複合体の粒子サイズは、典型的には直徑（又は非球状粒子の場合の限界寸法）で、約40ミクロン（ μm ）より大きく（約368USメッシュより小さく）、好ましくは約70 μm より大きく（約211USメッシュ小さく）、又より好ましくは約100 μm より大きい（約149USメッシュ小さい）。典型的には、吸着剤、又は吸着剤・バインダー複合体の粒子サイズは、約800ミクロン（ μm ）より小さく（約22USメッシュより大きく）、好ましくは約600 μm より大きい（約30USメッシュ大きい）。ここで約40 μm より大きい、又より好ましくは約70 μm より大きい粒子サイズのものを使用すると、本発明の方法を工業規模の装置により適用可能にできる。

30

【0023】

本発明の方法において使用される脱着剤は、選択的に吸着された抽出成分を吸着剤から除去できる全ての液体物質である。液相を確保できる実質的に一定の温度及び圧力で一般に操作される吸着分離方法において、信頼できる脱着剤として、幾つかの条件を満たすものが選ばれる。第1に、下記の吸着サイクルにおいて抽出成分が脱着剤を実質的に置換することを阻止するように、脱着剤それ自身は、強く吸着されないように、脱着剤は、適正な質量流速度で吸着剤から抽出成分を置換することができるべきである。第2に、脱着剤は、特定の吸着剤及び特定の供給混合物と適合性がなければならない。具体的にいえば、脱着剤は、吸着剤又は供給混合物のいずれとも実質的に非反応性でなければならない。又ラフィネート成分に関して抽出成分に対する吸着剤の選択性を減少させあるいは破壊すべきでない。脱着剤が供給混合物から容易に分離されることが更に望まれる。供給物の抽出成分を脱着した後、脱着剤及び抽出成分は、典型的には混合された状態で吸着剤から除去される。同様に、ラフィネート成分は、脱着剤と混合状態で吸着剤から引き抜かれている。抽出生成物及びラフィネート生成物の純粋画分が所望の場合、脱着剤は、例えば簡単な分別蒸留により、抽出生成物及びラフィネート生成物から容易に分離されるべきである。この場合、脱着剤を容易に分離させ得る沸点を有する脱着剤が選択されなければならない。しかしながら、抽出流及びラフィネート流は、他の下流操業で直接的に使用されること、又抽出生成物及びラフィネート生成物は、脱着剤から直ちに除去されこともあり得る。そうであるなら、統合化分離（integrated separation）及び下流操業（downstream operations）により決定される他の要素が、当業者により設計される、脱着剤の選択に影響を与える

40

50

得る。

【0024】

上記特性を典型的に有する脱着剤は、限定することなく、脂肪族炭化水素、例えばペントン、ヘプタン、ヘキサン、シクロヘキサン及びオクタン、並びにそれらの異性体を含む；芳香族炭化水素、例えばベンゼン、トルエン、及びエチルベンゼン；塩素化脂肪族化合物及び塩素化芳香族化合物、例えば塩化メチレン、クロロホルム、及びクロロベンゼン；極性溶媒、メタノール、エタノール、イソプロパノール、ブタノール、アミルアルコール及びグリコール等のアルコール、エチルアセテート及びブチルアセテート等のエステル；ジエチルエーテル及びジイソプロピルエーテル等のエーテル、及びアセトン、及びメチルエチルケトン等のケトン、等が含まれる。脂肪酸エステルは非極性要素及び極性要素の両方を有しているので、上記吸着剤のいずれのものの混合物、特に非極性溶媒と極性溶媒の混合物が採用でき、又好ましい。更に好ましくは、吸着剤は、C₁₋₁₀脂肪族炭化水素及びC₁₋₆酢酸エステルの混合物であり、更により好ましくは、n-ヘキサン及びエチルアセテートの混合物である。他の好ましい実施形態において、脱着剤組成物は、供給混合物を吸着剤に適用するために使用される溶媒と同じである。

10

【0025】

脱着剤が液体混合物である場合、脱着剤混合物の各々の相対量は、上記のような満足すべき方法で脱着剤混合物が機能する限り、変えることができる。一般に、各脱着剤の相対量は、採用される特定の脱着剤成分及び特定の抽出成分及びラフィネート成分に関するそれらの選択性に基づく。例えば、2成分脱着剤混合物において、各成分の濃度は、第1及び第2の脱着剤成分の合計質量に基づいて、典型的には0質量%より多く、好ましくは約10質量%より多く、又より好ましくは、約40質量%より多い。例えば、2成分脱着剤混合物においては、各成分の濃度は、典型的には第1及び第2の脱着剤成分の合計質量に基づいて、典型的には100質量%より少なく、好ましくは約90質量%より少なく、又より好ましくは、約60質量%より少ない。当業者であれば、所望の分離結果を得るためにいずれの脱着剤混合物であってもその成分の相対量をいかに変えるかは判るであろう。

20

【0026】

抽出成分及び脱着剤を含む抽出流中の抽出成分の濃度は、ほぼ0容量%抽出成分から典型的には約65容量%抽出成分までの広い範囲で変わり得る。同様に、ラフィネート流中のラフィネート成分の濃度は、ほぼ0容量%ラフィネート成分から典型的には約65容量%ラフィネート成分までの広い範囲で変わり得る。抽出成分は、吸着剤により通常は完全には吸着されないこと、及びラフィネート成分は、吸着剤により通常は完全には非吸着されないことが理解されるべきである。したがって、以降に記載するとおり、少量のラフィネート成分が抽出流中に存在し、又少量の抽出成分がラフィネート流中に存在し得る。

30

【0027】

工業規模の方法を目標とした、本発明の好ましい実施形態において、脱着剤は、方法に必要とされる液体容量を減少させるために最小量で用いる。用語「最小量 (minimal quantity)」は、供給混合物の容量に対する脱着剤の容量の割合が約0.5/1よりより大きいが、約100/1 (分析高圧液体クラマトグラフィー (HPLC) 法において1000/1より大きいのと対比できる) よりは小さい。より好ましくは、供給混合物に対する脱着剤の容量比は、約10/1より小さく、又最も好ましくは約2/1より小さい。

40

【0028】

一般に、この発明の方法は、液相状態で作動する。吸着剤は、床中、典型的には吸着剤を含む筐体又は室を含む固定床中に設けられる。本発明の目的のために、用語「床 (bed)」は、又一般に補足的なバルブ、ポンプ、及び様々な液体流の流れを維持するための導管、並びに本発明の方法を実施するのに必要なその他の付属品又は装置を含む。この床は、垂直方向又は水平方向に、又は所望であれば垂直方向又は水平方向に關してある角度を持って傾斜させて構成することができる。この床中の吸着剤は、供給混合物と脱着剤とを交互に接触させることができる。この場合、本方法は準連続状態である。他の実施形態において、供給混合物がセット内の1つ又は2つ以上の吸着剤床を通過し、他方そのセット

50

内の1つ又は2つ以上の他の床を脱着剤が通過するように、適切なバルブ切り替えを備えた吸着剤の2つ又はそれ以上の静的床のセットを用いることができる。供給混合物及び脱着剤の流れは、その床中の吸着剤を通って上方向でも下方向でもよい。静的床式流体-固体接触法に採用されるあらゆる従来の装置を使用することができる。

【0029】

しかしながら、移動床又は擬似移動床流装置は、固定床吸着装置より高い分離効率を有しているので、好ましい。移動床及び擬似移動床法において、吸着操作と脱着操作とが連続的に行われる所以、抽出流及びラフィネット流の連続生産、及び供給流と脱着剤流との連続的使用の双方が可能となる。本発明の方法の好ましい一実施において、擬似移動床対向流装置として本技術分野で公知のものが利用できる。この装置において、吸着剤カラムの下方向への複数の液体アクセスポイントの順次移動により、カラムに内蔵される吸着剤の上方向移動を擬似している。このような流れ装置の作動原理及び結果は、米国特許第2,985,589号明細書(D. B. Broughton特許)に記載されている。本発明の方法において使用されるのに適した擬似移動床流装置の他の実施形態は、米国特許第4,402,832号明細書に記載された並流高効率擬似移動床法である。公知技術である他の移動床流装置も適用できる。

10

【0030】

油のトリグリセリド成分の分離が所望の如く行われる限り、吸着条件は広範囲にわたり変え得る。典型的には、この温度は、約18より高い温度に維持される。典型的には、この温度は、約130未満であり、好ましくは約75未満である。最も好ましくは、この温度は、21程度のほぼ環境温度である。通常、この圧力は、この方法の実施温度で液相を維持するの十分高い温度であるが、吸着剤カラムの所与の流れ形態に対して様々なゾーン中の所望の流れが得られるのに必要な最低の圧力には維持されなければならない。典型的には、この圧力は、約1気圧(101kPa)以上である。好ましくは、この圧力は、約100atm(10,118kPa)未満であり、より好ましくは約50atm(5,069kPa)未満である。脱着条件には、吸着条件として使用されたと同じ温度及び圧力範囲が含まれる。供給流及び脱着剤流の流速は、吸着装置の大きさ、そのデザイン、操作方法、及び採用される特定の吸着剤及び供給混合物に基づいて変わる。流速は、時間当り数cm³程度の少なさから時間当り数千ガロンまで変わり得る。本発明の方法に適用され得る吸着装置のサイズは、実験室規模のものからパイロットプラント及び商業的規模のものまで変わり得る。

20

30

30

40

【0031】

上述の種子油、好ましくはひま植物、ベルノニア植物、レスケレラ植物から得られる種子油が本発明の方法により分離されると、抽出流とラフィネット流が得られ、それらは、その後、お互いから、又供給混合物から、各々特定の流れに現れる抽出成分及びラフィネット成分の濃度の割合で更に区別される。この区別は、一般に「純度(purity)」に関連する。より具体的には、抽出流中の抽出成分の純度は、抽出流中の抽出分の濃度を抽出流中の抽出成分とラフィネット成分の濃度の合計で割ることにより計算される。同様に、ラフィネット流中のラフィネット成分の純度は、ラフィネット流中のラフィネット分の濃度をラフィネット流中の抽出成分とラフィネット成分の濃度の合計で割ることにより計算される。本発明の方法において、抽出成分は第1トリグリセリド、好ましくはトリリシノレインであり、又ラフィネットは、第2のトリグリセリド、好ましくはジリシノレインであることを思い出して頂きたい。濃度は、どのような公知の単位、例えば平方センチメートル当りのグラム数(g/cm³)又はリットル当りのモル数(M)で説明することができる。あるいは、純度を測定する物として、抽出物濃度とラフィネット濃度との比を探ることもできる。例えば、より少なく選択的に吸着されたラフィネット成分の濃度に対するより選択的に吸着された抽出成分の濃度の割合は、抽出流において最も高く、次いで供給流中で高く、又ラフィネット流中で最も低い。同様に、より多く選択的に吸着された抽出成分に対するより少なく選択的に吸着されたラフィネット成分の割合は、ラフィネット中で最も高く、次いで供給流中で高く、又抽出流中で最も低い。

