

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C12Q 1/68, 1/14, C12N 15/00 C07H 21/00, A61K 48/00		A1	(11) International Publication Number: WO 92/05284 (43) International Publication Date: 2 April 1992 (02.04.92)
<p>(21) International Application Number: PCT/US91/06646</p> <p>(22) International Filing Date: 18 September 1991 (18.09.91)</p> <p>(30) Priority data: 586,185 21 September 1990 (21.09.90) US</p> <p>(71) Applicants: UNIVERSITY OF MARYLAND [US/US]; 660 West Redwood Street, Baltimore, MD 21201 (US). JOHNS HOPKINS UNIVERSITY [US/US]; Charles & 34th, Baltimore, MD 21218 (US).</p> <p>(72) Inventors: AURELIAN, Laure ; 3404 Bancroft Road, Baltimore, MD 21215 (US). TS'O, Paul, O., P. ; 9039 Furrow Avenue, Ellicot City, MD 21043 (US).</p>		<p>(74) Agent: MACK, Susan, J.; Sughrue, Mion, Zinn, Macpeak & Seas, 2100 Pennsylvania Avenue, N.W., Washington, DC 20037-3202 (US).</p> <p>(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), NO, SE (European patent), SU⁺.</p> <p>Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>	
<p>(54) Title: COMPOSITIONS AND METHODS FOR INHIBITING GROWTH OR REPLICATION OF VIRUSES</p> <p>(57) Abstract</p> <p>The invention relates to compositions and methods for inhibiting the growth or replication of microbes, viruses or self-replicating nucleic acids. Antisense oligonucleotides that bind to strategic sites in the microbe, virus or self-replicating nucleic acid genome find particular utility in preventing proliferation and pathogenesis; and in detecting microbe, virus or self-replicating nucleic acid. Therapeutic compositions comprising at least two oligonucleotides and methods using the compositions are effective in inhibiting the growth or replication of homologous and heterologous microbes, viruses or self-replicating nucleic acids.</p>			

+ DESIGNATIONS OF "SU"

Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Côte d'Ivoire	LI	Liechtenstein	SU+	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark				

- 1 -

C O M P O S I T I O N S A N D M E T H O D S F O R I N H I B I T I N G
G R O W T H O R R E P L I C A T I O N O F V I R U S E S

1 The invention described and claimed herein was
2 supported in part by grants from the Department of
3 Health and Human Services, National Institutes of
4 Health.

5 FIELD OF THE INVENTION

6 The invention relates to oligonucleotides;
7 medicaments and pharmaceutical compositions
8 comprising the oligonucleotides; methods of
9 detecting microbes, viruses and self-replicating
10 nucleic acids using the oligonucleotides; methods
11 of inhibiting growth or replication of microbes,
12 viruses and self-replicating nucleic acids using
13 the oligonucleotides; and therapeutic methods using
14 the oligonucleotides to inhibit homologous and
15 heterologous growth or replication of microbes,
16 viruses or self-replicating nucleic acids.

17 BACKGROUND OF THE INVENTION

18 Antisense RNA that can inhibit selectively
19 gene expression at the level of translation or mRNA
20 processing has been proposed as a possible genetic
21 approach for the prevention and treatment of
22 disease. Antisense RNA introduced directly into
23 cells or expressed off transfected DNA has been
24 shown to repress the expression of endogenous
25 eukaryotic genes. However, the inherent properties
26 of RNA and problems of working with RNA, such as
27 the near ubiquitous presence of RNases in cells,
28 reagents and supplies, has stimulated a search for

1 alternative means of genetically repressing the
2 expression of specific genes using antisense
3 oligonucleotides.

4 One such development is non-ionic nucleic acid
5 analogues that contain a 3'-5' methylphosphonate
6 group in place of the negatively charged
7 phosphodiester group found normally in
8 oligonucleotides. The analogues are resistant to
9 nuclease hydrolysis and penetrate the plasma
10 membrane of cells in culture. Other means of
11 improvement include the use of terminal blocking
12 groups, intercalating agents or phosphorothioates.

13 Antisense oligonucleotides have found limited
14 success in inhibiting the growth of Rous sarcoma
15 virus, vesicular stomatitis virus, simian virus 40,
16 influenza virus and human immunodeficiency virus.

17 SUMMARY OF THE INVENTION

18 Accordingly, one object of the instant
19 invention is to provide oligonucleotides that
20 inhibit herpesvirus growth or replication in a
21 superior manner.

22 A second object of the invention is to provide
23 novel compositions and methods for inhibiting
24 growth or replication of microbes, viruses or self-
25 replicating nucleic acids.

Another object of the invention relates to the use of multiple oligonucleotides directed to non-overlapping sites in a microbe, virus or self-replicating nucleic acid genome to inhibit growth or replication thereof.

31 A fourth object of the invention is to provide
32 novel compositions and methods for inhibiting
33 growth or replication of a primary microbe, virus
34 or self-replicating nucleic acid, such as a
35 herpesvirus, and of a secondary microbe, virus or
36 self-replicating nucleic acid, such as human
37 immunodeficiency virus, using one or more

- 3 -

1 oligonucleotides hybridizable with nucleic acids of
2 said primary microbe, virus or self-replicating
3 nucleic acid.

4 These and other objects have been attained by
5 providing novel oligonucleotides that hybridize to
6 specific target sites in the genome of a microbe,
7 virus or self-replicating nucleic acid.

8 The invention provides a method of detecting
9 herpesvirus comprising the steps of:

10 (i) obtaining a biologic
11 sample containing nucleic
12 acids;
13 (ii) treating said sample so
14 the nucleic acids contained
15 therein are made single
16 stranded;
17 (iii) exposing said treated
18 sample to a labelled
19 oligonucleotide wherein said
20 oligonucleotide is
21 hybridizable with nucleic
22 acids of herpesvirus; and
23 (iv) detecting hybridized
24 sequences.

25 In one aspect, the invention provides a
26 composition for inhibiting herpesvirus growth or
27 replication comprising an oligonucleotide
28 hybridizable with nucleic acids of said
29 herpesvirus.

30 In another embodiment, the invention provides
31 a method for inhibiting herpesvirus growth or
32 replication comprising the step of contacting
33 nucleic acids of herpesvirus with an
34 oligonucleotide hybridizable with said nucleic
35 acids of herpesvirus.

36 In yet another embodiment, the invention
37 provides therapeutic compositions for inhibiting

- 4 -

1 herpesvirus growth or replication comprising an
2 oligonucleotide, or pharmaceutically acceptable
3 salts thereof, hybridizable with nucleic acids of
4 herpesvirus and a pharmaceutically acceptable
5 carrier.

6 In an even further embodiment, the invention
7 provides a therapeutic method for inhibiting
8 herpesvirus growth or replication in a host
9 carrying herpesvirus comprising administering a
10 pharmaceutically effective amount of a therapeutic
11 composition comprising an oligonucleotide, or
12 pharmaceutically acceptable salts thereof,
13 hybridizable with nucleic acids of herpesvirus.

14 In another embodiment the invention provides
15 a composition for inhibiting growth or replication
16 of a microbe, virus or self-replicating nucleic
17 acid comprising at least two oligonucleotides
18 hybridizable with non-overlapping sites in nucleic
19 acids of said microbe, virus or self-replicating
20 nucleic acid.

21 In a further embodiment the invention provides
22 a method for inhibiting growth or replication of a
23 microbe, virus or self-replicating nucleic acid
24 comprising the step of contacting nucleic acids of
25 a microbe, virus or self-replicating nucleic acid
26 with at least two oligonucleotides hybridizable
27 with non-overlapping sites in nucleic acids of said
28 microbe, virus or self-replicating nucleic acid.

29 In an even further embodiment, the invention
30 provides therapeutic compositions for inhibiting
31 microbe, virus or self-replicating nucleic acid
32 growth or replication comprising at least two
33 oligonucleotides, or pharmaceutically acceptable
34 salts thereof, hybridizable with non-overlapping
35 sites in nucleic acids of said microbe, virus or
36 self-replicating nucleic acid and a
37 pharmaceutically acceptable carrier.

- 5 -

1 In another embodiment, the invention provides
2 a therapeutic method for inhibiting microbe, virus
3 or self-replicating nucleic acid growth or
4 replication in a host carrying a microbe, virus or
5 self-replicating nucleic acid comprising
6 administering pharmaceutically effective amounts of
7 at least two oligonucleotides, or pharmaceutically
8 acceptable salts thereof, hybridizable with non-
9 overlapping sites in nucleic acids of said microbe,
10 virus or self-replicating nucleic acid.

11 In yet a further embodiment, the invention
12 provides a composition for inhibiting human
13 immunodeficiency virus growth or replication in a
14 specimen containing human immunodeficiency virus
15 and a second virus comprising at least one
16 oligonucleotide hybridizable with nucleic acids of
17 said second virus.

18 The invention further provides a method for
19 inhibiting human immunodeficiency virus growth or
20 replication in a specimen containing human
21 immunodeficiency virus and a second virus
22 comprising the step of contacting nucleic acids of
23 said second virus with at least one oligonucleotide
24 hybridizable with nucleic acids of said second
25 virus.

26 Another embodiment of the invention is a
27 therapeutic composition for inhibiting human
28 immunodeficiency virus growth or replication in a
29 host carrying human immunodeficiency virus and a
30 second virus comprising at least one
31 oligonucleotide, or pharmaceutically acceptable
32 salts thereof, hybridizable with nucleic acids of
33 said second virus and a pharmaceutically acceptable
34 carrier.

35 Finally, the invention provides a therapeutic
36 method for inhibiting human immunodeficiency virus
37 growth or replication in a host carrying human

- 6 -

1 immunodeficiency virus and a second virus
2 comprising administering a pharmaceutically
3 effective amount of at least one oligonucleotide,
4 or pharmaceutically acceptable salts thereof,
5 hybridizable with nucleic acids of said second
6 virus.

7 BRIEF DESCRIPTION OF THE FIGURES

8 Figure 1 is a schematic representation of the
9 herpes simplex virus (HSV) genome with several
10 genes preferred as targets for antisense
11 oligonucleotides highlighted. In the figure, U_L
12 denotes the long unique sequence segment flanked by
13 the terminal, TR_L , and internal, IR_L , repeat
14 sequences. U_S denotes the short unique sequence
15 segment flanked by the internal, IR_S , and terminal,
16 TR_S , repeat sequences. Above the gene map is a
17 relative scale wherein 1 represents the entire HSV
18 genome.

19 Figure 2 is another schematic representation
20 of the HSV genome showing other relevant genes.
21 The long region is divided into functional domains
22 as determined by restriction enzymes and denoted as
23 C, F, E and D. ORF size is the predicted open
24 reading frame size in kilobases (K). In the
25 relative scale above the gene map, the solid boxes
26 represent the long segment flanking repeats and the
27 hollow boxes represent the short segment flanking
28 repeats. The genes are identified numerically,
29 such as UL5, or according to function and include
30 dbp which encodes the major DNA binding protein,
31 which is involved in DNA unwinding, and pol which
32 encodes DNA polymerase.

33 Figure 3 depicts dose response curves of HSV-1
34 growth in cells exposed to antisense
35 oligonucleotides. Vero cells were infected with 10

- 7 -

1 pfu per cell of HSV-1 and treated with increasing
2 concentrations of oligonucleotide at the time of
3 infection. The cultures were assayed for
4 infectious virus 24 hours later. Results are
5 expressed as the percent inhibition of virus titers
6 compared to untreated HSV-1-infected cells. In the
7 figure, the solid circles represent the
8 oligonucleotide TTCCTCCTGCGG; the X's represent the
9 oligonucleotide TCCTCCTG; the hollow squares
10 represent the oligonucleotide GCAGGGAAAGGCAC; the
11 solid squares represent the oligonucleotide
12 TCCTGCGGGAAAG; the solid triangles represent the
13 oligonucleotide TTCCTCCT; and the hollow triangles
14 represent the oligonucleotide TCCTGCGG.

15 Figure 4 depicts activation of HSV by the
16 IE110 gene product and inhibition of IE110-induced
17 activation by specific oligonucleotides. Vero
18 cells were transfected with pICP10-cat, a plasmid
19 carrying an HSV promoter and the CAT structural
20 gene, and activating IE110. In the graph, the open
21 bar represents cells grown in the absence of an
22 oligonucleotide; the hatched bars denoted as (a)
23 represent cells grown in the presence of the
24 oligonucleotide TTCCTCCTGCGC; the stippled bars
25 denoted as (b) represent cells grown in the
26 presence of the oligonucleotide GCAGGGCTCCAT; and
27 the dotted bars denoted as (c) represent cells
28 grown in the presence of the oligonucleotide
29 AGTCTGCTGCAA.

30 Figure 5 depicts dose response and inhibition
31 of HSV-1 growth in cells by antisense
32 oligonucleotides, as in Figure 3. In the figure
33 solid circles represent the oligonucleotide
34 TTCCTCCTGCGG; solid triangles represent the
35 oligonucleotide GCTTACCCGTGC; X's represent the
36 oligonucleotide GCAGGGCTCCAT; and hollow circles
37 represent the oligonucleotide AGTCTGCTGCAA.

1 Figure 6 shows the effect of virus m.o.i.
2 (multiplicity of infection) on dose response
3 inhibition of HSV-1 growth by an oligonucleotide
4 complementary to the translation initiation site of
5 HSV-1 IE mRNA 1 with the sequence GCGGGGCTCCAT,
6 designated IE110. In the figure solid circles
7 represent Vero cells infected with 0.1 pfu per cell
8 of HSV-1 and hollow circles represent cells
9 infected with 10 pfu per cell of HSV-1.

10 Figures 7A and 7B depict dose response
11 inhibition of HSV-1 growth in Vero cells exposed to
12 antisense oligonucleotides.

13 In Figure 7A, HSV-1 growth in Vero cells
14 infected with 0.1 pfu per cell of HSV-1 was
15 monitored. In the figure, X's represent the
16 oligonucleotide GCGGGGCTCCAT (designated as IE110);
17 circles represent the oligonucleotide TTCCCTCCTGCGG
18 (designated as IE4,5); and squares designate the
19 use of both oligonucleotides simultaneously.

20 In Figure 7B, the synergistic effect of IE110
21 and IE4,5 oligomers on the inhibition of HSV-2
22 replication is depicted. The concentration of each
23 oligonucleotide was covaried and inhibition of
24 plaque formation was determined. The term FIC
25 denotes the ratio of the concentration of IE4,5
26 required to inhibit plaque formation by 60% in the
27 presence of a fixed concentration of IE110 to the
28 concentration required in the absence of IE110.
29 The units of the X axis are the ratio of the fixed
30 concentration of IE110 to the concentration of
31 IE110 that produced 60% inhibition of plaque
32 formation in the absence of IE4,5. The diagonal
33 line (the X's) shows the theoretical plot for each
34 oligonucleotide used alone. The solid circles
35 represent the synergistic effect of the
36 combination.

- 9 -

1 Figure 8 depicts dose response curves of HSV-1
2 growth in cells exposed to antisense
3 oligonucleotides. In the figure, the small circles
4 represent oligomer specific for the IE5 initiation
5 site and designated IE12 with the sequence
6 GGCCCACGACAT. IE12 does not show significant
7 inhibition. Triangles represent the
8 oligonucleotide AATGTCGGCCAT (designated as IE68
9 and specific for the IE4 initiation site). The
10 large circles represent inhibition obtained by
11 combining the two oligonucleotides. At all points,
12 the combination of oligonucleotides achieves a
13 higher level of inhibition at a lower concentration
14 of oligonucleotides than when either is used alone.
15 In the combination treatment, the points represent
16 total concentration of both oligonucleotides.

