The invention relates to commercial irons of the kind used in laundries and, more particularly, to irons utilized in ironing the shoulders of garments, such as waitresses uniforms, in which the garment sleeves or shoulders are of the puffed variety.

Therefore, the ironing of puffed sleeve shoulders has been a tedious and time-consuming task. Although the heated, tear-drop shaped type of shoulder iron has long been available, only a single iron has been utilized in the past, thus requiring that the operator manipulate the garment into numerous different positions to effect satisfactory ironing of the entire puffed portion of the shoulder.

It is therefore an object of the invention to provide a garment shoulder ironing device which enables the operator to iron puffed shoulders in a small fraction of the time heretofore required.

It is another object of the invention to provide an ironing device which enables both shoulders to be ironed simultaneously.

It is a further object of the invention to provide an ironing device in which a single operator is capable of ironing a plurality of garments in the same time as was formerly required to iron but a single garment.

It is an additional object of the invention to provide an ironing device which gives a smoothly ironed surface to the fabric.

It is still another object of the invention to provide an ironing device which requires but a minimum amount of manipulation of the garment by the operator.

It is yet a further object of the invention to provide an ironing device whose operation can be quickly learned, even by unskilled labor.

It is still a further object of the invention to provide an ironing device which, while relatively inexpensive, is rugged and durable, and has but a minimum of moving parts to get out of order.

It is another object of the invention to provide a generally improved garment shoulder ironing device.

Other objects, together with the foregoing, are attained in the embodiment described in the following description and shown in the accompanying drawings in which:

FIGURE 1 is a perspective view of the device in a typical environment, namely, with a garment installed therein in ironing position; and

FIGURE 2 is a fragmentary side elevational view, partially in section, with a garment sleeve shown in phantom and with the biasing arm illustrated, by broken lines, in various positions.

While the ironing device of the invention is susceptible of numerous physical embodiments, depending on the environment and requirements of use, substantial numbers of the herein shown and described embodiment have been made and used, and have performed in an eminently satisfactory manner.

The shoulder ironer unit of the invention, generally designated by the reference numeral 12, comprises a pair of spaced, parallel ironing members 13.

Each of the members 13 is substantially identical to the other.

It is therefore believed that a description of one will serve equally to describe the other.

It is to be noted, however, that it is the paired and cooperating arrangement of the two members 13 which greatly extends the practical utility of the device.

In other words it is the combination of the two ironing members 13, spaced apart a predetermined distance de-
of the screw abuts a transverse plate 66 secured to the lower end 56 of the arm and determines the extent of the rearward movement of the biasing arm 51.

The arm 51 is so shaped as to provide a shoulder 71 located between the upper, recurved portion 72 of the arm 51 and the lower, linear portion 73 thereof. The embodiment illustrated the shoulder 71 is expeditiously formed by bending a stiff piece of metal strap, forming the arm 51, through 90° so that the forward edge 76 of the lower portion 73 of the strap faces toward the tube 53 below the shoulder and is disposed transversely thereto above the shoulder 71, throughout the upper portion 72. Such construction also conveniently permits the curling over of the top end 77 of the arm 51 so as to assist the operator in slipping the sleeve 23 of the garment 14 over the iron and over the upper portion of the biasing arm, the positions of the arm during this operation being shown in outline.

The shoulder 71 of the biasing arm is located at an elevation such that when the sleeve of the garment has been slipped over the iron and over the biasing arm, the shoulder 71 is approximately at the same elevation as the shoulder portion 43 of the iron. Thus, the inseam 47 of the shoulder seam 46 is in engagement with and is biased rearwardly by the shoulder 71 with the seam 46 in a substantially horizontal attitude.

The effect of the rearward bias of the arm, acting upon the inseam 47 and thus tensioning the sleeve rearwardly, is to urge the full forward or upper portion of the shoulder puff tightly against the iron 19, with a consequently smoothly ironed shoulder puff.

The fore and aft tension of the biasing arm also augments the garment-supporting capabilities of the spaced pair of irons and, in general, enables the operator, with one quick movement, similar to that of pulling a coat on another person, to slip the garment over the pair of irons and, as quickly, to remove the garment upon the lapse of an appropriate ironing interval. During this interval, one or more other units, or stations, can be serviced.

It can therefore be seen that I have provided a highly useful combination of shoulder irons and biasing arms which is capable of increasing many-fold, and with less operator effort, the output of garments having shoulder puffs to be ironed.

What is claimed is:

1. A garment shoulder ironing device comprising:
 a. a vertical mounting tube;
 b. a tear-drop shaped iron mounted on the upper end of said tube, said iron including a rounded forward portion merging into a depending neck on said iron to provide a forwardly facing first shoulder;
 c. an elongated narrow strap of stiff material pivotally mounted at its bottom end on said tube and extending upwardly and rearwardly to a location behind said iron, said strap being formed to provide a second shoulder at approximately the same elevation as said first shoulder; and
 d. means for biasing the upper end of said strap in a rearward direction.

2. The device of claim 1 further characterized by means for selectively adjusting the extent of rearward movement of said arm.

3. The device of claim 1 further characterized by a substantially identical structure spaced laterally therefrom a distance such that the opposite outermost surfaces of said irons are effective to stretch and thereby smooth the opposite outermost fabric portions of a pair of garment shoulder puffs lodged on said irons.

4. A garment shoulder ironing device comprising:
 a. a pair of vertical tubes;
 b. a pair of tear-shaped, upwardly and rearwardly inclined irons mounted on said tubes and spaced apart a predetermined distance approximately equal to the distance between the shoulder puffs of a garment to be ironed, said irons being shaped to smooth the shoulder puffs with the garment in normal vertical wearing attitude; and
 c. a pair of spring-biased upwardly and rearwardly inclined arms adapted to bear against the inseams of the garment, said arms being pivotally mounted on said tubes and extending upwardly and rearwardly to a location behind said irons, each of said arms including a shoulder adapted to urge the corresponding inseam in a rearward direction, said shoulder being at approximately the same elevation as the lowermost portion of the corresponding one of said irons the weight of the garment being effective to conform the upper portion of the shoulder puffs to the underlying upper portion of said irons, the spring biasing of said arms being effective to urge the front portion of the shoulder puffs against the underlying front portion of said irons, and the extent of said predetermined distance between said irons being effective to stretch and smooth the outer lateral portion of said shoulder puffs against the underlying outer lateral surface of said irons.

References Cited in the file of this patent

UNITED STATES PATENTS

514,601 Mandot ---------------- Feb. 13, 1939
2,180,942 Lee ----------------- Nov. 21, 1939
2,184,375 Beece ---------------- Dec. 26, 1939
2,662,271 Amber ---------------- Dec. 15, 1953
2,727,661 Strike ---------------- Dec. 20, 1955