50

【0032】

純度に関して、本発明の方法により、2種のトリグリセリド生成物の実質的に純粋の分画が得られる。本発明の好ましい実施形態において、ひまし油の精製により、ジリシノレイン及びトリリシノレインの実質的に純粋の分画が得られる。典型的には、第1トリグリセリド、好ましくはトリリシノレインの抽出流中の純度は、抽出流中の第1トリグリセリド及び第2トリグリセリド生成物の濃度に基づいて、約60%より高く、好ましくは約80%より高く、より好ましくは約95%より高く、又最も好ましくは約99%より高い。同様に、第2トリグリセリド、好ましくはジリシノレインの純度は、ラフィネート流中の第1トリグリセリド及び第2トリグリセリド生成物の濃度に基づいて、典型的には約60%より高く、好ましくは約80%より高く、より好ましくは約95%より高く、又最も好ましくは約98%より高い。

10

【0033】

所望であれば、脱着剤と第1のトリグリセリド生成物好ましくはトリリシノレインを含む抽出出力流又は抽出出力流の少なくとも一部を、分離装置に通すことができる（ここで、脱着剤の少なくとも一部が分離条件下で分離されて減量した脱着剤を含む抽出流を生成する）。好ましくは、抽出生成物中の脱着剤濃度は、抽出生成物の質量に基づいて、約20質量%未満、より好ましくは約5%未満、及び最も好ましくは約0.5質量%未満である。選択肢として、もし所望であれば、脱着剤と第2のトリグリセリド生成物、好ましくはジリリシノレインを含むラフィネート出力流又はラフィネート出力流の少なくとも一部を、分離装置に通すことができる（ここで、脱着剤の少なくとも一部が分離条件下で分離されて減量した脱着剤を含むラフィネート流を生成する）。好ましくは、ラフィネート生成物中の脱着剤濃度は、ラフィネート生成物の質量に基づいて、約20質量%未満、より好ましくは約5%未満、及び最も好ましくは約0.5質量%未満である。各場合において、分離装置は、典型的には分留塔であり、その設計及び操作は当業者によく知られている。

20

【0034】

種子油トリグリセリド混合物の分離用の様々な吸着剤と脱着剤をテストするために、動的パルス試験機が後述のとおり使用できる。この装置は、例えば約100cm長、約1cm内径の、入口手段と出口手段をその対向端部に有し、吸着剤で充填された室部からなる。この室部は、典型的には周囲温度で大気圧に保たれるが、他の温度及び圧力に維持する手段を具備することもできる。一般に、この室部は、平衡状態を得るために十分な時間、吸着室に脱着剤を通すことにより脱着剤で平衡状態にされる。その後、場合により溶媒又は脱着剤を含む、供給混合物のパルスを適正な時間、例えば約15秒から約2分間の範囲の時間、吸着塔の頂部から噴射する。供給混合物が吸着剤に装填された後、脱着剤流が再開され、トリグリセリド成分が、液体-固体クロマトグラフィーにおいて溶離される。このラフィネート及び抽出流は、高圧液体クロマトグラフィー又は他の適当な手段、例えば屈折率により分析できる。この分析は、連続的オンライン方式で実施でき、又出力の一部分を集めることによりインクレメント法により実施できる。時間の関数として分析をトレースすることが行われる。油成分が吸着床から本質的に完全に溶離された後、供給混合物の第2パルスが適用される。このパルスサイクルは、所望に応じてしばしば繰り返すことができる。

30

40

【0035】

下記の用語集を本明細書における補遺として作成する。

【0036】

用語集

ポンド/平方インチ（psi ゲージ又は絶対）単位の圧力は、psi の値に 6.895 を乗することによりキロパスカル（kPa）単位に換算できる。（例えば； 50 psi × 6.895 = 345 kPa）

【0037】

用語「供給混合物（feed mixture）」は、少なくとも1種の抽出生成物と1種のラフィネート生成物が含まれるトリグリセリド混合物を含む種子油を意味する。

50

【0038】

用語「供給流 (feedstream)」は、吸着剤を通る種子油を含む流れを示す。

【0039】

用語「抽出成分」は、供給混合物中の一種又はそれ以上の他の成分に比べて、吸着剤によりより選択的に保持される (retained) 供給混合物の成分と定義される。

【0040】

用語「抽出流」は、脱着された抽出成分がそれにより脱着剤から除去される、流れと定義される。

【0041】

用語「脱着剤」は、吸着剤から抽出成分を脱着することができる一種又はそれ以上の液体成分を意味する。 10

【0042】

用語「脱着剤入力流 (desorbent input stream)」は、脱着剤がそれを介して吸着剤を通す、流れを意味する。

【0043】

用語「ラフィネート成分」は、供給混合物中の一種又はそれ以上の他の成分に比べて、吸着剤によりより選択的に吸着される供給混合物の成分と定義される。

【0044】

用語「ラフィネート流」は、ラフィネート成分がそれを介して吸着剤から除去される、流れを意味する。 20

【0045】

用語「抽出生成物 (extract product)」は、抽出流から脱着剤を除去した際に得られる生成物と定義される。

【0046】

用語「ラフィネート生成物」は、ラフィネート流から脱着剤を除去した際に得られる生成物と定義される。

【実施例】

【0047】

下記の実施例は説明を目的とするものである。特定の種子油、吸着剤、脱着剤、及び操業条件に係る参照は、本発明の範囲及び精神を制約することを目的とするものではない。本明細書に基づけば、当業者は、添付された特許請求の範囲の範囲内にある本発明の他の実施形態を理解できるであろう。 30

【0048】

実施例 1

全長 100 cm の直接的に結合された 2 つのガラス製、水ジャケットカラム (各々、1 cm 内径で 50 cm 長) に商用シリカ (Aldrich、100 ~ 200 US メッシュ、150 ~ 75 ミクロンサイズ範囲、60 オングストローム孔径) を充填することにより吸着塔を作成した。水ジャケットには水を流さなかった。このカラムは、実験中、室温に維持された。50 質量 % のエチルアセテート及び 50 質量 % の n - ヘキサンからなる、0.5 ml / 分の流速の脱着剤入力流をポンプ手段により塔頂から塔底へ向けて形成した。約 30 分間脱着流を流した後、その流れを止めて、0.5 ml / 分の流速のひまし油 (100 %) からなる供給流に置換した。そのひまし油流を約 45 秒間維持して、吸着床頂部にひまし油 0.375 ml を装填した。その後、このひまし油流を止めて、脱着剤入力流の流れを再開した。この工程の間、塔の出口部分の圧力は、本質的に大気圧であった。塔の入口部分の圧力は制御されていなかった。しかしながら、この流速が遅いので、入口部分の圧力は、大気圧をさほど上回るとは考えられなかった。塔底から得られた脱着剤出力流は、脱着剤出力流を製品の品質解析用及び得られた分離度の決定用の屈折率検知器に通すことにより時間の関数として解析した。塔から溶離された第 1 ピークはラフィネート出力流とされ、又塔から溶離された第 2 ピークは抽出出力流とされた。この出力流が、ひまし油の実質的に全ての成分が吸着床から溶出されたことを示したとき、一連のパルスを第 2 のひまし 40

油の装填と第2の脱着操作により繰り返した。この一連の操作を合計6パルス繰り返した。

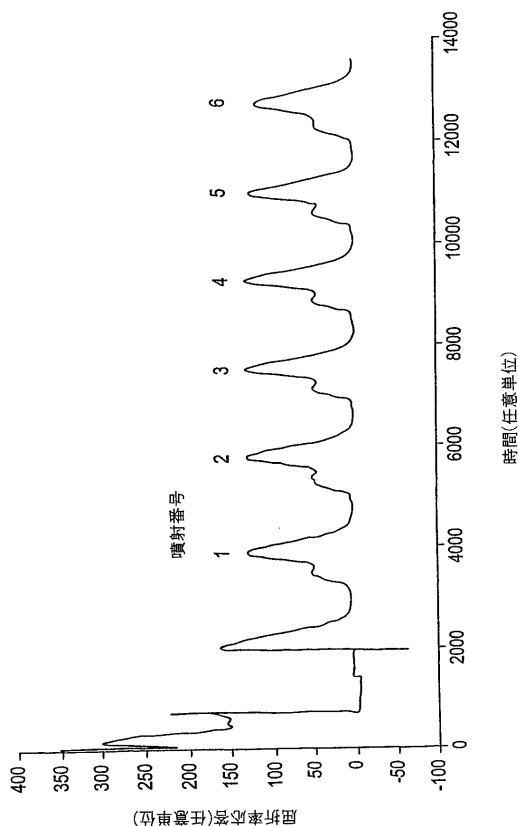
【0049】

第1図は、上記のとおりの6パルスの間の屈折率検知出力を示す。第1図において、屈折率応答及び時間に対する単位は、2軸に沿って増加する値の任意単位(arbitrary unit: au)で簡単に示される。この検知トレース中の2つあるピークは、ひまし油が2種のトリグリセリド成分に分離されたことを示す。6回の検査トレースにおける類似性は、この操作の再現性を表している。図2は、第4噴射の屈折率検知出力をより詳細に示している。ここでも、屈折率応答及び時間軸に沿った単位は、増加する値の任意単位(arbitrary unit: au)で示される。第4噴射の複数の分画(fraction)がパルスを通じて集められた。留分1及び留分6(図2に示される)が、ジリシノレイン及びトリリシノレインに関して高圧流体クロマトグラフィーにより分析された。留分N0.1(ラフィネット流に相当)がほんの少量のトリリシノレイン(51mg/リットル)を伴なう本質的にジリシノレイン(6,128mg/リットル)を含むことが見出された。したがって、このジリシノレイン分画は、99.0%より高い純度を有した。留分N0.2(抽出流に相当)がほんの痕跡量のジリシノレイン(17mg/リットル)を伴なう本質的にトリリシノレイン(11,220mg/リットル)を含むことが見出された。したがって、このトリリシノレイン分画は、99.8%より高い純度を有した。