17 Figure 9 depicts inhibition of HIV activation
18 by a herpesvirus-specific oligonucleotide. Cells
19 were cotransfected with a plasmid carrying the HIV
20 promoter upstream of the CAT structural gene and a
21 plasmid encoding the HSV-1 IE110 protein. The
22 transformants were then exposed to varying
23 concentrations of oligonucleotides. Oligomer to
24 the initiation site of IE110 is GCGGGGCTCCAT, to
25 the second splice acceptor site of IE110 is
26 AGTCTGCTGCAA and to the splice acceptor site of
27 IE4,5 is TTCCTCCTGCGG.

28 Figure 10 depicts inhibition of HIV activation
29 by a herpesvirus-specific oligonucleotide,
30 GCGGGGCTCCAT (designated as IE110 oligomer); and
31 activation by the IE110 protein of HSV-1 and the
32 homologous gene product from cytomegalovirus
33 (designated as CMV). The IE110 protein and the
34 oligonucleotide were combined in one treatment.
35 The curve denoted PBR is a control using pBR322.
36 IFU is infectious forming unit.

- 10 -

1

DETAILED DESCRIPTION OF THE INVENTION

2 The invention relates to inhibiting growth or
3 replication of microbes, viruses or self-
4 replicating nucleic acids, or the translation or
5 expression of microbe, virus or self-replicating
6 nucleic acid genes that are essential for growth
7 and proliferation, by interfering with the normal
8 means of expression of critical genes by using
9 antisense oligonucleotides that are complementary
10 to specific targeted sites in the microbe, virus or
11 self-replicating nucleic acid genome.

12 The compositions and methods of the instant
13 invention find utility in the detection, diagnosis
14 and manipulation of the herpesviruses and in the
15 treatment of disease caused directly or indirectly
16 by the herpesviruses.

17 Particular advantages are obtained with any
18 microbe, virus or self-replicating nucleic acid
19 when more than one oligonucleotide is used wherein
20 the oligonucleotides are directed to non-
21 overlapping sites in the microbe, virus or self-
22 replicating nucleic acid genome, that is, to
23 separate target sites.

24 The term "oligonucleotide" is used herein to
25 include oligomers comprised of deoxyribose and
26 ribose, the sugars found normally in nucleic acids,
27 and modified analogs thereof, such as 2'-O-methyl
28 ribose. The oligonucleotide may bind to single-
29 stranded nucleic acids or to double-stranded
30 nucleic acids.

31 The term "self-replicating nucleic acids" is
32 used herein to include nucleic acids found in
33 organelles, such as chloroplasts and mitochondria,
34 and alone, such as plasmids, viroids and the like.

35 The term "virus" is used herein to include
36 intracellular agents that are characterized by a

- 11 -

1 lack of independent metabolism and by the ability
2 to replicate only within living host cells.

3 The term "microbe" is used herein to include
4 prokaryotes, such as bacteria, actinomycetes,
5 chlamydiae, mycoplasmae and the like; and
6 eukaryotes, such as protozoa, fungi, parasites and
7 the like.

8 For example, the herpesviruses, whose natural
9 host is the human species, comprise seven species,
10 herpes simplex type 1 (HSV-1) and type 2 (HSV-2),
11 varicella zoster (VSV), Epstein-Barr (EBV),
12 cytomegalovirus (HCMV), human herpesvirus 6 (HHV-6)
13 and 7 (HHV-7). (As used herein, the term
14 "herpesvirus" includes the seven species described
15 above.) They are DNA viruses with large genomes.
16 Common genetic features include repeat sequences,
17 long and short unique sequences and immediate-early
18 regulatory genes that control the transcription and
19 expression of downstream genes.

20 The oligonucleotides can be produced in any of
21 a variety of art-recognized methods, for example
22 the commonly used solid phase triester or
23 phosphoramidite chemistry. Nucleic acid synthesis
24 *in vitro* has become highly automated using
25 equipment that is readily available to the artisan.
26 Furthermore, customized oligonucleotides can be
27 obtained under contract from a variety of
28 commercial sources. Alternatively, the antisense
29 nucleotides can be synthesized *in situ* by
30 transfected cells with an appropriate cloned
31 sequence.

32 The oligonucleotides must be capable of
33 bypassing membranous barriers, of resisting the
34 degradative means present in the milieu and
35 hybridizing the nucleic acids of the microbe, virus
36 or self-replicating nucleic acid. Thus, unmodified
37 oligodeoxyribonucleotides and oligoribonucleotides,

- 12 -

1 and other oligonucleotides can be used if
2 introduced directly into cells by methods including
3 electroporation, microimmunization, liposome
4 fusion, precipitation and microparticle
5 bombardment.

6 The antisense oligonucleotides also can be
7 produced endogenously in host cells following
8 transfection by an appropriate recombinant.
9 Sequences encoding the antisense molecule are
10 cloned into an appropriate site in an expression
11 cassette carrying the necessary host RNA polymerase
12 binding sites of a vector. The recombinant is then
13 introduced into cells using standard techniques,
14 such as those described above.

15 Chemically modified oligonucleotides (or as
16 used herein "modified oligonucleotides or modified
17 oligonucleosides or modified nucleosides") may be
18 used, for example, oligonucleoside
19 methylphosphonates as described in U.S. Patent No.
20 4,469,863 or 4,511,713; phosphorothioate analogs as
21 described in Matsukura et al. (PNAS 84, 7706-7710,
22 1987); oligonucleotides carrying terminal groups
23 and oligomers that are dervitized, such as with
24 psoralen. Modified nucleotides offer the
25 advantages of increased hydrophobicity or nuclease
26 resistance or both. Thus, oligonucleotides
27 carrying certain modified bases are capable of
28 penetrating the mammalian cell plasma membrane.
29 Also, the termini of the oligonucleotide can be
30 modified to render the oligomer resistant to
31 intracellular exonucleases. The use of chemically
32 modified oligonucleotides is preferred in
33 practicing the instant invention, and especially
34 preferred is the use of oligonucleoside alkyl or
35 aryl phosphonates.

36 The oligonucleotides can vary in size
37 depending upon the specificity desired, expected

- 13 -

1 intracellular stability and technical
2 considerations. Generally, the longer the
3 oligonucleotide the greater the specificity, at
4 least in the range of 8 to 20 nucleotides.
5 However, if the targeted sequences are part of a
6 small microbe, virus or self-replicating nucleic
7 acid genome, then the effective concentration of
8 the driver DNA, that is the microbe, virus or self-
9 replicating nucleic acid genome, in the
10 hybridization reaction between genome target site
11 and oligonucleotide is high thereby enabling one to
12 achieve adequate specificity using shorter
13 oligonucleotides. Oligonucleotides of 8 to 20
14 bases are preferred, and those of 12-20 bases are
15 particularly preferred. When introduced by means
16 of an antisense vector, the oligonucleotides can be
17 as large as 50 to 60 bases, if not larger. It is
18 possible, in order to span a larger region, to
19 employ two or more oligomers that hybridize to
20 adjacent sites, for example two 15mers to span a 30
21 base pair site *in situ*.

22 Any means of contacting oligonucleotides with
23 nucleic acids of a microbe, virus or self-
24 replicating nucleic acid is suitable for practicing
25 the instant invention. In a therapeutic setting,
26 a preferred means is to use oligonucleotides that
27 alone or in a composition are stable in the
28 peripheral circulation and can penetrate the cell
29 membrane. The means of introducing the
30 oligonucleotides in a therapeutically effective
31 concentration can be any of those used currently
32 for delivering biologicals, such as immunoglobulin,
33 peptides and enzymes, for example, intravenous
34 administration, intramuscular immunization,
35 implants, intranasal administration, contained in
36 liposomes, attached to a cell-binding agent, such
37 as an antibody, attached to ribozymes and other

- 14 -

1 parenteral routes. Furthermore, because many
2 microbes, viruses or self-replicating nucleic acids
3 produce epithelial lesions, the oligonucleotide may
4 be delivered in a vehicle comprising a cream or an
5 ointment.

6 Suitable concentrations of oligonucleotides
7 needed to inhibit growth or replication of a
8 microbe, virus or self-replicating nucleic acid can
9 be determined readily by the skilled artisan. For
10 example, the animal studies disclosed herein
11 provide a basis for extrapolating dosage in other
12 species based on weight comparisons between the
13 mouse and other species. Or the amounts used
14 herein can provide a reference point for use in
15 other species. The concentration required will
16 depend in part, for example, on the chemistry of
17 the oligonucleotides; having to traverse
18 physiologic barriers, such as the blood-brain or
19 blood-testis barrier; toxicity; route of
20 administration, such as oral, transdermal and
21 nasal; the disease requiring treatment, such as a
22 verruca, an outbreak of shingles, an intestinal
23 ascaritic infestation and bacteremia; and half life
24 in the peripheral circulation. Examples of
25 suitable therapeutic doses in terms of internal
26 doses (that is the dose at the required site in the
27 body) are between 10 nM and 10 μ M.

28 Depending on the intended mode of
29 administration, the oligonucleotides can be
30 delivered in a variety of pharmaceutically accepted
31 ways. The compositions may be in the form of a
32 solid or semisolid, but it is most likely that the
33 oligomers will be administered in liquid form.
34 The compositions will include the oligomers, or
35 pharmaceutically acceptable salts thereof,
36 conventional excipients, such as a sterile buffered
37 saline solution, and other agents, carriers,

- 15 -

1 adjuvants, diluents etc. for increasing the
2 stability, enhancing wettability and the like of
3 the composition.

4 Actual methods and doses are known, or will be
5 apparent to those skilled in the art, for example
6 see Remington's Pharmaceutical Sciences, Mack Publ.
7 Co., Easton, PA.

8 The invention also contemplates the use of at
9 least two oligonucleotides directed to non-
10 overlapping sites in the microbe, virus or self-
11 replicating nucleic acid genome. Because targeted
12 sites are not overlapping and the three-dimensional
13 folding of the microbe, virus or self-replicating
14 nucleic acid genome in a host cell or in situ may
15 not be predictable, each oligonucleotide of a
16 plurality of oligonucleotides contains sequences
17 that are complementary to a single site. An
18 unexpected enhanced inhibition of microbe, virus or
19 self-replicating nucleic acid growth or replication
20 is obtained when more than one oligonucleotide is
21 used, the oligonucleotides being hybridizable to
22 different sites in a single gene or in separate genes.

23 According to the instant invention, there are
24 certain regions of the microbe, virus or self-
25 replicating nucleic acid genome that are preferred
26 as targets for antisense oligonucleotides.

27 Preferred targets are those that have direct
28 or indirect control over basic mechanisms in
29 microbe, virus or self-replicating nucleic acid
30 growth. Thus, regulatory genes expressed early in
31 development that trigger major developmental
32 pathways are suitable (known as master regulatory
33 genes) as are other regulatory genes that control
34 the expression of a smaller number of genes, as in
35 an operon. Other suitable targets are genes
36 involved with microbe, virus or self-replicating
37 nucleic acid replication, such as DNA polymerase

- 16 -

1 and reverse transcriptase. Another set of suitable
2 targets are genes that are involved in pathogenesis
3 per se such as those that confer tissue or cell
4 specificity, virulence and latency.

5 Important sites within the targets are
6 transcription initiation sites (also known as
7 promoter or polymerase binding site), translation
8 initiation sites, splice donor and acceptor sites,
9 messenger cap sites and transcription initiation
10 sites. For example in HSV-1 an oligonucleotide
11 that is hybridizable to the IE2 translation
12 initiation site, such as 5'-ATATCAATGTCAGTCGCCAT-3'
13 (hereinafter all the sequences are in the 5' to 3'
14 orientation), is suitable, as is an oligonucleotide
15 hybridizable to the IE5 translation initiation
16 site, such as GCCCCACGACAT; oligonucleotides
17 hybridizable to the IE4 mRNA cap site, such as
18 GCGGGCGTCGGT, GGCGCCGTCTGC and GTGGCCGGCGCC;
19 oligonucleotides hybridizable to the IE5 mRNA cap
20 site, such as GCGGGCGTCGGT, GGCGCCGTCTGC and
21 GTGGCCGGCGCC; an oligonucleotide hybridizable to
22 the IE4,5 splice acceptor site, such as
23 TTCCCTCCTGCGG; an oligonucleotide hybridizable to
24 the IE4,5 splice donor site, such as GCTTACCCGTGC;
25 an oligonucleotide hybridizable to the IE1
26 translation initiation site, such as GCGGGGCTCCAT;
27 an oligonucleotide hybridizable to the IE3
28 translation initiation site, such as
29 GTTCTCCGACGCCAT; an oligonucleotide hybridizable to
30 the IE3 cap site, such as CGCTCCGTGTGG; and an
31 oligonucleotide hybridizable to the IE4 translation
32 initiation site, such as AATGTCGGCCAT.

33 As mentioned above and will be exemplified
34 further in the Examples following, the size of the
35 oligonucleotide may vary and the oligonucleotide
36 may include bases complementary to the target
37 genomic site that flank the sequences recited

- 17 -

1 herein or lack bases of the sequences recited
2 herein. Thus, the IE4 translation initiation site
3 sequence AATGTCGGCCAT may be extended with
4 complementary, and thus hybridizable bases in
5 either the 5' or 3' direction to obtain an
6 oligonucleotide of more than 12 bases; may be
7 truncated by one or more bases to yield an
8 effective oligonucleotide of fewer than 12 bases;
9 may be extended in either the 5' or 3' direction
10 with a concomitant deletion of one or more bases
11 from the non-extended end to yield an
12 oligonucleotide containing only part of the recited
13 sequence etc., so long as the oligonucleotide is
14 capable of interfering with the normal
15 transcription or translation of IE4.

16 Ideal targeting about a splice site can be
17 achieved with an oligonucleotide that, as equally
18 as possible, spans the exon/intron junction. Ideal
19 targeting about a translation initiation site can
20 be achieved with an oligonucleotide that in the
21 complementary 3' to 5' orientation, begins at the
22 ATG initiation codon and extends into the coding
23 region (thus the oligonucleotide in the 5' to 3'
24 orientation will have as the last three bases CAT).

25 Genes that are essential for synthesizing
26 nucleic acids of a microbe, virus or self-
27 replicating nucleic acid are preferred targets for
28 antisense oligonucleotides (Figure 2). Examples of
29 such genes are those that encode DNA binding
30 proteins, gyrases, enzymes that relate to the
31 synthesis of nucleotide triphosphates, DNA
32 nucleases required for DNA replication and
33 polymerases. Also included are transcription
34 initiation sites or promoter sequences. In the
35 exemplary organism, HSV-1, suitable genes include
36 the DNA polymerase gene, thymidine kinase gene
37 (TK), ribonucleotide reductase gene (RR1 locus,

- 18 -

1 also known as 1CP6, and RR2 locus, also known as
2 38K) and genes encoding enzyme stabilizing proteins
3 such as the 180K for ribonucleotide reductase. An
4 oligonucleotide hybridizable to the polymerase gene
5 is CCGCCGCCACCGGAAAGAT; an oligonucleotide
6 hybridizable to TK is TGGCAGGGTACGAAGCCAT; and an
7 oligonucleotide hybridizable to RR1 is
8 GCGGCTGGCGGCTGGCCAT.

9 Also preferred as targets are sequences which
10 are crucial to transcription, such as promoter
11 sequences. For example, in HSV there is a
12 consensus sequence common to the promoters of the
13 IE genes with the sequence TAATGARAT, wherein R can
14 be any base including A, T, G, C, U or functional
15 equivalents thereof, wherein a functional
16 equivalent is a nitrogenous base that can be
17 substituted and retain complementarity. Examples
18 include inosine and 5-methyl-cytosine.