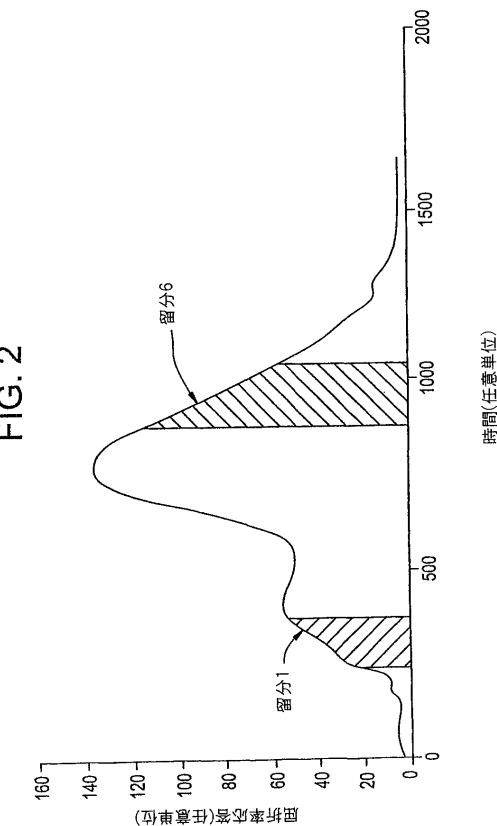
10

20

【図面の簡単な説明】


【0050】

【図1】第1図は、エチルアセテート及びn-ヘキサンを含む脱着剤を用いたシリカ上のひまし油の分離を説明する、実施例1に記載されたパルステストに係る、時間の関数とした屈折率検知出力のクロマトグラフレースである。


【図2】第2図は、実施例1の第4噴射(injection)に係る、時間の関数とした屈折率検知出力のより詳細なクロマトグラフレースである。

【図1】

FIG. 1

【図2】

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
31 October 2002 (31.10.2002)

PCT

(10) International Publication Number
WO 02/086039 A1

(51) International Patent Classification': C11B 7/00

George, J., Jr. [US/US]; 4309 Moorland Drive, Midland, MI 48640 (US).

(21) International Application Number: PCT/US02/08708

(22) International Filing Date: 21 March 2002 (21.03.2002)

(25) Filing Language: English

(74) Agent: KIMBLE, Karen, L. The Dow Chemical Company, Intellectual Property, P.O. Box 1967, Midland, MI 48641-1967 (US).

(26) Publication Language: English

(81) Designated States (national): AF, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, YU, ZA, ZM, ZW.

(30) Priority Data: 60/285,464 20 April 2001 (20.04.2001) US

(84) Designated States (regional): ARPO patent (GIL, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): DOW GLOBAL TECHNOLOGIES INC. [US/US]; 1790 Building, Washington Street, Midland, MI 48674 (US).

(81) Designated States (national): AF, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, YU, ZA, ZM, ZW.

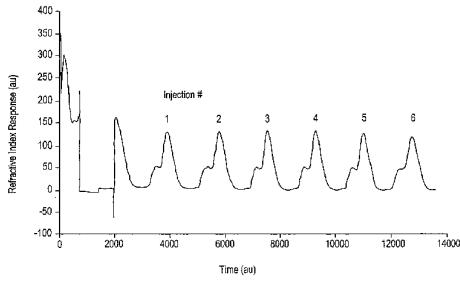
(72) Inventors; and

(84) Designated States (regional): ARPO patent (GIL, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(75) Inventors/Applicants (for US only): LYSENKO, Zenon [CA/US]; 214 West Meadowbrook Drive, Midland, MI 48640 (US). KATTI, Sanjeev, S. [US/US]; 3001 Camberley Lane, Midland, MI 48640 (US). STRINGFIELD, Richard [US/US]; 5637 Bloomfield Drive, Midland, MI 48640 (US). GREGORY, Thomas [US/US]. QUARDERER, Rapunz Drive, Midland, MI 48642 (US).

(81) Designated States (national): AF, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, YU, ZA, ZM, ZW.

Published:


with international search report

{Continued on next page}

(54) Title: SEPARATION OF PLANT OIL, TRIGLYCERIDE MIXTURES BY SOLID BED ADSORPTION

WO 02/086039 A1

(57) **Abstract:** A solid bed adsorptive process for separating a seed oil into two substantially pure triglyceride fractions. The process involves contacting a seed oil, such as castor oil, preferably as a concentrate, with an adsorbent in a bed, the adsorbent having a particle size greater than about 40 microns, and thereafter contacting the adsorbent with a desorbent material, preferably under minimal flow conditions, to obtain a raffinate output stream containing predominantly a second triglyceride and an extract output stream containing predominantly a first triglyceride. Purified fatty acid triglyceride esters obtainable from castor, vernonia, and lesquerella plant oils provide renewable, non-petroleum-based sources of chemical feedstocks.

WO 02/086039 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/086039

PCT/US02/08708

SEPARATION OF PLANT OIL TRIGLYCERIDE MIXTURES
BY SOLID BED ADSORPTION

This invention pertains to a solid bed adsorptive separation of triglyceride mixtures,
5 specifically triglyceride mixtures obtainable from plant oils.

Triglyceride fatty acid esters derived from plant oils, such as the oils of the castor, vernonia, and lesquerella plants, can provide a renewable source of non-petroleum-based chemical feedstocks. Unsaturated, long-chain fatty acid esters obtainable from castor oil,
10 such as the glycerides of ricinoleic acid, for example, can be metathesized with lower olefins, such as ethylene, to produce reduced chain α -olefins, such as 4-hydroxy-1-decene, and reduced chain α -olefins having terminal ester functionalities, such as the terminal diglyceride and triglyceride esters of α -decenoate. The unsaturated ester can be oxidatively cleaved to produce the corresponding α , ω -unsaturated carboxylic acid. α -Olefins and ester
15 or acid-functionalized α -olefins find utility as monomers in the manufacture of poly(olefins) and as chain extenders in thermoset resins. Alternatively, α -olefins can be converted into the corresponding α -epoxides, which also find utility in the manufacture of thermoset resins. In the case of triglycerides separated from castor oil, the corresponding α -olefin
20 metathesis products can be converted into diepoxides and triepoxides, which are highly useful in preparing epoxy resins.

In order to obtain the benefit of plant oils as a renewable source of chemical feedstocks for the polymer industry, the plant oils must first be separated into substantially pure fractions of their component triglyceride fatty acid esters. In the past, solid bed
25 adsorptive chromatography and high pressure liquid chromatography have been employed to separate mixtures. Typically, these separation methods involve applying a dilute solution of a feed mixture to an adsorbent bed, and thereafter eluting a large quantity of desorbent material through the bed under desorptive conditions sufficient to separate the components of the feed mixture and recover a substantially pure stream of each component. To obtain a
30 high degree of separation, the adsorbent is generally provided in a small particle size, typically less than about 30 microns (μ m). When a small adsorbent particle size is employed in an industrial scale adsorptive bed, the small particles disadvantageously

WO 02/086039

PCT/US02/08708

produce a significant pressure drop down the adsorbent bed, which can result in plugging, premature over-saturation of the upstream end of the bed, and flow problems. In another aspect of the prior art process, the dilute feed solution applied to the adsorbent typically contains from about 0.1 to about 10 percent feed mixture by volume, based on the total
5 volume of feed mixture and solvent. Typically too, the volume ratio of desorbent to feed mixture is greater than about 1000/1. Accordingly, these traditional adsorptive bed processes require equipment designed to handle large quantities of liquid solvents and desorbents. The cost and complexity of such an operation are high, as compared with the quantity of extract recovered. Due to these inherent disadvantages, adsorptive bed methods
10 for separating a feed mixture typically are conducted on a small analytical laboratory scale, but are not suitably employed for large industrial scale operations.

US 4,770,819 discloses a process of separating diglycerides from triglycerides employing a lithium, potassium, or hydrogen ion-exchanged omega zeolite or silica
15 adsorbent. It is taught that the diglyceride is selectively adsorbed to the substantial exclusion of the triglyceride. The adsorbent is disclosed to have a particle size ranging from about 16 to about 60 US mesh (from about 1,305 microns (μ m) to about 250 μ m). The process is also disclosed to be adaptable to a moving bed or simulated moving bed flow system, and to be adaptable to commercial scale units. US 4,770,819 is silent with regard to
20 separating a mixture of triglycerides.

In view of the above, it would be desirable to discover a solid bed adsorptive method for separating mixtures of triglycerides derived particularly from plant oils, such as castor, vernonia, and lesquerella plant oils. It would be more desirable if such a process did not
25 require a small adsorbent particle size; but instead could provide an acceptable degree of separation with a large adsorbent particle size adaptable to industrial scale unit operations. It would be even more desirable if such a process employed relatively small quantities of solvent and desorbent as compared with prior art processes, which would have the effect of decreasing the size, complexity, and cost of the equipment required for the process. Finally,
30 it would be most desirable, if the separation was efficient, so as to yield substantially pure fractions of the triglyceride components of the mixture. A solid bed adsorptive process having all of the aforementioned properties could be beneficially employed to obtain

WO 02/086039

PCT/US02/08708

substantially pure fractions of useful fatty acid esters from plant oils, rendering these oils a good source of renewable, non-petroleum-based chemical feedstocks.

Summary of the Invention

5 The present invention provides for a novel process of separating a mixture of triglyceride esters obtainable from plant oils. The process comprises contacting a seed oil, whose fatty acid composition is comprised predominantly of one principle fatty acid selected from ricinoleic, vernolic, and lesquerolic acids, at adsorption conditions with an 10 adsorbent in a bed, the adsorbent having a particle size greater than about 40 microns. In the process of this invention, a first triglyceride product, characterized as having three fatty acids, each identical to the principle fatty acid in the oil, is adsorbed more selectively by the adsorbent, as compared with a second triglyceride product. The second triglyceride product is characterized as having either of two, one, or no fatty acids identical to the principle fatty 15 acid in the oil. The second triglyceride product is removed before the first triglyceride product by withdrawing from the adsorbent a raffinate stream comprising predominantly the second triglyceride product, after which a purified second triglyceride product may be obtained from the raffinate stream. After withdrawing the second triglyceride product, the first triglyceride product is desorbed. The desorption of the first triglyceride product is 20 effected by contacting the adsorbent containing the first triglyceride product with a desorbent under desorbent conditions sufficient to yield an extract stream comprising predominantly the first triglyceride product and desorbent, from which a purified first triglyceride product may be obtained. The terms "desorbent," "raffinate stream," and "extract stream," as well as other technical terms used in connection with this invention, are 25 defined and described in detail hereinafter.

In the unique process of this invention, a seed oil comprising a mixture of triglyceride esters, obtainable, for example, from castor, vernonia, and lesquerella plants, is separated into two purified triglyceride fractions. Advantageously, the process of this 30 invention employs a large adsorbent particle size, which allows the process to be used in industrial scale unit operations without an undesirable pressure drop down the adsorbent bed. More advantageously, in preferred embodiments the process of this invention applies a high concentration of feed oil to the adsorbent bed, which reduces the quantity of solvent

WO 02/086039

PCT/US02/08708

needed when applying the feed to the bed. Even more advantageously, in a preferred embodiment targeted for industrial scale, the process of this invention may employ a minimal desorbent flow, as compared with prior art processes. The use of minimal solvent and minimal desorbent flow advantageously reduces the size of the equipment required, its cost, and the complexity of processing the liquid phases. All of the aforementioned advantages make the process of this invention more adaptable to industrial scale separations. Accordingly, the process described herein provides for an attractive method of obtaining purified triglycerides, useful in polymer applications, from plant oils, which are a renewable source of non-petroleum-based chemical feedstocks.

10

Brief Description of the Drawings

Figure 1 is a chromatographic trace of a refractive index detector output as a function of time for a pulse test described in Example 1, illustrating the separation of castor oil on silica with a desorbent comprising ethyl acetate and n-hexane.

15

Figure 2 is a chromatographic trace in greater detail of a refractive index detector output as a function of time for the fourth injection of Example 1.

Detailed Description of the Invention

20 In the novel process of this invention, a seed oil comprising a mixture of triglycerides is separated by a solid bed adsorptive method into two purified triglyceride fractions. The novel process comprises contacting a seed oil whose fatty acid composition comprises predominantly one principle fatty acid selected from ricinoleic, vernolic, and lesquerolic acids, at adsorption conditions with an adsorbent in a bed, the adsorbent having 25 a particle size greater than about 40 microns. The term "predominantly" in this instance shall be taken to mean greater than about 50 weight percent, based on the total weight of fatty acids. In the process of this invention, a first triglyceride product (homogenous product), characterized as having three fatty acids each identical to the principle fatty acid in the oil, is selectively adsorbed as compared with a second triglyceride product. The second 30 triglyceride product (heterogeneous product) is characterized as having either two, one, or no fatty acids identical to the principle fatty acid in the oil. In a preferred embodiment, the second triglyceride product is characterized as having two fatty acids identical to the

WO 02/086039

PCT/US02/08708

principle fatty acid in the oil and a third fatty acid selected from any fatty acid in the oil exclusive of the principle fatty acid. In the process of this invention, the second triglyceride product is removed before the first triglyceride product by withdrawing from the adsorbent a raffinate stream comprising predominantly the second triglyceride product, as described
5 hereinafter. The second triglyceride product may then be obtained in substantially pure form from the raffinate stream, if desired. After withdrawing the raffinate stream, the first triglyceride product is desorbed by contacting the adsorbent containing the first triglyceride product with a desorbent under desorbent conditions sufficient to yield an extract stream comprising predominantly the first triglyceride product and desorbent, as described
10 hereinafter. A substantially pure first triglyceride product may be obtained from the extract stream, if desired.

In a preferred embodiment of this invention, a seed oil having a fatty acid composition comprising greater than about 50 weight percent ricinoleic acid, obtainable
15 from the seeds of castor plants, is separated by a solid bed adsorptive method into two substantially pure triglyceride fractions, these being triricinolein and diricinolein. Triricinolein is derived from three ricinoleic fatty acid molecules; whereas diricinolein is derived from two ricinoleic fatty acid molecules and a third fatty acid molecule selected from any fatty acid present in the castor oil exclusive of ricinoleic acid. In this preferred
20 embodiment, the process comprises contacting the aforementioned seed oil obtainable from the castor plant at adsorption conditions with an adsorbent in a bed, the adsorbent having a particle size greater than about 40 microns. In this preferred embodiment, triricinolein is selectively adsorbed as compared with diricinolein. Accordingly, diricinolein is removed before triricinolein by withdrawing a raffinate stream comprising predominantly diricinolein
25 from the adsorbent. The diricinolein may then be obtained in substantially pure form from the raffinate stream, if desired. After withdrawing the raffinate stream, the triricinolein is desorbed by contacting the adsorbent containing the triricinolein with a desorbent under desorbent conditions sufficient to yield an extract stream comprising predominantly triricinolein and desorbent. A substantially pure triricinolein may be obtained from the
30 extract stream, if desired.

WO 02/086039

PCT/US02/08708

In another preferred embodiment of this invention, the adsorbent has a particle size greater than about 70 μm (210 US mesh). In a more preferred embodiment, the adsorbent is silica having a particle size greater than about 70 μm (211 US mesh) and less than about 800 μm (22 US mesh). In yet another preferred embodiment of this invention, the process is

5 conducted in a moving bed or simulated moving bed flow system, as referenced hereinafter.

As described hereinabove, this invention comprises the separation of a seed oil into triglyceride products. One product is a triglyceride having three fatty acids identical to the principal fatty acid component of the seed oil. The second product is a triglyceride having

10 either of two, one, or no fatty acids identical to the principle fatty acid component of the feed oil. In a preferred embodiment, the second triglyceride product has two fatty acids identical to the principal fatty acid component of the seed oil and a third fatty acid selected from any fatty acid present in the seed oil exclusive of the principal fatty acid. In a related concept of this invention, the separation may likewise be effected when the second product

15 is a triglyceride having only one fatty acid identical to the principal fatty acid component of the seed oil and two fatty acids each individually selected from fatty acids present in the seed oil exclusive of the principal fatty acid. In another related concept of this invention, the separation may likewise be effected when the second product is a triglyceride having three fatty acids each individually selected from any fatty acid present in the seed oil exclusive of

20 the principal fatty acid. In this alternative embodiment, the second triglyceride product contains none of the principal fatty acid. Hereinafter, the invention is described for the specific application involving separating a seed oil into a first triglyceride product having two fatty acids identical to the principal fatty acid and a second triglyceride product having any

25 fatty acid present in the seed oil exclusive of the principal fatty acid. Based on the detailed description herein, one skilled in the art will easily recognize how to conduct the process of this invention so as to separate a first triglyceride product having three fatty acids identical to the principal fatty acid and a second triglyceride product having only one principal fatty acid or none of the principal fatty acid.

30 The seed oil employed in the process of this invention may be any seed oil whose fatty acid composition comprises predominantly one principle fatty acid selected from

WO 02/086039

PCT/US02/08708

ricinolcic, vernolic, and lesquerolic acids. As noted hereinbefore, the term "predominantly" in this instance means greater than about 50 weight percent of the principle fatty acid. Preferably, the fatty acid composition of the seed oil comprises greater than about 70 weight percent of one principle fatty acid selected from ricinoleic, vernolic, and lesquerolic acids, 5 and more preferably, greater than about 85 weight percent of one principle fatty acid selected from ricinoleic, vernolic, and lesquerolic acids. Typically, seed oils meeting this criterion include the seed oils obtained from the castor, vernonia, and lesquerella plants. These plants are cultivated and found naturally, particularly in tropical habitats in India and Africa. Any grade of such oils may be employed in the process of this invention, including 10 crude oils as well as oils that have been refined, bleached, and/or deodorized.

To be more specific, castor oil comprises a mixture of two types of triglycerides, each derived from the condensation of glycerol, a trihydric alcohol, with three fatty acids. In one of the triglyceride components "triricinolein," glycerol is esterified with three molecules 15 of ricinoleic acid (12-hydroxy-*cis*-9-octadecenoic acid), in this instance the principle fatty acid. In the second triglyceride component "diricinolein," glycerol is esterified with two molecules of ricinoleic acid. The third hydroxyl functionality in diricinolein is esterified with any other fatty acid typically present in castor oil exclusive of ricinoleic acid. The third fatty acid is preferably selected from oleic and palmitic acids. A typical castor oil 20 composition comprises the following: ricinoleic acid, from about 85 to about 90 percent; linolenic acid, from about 3 to about 5 percent; oleic acid, from about 2 to about 5 percent; palmitic acid, from about 1 to about 3 percent; stearic acid, from about 1 to about 2 percent; and dihydroxy stearic acid of about 1 percent (± 0.3), by weight. Castor oil is obtainable 25 from the beans of the castor plant (*Ricinus communis*).

25 Likewise, vernonia oil comprises a mixture of triglycerides derived from glycerol and fatty acids of the following typical composition by weight: vernolic acid, from about 60 to about 77 percent; linolenic acid, from about 0.1 to about 0.4 percent; linoleic acid, from about 9 to about 13 percent; oleic acid, from about 4 to about 20 percent; and stearic acid, 30 from about 2 to about 4 percent. In vernonia oils, one triglyceride is derived from three vernolic acid molecules (12,13-epoxy-*cis*-9-octadecenoic acid), in this instance the principle fatty acid. A second triglyceride in vernonia oil contains two vernolic acids and a third fatty

WO 02/086039

PCT/US02/08708

acid obtained from any of the other fatty acids present in vernonia oil exclusive of vernolic acid. Vernonia oil is obtainable from several plant species including, for example, *Vernonia hymenolepis*, *Vernonia galimensis*, *Stokesia lavis*, and *Euphorbia lagascae*.