19 Furthermore, regulatory genes, many of which
20 are not translated, that govern the orderly
21 expression of downstream genes are especially
22 suitable as targets for antisense oligonucleotides.
23 Many of these early expressed regulatory genes are
24 termed master genes. In the HSV-1 genome, the
25 VmW65 locus is one such master gene. An
26 oligonucleotide hybridizable to the VmW65
27 initiation site would be suitable, such as
28 TCGTCGACCAAGAGGTCCAT, CAAACAGCTCGT, CCATGTCGGCAA,
29 GTCCCGCGTCCAT, GCCGTCCCGTC and TGGCGAAGCGCC; and an
30 oligonucleotide hybridizable to the VmW65 mRNA cap
31 site would suffice, such as ACAGCCCGTGGT,
32 CCGAGGAATGAC and CCGTTCCCGAGG.

33 Another set of genes that are preferred for
34 targeting are those that are essential for
35 pathogenesis. In a virus, for example, such genes
36 are those involved in latency, cell tropism, the
37 choice of specific cell to infect or determining

- 19 -

1 virulence. In HSV-1, one such gene is LAT
2 (latency-associated transcript) and suitable
3 oligonucleotides are those hybridizable to the
4 initiation site of LAT ORF-1, such as CACTGGCATGGA,
5 GCATCCTGCCAC, CCCCAGAAAGCAT, GATCCCCGAAAG and
6 CTGACCACCGAT; and those hybridizable to the
7 initiation site of LAT ORF-2, such as GCAGGGCTCTGGT,
8 CCATGTTGGGCA, TGGGGGTGCCAT, GAGTGGGGGTGC and
9 GGTGCCTGGGAG.

10 As mentioned previously, IE genes are not
11 restricted to HSV-1 and are a feature common to the
12 herpesviruses. The IE gene homologues in related
13 herpesviruses are suitable targets for antisense
14 oligonucleotides. Thus in HCMV, oligonucleotides
15 hybridizable to the HCMV IE2 initiation site are
16 suitable, such as CAAGGACGGTGA, CCATCGTGTCAA,
17 AGAGGACTCCAT, GGCAGAGGACTC and CTTTCTCTGGC; as are
18 those hybridizable to the IE2 homologue mRNA cap
19 site, such as GACGGTTCACTA, CAGGCGATCTGA and
20 CGTCTCCAGGCG.

21 In VZV, the HSV-1 IE110 gene homologue is
22 known as gene 61. Oligonucleotides which are
23 suitable are those that are hybridizable to the 61
24 translation initiation site, such as CAACTGGCTGTA,
25 CCATGGTAACAA, TATGGTATCCAT, TAATATGGTATC and
26 ACCGCCCCGCTAA. The VZV 62 gene is the homologue of
27 the HSV-1 IE3 gene. Oligonucleotides which are
28 suitable are those that are hybridizable to the 62
29 translation initiation site, such as TGGGGTGAATTT,
30 CCATCGCACTGG, CGGCGTATCCAT, CGGCGGGCGTATC and
31 GCGCTGCATCGG.

32 Especially preferred is to target two genes
33 that complement the expression and/or function of
34 each other, for example two genes that encode
35 proteins of a metabolic pathway, two genes of a
36 developmental pathway or two master regulatory
37 genes that each control the expression of different

- 20 -

1 developmental programs, or combinations thereof.
2 Knowing the strategy, the skilled artisan can
3 determine readily suitable portions of the microbe,
4 virus or self-replicating nucleic acid to target
5 and hence suitable combinations of
6 oligonucleotides.

7 Although in a preferred embodiment the
8 invention contemplates the use of two or more
9 oligonucleotides, there are instances where a
10 single oligonucleotide is more than 90% effective.
11 For example, the oligonucleotides TTCCCTCCTGC_{GG},
12 GCTTACCCGTGC, GCGGGGCTCCAT and AATGTCCGCCAT each
13 are effective in inhibiting HSV-1 growth when used
14 alone. However, the activity of the
15 oligonucleotides is enhanced, that is additive or
16 synergistic, when used in combination with another
17 oligonucleotide. The phenomenon is manifest as
18 higher level of inhibition or effectiveness at a
19 lower dose or both.

20 The nature in which an oligonucleotide can
21 influence normal gene expression includes binding
22 to existing single-stranded regions in the nucleic
23 acids of a microbe, virus or self-replicating
24 nucleic acid, which includes naturally occurring
25 single-stranded nucleic acids and regions of
26 double-stranded nucleic acids that are melted
27 partially, and binding to double-stranded nucleic
28 acids to form a nucleic acid triplex structure,
29 which includes binding to cloverleaf and stem-loop
30 structures commonly found amongst single-stranded
31 nucleic acids that self base pair or fold back upon
32 themselves. For a review of the topic see Uhlmann
33 & Peyman (Chem Rev 90, 544-579, 1990).

34 Of related interest is the observation that
35 many people infected with HIV (human
36 immunodeficiency virus) do not develop AIDS
37 (acquired immune deficiency syndrome). It is

- 21 -

1 believed that factors other than HIV are essential
2 for activation of HIV thereby enhancing its
3 replication to the levels required to cause AIDS.
4 Among those factors are the viruses including JC,
5 adenoviruses and the herpesviruses including HSV-1,
6 HSV-2, HCMV, VZV, EBV, HHV6 and HHV7. Specific
7 genes of those viruses activate the expression of
8 HIV either directly at the level of virus
9 replication or indirectly by activating expression
10 of a reporter gene driven by the HIV promoter.
11 Thus, inhibition of herpesvirus growth or
12 replication using herpes-specific antisense
13 oligonucleotides prevents HIV activation and may
14 indirectly forestall the progression of events from
15 HIV exposure to the clinical manifestation of AIDS.
16 HSV-1 genes involved in HIV activation include
17 IE110 (encoded by IE1).

18 The invention will now be described in further
19 detail by way of the following non-limiting
20 examples.

21

REFERENCE EXAMPLE

22 The following materials and methods were
23 employed in the experiments described in the
24 Examples.

25 Vero (African green monkey kidney) cells were
26 grown in Eagle's minimal essential medium (MEM)
27 supplemented with 25 mM HEPES and 10% (v/v) fetal
28 bovine serum. HEp-2 (human epidermoid carcinoma
29 No. 2) cells were grown in medium 199 with 10% calf
30 serum. U937 (human histiocytic lymphoma) cells
31 were grown in RPMI 1640 with heat-inactivated fetal
32 calf serum.

33 Oligo(nucleoside-methylphosphonate)s were
34 synthesized, for example, as described in either of
35 Miller et al. (Biochem 18, 5134-5143, 1979), Miller

- 22 -

1 et al. (Nucl Acids Res 10, 979-991, 1982), Miller
2 et al. (Biochem 25, 5092-5097, 1986), U.S. Patent
3 No. 4,469,863 or U.S. Patent No. 4,511,713.
4 Briefly, the process is a solid phase technique
5 using, for example polystyrene as a support. The
6 process consists of esterifying a 5'-O-protected
7 nucleoside having a 3'-hydroxyl group with an alkyl
8 or arylphosphonic acid in the presence of a
9 condensing agent, such as mesitylenesulfonyl
10 tetrazolide. The result is a 5'-O-protected
11 nucleoside-3'-O-alkyl or arylphosphonate. That
12 resulting compound is then esterified with a 3'-O-
13 protected nucleoside having a 5'-hydroxyl group in
14 the presence of a condensing agent to form a fully
15 protected dinucleoside alkyl or arylphosphonate.
16 The protecting groups are removed from the
17 dinucleoside compound to form the dinucleoside
18 alkyl or arylphosphonate. For example, in the case
19 of dA-containing oligomers bearing N-benzoyl
20 protecting groups, the protected dinucleoside was
21 treated with hydrazine. The 3'-O-acetyl and 5'-O-
22 dimethoxytrityl protecting groups were removed by
23 sequential treatment with ammonium hydroxide and
24 80% acetic acid.

25 The process is repeated the requisite number
26 of steps using the appropriate protected
27 nucleosides to form an oligonucleotide of defined
28 length and sequence.

29 Alternatively, the process can also be carried
30 out by esterifying a 3'-O-protected nucleoside
31 having a 5'-hydroxyl group with an alkyl or
32 arylphosphonate in the presence of an activating
33 agent to form a 3'-O-protected nucleoside-5'-O-
34 alkyl or arylphosphonate. That compound is then
35 esterified with a 5'-O-protected nucleoside having
36 a 3'-hydroxyl group in the presence of an
37 activating agent to form a fully protected

- 23 -

1 dinucleoside alkyl or arylphosphonate. As
2 described above, the protecting groups are removed
3 to form the dinucleoside alkyl or arylphosphonate.
4 Further details can be obtained by referring to one
5 of the above-mentioned references.

6 HSV-1 was grown and titered on Vero or HEp-2
7 cells as described in Strnad & Aurelian (Virol 87,
8 401-415, 1978).

9 Cytoplasmic RNA was extracted from virus-
10 infected cells. In some cases, infected cells were
11 treated with cycloheximide (50 µg/ml) to enhance
12 mRNA production. At six hours postinfection, cells
13 were washed and harvested in 100 mM tris/HCl (pH
14 7.4) with 150 mM NaCl. The cells at a
15 concentration of 2×10^7 per ml were resuspended in
16 lysis buffer comprising 10 mM tris/HCl (pH 7.5)/150
17 mM NaCl/1.5 mM MgCl₂/0.5% Nonidet P-40/20 mM vanadyl
18 ribonucleoside complex. The suspension was
19 vortexed gently and placed on ice for 10 minutes.
20 After lysis, the suspension was centrifuged at 400
21 x g for 5 minutes, the supernatant was removed and
22 added to 3 volumes of buffer containing 10 mM
23 tris/HCl (pH 7.5), 5 mM EDTA and 0.5% sodium
24 dodecyl sulphate. The solution was extracted with
25 phenol/chloroform followed by chloroform, made 0.3
26 M in sodium acetate (pH 5.0) and precipitated with
27 2.5 volumes of cold ethanol.

28 S1 nuclease analysis was performed by co-
29 precipitating a labelled viral genomic probe (Kulka
30 et al. PNAS 86, 6868-6872, 1989) with 10 µg of
31 cytoplasmic RNA obtained as described above. The
32 virus-infected cells were either treated or not
33 treated with one or more oligonucleotides. The
34 DNA/RNA pellet was resuspended in 20 µl of 90%
35 (v/v) formamide in 0.4 M NaCl/40 mM PIPES, pH 6.8/1
36 mM EDTA. The mixture was heated at 90°C for 3
37 minutes, incubated at 57.5°C for 16 hours and then

- 24 -

1 rapidly chilled on ice. Nuclease S1 digestion was
2 performed at 28°C for 1 hour in 300 µl of 0.25 M
3 NaCl/30 mM sodium acetate, pH 4.5/2 mM ZnSO₄ with 60
4 units of S1 nuclease. The S1-digested hybrids were
5 extracted with phenol/chloroform and precipitated
6 with ethanol. The products were analyzed by
7 electrophoresis (room temperature, 16 hours, 50V)
8 on 1.5% agarose gels under nondenaturing (90 mM
9 tris/90 mM boric acid, pH 8.3/1 mM EDTA) or
10 alkaline (30 mM NaOH/2 mM EDTA) conditions. Gels
11 were dried on DE-18 paper and radioactivity
12 visualized by autoradiography (at room temperature)
13 using Kodak X-Omat-S film. Relative proportions of
14 spliced and unspliced mRNA were determined by
15 densitometric scanning on a UV/visible
16 spectrophotometer.

17 Cell proteins were metabolically labelled with
18 [³⁵S] methionine (150 µCi/per ml) from 6 to 7 hours
19 post-infection. The cells were harvested, washed
20 in cold PBS (phosphate-buffered saline) and
21 resuspended in lysis buffer (10 mM tris, pH 8.0/150
22 mM NaCl/1% Nonidet P-40/1% deoxycholate/0.1% sodium
23 dodecyl sulphate/1 mM phenylmethylsulfonyl
24 fluoride) at a concentration of 1 x 10⁵ cells per 25
25 µl. Suspensions were placed on ice for 15 minutes
26 and then subjected to 5 rounds of freeze-thaw. The
27 suspensions were cleared of cell debris by
28 centrifugation at 5000 x g for 10 minutes.
29 Electrophoresis was carried out under reducing
30 conditions in 8.5% polyacrylamide gels.

31 For in vivo assays the antiviral activity of
32 an oligonucleotide was examined in the mouse.
33 Mice were anesthetized using, for example, ether or
34 intraperitoneal injection of sodium pentobarbital.
35 Animals were infected with about 2 x 10³ to 1 x 10⁶
36 pfu of HSV-1. Animals were ear injected with a
37 volume of approximately 10 µl or in the foot pad

- 25 -

1 with about the same volume. Mice in experimental
2 groups were treated dermally with oligomer in a PEG
3 base at the site of injection on day 0 or on days
4 0-5 after infection or injected with oligomer at
5 infection. Tissues were examined for virus titer
6 on day 6 after infection. Virus titers were
7 determined on Vero cells.

8 For chloramphenicol acetyl transferase (CAT)
9 assay, constructs were prepared using the plasmid
10 pCATB' and method described in Wymer et al. (J.
11 Virol 63, 2773-2784, 1989). The plasmid contains
12 the CAT structural gene without eukaryotic promoter
13 sequences. The construct pICP10-cat contains a 649
14 base pair fragment of HSV-2 DNA, the ICP10
15 promoter, inserted 5' to the CAT structural gene.
16 A plasmid carrying the HIV promoter (HIV-LTR)
17 driving the CAT gene was also used. With the
18 appropriate transcription signals, the CAT mRNA is
19 produced and translation of the bacterial CAT
20 occurs.

21 CAT activity was monitored using an art-
22 recognized assay. Briefly, 0.2 μ Ci of [14 C]
23 chloramphenicol substrate is mixed with the test
24 solution and incubated for 1 hour. Radioactivity
25 was monitored in a liquid scintillation counter.
26 Generally, Vero cells were cotransfected with the
27 target plasmid pICP10-cat and a transactivating
28 IE110 containing plasmid (pIGA-15) as described in
29 Wymer et al., supra. The transfection mixtures
30 contain 1 mg of target plasmid and 0.1 mg of
31 transactivator DNA. Parallel cotransfections
32 employ pBR322 as non-specific DNA to equalize
33 concentration effects. The recombinant plasmid
34 pSV2CAT was used as a positive control and the
35 plasmid pCATB' was used as a negative control.
36 Transfected cells were incubated in the presence or
37 absence of increasing concentrations (0-250 μ M) of

- 26 -

1 oligomer added immediately after transfection (0
2 hours) and harvested 40-44 hours later.

3 HIV titers were determined by a syncytium
4 formation assay. Briefly AA2 cells (2×10^4) were
5 grown in 96-well flat bottom microliter plates in
6 RPMI 1640 with 10% heat-inactivated fetal calf
7 serum, non-essential amino acids, 1 mM pyruvate and
8 1.5 μ g/ml polybrene (Sigma). HTLV-III_B was obtained
9 by clarifying the supernatant of an infected MOLT-3
10 cell line grown in RPMI 1640 with 10% heat-
11 inactivated fetal calf serum. Two-fold dilutions
12 of MOLT-3 supernatant in 100 μ l volumes were added
13 to the AA2 cultures and incubated for 5-8 days.
14 Titers, expressed as infectious units, represent
15 the reciprocal of the highest dilution that gives
16 rise to syncytium formation.

17 EXAMPLE 1

18 Vero cells were exposed to the dodecamer,
19 TTCCCTCCTGCGG (0-100 μ M) at the time of infection
20 with HSV-1 (10 pfu per cell) and virus titers were
21 determined 24 hours later. Other oligomers were
22 used in similar fashion. The results of those
23 experiments are shown in Figure 3 and summarized in
24 Table 1 on the following page.

25 Cultures exposed to the octomer TCCTCCTG and
26 dodecamer showed a dose dependent decrease in HSV-1
27 titer. Significant reduction in virus growth (90-
28 98%) was seen in cultures exposed to the dodecamer
29 in a concentration of 100 μ M.

30 IE mRNA's 4 and 5 are colinear on the HSV-1
31 and HSV-2 genomes with 65% base sequence homology
32 at the splice acceptor type. As shown in Table 1,
33 some of the oligonucleotides were effective in both
34 strains whereas other oligonucleotides were
35 specific for HSV-1.

- 27 -

1 TABLE 12 Effect of the oligo(deoxynucleoside
3 methylphosphonate sequence) on HSV growth

5	Oligomer		% inhibition		
	7	Exon	Intron	HSV-1	HSV-2
	9	(3' AAGGAG	GACGCC 5')		
10	TCCTC	CTG		85	40
11	TTCCTC	CT		14	ND
12	GCGTTCCTC	CTG		30	0
13	GTTCCTC	CTGCG		26	0
14	TTCCTC	CTGCGG		98	0
15	TC	CTGCGG		0	0
16	TC	CTGCGGGAAAG		9	12
17		GCGGGAAAGGCAC		0	0
18	TCCCT	CTG		0	0

19
20 HSV-1- or HSV-2-infected Vero cells were
21 treated with the respective oligomers (100 μ M) at
22 0 hour postinfection. Infectious virus was
23 determined by plaque assay at 24 hour
24 postinfection. Results are the average of three to
25 six experiments for each oligomer. They are
26 expressed as the percent inhibition of virus titers
27 compared to the appropriate control (no oligomer).
28 HSV-1 IE mRNA 4 acceptor splice site is shown in
29 parentheses. The HSV-2 IE mRNA 4 acceptor splice
30 site is GGGCCG GACGCT.
31

1

EXAMPLE 2

2 Cytoplasmic RNA (10 µg) extracted from HSV-1-
3 infected HEp-2 cells untreated or treated with 100
4 µM of the dodecamer TTCCTCCTGCCT at the time of
5 infection was hybridized with a labelled HSV probe
6 and then digested with S1 nuclease.

7 On neutral gels the band pattern of nuclease-
8 resistant products from untreated cells consisted
9 of two major bands which were interpreted to
10 represent the 5' leader to the HindIII site (1200
11 base pairs, bp) and the splice junction to the
12 HindIII site (930 bp).

13 Nuclease-resistant products from the oligomer-
14 treated cells consisted of three bands. They
15 included 930 bp and 1200 bp products, equivalent to
16 those identified in untreated cells, and an
17 additional band that consisted of unspliced mRNA
18 and the 145 bp intron joined to the 1200 bp leader.

19 Analysis of S1 nuclease-resistant products on
20 alkaline gels confirmed the presence of unspliced
21 IE mRNA 4 in oligomer-treated cells. Thus, one
22 band was observed in untreated HSV-1-infected cells
23 representing a 3' terminal transcript extending
24 from the splice junction to the HindIII site (about
25 900 bp).

26 The nuclease-resistant products from oligomer-
27 treated cells revealed two bands including the 900
28 bp band and an additional 1300 bp band that
29 probably corresponded to an RNA transcript
30 extending from the 5' leader through the intron to
31 the 3' HindIII site.

32 Approximately 16-20% of the IE mRNA 4 from
33 oligomer-treated cells was present as unspliced
34 message, as determined by densitometric scanning.
35 The result was about a 20% decrease in the levels
36 of spliced mRNA.

- 29 -

1

EXAMPLE 3

2 HEp-2 cells were infected with HSV-1 (25 pfu
3 per cell) or mock infected with PBS in the presence
4 of 2.8 mM L-canavanine. (L-canavanine restricts
5 gene expression to IE(α) and a subclass of E(β)
6 proteins.) The cells were then treated with 100 mM
7 of the dodecamer, TTCCCTCCTGC_{GG}. The cells were
8 labelled with [³⁵S] methionine (150 μCi/ml) at 6-7
9 hours postinfection. Cell extracts were adjusted
10 to the same protein concentration and analyzed on
11 sodium dodecyl sulphate polyacrylamide gels. The
12 gel analysis revealed that the synthesis of viral
13 but not cellular proteins was reduced significantly
14 by oligomer treatment.

15

EXAMPLE 4

16 In two independent experiments for each
17 oligomer, treatment of HSV-1-infected cells with
18 the dodecamer GC_{GGGG}GCTCCAT, which is complementary
19 to the translation initiation site of IE110, and
20 the dodecamer AGTCTGCTGCAA, which is complementary
21 to the IE110 second splice acceptor site, resulted
22 in a dose dependent inhibition of IE110-mediated
23 transactivation in a CAT assay. In these
24 experiments Vero cells were co-transfected with 1
25 mg of pICP10-cat DNA and 0.1 mg activating IE110
26 DNA. The cells were grown for 40-44 hours in the
27 absence or presence of increasing concentrations of
28 oligomers. The cells were harvested and were
29 assayed for CAT activity.

30 Maximal inhibition of 100% was observed in
31 cells exposed to 250 mM of GC_{GGGG}GCTCCAT. The other
32 dodecamer was somewhat less effective. Inhibition
33 was specific, the dodecamer TTCCCTCCTGC_{GG} that is
34 complementary to the IE mRNA 4,5 splice acceptor

- 30 -

1 site did not inhibit IE110-mediated transactivation
2 (Figure 4).

3 EXAMPLE 5

4 The effect of an oligomer to the donor splice
5 site of IE mRNA4,5 on HSV-1 growth was determined
6 in comparison to the effect of the oligomer to the
7 acceptor splice site shown in Example 1.

8 Vero cells were infected with 10 pfu per cell
9 of HSV-1 and treated with four different dodecamers
10 at a concentration of 0-200 μ M. The dodecamers
11 included the two of Example 4, the dodecamer of
12 Example 1, and the dodecamer complementary to the
13 IE4,5 mRNA splice donor site, GCTTACCCGTGC. Virus
14 titers were determined 24 hours later.

15 As depicted in Figure 5, both of the
16 dodecamers complementary to the IE mRNA4,5 acceptor
17 and donor splice sites resulted in 85-98%
18 inhibition of virus growth in the concentration
19 range of 100-200 mM. However at the m.o.i. of 10,
20 the dodecamer complementary to the IE mRNA1
21 translation initiation site resulted in a maximum
22 of about 15-20% inhibition of virus growth and the
23 dodecamer complementary to the IE mRNA 1 second
24 splice acceptor site resulted in no inhibition.

25 EXAMPLE 6

26 Although the dodecamers of Example 4 showed a
27 dose dependent inhibition of IE110-mediated
28 transactivation of CAT activity, the oligomers had
29 minimal or no affect on HSV-1 growth at a m.o.i. of
30 10.

31 The role of virus concentration and ability of
32 the IE110 oligomers to inhibit HSV-1 growth were
33 examined. Vero cells infected with either 10 pfu

- 31 -

1 or 0.1 pfu per cell of HSV-1 were exposed to the
2 oligomer GCAGGGCTCCAT in a concentration range of
3 0-200 mM at the time of infection. Virus titers
4 were determined 24 hours later.

5 The results are summarized in Figure 6 for two
6 independent experiments. The dodecamer resulted in
7 significant inhibition of virus growth in Vero
8 cells infected at a low m.o.i.

9 EXAMPLE 7

10 The effectiveness of using a plurality of
11 oligonucleotides for the inhibition of virus growth
12 in Vero cells was studied. Vero cells were exposed
13 to the dodecamer GCAGGGCTCCAT and TTCCCTCCTGCGG at
14 a concentration of 0-200 mM at the time of
15 infection with 0.1 pfu per cell of HSV-1. Virus
16 titers were determined 24 hours later.

17 The results are summarized in Figures 7A and
18 7B. Either of the two oligonucleotides, denoted in
19 the figure as IE110 and IE4,5, caused inhibition of
20 virus growth in a dose dependent fashion similar to
21 that found in Examples 1-6 above, with a maximal
22 inhibition of 90-98% at 100-200 mM. When infected
23 cells, however, were treated with both oligomers
24 simultaneously, the effective concentration range
25 for virus inhibition is greater (25-200 mM) than
26 for treatment with either oligonucleotide alone.
27 Additionally, treatment with a plurality of
28 nucleotides resulted in significant inhibition (80-
29 99.8%) at 25-75 mM and a 50% decrease in virus
30 titers at 10 mM.

31 In Figure 7B, the results of the data were
32 calculated and presented according to formulae that
33 verify synergistic interactions between the two
34 oligomers. The data presented in this fashion
35 reveal in a rather dramatic way that a combination

- 32 -

1 of the two oligonucleotides resulted in a
2 synergistic inhibition of viral replication.

3 EXAMPLE 8

4 In a similar study, oligonucleotide
5 complementary to the initiation site of IE4
6 (designated in Figure 8 as IE68) and
7 oligonucleotide complementary to the IE5 initiation
8 site (designated in Figure 8 as IE12) were tested
9 as described above.

10 The data summarized in Figure 8 reveal that
11 the IE12 oligonucleotide was ineffective in
12 inhibiting virus growth whereas the other
13 nucleotides resulted in a 85-95% inhibition of
14 viral growth over a range of 25-200 mM of the
15 oligonucleotides. Mixing the two oligonucleotides
16 did not diminish the binding and inhibitory
17 activity of the IE5 initiation site
18 oligonucleotide.

19 EXAMPLE 9

20 Mice were infected with HSV-1 (2000 pfu),
21 treated with oligomer on day 0 or on days 0-5
22 postinfection and the tissues were examined for
23 virus titers on day 6 postinfection. While single
24 treatment with oligomer (500 μ M) had little effect
25 on virus growth (27% inhibition), daily application
26 resulted in 82% inhibition of virus titers. With
27 a higher concentration of virus per dose, 2×10^6
28 pfu, animals treated twice daily (receiving a total
29 amount of 1000 μ M per day) with TTCTCCTGCGG did
30 not develop lesions (0/5 as compared to 5/5 in
31 untreated animals).

32 Consistent with these studies, animals which
33 were inoculated in the foot pad with HSV-1 (1×10^6

- 33 -

1 pfu) and then treated twice (days 1 and 2 post-
2 immunization) with 50 μ M of dodecamer, showed about
3 an 86% reduction in virus titer.

EXAMPLE 10

5 Although it is unclear why not all people
6 infected with HIV develop AIDS, it is becoming
7 evident that many factors other than HIV are
8 essential for activation of the virus. Notable
9 among the factors that may enhance HIV activation
10 are viruses including JC, adenoviruses and the
11 herpesviruses including HSV-1, HSV-2, HCMV, VZV,
12 EBV, HHV-6 and HHV-7. Specific genes of the
13 herpesviruses activate the expression of HIV either
14 directly at the level of viral replication or by
15 activating expression of a reporter gene driven by
16 the HIV promoter.

17 U937 cells were cotransfected with a construct
18 carrying the HIV-LTR promoter upstream to the CAT
19 structural gene and a construct carrying sequences
20 encoding HSV-1 IE110. Those same transfected cells
21 were then treated with oligomers complementary to
22 the initiation or splice sites of the IE110 gene.
23 After 40 hours of culture, the presence or absence
24 of CAT was determined.

25 Results of a representative experiment are
26 presented in Figure 9. In the experiment, three
27 different oligomers were tested, two are
28 complementary to IE110 sequences and the oligomer
29 denoted as IE4,5 is complementary to an unrelated
30 gene. The oligomers were used at two different
31 concentrations. The two oligomers complementary to
32 IE110 sequences resulted in a dose-related
33 inhibition of the HIV promoter with the oligomer
34 complementary to the initiation site showing a
35 higher level of activity than the oligomer

- 34 -

1 complementary to the second splice site. The
2 effect is specific as the IE4,5 oligomer does not
3 inhibit HIV activation to a significant degree.

4 In another experiment that monitored HIV
5 activation by assaying virus growth (Figure 10), it
6 was found that growth of HIV was enhanced 2500-fold
7 by the addition of HSV IE110 and the activation was
8 reduced significantly by the addition of the IE110
9 oligomer complementary to the initiation site.

10 In the figure, it will be appreciated that
11 untreated cells and cells that were treated with
12 the oligomer showed no HIV activation after 8 days
13 whereas cells treated with the HSV gene product
14 showed remarkable proliferation.

15 When the cells were treated with a combination
16 of IE110 and the oligomer at a concentration of 150
17 mM, a moderate degree of HIV growth was noted. The
18 level of virus growth did not differ however from
19 the degree of HIV activation obtained when the
20 cells were exposed to the control plasmid pBR322.

21 As testimony to the relatedness of the
22 herpesviruses, U937 cells were exposed also to the
23 homologue IE gene product of cytomegalovirus.
24 Although the degree of activation was not as great
25 as that found with the HSV gene product, there was
26 a significant enhancement of HIV growth by the CMV
27 gene product.

28

EXAMPLE 11

29 Additional animal studies revealed that dermal
30 application of oligonucleotides was effective in
31 inhibiting virus replication.

32 Mice were infected with HSV-1 and injected
33 interdermally with the oligonucleotide TTCCCTCCTGCGG
34 at the time of infection. Then once daily
35 thereafter the oligonucleotide suspended in a PEG

- 35 -

1 (polyethylene glycol) cream was applied to the site
2 of infection. The concentration of oligonucleotide
3 in the cream was 500 μ M which is 5-fold higher than
4 used for parenteral administration.

5 The results are summarized in Table 2.

6 TABLE 2

7 **Effect of IE4_{1,5} oligomer on virus clearance**

9 Group (n = 10)	10 Av. virus titer/ear	11 %
12 Inhibition	13 (day 3)	
14 Virus dose (1 x 10⁶ PFU)		
15 Vehicle (no oligomer)	2 x 10 ⁴	
15 Oligomer (500 μ M)	5.0 x 10 ³	75
16 Virus dose (1 x 10⁴ PFU)		
17 Vehicle (no oligomer)	8 x 10 ²	
18 Oligomer (500 μ M)	6.8 x 10 ¹	91.5

20 At either of the two doses, virus titers were
21 reduced significantly, however, somewhat better
22 inhibition was obtained at an initial low virus
23 dose of 1 x 10⁴ pfu.

24 All publications cited in the specification
25 are herein incorporated by reference.

26 It will be appreciated by one of ordinary
27 skill in the art that the compositions and methods
28 of the instant invention are capable of being
29 incorporated in the form of variety of embodiments,
30 only a few of which have been illustrated and
31 described above. The invention may be embodied in
32 other specific forms without departing from the
33 spirit or the central characteristics of said
34 invention. The described embodiments are to be
35 considered in all respects only as illustrative and
36 not restrictive. All changes that come within the

- 36 -

1 meaning and range of equivalency of the claims are
2 to be embraced within the scope of the claims in
3 view of the teachings in the specification.