5 In like manner, lesquerella oils comprise a mixture of triglycerides derived from glycerol and fatty acids having the following typical composition by weight: lesquerolic acid, from about 10 to about 75 percent; linolenic acid, from about 1 to about 13 percent; linoleic acid, from about 3 to about 8 percent; oleic acid, from about 11 to about 27 percent; stearic acid, from about 1 to about 6 percent; and palmitic acid, from about 1 to about 6 percent. More specifically, it is lesquerella oils containing greater than about 50 weight percent of lesquerolic acid that are used in the process of this invention. One triglyceride present in lesquerella oil is derived from three molecules of lesquerolic acid (14-hydroxy-*cis*-11-eicosenoic acid), that being the principle acid in this instance. The second triglyceride present in lesquerella oil contains two lesquerolic acids and a third fatty acid selected from any other fatty acids present in the oil exclusive of lesquerolic acid.

10 Lesquerella oil is obtainable from several plant species including, for example, *L. densipilia* and *L. fendleri*.

15 In the following more detailed description of the invention, a variety of terms will be used, which for the sake of clarity are defined hereinafter. The term "feed mixture" shall indicate a seed oil which comprises a mixture of triglycerides from which at least one extract component and one raffinate component can be obtained, as noted hereinbelow. As described hereinabove, the fatty acid composition of the seed oil shall also comprise greater than about 50 weight percent of one principle fatty acid selected from ricinoleic, vernolic, 20 and lesquerolic acids. The term "feedstream" shall indicate a stream comprising a seed oil that is passed to the adsorbent in this process. An "extract component" shall refer to a component of the feed mixture that is more selectively adsorbed by the adsorbent; while a "raffinate component" shall refer to a component of the feed mixture that is less selectively adsorbed by the adsorbent. These definitions of extract and raffinate components are 25 consistent with general chemical lexicography wherein an "extract" is defined as a solution that contains an extracted solute, and a "raffinate" is defined as a residual feed solution after one or more constituents have been removed by extraction. (Refer, for example, to

WO 02/086039

PCT/US02/08708

Chemical Engineer's Handbook, 5th ed., by Robert H. Perry, McGraw-Hill Book Company, 1973, Chapter 15, p. 2.) Accordingly, in the process of this invention, the extract component is the first triglyceride product (homogeneous triglyceride), characterized as having three fatty acids identical to the principle fatty acid in the oil. In the process of this invention, the raffinate component is the second triglyceride product (heterogeneous triglyceride), preferably, characterized as having two fatty acids identical to the principle fatty acid in the oil and a third fatty acid selected from any of the other fatty acids in the oil exclusive of the principle fatty acid. The term "extract stream" shall mean a stream through which the extract component, which has been desorbed, is removed from the adsorbent.

1.0 The term "raffinate stream" shall mean a stream through which the raffinate component is removed from the adsorbent. The term "desorbent material" shall generally refer to one or more liquid compounds that are capable of desorbing an extract component from the adsorbent. The "desorbent input stream" indicates the stream through which the desorbent passes into the adsorbent. Since the extract stream and raffinate stream will contain some 1.5 quantities of desorbent material, it is typically the case that the extract and raffinate streams are individually subjected to a separation means, such as fractional distillation, to remove the desorbent material and to obtain substantially pure fractions of triglycerides. Accordingly, the terms "extract product" and "raffinate product" shall refer to the products produced, herein first and second triglyceride products, respectively, on removing the 2.0 desorbent from the extract stream and the raffinate stream. Alternatively, the extract stream and raffinate stream may be employed directly in downstream operations without removal of the desorbent and without isolation of the purified extract and raffinate products.

In accordance with the process of this invention, the seed oil, comprising a mixture 2.5 of triglycerides, can be applied to the adsorbent as a neat liquid. Alternatively, if desired, the oil can be applied in solution to the adsorbent. If a solution is employed, then any solvent can be used, provided certain criteria are generally satisfied. To be specific, the solvent should be capable of dissolving the oil to form a homogenous solution. Also, the solvent should be substantially inert, that is, substantially non-reactive with any of the oil 3.0 components. The solvent should also not interfere with the separation method; for example, the solvent should not selectively bind to the adsorbent such that the solvent substantially blocks the adsorption of the extract component to the adsorbent. Additionally, since it may

WO 02/086039

PCT/US02/08708

be desirable for the solvent to be removed from the raffinate and extract streams, the solvent may be selected to be easily separable from the raffinate and extract streams by simple conventional means, for example, by fractional distillation. Solvents that typically possess these properties include, without limitation, aliphatic hydrocarbons, such as pentane, 5 hexane, heptane, cyclohexane, and octane, including the various isomers thereof; aromatic hydrocarbons, such as benzene, toluene, and ethylbenzene; chlorinated aliphatics and aromatics, such as methylene chloride, chloroform, and chlorobenzene; polar solvents, including alcohols, such as methanol, ethanol, i-propanol, butanols, amyl alcohol, and glycols; esters, such as, ethyl acetate and butyl acetates; ethers, such as, diethyl ether and 10 diisopropyl ether; and ketones, such as, acetone and methyl ethyl ketone, and the like. Mixtures of any of the aforementioned solvents, preferably, mixtures of non-polar and polar solvents, can also be employed, and may be preferred, because fatty acid triglyceride esters have both non-polar and polar constituents. More preferably, the solvent is a mixture of a C₁₋₁₀ aliphatic hydrocarbon and a C₁₋₆ acetate, even more preferably, a mixture of n-hexane 15 and ethyl acetate.

If a mixture of solvents is used, then the relative quantities of solvents in the solvent mixture can be variable, so long as the solvent mixture possesses the attributes mentioned hereinbefore and functions to deliver the feed mixture to the adsorbent. The actual 20 quantities of solvent components used can vary depending upon the specific solvents and specific feed mixture employed. For example, in a two solvent system, the concentration of each solvent component may range from greater than about 0 to less than about 100 volume percent, and preferably, from greater than about 10 to less than about 90 volume percent. One skilled in the art will know how to adjust the relative quantities of solvent components 25 to optimize the solubility of the feed mixture therein. If a solvent or mixture of solvents is employed, then the concentration of the feed oil mixture in the solvent or solvent mixture can also vary widely, provided that the feed mixture is delivered to the adsorbent as desired. Generally, the concentration of the feed mixture in the solvent or solvent mixture is greater than about 50 volume percent, based on the total volume of the feed mixture plus solvent(s). 30 Preferably, the concentration of the feed mixture in the solvent or solvent mixture is greater than about 70 volume percent, more preferably, greater than about 90 volume percent, even

WO 02/086039

PCT/US02/08708

more preferably, greater than about 95 volume percent. In a most preferred embodiment, essentially no solvent is employed.

The adsorbent employed in the process of this invention may comprise any known adsorbent material, provided that the separation of the triglyceride mixture described herein yields substantially pure triglyceride fractions. Non-limiting examples of suitable adsorbent materials include silicas, aluminas, silica-aluminas, clays, crystalline porous metallosilicates including, for example, molecular sieves, zeolites, and mesoporous aluminosilicates; as well as reticular synthetic polymeric resins, such as cross-linked polystyrenes, including for example, divinylbenzene cross-linked polystyrenes. These adsorbents are commonly obtainable from commercial sources. Preferably, the adsorbent is silica, more preferably, silica gel. In a preferred embodiment, the adsorbent is porous, which means that it contains channels, pores, or cavities that provide access to the feed mixture and desorbent, and any solvent that may be used. Typically, the average pore size of the adsorbent is greater than about 45 Angstroms (Å), and preferably, greater than about 55 Å in diameter (or cross-sectional dimension in the case of a non-circular pore). Typically, the average pore size of the adsorbent is less than about 500 Å, and preferably, less than about 200 Å in diameter (or cross-sectional dimension).

The adsorbent used in the adsorptive separation process of this invention may be in the form of particles, such as spheres, aggregates, extrudates, tablets, granules, or other regular or irregular shapes and forms. Optionally, the adsorbent may be dispersed in a binder material or inorganic matrix for the purpose of agglomerating the adsorbent particles, which might otherwise be in a fine powder form. Additionally, the binder or matrix may strengthen the adsorbent particles. Refractory oxides, such as silica, alumina, or silica-alumina, may be suitably employed as the binder or inorganic matrix. Preferably, the binder or matrix is also a porous material, that is, a material containing channels, pores, and/or cavities therein, which enable liquid access to the adsorbent. Suitable pore sizes for the binder generally range from greater than about 45 Angstroms to less than about 200 Angstroms in diameter (or cross-sectional dimension).

WO 02/086039

PCT/US02/08708

With respect to particle size, it is commonly recognized that the smaller the adsorbent particle size, the better will be the separation of the components of the mixture. A large particle size, in contrast, is generally considered to produce poorer separation results. Accordingly, adsorbent particles on the order of about 30 microns or less are typically 5 employed for analytical scale separations. Disadvantageously, however, the smaller the adsorbent particle, the larger the pressure drop down the adsorbent bed. In the case of an industrial scale separation unit, a small particle size can produce a significant pressure drop down the adsorbent bed, thereby creating flow problems, such as uneven flow rates, uneven flow distribution, and plugging. Unexpectedly, it has now been discovered that good 10 separation of the triglyceride components of seed oils can be achieved when the adsorbent possesses a large particle size. Accordingly, the process of this invention is beneficially adaptable to commercial scale separation units.

With reference to the above, in the process of this invention the particle size of the 15 adsorbent or the adsorbent-binder composite is typically greater than about 40 microns (μm) (less than about 368 US mesh), preferably, greater than about 70 μm (less than about 211 US mesh), and more preferably, greater than about 100 μm (less than about 149 US mesh) in diameter (or critical dimension in the case of non-spherical particles). Typically, the 20 particle size of the adsorbent or adsorbent-binder composite is less than about 800 μm (greater than about 22 US mesh), and preferably, less than about 600 μm (greater than about 30 US mesh). The use herein of a large particle size, of greater than about 40 μm , and preferably, greater than about 70 μm , renders the process of this invention more adaptable to industrial scale units.