IN THE CLAIMS:

1. An oligonucleotide selected from the group consisting of:

- (a) T T C C T C C T G C G G;
- (b) G C T T A C C C G T G C;
- 5 (c) G C G G G G C T C C A T;
- (d) A A T G T C G G C C A T;
- (e) A T A T C A A T G T C A G
T C G C C A T;
- (f) G G C C C A C G A C A T;
- 10 (g) G C G G G C G T C G G T;
- (h) G G C G C C G T C T G C;
- (i) G T G G C C G G C G C C;
- (j) G C G G G C G T C G G T;
- (k) G G C G C C G T C T G C;
- 15 (l) G T G G C C G G C G C C;
- (m) G T T C T C C G A C G C C A T;
- (n) C G C T C C G T G T G G;
- (o) C C G C C G C C A C C G G
A A A A C A T;
- 20 (p) T G G C A G G G G T A C G
A A G C C A T;
- (q) G C G G C T G G G C G G C
T G G C C A T;
- (r) T C G T C G A C C A A G A
G G T C C A T;
- 25 (s) C A A A C A G C T C G T;
- (t) C C A T G T C G G C A A;
- (u) G T C C G C G T C C A T;
- (v) G C C G T C C G C G T C;
- 30 (w) T G G C G A A G C G C C;
- (x) A C A G C C C G T G G T;
- (y) C C G A G G A A T G A C;
- (z) C C G T T C C C G A G G;
- (aa) C A C T G G C A T G G A;
- 35 (bb) G C A T C C T G C C A C;
- (cc) C C C C G A A A G C A T;

- 38 -

(dd) G A T C C C C G A A A G;
(ee) C T G A C C A C C G A T;
(ff) G C A G G C T C T G G T;
(gg) C C A T G T T G G G C A;
5 (hh) T G G G G G T G C C A T;
(ii) G A G T G G G G G T G C;
(jj) G G T G C G T G G G A G;
(kk) C A A G G A C G G T G A;
(ll) C C A T C G T G T C A A;
10 (mm) A G A G G A C T C C A T;
(nn) G G C A G A G G A C T C;
(oo) C T T T C T C T T G G C;
(pp) G A C G G T T C A C T A;
(qq) C A G G C G A T C T G A;
15 (rr) C G T C T C C A G G C G;
(ss) C A A C T G G C T G T A;
(tt) C C A T G G T A A C A A;
(uu) T A T G G T A T C C A T;
(vv) T A A T A T G G T A T C;
20 (ww) A C C G C C C G C T A A;
(xx) T G G G G T G A A T T T;
(yy) C C A T C G C A C T G G;
(zz) C G G C G T A T C C A T;
(a') C G G C G G C G T A T C;
25 (b') G C G C T G C A T C G G;
(c') A G T C T G C T G C A A; and
(d') T A A T G A R A T; or

ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, 30 T, G, U and C are adenine, thymidine, guanine, uracil and cytosine, and R is A, T, G, C, U or functional equivalents thereof.

2. The oligonucleotide or ribose containing oligonucleotide of claim 1 selected from the group consisting of:

5 (a) T T C C T C C C T G C G G;
(b) G C T T A C C C G T G C;

- 39 -

- (c) G C G G G G C T C C A T;
- (d) A A T G T C G G C C A T;
- (e) A T A T C A A T G T C A G
T C G C C A T;
- 5 (f) G G C C C A C G A C A T;
- (g) G C G G G C G T C G G T;
- (h) G G C G C C G T C T G C;
- (i) G T G G C C G G C G C C;
- (j) G C G G G C G T C G G T;
- 10 (k) G G C G C C G T C T G C;
- (l) G T G G C C G G C G C C;
- (m) G T T C T C C G A C G C C A T;
- (n) C G C T C C G T G T G G;
- (o) C C G C C G C C A C C G G
15 A A A A C A T;
- (p) T G G C A G G G G T A C G
A A G C C A T;
- (q) G C G G C T G G G C G G C
T G G C C A T;
- 20 (r) T C G T C G A C C A A G A
G G T C C A T;
- (s) C A A A C A G C T C G T;
- (t) C C A T G T C G G C A A;
- (u) G T C C G C G T C C A T;
- 25 (v) G C C G T C C G C G T C;
- (w) T G G C G A A G C G C C;
- (x) A C A G C C C G T G G T;
- (y) C C G A G G A A T G A C;
- (z) C C G T T C C C G A G G;
- 30 (aa) C A C T G G C A T G G A;
- (bb) G C A T C C T G C C A C;
- (cc) C C C C G A A A G C A T;
- (dd) G A T C C C C G A A A G;
- (ee) C T G A C C A C C G A T;
- 35 (ff) G C A G G C T C T G G T;
- (gg) C C A T G T T G G G C A;
- (hh) T G G G G G T G C C A T;

- 40 -

- (ii) G A G T G G G G G T G C;
- (jj) G G T G C G T G G G A G;
- (kk) A G T C T G C T G C A A; and
- (ll) T A A T G A R A T.

3. The oligonucleotide or ribose containing oligonucleotide of claim 2 selected from the group consisting of:

- (a) T T C C T C C T G C G G;
- 5 (b) G C T T A C C C G T G C;
- (c) G C G G G G C T C C A T; and
- (d) A A T G T C G G C C A T.

4. The oligonucleotide or ribose containing oligonucleotide of claim 1 selected from the group consisting of:

- (a) C A A G G A C G G T G A;
- 5 (b) C C A T C G T G T C A A;
- (c) A G A G G A C T C C A T;
- (d) G G C A G A G G A C T C;
- (e) C T T T C T C T T G G C;
- (f) G A C G G T T C A C T A;
- 10 (g) C A G G C G A T C T G A; and
- (h) C G T C T C C A G G C G.

5. The oligonucleotide or ribose containing oligonucleotide of claim 1 selected from the group consisting of:

- (a) C A A C T G G C T G T A;
- 5 (b) C C A T G G T A A C A A;
- (c) T A T G G T A T C C A T;
- (d) T A A T A T G G T A T C;
- (e) A C C G C C C G C T A A;
- (f) T G G G G T G A A T T T;
- 10 (g) C C A T C G C A C T G G;
- (h) C G G C G T A T C C A T;
- (i) C G G C G G C G T A T C; and
- (j) G C G C T G C A T C G G.

- 41 -

6. The oligonucleotide or ribose containing oligonucleotide of claims 1, 2, 3, 4, or 5 which comprises one or more modified nucleosides.

7. The oligonucleotide of claim 6 wherein said modified nucleoside is an aryl or alkyl phosphonate nucleoside.

8. The oligonucleotide of claim 7 wherein said aryl or alkyl phosphonate nucleoside is methylphosphonate nucleoside.

9. A composition for inhibiting herpesvirus growth or replication comprising an oligonucleotide hybridizable with nucleic acids of said herpesvirus.

10. The composition of claim 9 wherein said oligonucleotide hybridizes to a cap site, a transcription initiation site, a translation initiation site or a splice site.

11. The composition of claim 10 wherein said oligonucleotides hybridizable to a splice site contain exon and intron sequences and the difference in the number of bases containing exon 5 sequences and the number of bases containing intron sequences is 0 or 1.

12. The composition of claim 10 wherein said oligonucleotides hybridizable to a translation initiation site are complementary to the ATG initiation codon and adjacent 3' bases in the 5' coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

13. The composition of claims 9, 10, 11 or 12 wherein said oligonucleotide hybridizes to a regulatory gene, a gene required for nucleic acid replication or a gene involved in pathogenesis.

14. The composition of claim 13 wherein said regulatory gene is an immediate-early (IE) gene.

- 42 -

15. The composition of claim 13 wherein said regulatory gene is Vmw65.

16. The composition of claim 13 wherein said oligonucleotide is selected from the group consisting of:

(a) T T C C T C C T G C G G;
 (b) G C T T A C C C G T G C;
 (c) G C G G G G C T C C A T; and
 (d) A A T G T C G G C C A T; or

ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

17. The composition of claim 9 wherein said oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

18. The composition of claim 17 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

19. The composition of claim 16 wherein said oligonucleotide or ribose containing oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

20. The composition of claim 19 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

21. A method of inhibiting herpesvirus growth or replication comprising the step of contacting nucleic acids of said herpesvirus with an oligonucleotide hybridizable with said nucleic acids of herpesvirus.

22. The method of claim 21 wherein said oligonucleotide hybridizes to a cap site, a transcription initiation site, a translation initiation site or a splice site.

23. The method of claim 22 wherein said oligonucleotides hybridizable to a splice site

- 43 -

5 contain exon and intron sequences and the difference in the number of bases containing exon sequences and the number of bases containing intron sequences is 0 or 1.

24. The method of claim 22 wherein said oligonucleotides hybridizable to a translation initiation site are complementary to the ATG initiation codon and adjacent 3' bases in the 5 coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

25. The method of claims 21, 22, 23 or 24 wherein said oligonucleotide hybridizes to a regulatory gene, a gene required for nucleic acid replication or a gene involved in pathogenesis.

26. The method of claim 25 wherein said regulatory gene is an immediate-early (IE) gene.

27. The method of claim 25 wherein said regulatory gene is Vmw65.

28. The method of claim 25 wherein said oligonucleotide is selected from the group consisting of:

5 (a) T T C C T C C T G C G G;
(b) G C T T A C C C G T G C;
(c) G C G G G G C T C C A T; and
10 (d) A A T G T C G G C C A T; or
ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

29. The method of claim 21 wherein said oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

30. The method of claim 29 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

- 44 -

31. The method of claim 28 wherein said oligonucleotide or ribose containing oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

32. The method of claim 31 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

33. A therapeutic composition for inhibiting herpesvirus growth or replication comprising an oligonucleotide, or pharmaceutically acceptable salts thereof, hybridizable with nucleic acids of said herpesvirus and a pharmaceutically acceptable carrier.

34. The therapeutic composition of claim 33 wherein said oligonucleotide hybridizes to a cap site, a transcription initiation site, a translation initiation site or a splice site.

35. The therapeutic composition of claim 34 wherein said oligonucleotides hybridizable to a splice site contain exon and intron sequences and the difference in the number of bases containing exon sequences and the number of bases containing intron sequences is 0 or 1.

36. The therapeutic composition of claim 34 wherein said oligonucleotides hybridizable to a translation initiation site are complementary to the ATG initiation codon and adjacent 3' bases in the coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

37. The therapeutic composition of claims 33, 34, 35 or 36 wherein said oligonucleotide hybridizes to a regulatory gene, a gene required for nucleic acid replication or a gene involved in pathogenesis.

- 45 -

38. The therapeutic composition of claim 37 wherein said regulatory gene is an immediate-early (IE) gene.

39. The therapeutic composition of claim 37 wherein said regulatory gene is Vmw65.

40. The therapeutic composition of claim 37 wherein said oligonucleotide is selected from the group consisting of:

(a) T T C C T C C T G C G G;

5 (b) G C T T A C C C G T G C;

(c) G C G G G G C T C C A T; and

(d) A A T G T C G G C C A T; or

10 ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

41. The therapeutic composition of claim 33 wherein said oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

42. The therapeutic composition of claim 41 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

43. The therapeutic composition of claim 40 wherein said oligonucleotide or ribose containing oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

44. The therapeutic composition of claim 43 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

45. A therapeutic method of inhibiting herpesvirus growth or replication comprising administering to a host carrying herpesvirus a pharmaceutically effective amount of a composition 5 comprising an oligonucleotide, or pharmaceutically acceptable salt thereof, hybridizable with nucleic acids of said herpesvirus.

- 46 -

46. The therapeutic method of claim 45 wherein said oligonucleotide hybridizes to a cap site, a transcription initiation site, a translation initiation site or a splice site.

47. The therapeutic method of claim 46 wherein said oligonucleotides hybridizable to a splice site contain exon and intron sequences and the difference in the number of bases containing 5 exon sequences and the number of bases containing intron sequences is 0 or 1.

48. The therapeutic method of claim 46 wherein said oligonucleotides hybridizable to a translation initiation site are complementary to the ATG initiation codon and adjacent 3' bases in 5 the coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

49. The therapeutic method of claims 45, 46, 47 or 48 wherein said oligonucleotide hybridizes to a regulatory gene, a gene required for nucleic acid replication or a gene involved in pathogenesis.

50. The therapeutic method of claim 49 wherein said regulatory gene is an immediate-early (IE) gene.

51. The therapeutic method of claim 49 wherein said regulatory gene is Vmw65.

52. The therapeutic method of claim 49 wherein said oligonucleotide is selected from the group consisting of:

- (a) T T C C T C C T G C G G;
- (b) G C T T A C C C G T G C;
- (c) G C G G G G C T C C A T; and
- (d) A A T G T C G G C C A T; or

10 ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

- 47 -

53. The therapeutic method of claim 45 wherein said oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

54. The therapeutic method of claim 53 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

55. The therapeutic method of claim 52 wherein said oligonucleotide or ribose containing oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

56. The therapeutic method of claim 55 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

57. A method of detecting herpesvirus comprising the steps of:

(i) obtaining a biologic sample containing nucleic acids;

5

(ii) treating said sample so the nucleic acids contained therein are made single stranded;

10

(iii) exposing said treated sample to a labelled oligonucleotide wherein said oligonucleotide is selected from the group consisting of:

15

(a) T T C C T C C T G C G G;

(b) G C T T A C C C G T G C;

(c) G C G G G G C T C C A T;

(d) A A T G T C G G C C A T;

(e) A T A T C A A T

20

G T C A G T C G

C C A T;

(f) G G C C C A C G A C A T;

(g) G C G G G C G T C G G T;

(h) G G C G C C G T C T G C;

- 48 -

(i) G T G G C C G G C G C C;
(j) G C G G G C G T C G G T;
(k) G G C G C C G T C T G C;
(l) G T G G C C G G C G C C;
5 (m) G T T C T C C G A C G C C A T;
(n) C G C T C C G T G T G G;
(o) C C G C C G C C
A C C G G A A A
A G A T;
10 (p) T G G C A G G G
G T A C G A A G
C C A T;
(q) G C G G C T G G
G C G G C T G G
C C A T;
15 (r) T C G T C G A C
C A A G A G G T
C C A T;
(s) C A A A C A G C T C G T;
20 (t) C C A T G T C G G C A A;
(u) G T C C G C G T C C A T;
(v) G C C G T C C G C G T C;
(w) T G G C G A A G C G C C;
(x) A C A G C C C G T G G T;
25 (y) C C G A G G A A T G A C;
(z) C C G T T C C C G A G G;
(aa) C A C T G G C A T G G A;
(bb) G C A T C C T G C C A C;
(cc) C C C C G A A A G C A T;
30 (dd) G A T C C C C G A A A G;
(ee) C T G A C C A C C G A T;
(ff) G C A G G C T C T G G T;
(gg) C C A T G T T G G G C A;
(hh) T G G G G G T G C C A T;
35 (ii) G A G T G G G G G T G C;
(jj) G G T G C G T G G G A G;
(kk) C A A G G A C G G T G A;

- 49 -

- (ll) C C A T C G T G T C A A;
- (mm) A G A G G A C T C C A T;
- (nn) G G C A G A G G A C T C;
- (oo) C T T T C T C T T G G C;
- 5 (pp) G A C G G T T C A C T A;
- (qq) C A G G C G A T C T G A;
- (rr) C G T C T C C A G G C G;
- (ss) C A A C T G G C T G T A;
- (tt) C C A T G G T A A C A A;
- 10 (uu) T A T G G T A T C C A T;
- (vv) T A A T A T G G T A T C;
- (ww) A C C G C C C G C T A A;
- (xx) T G G G G T G A A T T T;
- (yy) C C A T C G C A C T G G;
- 15 (zz) C G G C G T A T C C A T;
- (a') C G G C G G C G T A T C;
- (b') G C G C T G C A T C G G;
- (c') A G T C T G C T G C A A; and
- (d') T A A T G A R A T; or

20 ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine, and R is A, T, G, C, U or functional equivalents thereof; and

25 (iv) detecting hybridized sequences.

58. The method of claim 57 wherein said oligonucleotide or ribose containing oligonucleotide comprises one or more modified nucleosides.

59. The method of claim 58 wherein said modified nucleoside is an aryl or alkyl phosphonate nucleoside.

60. The method of claim 59 wherein said aryl or alkyl phosphonate is methylphosphonate nucleoside.

61. A composition for inhibiting microbe, virus or self-replicating nucleic acid growth or

- 50 -

replication comprising at least two oligonucleotides hybridizable to non-overlapping 5 sites in the nucleic acids of said microbe, virus or self-replicating nucleic acid.

62. The composition of claim 61 wherein at least one of said oligonucleotides is hybridizable to a cap site, a transcription initiation site, a translation initiation site or a splice site.

63. The composition of claim 62 wherein said oligonucleotides hybridizable to a splice site contain exon and intron sequences and the difference in the number of bases containing exon 5 sequences and the number of bases containing intron sequences is 0 or 1.

64. The composition of claim 62 wherein said oligonucleotides hybridizable to a translation initiation site are complementary to the ATG initiation codon and adjacent 3' bases in the 5 coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

65. The composition of claims 61, 62, 63 or 64 wherein at least one of said oligonucleotides is hybridizable to a regulatory gene, a gene required for nucleic acid replication or a gene involved in 5 pathogenesis.

66. The composition of claim 65 wherein one of said oligonucleotides is hybridizable to a first portion of nucleic acid of said microbe, virus or self-replicating nucleic acid in which the 5 expression or function of said first portion is required for expression or function of a second portion of nucleic acid of said microbe, virus or self-replicating nucleic acid and another of said oligonucleotides is hybridizable to said second 10 portion.

- 51 -

67. The composition of claim 66 wherein said virus is a herpesvirus.

68. The composition of claim 67 wherein said regulatory gene is an immediate-early (IE) gene.

69. The composition of claim 67 wherein said regulatory gene is Vmw65.

70. The composition of claim 67 wherein at least one of said oligonucleotides is selected from the group consisting of:

(a) T T C C T C C T G C G G;

5

(b) G C T T A C C C G T G C;

(c) G C G G G G C T C C A T; and

(d) A A T G T C G G C C A T; or

10 ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

71. The composition of claim 61 wherein at least two of said oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

72. The composition of claim 71 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

73. The composition of claim 70 wherein said oligonucleotide or ribose containing oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

74. The composition of claim 73 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

5

75. A method for inhibiting microbe, virus or self-replicating nucleic acid growth or replication comprising the step of contacting nucleic acids of said virus or microbe with at least two oligonucleotides that are hybridizable with non-overlapping sites in said nucleic acids of said microbe, virus or self-replicating nucleic acid.

- 52 -

76. The method of claim 75 wherein at least one of said oligonucleotides is hybridizable to a cap site, a transcription initiation site, a translation initiation site or a splice site.

77. The method of claim 76 wherein said oligonucleotides hybridizable to a splice site contain exon and intron sequences and the difference in the number of bases containing exon 5 sequences and the number of bases containing intron sequences is 0 or 1.

78. The method of claim 76 wherein said oligonucleotide hybridizable to a translation initiation site is complementary to the ATG initiation codon and adjacent 3' bases in the 5 coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

79. The method of claims 75, 76, 77 or 78 wherein at least one of said oligonucleotides is hybridizable to a regulatory gene, a gene required for nucleic acid replication or a gene involved in 5 pathogenesis.

80. The method of claim 79 wherein one of said oligonucleotides is hybridizable to a first portion of nucleic acids of said microbe, virus or self-replicating nucleic acid in which the 5 expression or function of said first portion is required for expression or function of a second portion of nucleic acids of said microbe, virus or self-replicating nucleic acid and another of said oligonucleotides is hybridizable to said second 10 portion.

81. The method of claim 80 wherein said virus is a herpesvirus.

82. The method of claim 81 wherein said regulatory gene is an immediate-early (IE) gene.

- 53 -

83. The method of claim 81 wherein said regulatory gene is Vmw65.

84. The method of claim 81 wherein at least one of said oligonucleotides is selected from the group consisting of:

(a) T T C C T C C T G C G G;
 (b) G C T T A C C C G T G C;
 (c) G C G G G G C T C C A T; and
 (d) A A T G T C G G C C A T; or

ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

85. The method of claim 75 wherein at least two of said oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

86. The method of claim 85 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

87. The method of claim 84 wherein said oligonucleotide or ribose containing oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

88. The method of claim 87 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

89. A therapeutic composition for inhibiting
microbe, virus or self-replicating nucleic acid
growth or replication comprising at least two
oligonucleotides, or pharmaceutically acceptable
salts thereof, that are hybridizable with non-
overlapping sites in nucleic acids of said microbe,
virus or self-replicating nucleic acid and a
pharmaceutically acceptable carrier.

90. The therapeutic composition of claim 89 wherein at least one of said oligonucleotides is hybridizable to a cap site, a transcription

5 initiation site, a translation initiation site or a splice site.

91. The therapeutic composition of claim 90 wherein said oligonucleotides hybridizable to a splice site contain exon and intron sequences and the difference in the number of bases containing 5 exon sequences and the number of bases containing intron sequences is 0 or 1.

92. The therapeutic composition of claim 90 wherein said oligonucleotides hybridizable to a translation initiation site are complementary to the ATG initiation codon and adjacent 3' bases in 5 the coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

93. The therapeutic composition of claims 89, 90, 91 or 92 wherein at least one of said oligonucleotides is hybridizable to a regulatory gene, a gene required for nucleic acid replication 5 or a gene involved in pathogenesis.

94. The therapeutic composition of claim 93 wherein one of said oligonucleotides is hybridizable to a first portion of nucleic acids of 5 said microbe, virus or self-replicating nucleic acid in which the expression or function of said first portion is required for expression or function of a second portion of nucleic acids of said microbe, virus or self-replicating nucleic acid and another of said oligonucleotides is 10 hybridizable to said second portion.

95. The therapeutic composition of claim 94 wherein said virus is a herpesvirus.

96. The therapeutic composition of claim 95 wherein said regulatory gene is an immediate-early (IE) gene.

97. The therapeutic composition of claim 95 wherein said regulatory gene is Vmw65.

- 55 -

98. The therapeutic composition of claim 95 wherein at least one of said oligonucleotides is selected from the group consisting of:

(a) T T C C T C C T G C G G;
 (b) G C T T A C C C G T G C;
 (c) G C G G G G C T C C A T; and
 (d) A A T G T C G G C C A T; or

ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

99. The therapeutic composition of claim 89 wherein at least two of said oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

100. The method of claim 99 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

101. The method of claim 98 wherein said oligonucleotide or ribose containing oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

102. The method of claim 101 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

103. A therapeutic method of inhibiting microbe, virus or self-replicating nucleic acid growth or replication comprising administering to a host in need of therapy a therapeutic composition comprising at least two oligonucleotides, or pharmaceutically acceptable salts thereof, that are hybridizable with non-overlapping sites in nucleic acids of said microbe, virus or self-replicating nucleic acid.

104. The therapeutic method of claim 103
wherein at least one of said oligonucleotides is
hybridizable to a cap site, a transcription

- 56 -

initiation site, a translation initiation site or
5 a splice site.

105. The therapeutic method of claim 104
wherein said oligonucleotides hybridizable to a
splice site contain exon and intron sequences and
the difference in the number of bases containing
5 exon sequences and the number of bases containing
intron sequences is 0 or 1.

106. The therapeutic method of claim 104
wherein said oligonucleotides hybridizable to a
translation initiation site are complementary to
the ATG initiation codon and adjacent 3' bases in
5 the coding region, so that the last three bases of
said oligonucleotide in the 5' to 3' orientation
are C, A and T, in that order.

107. The therapeutic method of claims 103,
104, 105 or 106 wherein at least one of said
oligonucleotides is hybridizable to a regulatory
gene, a gene required for nucleic acid replication
5 or a gene involved in pathogenesis.

108. The therapeutic method of claim 107
wherein one of said oligonucleotides is
hybridizable to a first portion of nucleic acids of
said microbe, virus or self-replicating nucleic
5 acids in which the expression or function of said
first portion is required for expression or
function of a second portion of said nucleic acids
of said microbe, virus or self-replicating nucleic
acid and another of said oligonucleotides is
10 hybridizable to said second portion.

109. The therapeutic method of claim 108
wherein said virus is a herpesvirus.

110. The therapeutic method of claim 109
wherein said regulatory gene is an immediate-early
(IE) gene.

111. The therapeutic method of claim 109
wherein said regulatory gene is Vmw65.

- 57 -

112. The therapeutic method of claim 109 wherein at least one of said oligonucleotides is selected from the group consisting of:

- (a) T T C C T C C T G C G G;
- (b) G C T T A C C C G T G C;
- (c) G C G G G G C T C C A T; and
- (d) A A T G T C G G C C A T; or

10 ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

113. The therapeutic method of claim 103 wherein at least two of said oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

114. The method of claim 113 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

115. The method of claim 112 wherein said oligonucleotide or ribose containing oligonucleotide comprises one or more alkyl or arylphosphonate nucleosides.

116. The method of claim 115 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

117. A method for inhibiting human immunodeficiency virus growth or replication in a specimen containing human immunodeficiency virus and a second virus comprising the step of 5 contacting nucleic acids of said specimen with at least one oligonucleotide that is hybridizable with nucleic acids of said second virus.

118. The method of claim 117 wherein at least one of said oligonucleotides is hybridizable to a cap site, a transcription initiation site, a translation initiation site or a splice site.

- 58 -

119. The method of claim 118 wherein said oligonucleotides hybridizable to a splice site contain exon and intron sequences and the difference in the number of bases containing exon 5 sequences and the number of bases containing intron sequences is 0 or 1.

120. The method of claim 118 wherein said oligonucleotides hybridizable to a translation initiation site are complementary to the ATG initiation codon and adjacent 3' bases in the 5 coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

121. The method of claims 117, 118, 119 or 120 wherein at least one of said oligonucleotides is hybridizable to a regulatory gene, a gene required for nucleic acid replication or a gene involved in 5 pathogenesis.

122. The method of claim 121 wherein said second virus is herpesvirus.

123. The method of claim 122 wherein said regulatory gene is an immediate-early (IE) gene.

124. The method of claim 122 wherein said regulatory gene is Vmw65.

125. The method of claim 122 wherein at least one of said oligonucleotides is selected from the group consisting of:

- (a) T T C C T C C T G C G G;
- 5 (b) G C T T A C C C G T G C;
- (c) G C G G G G C T C C A T; and
- (d) A A T G T C G G C C A T; or

ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, 10 T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

- 59 -

126. The method of claim 117 wherein at least one of said oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

127. The method of claim 126 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

128. The method of claim 125 wherein at least one of said oligonucleotides or ribose containing oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

129. The method of claim 128 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

130. The method of claim 117 wherein said specimen is contacted with at least two oligonucleotides.

131. A therapeutic composition for inhibiting human immunodeficiency virus growth or replication in a host carrying human immunodeficiency virus and a second virus comprising at least one oligonucleotide, or pharmaceutically acceptable salts thereof, that is hybridizable with nucleic acids of said second virus and a pharmaceutically acceptable carrier.

132. The therapeutic composition of claim 131 wherein at least one of said oligonucleotides is hybridizable to a cap site, a transcription initiation site, a translation initiation site or a splice site.

133. The therapeutic composition of claim 132 wherein said oligonucleotides hybridizable to a splice site contain exon and intron sequences and the difference in the number of bases containing exon sequences and the number of bases containing intron sequences is 0 or 1.

134. The therapeutic composition of claim 132 wherein said oligonucleotides hybridizable to a

- 60 -

translation initiation site are complementary to the ATG initiation codon and adjacent 3' bases in 5 the coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

135. The therapeutic composition of claims 131, 132, 133 or 134 wherein at least one of said oligonucleotides is hybridizable to a regulatory gene, a gene required for nucleic acid replication 5 or a gene involved in pathogenesis.

136. The therapeutic composition of claim 135 wherein said second virus is herpesvirus.

137. The therapeutic composition of claim 136 wherein said regulatory gene is an immediate-early (IE) gene.

138. The therapeutic composition of claim 136 wherein said regulatory gene is Vmw65.

139. The therapeutic composition of claim 136 wherein said oligonucleotide is selected from the group consisting of:

- (a) T T C C T C C T G C G G;
- 5 (b) G C T T A C C C G T G C;
- (c) G C G G G G C T C C A T; and
- (d) A A T G T C G G C C A T; or

ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, 10 T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

140. The therapeutic composition of claim 131 wherein at least one of said oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

141. The therapeutic composition of claim 140 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

142. The therapeutic composition of claim 139 wherein at least one of said oligonucleotides or

- 61 -

ribose containing oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

143. The therapeutic composition of claim 142 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

144. The therapeutic composition of claim 131 that comprises at least two oligonucleotides.

145. A therapeutic method for inhibiting human immunodeficiency virus growth or replication in a host carrying human immunodeficiency virus and a second virus comprising administering to said host a therapeutic composition comprising at least one oligonucleotide, or pharmaceutically acceptable salt thereof, that is hybridizable with nucleic acids of said second virus.

146. The therapeutic method of claim 145 wherein at least one of said oligonucleotides is hybridizable to a cap site, a transcription initiation site, a translation initiation site or a splice site.

147. The therapeutic method of claim 146 wherein said oligonucleotides hybridizable to a splice site contain exon and intron sequences and the difference in the number of bases containing exon sequences and the number of bases containing intron sequences is 0 or 1.

148. The therapeutic method of claim 146 wherein said oligonucleotide hybridizable to a translation initiation site are complementary to the ATG initiation codon and adjacent 3' bases in the coding region, so that the last three bases of said oligonucleotide in the 5' to 3' orientation are C, A and T, in that order.

149. The therapeutic method of claims 145, 146, 147 or 148 wherein at least one of said oligonucleotides is hybridizable to a regulatory

- 62 -

5 gene, a gene required for nucleic acid replication or a gene involved in pathogenesis.

150. The therapeutic method of claim 149 wherein said second virus is herpesvirus.

151. The therapeutic method of claim 150 wherein said regulatory gene is an immediate-early (IE) gene.

152. The therapeutic method of claim 150 wherein said regulatory gene is Vmw65.

153. The therapeutic method of claim 150 wherein said oligonucleotide is selected from the group consisting of:

(a) T T C C T C C T G C G G;

5 (b) G C T T A C C C G T G C;

(c) G C G G G G C T C C A T; and

(d) A A T G T C G G C C A T; or

10 ribose containing oligonucleotides corresponding thereto, wherein T is replaced by U; and where A, T, G, U and C are adenine, thymidine, guanine, uracil and cytosine.

154. The therapeutic method of claim 153 wherein at least one of said oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

155. The therapeutic method of claim 154 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

156. The therapeutic method of claim 145 wherein at least one of said oligonucleotides or ribose containing oligonucleotides comprise one or more alkyl or arylphosphonate nucleosides.

157. The therapeutic method of claim 156 wherein said alkyl or arylphosphonate nucleoside is methylphosphonate nucleoside.