25 The desorbent material, which is used in the process of this invention, can be any fluid substance that is capable of removing the selectively adsorbed extract component from the adsorbent. In adsorptive separation processes, which are generally operated at substantially constant temperature and pressure that ensure liquid phase, the desorbent material relied upon is typically selected to satisfy several criteria. First, the desorbent 30 material should be capable of displacing the extract component from the adsorbent with reasonable mass flow rates without the desorbent itself being so strongly adsorbed as to prevent the extract component from substantially displacing the desorbent in the following

WO 02/086039

PCT/US02/08708

adsorption cycle. Secondly, the desorbent material should be compatible with the particular adsorbent and the particular feed mixture. Specifically, the desorbent should be substantially non-reactive with either the adsorbent or any component of the feed mixture, and should not substantially reduce or destroy the selectivity of the adsorbent for the extract 5 component with respect to the raffinate component. It may be further desirable for the desorbent material to be readily separable from the feed mixture. After desorbing the extract component of the feed, both desorbent material and the extract component are typically removed in admixture from the adsorbent. Likewise, the raffinate component is typically withdrawn from the adsorbent in admixture with the desorbent material. If pure 10 fractions of the extract and raffinate products are desired, then the desorbent material should be readily separated from the extract and raffinate components, for example, by simple fractional distillation. In this case, the desorbent material may be selected to have a boiling point that renders the desorbent readily separable. It may be, however, that the extract and raffinate streams are to be used directly in other downstream operations, and that the extract 15 and raffinate products are not to be removed from the desorbent immediately. If so, then other factors determined by the integrated separation and downstream operations may influence the choice of desorbent, as designed by one skilled in the art.

Desorbents that typically possess the aforementioned properties include, without 20 limitation, aliphatic hydrocarbons, such as pentane, heptane, hexane, cyclohexane, and octane, including the various isomers thereof; aromatic hydrocarbons, such as benzene, toluene, and ethylbenzene; chlorinated aliphatics and aromatics, such as methylene chloride, chloroform, and chlorobenzene; polar solvents, including alcohols, such as methanol, ethanol, isopropanol, butanols, amyl alcohol, and glycols; esters, such as ethyl acetate and 25 butyl acetates; ethers, such as diethyl ether and diisopropyl ether; and ketones, such as acetone, and methyl ethyl ketone; and the like. Mixtures of any of the aforementioned desorbents, particularly mixtures of non-polar and polar desorbents, can also be employed, and may be preferred, since fatty acid esters have both non-polar and polar constituents. More preferably, the desorbent is a mixture of a C₁₋₁₀ aliphatic hydrocarbon and C₁₋₆ acetate 30 ester, even more preferably, a mixture of n-hexane and ethyl acetate. In another preferred embodiment, the desorbent composition is identical to the solvent that is used to apply the feed mixture to the adsorbent.

WO 02/086039

PCT/US02/08708

If the desorbent is a mixture of liquids, then the relative quantities of each component of the desorbent mixture can vary, so long as the desorbent mixture functions in a satisfactory manner as described hereinabove. Generally, the relative amounts of each 5 desorbent component will depend upon the specific desorbent components employed and their selectivities with respect to the specific extract and raffinate components. For example, in a two component desorbent mixture, the concentration of each component may be typically greater than 0, preferably, greater than about 10, and more preferably, greater than about 40 weight percent, based on the total weight of the first and second desorbent 10 components. For example, in a two component desorbent mixture, the concentration of each component may be typically less than 100, preferably, less than about 90, and more preferably, less than about 60 weight percent, based on the total weight of the first and second desorbent components. One skilled in the art will know how to vary the relative quantities of components of any desorbent mixture to achieve the desired separation results.

15

The concentration of the extract component in the extract stream comprising the extract component and the desorbent can vary widely from nearly 0 volume percent extract component to typically about 65 volume percent extract component. Likewise, the concentration of the raffinate component in the raffinate stream can vary widely from nearly 20 0 volume percent raffinate component to typically about 65 volume percent raffinate component. It should be appreciated that an extract component is usually not completely adsorbed by the adsorbent, and a raffinate component is usually not completely non-adsorbed by the adsorbent. Accordingly, a small quantity of the raffinate component may be present in the extract stream, and a small quantity of the extract component may be present 25 in the raffinate stream, as described hereinafter.

In a preferred embodiment of this invention, targeted for an industrial scale process, the desorbent material is employed in a minimal quantity, so as to reduce the volume of liquids required in the process. The term "minimal quantity" shall mean that the ratio of the 30 volume of desorbent to the volume of feed mixture is greater than about 0.5/1, but less than about 100/1 (as compared to greater than 1000/1 in analytical high pressure liquid

WO 02/086039

PCT/US02/08708

chromatography (HPLC) methods). More preferably, the volume ratio of desorbent to feed mixture is less than about 10/1, and most preferably, less than about 2/1.

Generally, the separation method of this invention operates under liquid phase conditions. The adsorbent may be provided in a bed, typically a fixed bed, which comprises a housing or chamber that contains the adsorbent. For the purposes of this invention, the term "bed" shall also generally include subsidiary valves, pumps, and conduits for maintaining the flows of the various liquid streams, as well as any other accessories or equipment needed to implement the process. The bed may be constructed in a vertical or horizontal direction, or if desired, inclined at an angle relative to vertical or horizontal. The adsorbent in the bed may be alternately contacted with the feed mixture and the desorbent material, in which case the process will only be semi-continuous. In another embodiment, a set of two or more static beds of adsorbent may be employed with appropriate valving so that the feed mixture can be passed through one or more adsorbent beds of a set, while the desorbent material is passed through one or more other beds of the set. The flow of the feed mixture and the desorbent material may be either upwards or downwards through the adsorbent in such beds. Any conventional apparatus employed in static bed fluid-solid contacting may be used.

Moving bed or simulated moving bed flow systems, however, have a separation efficiency greater than fixed bed adsorptive systems, and are therefore preferred. In the moving bed and simulated moving bed processes, the adsorption and desorption operations are continuously taking place, which allows for both continuous productions of an extract stream and a raffinate stream and the continual use of feed and desorbent streams. One preferred embodiment of this process utilizes what is known in the art as the simulating moving bed countercurrent flow system. In such a system, it is the progressive movement of multiple liquid access points down an adsorbent column that simulates the upward movement of adsorbent contained in the column. The operating principles and sequence of such a flow system are described in D. B. Broughton's US Patent 2,985,589. Another embodiment of a simulated moving bed flow system suitable for use in the process of this invention is the cocurrent high efficiency simulated moving bed process disclosed in US 4,402,832. Other moving bed flow systems, as known in the art, may also be suitable.

WO 02/086039

PCT/US02/08708

Adsorption conditions may vary over a wide range, provided that the separation of the triglyceride components of the oil is effected as desired. Typically, the temperature will be maintained at greater than about 18°C. Typically, the temperature will be less than about 5 130°C, and preferably, less than about 75°C. Most preferably, the temperature will be about ambient, taken as about 21°C. Usually, the pressure will be high enough to maintain liquid phase at the process temperature; but maintained at the minimum pressure necessary to obtain the desired flows in the various zones for a given flow configuration of adsorbent columns. Typically, the pressure is equal to or greater than about 1 atm (101 kPa).

10 Preferably, the pressure will be less than about 100 atm (10,118 kPa), more preferably, less than about 50 atm (5,059 kPa). Desorption conditions include the same ranges of temperature and pressure as are used for adsorption conditions. The flow rates of the feed stream and desorbent stream will vary depending upon the size of the adsorbent unit, its design and operation, and the specific adsorbent and feed mixture employed. Flow rates can 15 vary from as little as a few cm³ per hour up to many thousands of gallons per hour. The size of the adsorption units that can be adapted to the process of this invention can vary anywhere from those of laboratory scale to those of pilot plant and commercial scale.

When the above-described seed oils, preferably, seed oils obtained from castor, 20 vernonia, and lesquerella plants, are separated in accordance with the process of this invention, an extract stream and a raffinate stream are obtained, which are then further distinguished from each other and from the feed mixture by the ratio of the concentrations of the extract component and the raffinate component appearing in each particular stream. This distinction is generally referred to as "purity." More specifically, the purity of the 25 extract component in the extract stream is calculated as the concentration of the extract component in the extract stream divided by the sum of the concentrations of the extract and raffinate components in the extract stream. Similarly, the purity of the raffinate component in the raffinate stream is calculated as the concentration of the raffinate component in the raffinate stream divided by the sum of the concentrations of the extract component and 30 raffinate components in the raffinate stream. Recall that in this process, the extract component is the first triglyceride product, preferably, triricinolein; and the raffinate component is the second triglyceride product, preferably, diricinolein. Concentrations may

WO 02/086039

PCT/US02/08708

be set forth in any common units, such as, grams per cubic centimeter (g/cm³) or moles per liter (M). Alternatively, one may take a ratio of extract and raffinate concentrations as a measure of purity. For example, the ratio of the concentration of the more selectively adsorbed extract component to the concentration of the less selectively adsorbed raffinate 5 component will be highest in the extract stream, next highest in the feedstream, and lowest in the raffinate stream. Likewise, the ratio of the less selectively adsorbed raffinate component to the more selectively adsorbed extract component will be highest in the raffinate stream, next highest in the feedstream, and lowest in the extract stream.

10 With reference to purity, the process of this invention achieves substantially pure fractions of two triglyceride products. In a preferred embodiment of this invention, the purification of a castor seed oil yields substantially pure fractions of diricinolein and triricinolein. Typically, the purity of the first triglyceride product, preferably triricinolein, in the extract stream is greater than about 60 percent, preferably, greater than about 80 percent, 15 more preferably, greater than about 95 percent, and most preferably, greater than about 99 percent, based on the concentrations of first and second triglyceride products in the extract stream. Likewise, the purity of the second triglyceride product, preferably, diricinolein, in the raffinate stream is typically greater than about 60 percent, preferably, greater than about 80 percent, more preferably, greater than about 95 percent, and most preferably, greater than 20 about 98 percent, based on the concentrations of the first and second triglyceride products in the raffinate stream.

If desired, the extract output stream, or at least a portion of the extract output stream, comprising desorbent and the first triglyceride product, preferably triricinolein, may be 25 passed into a separation means, wherein at least a portion of the desorbent material will be separated under separating conditions to produce an extract product containing a reduced quantity of desorbent. Preferably, the concentration of desorbent in the extract product will be less than about 20 weight percent, more preferably, less than about 5 weight percent, and most preferably, less than about 0.5 weight percent, based on the weight of the extract 30 product. Optionally if desired, the raffinate output stream, or at least a portion of the raffinate output stream, comprising desorbent and the second triglyceride product, preferably diricinolein, may be passed into a separation means, wherein at least a portion of

WO 02/086039

PCT/US02/08708

the desorbent material will be separated under separating conditions to produce a raffinate product containing a reduced quantity of desorbent. Preferably, the concentration of desorbent in the raffinate product will be less than about 20 weight percent, more preferably, less than about 5 weight percent, and most preferably, less than about 0.5 weight percent, 5 based on the weight of the raffinate product. In each instance, the separation means will typically be a fractionation column, the design and operation of which are well known to those skilled in the art.

In order to test various adsorbents and desorbents for the separation of seed oil 10 triglyceride mixtures, a dynamic pulse testing apparatus may be employed as described hereinafter. The apparatus may consist of a chamber, for example, of approximately 100 cm length by 1 cm inner diameter, having inlet and outlet means at opposite ends of the chamber and filled with adsorbent material. The chamber is typically maintained at ambient temperature and atmospheric pressure; but means to maintain other temperatures and 15 pressures may be employed as well. Generally, the chamber is equilibrated with the desorbent by passing the desorbent material through the adsorbent chamber for sufficient time to effect equilibration. Thereafter, a pulse of feed mixture, optionally containing a solvent or desorbent material, is injected onto the top of the adsorbent column for a suitable time, for example, a time ranging from about 15 seconds to about 2 minutes. After the feed 20 mixture is loaded onto the adsorbent, desorbent flow is resumed, and the triglyceride components are eluted as in liquid-solid chromatography. The raffinate and extract streams can be analyzed by high-pressure liquid phase chromatography or by any other suitable means, for example, refractive index. The analysis can be made continuously on-line or incrementally by collecting aliquots of the output. Traces of the analysis as a function of 25 time are typically developed. After the components of the oil are essentially completely eluted from the adsorbent bed, a second pulse of feed mixture can be applied; and the pulse cycle can be repeated as often as desired.

The following Glossary is provided as a supplement to the description herein.

WO 02/086039

PCT/US02/08708

Glossary

Pressure in units of pounds per square inch (psi gauge or absolute) are converted to units of kilopascals (kPa) by multiplying the psi value by 6.895. (Example: 50 psi x 6.895 =

5 345 kPa)

The term "feed mixture" refers to a seed oil comprising a mixture of triglycerides from which at least one extract product and one raffinate product are obtained.

The term "feedstream" indicates a stream comprising a seed oil that is passed to an adsorbent.

10 The term "extract component" is defined as a component of a feed mixture that is more selectively retained by an adsorbent, as compared with one or more other components in the feed mixture.

The term "extract stream" is defined as a stream through which an extract component, which has been desorbed, is removed from an adsorbent.

15 The term "desorbent material" shall refer to one or more liquid compounds that are capable of desorbing an extract component from an adsorbent.

The "desorbent input stream" shall indicate a stream through which the desorbent passes into an adsorbent.

20 The term "raffinate component" is defined as a component of a feed mixture that is less selectively adsorbed by an adsorbent, as compared with one or more other components in the feed mixture.

The term "raffinate stream" is defined as a stream through which a raffinate component is removed from an adsorbent.

25 The term "extract product" is defined as a product obtained on removing a desorbent from an extract stream.

The term "raffinate product" is defined as a product obtained on removing a desorbent from a raffinate stream.

30 The following example is provided for illustrative purposes. References to specific seed oils, adsorbents, desorbent materials, and operating conditions are not intended to restrict the scope and spirit of the invention. In light of the disclosure herein, those of skill in the art will recognize alternative embodiments of the invention that fall within the scope of the attached claims.

WO 02/086039

PCT/US02/08708

Example 1

An absorbent column was prepared by packing two glass, water jacketed columns (1 cm inner diameter by 50 cm length each), connected in series with a total length of 100 cm, 5 with a commercial silica (Aldrich, 100-200 U.S. mesh, 150-75 micron particle size range, 60 Angstrom pore size). No water was flowing through the water jackets. The column was maintained at room temperature throughout the experiment. A 0.5 ml/min flow of desorbent input stream, consisting of 50 weight percent ethyl acetate and 50 weight percent n-hexane, was established through the column from top to bottom by means of a pump. 10 After desorbent flow was established for about 30 min, the flow was stopped and replaced with a feed stream consisting of castor oil (100 percent) at a flow rate of 0.5 ml/min. The castor oil flow was maintained for about 45 sec, which resulted in a loading of 0.375 ml of castor oil onto the top of the adsorbent bed. Then, the flow of castor oil was stopped, and the flow of desorbent input stream was re-established. Throughout the process, the pressure 15 at the outlet of the column was essentially atmospheric. The pressure at the inlet of the column was not controlled; but since the flow rate was slow, the pressure at the inlet was not expected to be significantly above atmospheric. The desorbent output stream obtained from the bottom of the column was analyzed as a function of time by passing the desorbent output stream through a refractive index detector for qualitative analysis of the products and 20 for determination of the degree of separation obtained. A first peak eluting from the column was taken as the raffinate output stream; a second peak eluting from the column was taken as the extract output stream. When the output stream showed that essentially all of the components of the first injection of castor oil had eluted through the adsorbent bed, the pulse sequence was repeated with a second loading of castor oil and a second desorbent 25 operation. The sequence was repeated for a total of six pulses.

Figure 1 shows the refractive index detector output for the six pulses, described hereinabove. In Figure 1 the units for refractive index response and for time are simply given in arbitrary units (au) of increasing value along the two axes. The existence of two 30 peaks in the detector trace indicates the separation of the castor oil feed into its two triglyceride components. The similarity in the traces of the six runs illustrates the reproducibility of the separation. Figure 2 shows in higher detail the refractive index

WO 02/086039

PCT/US02/08708

detector output from the fourth injection. Again, the units along the refractive index and time axes are arbitrary units of increasing value. Multiple fractions of the fourth injection were collected throughout the pulse. Cut #1 and Cut #6, shown in Figure 2, were analyzed by high pressure liquid chromatography for diricinolein and triricinolein. Cut #1 (analogous to raffinate stream) was found to contain essentially diricinolein (6,128 mg/liter) with only a small amount of triricinolein (51 mg/liter). Accordingly, the diricinolein fraction had a purity of greater than 99.0 weight percent. Cut #2 (analogous to extract stream) was found to contain essentially triricinolein (11,220 mg/liter) with only a small trace of diricinolein (17 mg/liter). The triricinolein fraction had a purity of greater than 99.8 weight percent.

WO 02/086039

PCT/US02/08708

WHAT IS CLAIMED IS:

1. A process of separating a plant oil comprising a mixture of triglyceride esters, the process comprising (a) contacting a seed oil, whose fatty acid composition comprises predominantly one principle fatty acid selected from ricinoleic, vernolic, and lesquerolic acids, at adsorption conditions with an adsorbent in a bed, the adsorbent having a particle size greater than about 40 microns, such that a first triglyceride product, characterized as having three fatty acids each identical to the principle fatty acid in the oil, is adsorbed more selectively by the adsorbent, as compared with a second triglyceride product, characterized as having either of two, one, or no fatty acids identical to the principle fatty acid in the oil; (b) removing the second triglyceride product by withdrawing from the adsorbent a raffinate stream comprising predominantly the second triglyceride product; (c) desorbing the first triglyceride product by contacting the adsorbent containing the first triglyceride product with a desorbent under desorbent conditions sufficient to yield an extract stream comprising predominantly first triglyceride product and desorbent.
- 15 2. The process of Claim 1 wherein the second triglyceride product is characterized as having two fatty acids identical to the principle fatty acid in the oil.
3. The process of Claim 1 or 2 wherein the seed oil is selected from the group consisting of castor, vernonia, and lesquerella plants.
4. The process of Claim 3 wherein the seed oil is a castor plant oil, and wherein the castor oil has a fatty acid composition comprising from 85 to 90 percent ricinoleic acid, from 3 to 5 percent linolenic acid, from 2 to 5 percent oleic acid, from 1 to 3 percent palmitic acid, from 1 to 2 percent stearic acid, and 1 (± 0.3) percent dihydroxy stearic acid, by weight.
5. The process of Claim 3 wherein the seed oil is a vernonia plant oil, and wherein the vernonia plant oil has a fatty acid composition comprising from 60 to 77 percent vernolic acid; from 0.1 to 0.4 percent linolenic acid; from 9 to 13 percent linoleic acid; from 4 to 20 percent oleic acid; and from 2 to 4 percent stearic acid, by weight.
- 25 6. The process of Claim 3 wherein the seed oil is a lesquerella plant oil, and wherein the lesquerella plant oil has a fatty acid composition comprising greater than 50 to 75 percent lesquerolic acid; from 1 to 13 percent linolenic acid; from 3 to 8 percent linoleic
- 30

WO 02/086039

PCT/US02/08708

acid; from 11 to 27 percent oleic acid; from 1 to 6 percent stearic acid; and from 1 to 6 percent palmitic acid, by weight.

7. The process of any one of Claims 1 to 6 wherein the seed oil is applied as a neat liquid to the adsorbent.

5 8. The process of any one of Claims 1 to 6 wherein the seed oil is applied in a solution to the adsorbent, and wherein the solution contains the seed oil in a concentration of greater than 50 volume percent.

9. The process of Claim 8 wherein the solution is prepared with a solvent selected from mixtures of C₁₋₁₀ aliphatic hydrocarbons and C₁₋₆ acetates.

10. The process of any one of Claims 1 to 9 wherein the adsorbent is selected from silicas, aluminas, silica-aluminas, clays, molecular sieves, zeolites, crystalline mesoporous aluminosilicates, and reticular synthetic polymeric resins.

11. The process of any one of Claims 1 to 10 wherein the adsorbent is silica.

12. The process of any one of Claims 1 to 11 wherein the adsorbent is porous with a pore size of greater than 45 Angstroms and less than 200 Angstroms in diameter or cross-sectional dimension.