158. The therapeutic method of claim 145 wherein said cell is contacted with at least two oligonucleotides.

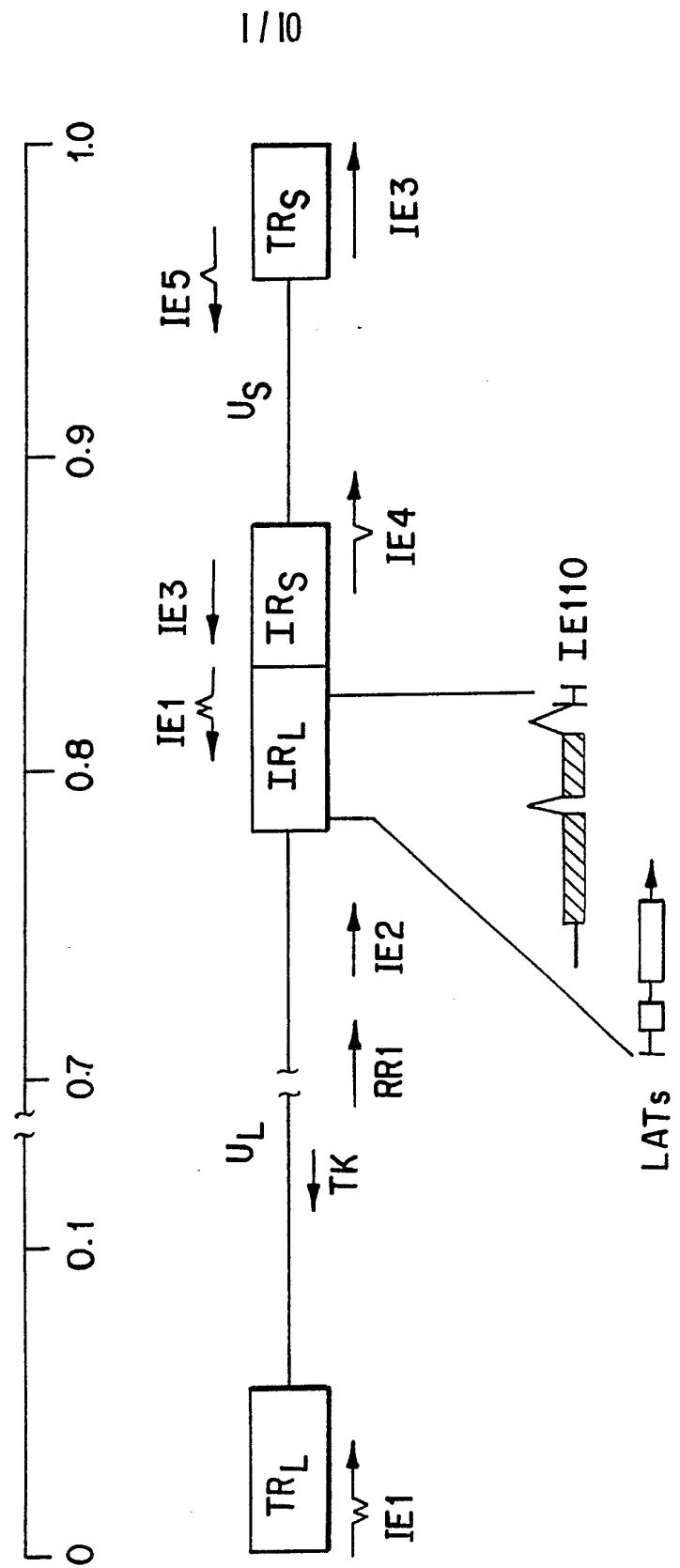


FIG. 1

2 / 10

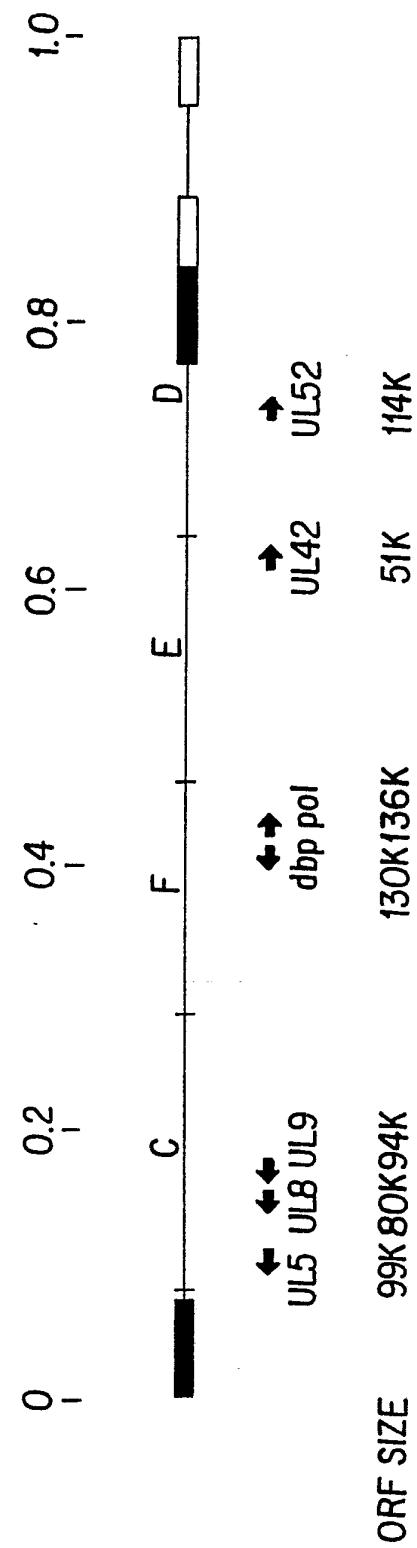


FIG. 2

SUBSTITUTE SHEET

3 / 10

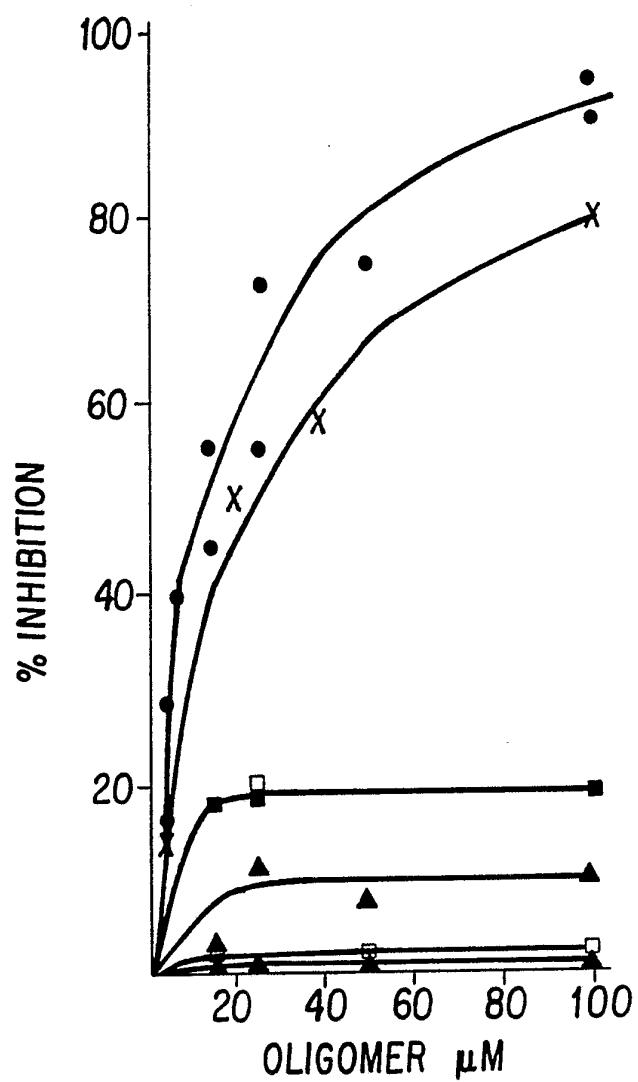
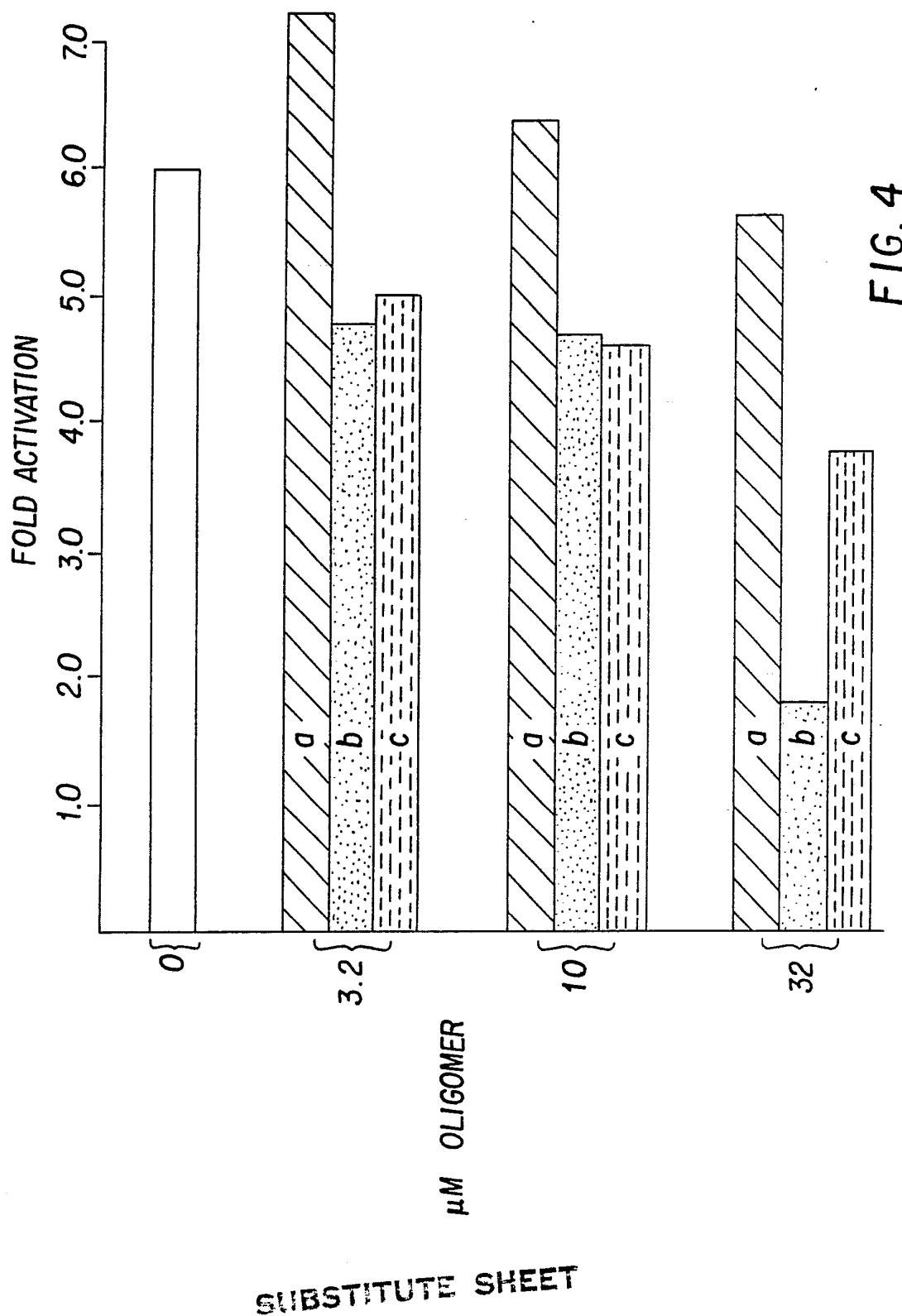



FIG. 3

4/10

5 / 10

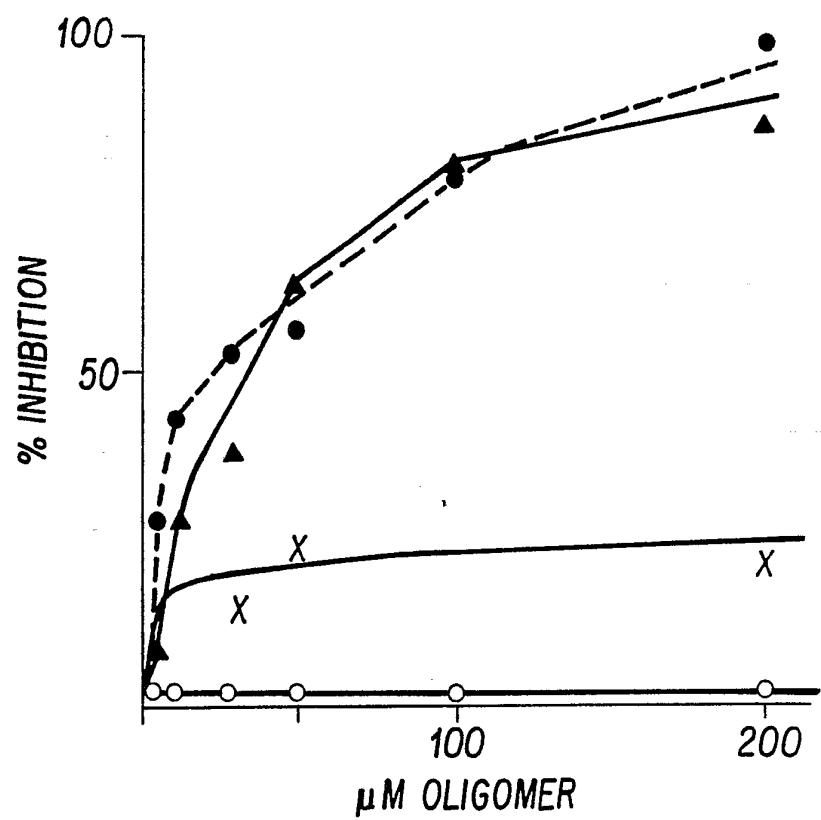


FIG. 5

6 / 10

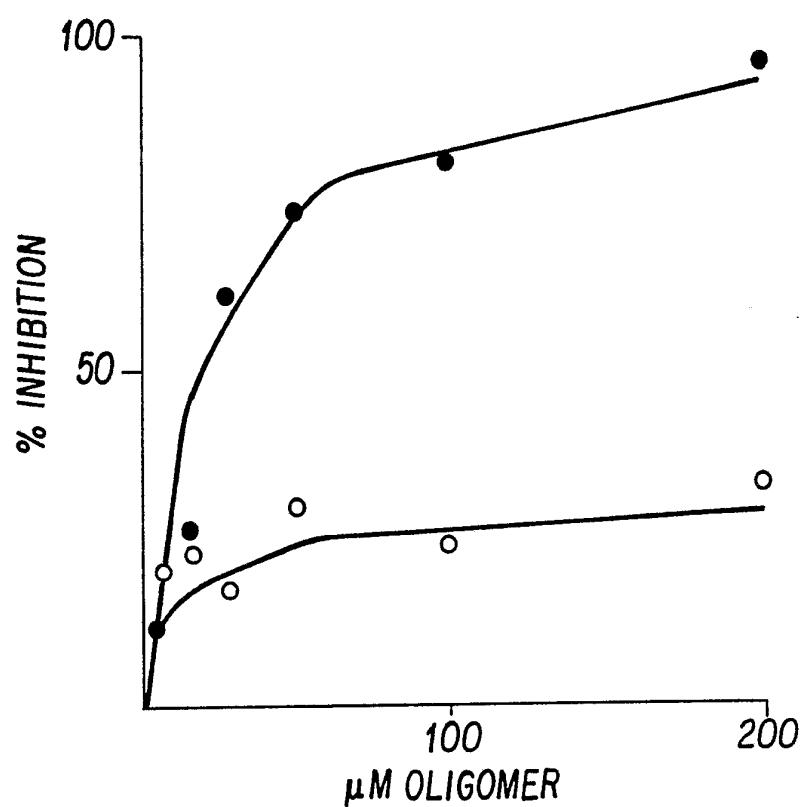


FIG. 6

7 / 10

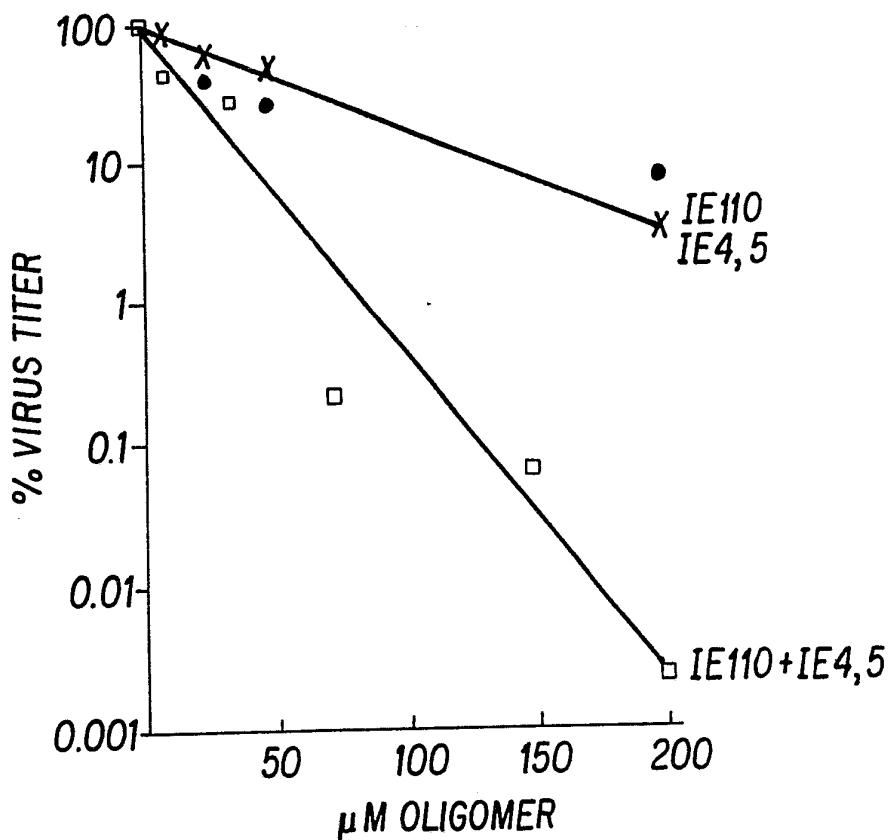


FIG. 7A

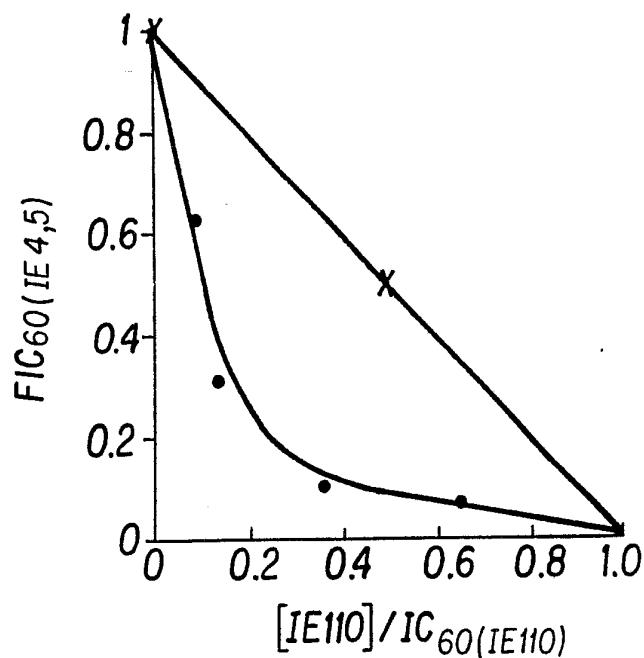


FIG. 7B

8 / 10

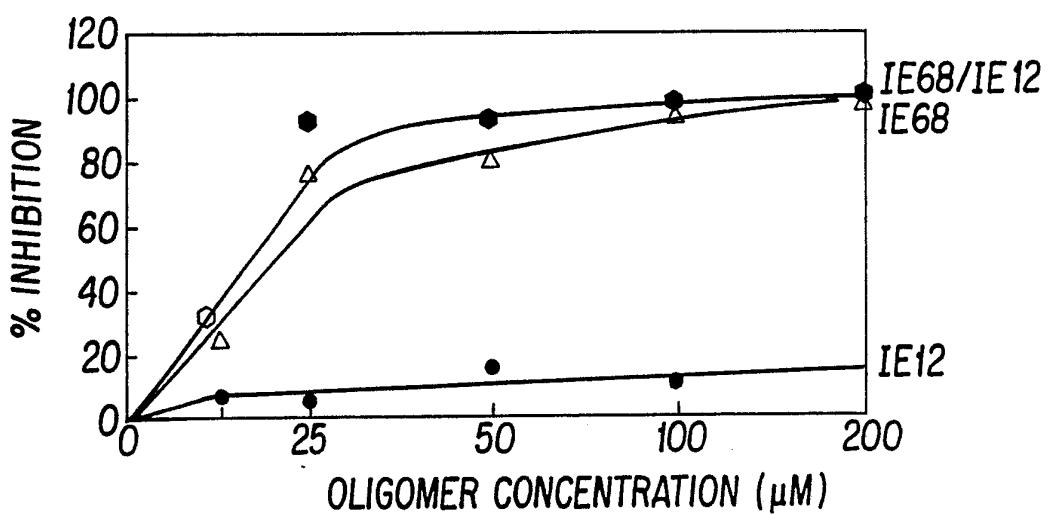


FIG. 8

9 / 10

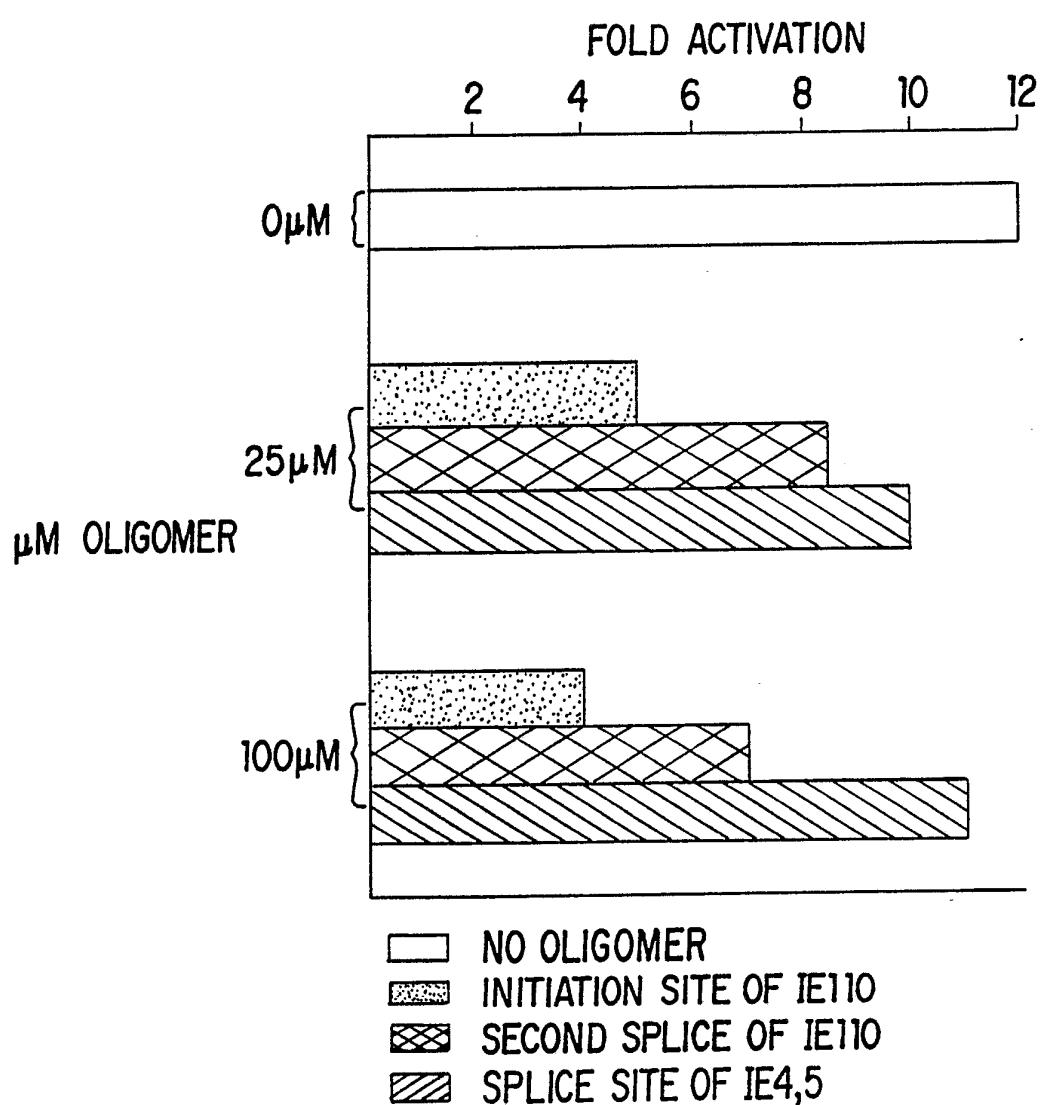


FIG. 9

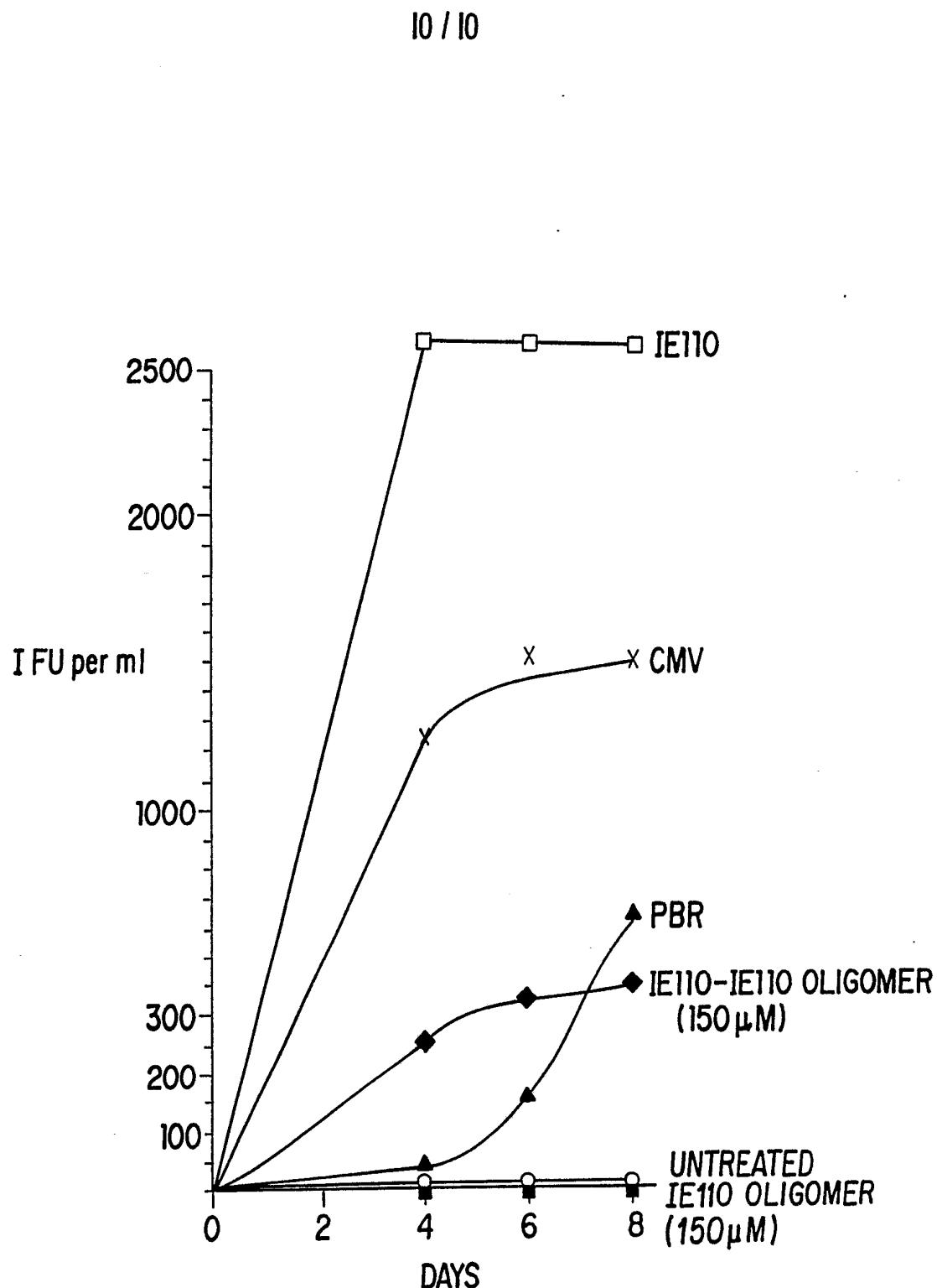


FIG. 10

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/06646

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC
 IPC(5): C12Q 1/68, 1/14; C12N 15/00; C07H 21/00; A61K 48/00
 U.S. Cl.: 435/6, 36, 320.1; 536/27; 514/44

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
U.S.	435/6, 36, 320.1; 536/27; 514/44

Documentation Searched other than Minimum Documentation
 to the Extent that such Documents are Included in the Fields Searched ⁸

APS, Dialog; Biosis

III. DOCUMENTS CONSIDERED TO BE RELEVANT ⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
Y	Proceedings National Academy of Science Volume 83. issued May 1986. C.C. Smith et al, "Antiviral effect of an alyol nucleoside methylphosphonate) complementary to the splice junction of herpes simplex virus type 1 immediate early pre-m RPAs 4+5." pages 2787-2791. see entire document.	14-16. 21-28.33- 39.45-52. 57-60.67- 71.81-84. 95-98.109- 112.117. 122-125. 131.136- 139.150- 153
Y	Cancer Research. Volume 48. issued 15 May 1988. A. Stein et al "Oligodeoxynucleotides as Inhibitors of gene Expression: A review". pages 2659-2668. see entire document.	6-8.17-20. 29-32.41- 43.53-56. 58-60.71- 74.85-88. 99-102. 113-116. 126-129. 140-143. 155-157

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

15 January 1991

Date of Mailing of this International Search Report

31 JAN 1992

International Searching Authority

ISA/US

Signature of Authorized Officer

Suzanne Ziska

ebw

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE¹

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers _____, because they relate to subject matter¹² not required to be searched by this Authority, namely:

2. Claim numbers _____, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out¹³, specifically:

3. Claim numbers _____, because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING²

This International Searching Authority found multiple inventions in this international application as follows:

See Attached

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

The additional search fees were accompanied by applicant's protest.

No protest accompanied the payment of additional search fees.

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
Y	Proceedings Natural Academy of Science. Volume 85, issued August 1988. Goodchild et al. "Inhibition of human immunodeficiency virus replication by antisense alyodeoxynucleotides", pages 5507-5511, see entire document.	1-13.16-25 28-32.35 37.40-49 52-56.61 67.70-81 84-95.99 109.112- 122.125- 136.139- 150.153- 158
Y	Biochimie, volume 67, issued 1985. P.S. Miller et al. "Control of ribonucleic acid function by oligonucleoside methyl phosphonates", pages 769-776, see entire document.	14-16. 21-28. 33-39. 45-52. 57-60. 67-71.81- 84,95-98. 109-112. 117.122- 125.131. 136-139. 150-153
Y	US. A. 4,806,463 (Goodchild et al) 21 February 1989. see entire document.	61-81. 84-95. 98.103-104 57-60
Y,P	US. A. 5,004,810 (Draper et al) 02 April 1991. see entire document.	1.2.57

Group I, consisting of a first product (an oligonucleotide), claims 1-7, 8-20, 33-44, 61-74 and 89-102; and a first method of using the product, consisting of a method of inhibiting herpesvirus growth, claims 21-32, 45-56, 75-88 and 103-116;

5 Group II, consisting of a second method of use of the first product, a method of detecting herpesvirus, claims 57-60;

Group III, consisting of a third method of use of the first product, a method for inhibiting human immunodeficiency virus growth or replication and that of a second virus, claims 117-130;

10 Group IV, consisting of a second product, a therapeutic composition for inhibiting HIV and a second virus, claims 131-144;

Group V, consisting of first method of use of the second product, a therapeutic method for inhibiting HIV and a second virus, claims 145-158.

15 Each grouping of claims forms a separate invention not linked to form a single inventive concept.