13. The process of any one of Claims 1 to 12 wherein the adsorbent, or a composite formed from the adsorbent and a binder, has a particle size of greater than 70 microns and less than 800 microns in diameter (or critical dimension).

20 14. The process of any one of Claims 1 to 13 wherein the desorbent is selected from aliphatic hydrocarbons, chlorinated aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated aromatic hydrocarbons, alcohols, esters, ketones, and mixtures thereof.

15. The process of any one of Claims 1 to 14 wherein the desorbent is a mixture of a C₁₋₁₀ aliphatic hydrocarbon and a C₁₋₆ acetate.

25 16. The process of any one of Claims 1 to 15 wherein the adsorption and desorption steps are conducted at a temperature of greater than 18°C and less than 130°C.

WO 02/086039

PCT/US02/08708

17. The process of any one of Claims 1 to 16 wherein the adsorption and desorption steps are conducted at a pressure equal to or greater than 1.0 atm (101 kPa) and less than 100 atm (10,118 kPa).

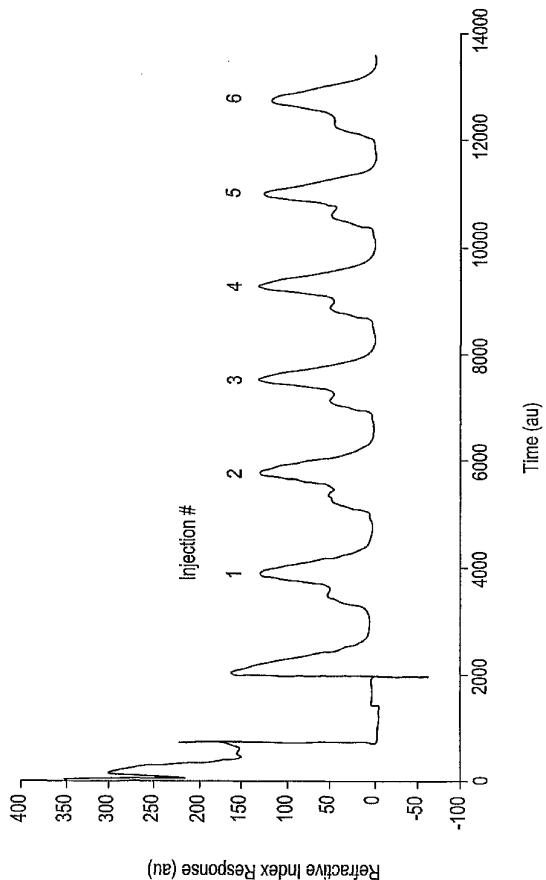
18. The process of any one of Claims 1 to 17 wherein the volume of desorbent to volume of feed mixture is greater than 0.5/l and less than 100/l.

19. The process of any one of Claims 1 to 18 wherein the process is conducted in a moving bed or simulated moving bed flow system.

20. The process of any one of Claims 1 to 19 wherein the first triglyceride product is triricinolein, and the second triglyceride product is diricinolein.

10 21. The process of any one of Claims 1 to 20 wherein the first triglyceride product is obtained in a purity of greater than about 95 weight percent, and the second triglyceride product is obtained in a purity of greater than about 95 weight percent.

15 22. A process of separating a mixture of triglycerides obtainable from castor oil, the process comprising contacting a castor seed oil as a neat liquid with a silica adsorbent in a bed, the adsorbent having a particle size of greater than 40 microns and less than 800 microns, and optionally, having a pore size of greater than 45 Angstroms and less than 200 Angstroms in diameter; the contacting being conducted at adsorption conditions such that a first triglyceride, triricinolein, is selectively adsorbed onto the adsorbent as compared with a second triglyceride, diricinolein; contacting the adsorbent with a desorbent 20 material comprising a mixture of hexane and ethyl acetate, and thereafter withdrawing a raffinate output stream comprising predominantly diricinolein and desorbent from said adsorbent, the diricinolein having a purity of greater than 80 percent; thereafter contacting the desorbent material comprising a mixture of hexane and ethyl acetate with the adsorbent under desorbent conditions sufficient to withdraw an extract stream comprising predominantly triricinolein and desorbent from the adsorbent, the triricinolein having a purity of greater than 80 percent.

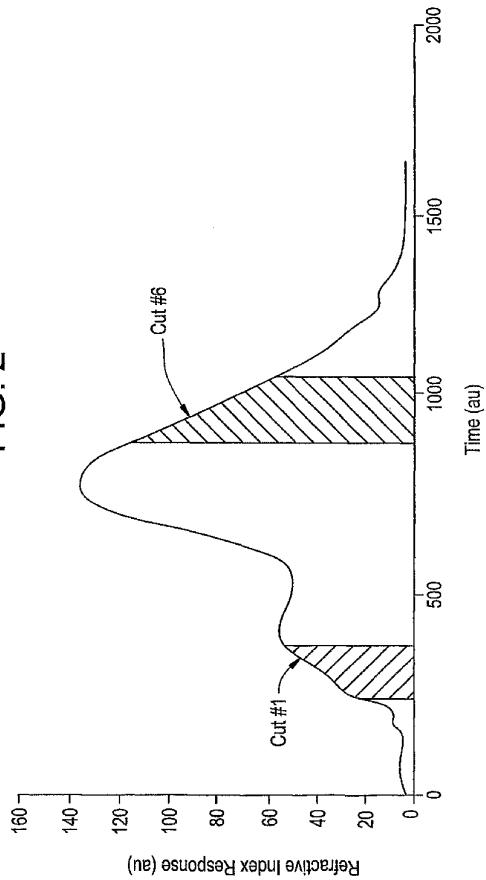

25 23. The process of Claim 22 wherein the process is conducted in a moving bed or simulated moving bed flow system.

WO 02/086039

PCT/US02/08708

1/2

FIG. 1



WO 02/086039

PCT/US02/08708

2/2

FIG. 2

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No PCT/US 02/08708
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C11B7/00		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C11B		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 062 114 A (PROCTER & GAMBLE) 13 October 1982 (1982-10-13) page 26, line 22 -page 27, line 6, claims 1,7,9,10,16; examples 1,4,7 page 1, line 3-28 page 8, line 19 -page 11, line 13 page 19, line 9-11 -----	1-23
X	US 4 297 292 A (LOGAN TED J ET AL) 27 October 1981 (1981-10-27) column 1, line 36 -column 2, line 4; claims 1,5,7,17; example 10 column 6, line 36-63 column 7, line 1-4,40-46 column 8, line 50 -column 9, line 25 column 3, line 24-55 -----	1-23 -/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C. <input checked="" type="checkbox"/> Patent family members are listed in annex.		
* Special categories of cited documents :		
A document defining the general state of the art which is not considered to be of particular relevance		
B earlier document published on or after the international filing date		
L document which may contain clues on priority, claim(s) or other information to be used in assessing the publication date of another citation or other special reason (as specified)		
C document referring to an oral disclosure, use, exhibition or other means		
D document published prior to the international filing date but later than the priority date claimed		
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken in combination with one or more other such documents, such combination being obvious to a person skilled in the art		
Z document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report	
26 July 2002	02/08/2002	
Name and mailing address of the ISA European Patent Office, P.B. 5616 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl Fax: (+31-70) 340-3016	Authorized officer Heirbaut, M	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT		International Application No PCT/US 02/08708
C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 367 877 A (UOP INC) 16 May 1990 (1990-05-16) page 6, line 16 -page 7, line 7; claims 1-7 page 7, line 39-43; examples 1,2 ----	1-23
X	US 4 961 881 A (OU JOHN D) 9 October 1990 (1990-10-09) column 7, line 62 -column 8, line 10; claims 1,2,5 column 12, line 41-50; example 1 column 9, line 37-49 ----	1-23
A	US 2 985 589 A (BROUGHTON DONALD B ET AL) 23 May 1961 (1961-05-23) cited in the application the whole document ----	1-23
A	US 4 770 819 A (ZINNEN HERMANN A) 13 September 1988 (1988-09-13) cited in the application the whole document ----	1-23
A	US 3 165 540 A (KREWSON CHARLES F ET AL) 12 January 1965 (1965-01-12) the whole document ----	1-23
A	PATENT ABSTRACTS OF JAPAN vol. 015, no. 256 (C-0845), 28 June 1991 (1991-06-28) & JP 03 084099 A (ITO SEIYU KK), 9 April 1991 (1991-04-09) abstract ----	1-23

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT				International Application No	
Information on patent family members				PCT/US 02/08708	
Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP 0062114	A 13-10-1982	EP 0062114 A1		13-10-1982	
US 4297292	A 27-10-1981	NONE			
EP 0367877	A 16-05-1990	US 4784807 A EP 0367877 A1		15-11-1988 16-05-1990	
US 4961881	A 09-10-1990	NONE			
US 2985589	A 23-05-1961	NONE			
US 4770819	A 13-09-1988	EP 0358817 A1		21-03-1990	
US 3165540	A 12-01-1965	NONE			
JP 03084099	A 09-04-1991	NONE			

Form PCT/ISA/210 (patent family annex) (July 1992)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT, BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN, TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH, GM,HR,HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, R O, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, YU, ZA, ZM, ZW

(74)代理人 100082898

弁理士 西山 雅也

(72)発明者 リセンコ, ゼノン

アメリカ合衆国, ミシガン 48640, ミッドランド, ウエスト メドウブルック ドライブ
214

(72)発明者 カッティ, サンジーブ エス.

アメリカ合衆国, ミシガン 48640, ミッドランド, キャンベリー レーン 3001

(72)発明者 ストリングフィールド, リチャード

アメリカ合衆国, ミシガン 48640, ミッドランド, ブルームフィールド ドライブ 563
7

(72)発明者 グレゴリー, トーマス

アメリカ合衆国, ミシガン 48642, ミッドランド, ラパノス ドライブ 1913

(72)発明者 クオーデラー, ジョージ ジェイ. ジュニア

アメリカ合衆国, ミシガン 48640, ミッドランド, ムーアランド ドライブ 4309

F ターム(参考) 4G066 AA20B AA22B AA30B AA61B AA63B BA09 BA20 BA23 BA36 CA56

DA07 GA11 GA32 GA33 GA35

4H059 AA02 AA12 AA14 BA01 BA12 BA22 BA30 BB51 BC13 BC17

CA21 CA64