wo 2013/021304 A1 IIIF A1 A0 R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/021304 A1

14 February 2013 (14.02.2013) WIPO | PCT
(51) International Patent Classification: (74) Agents: CAMERON, Michael, G. et al.; 6300 Legacy,
HO4L 12/56 (2006.01) MS EVR 1-C-11, Plano, TX 75024 (US).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/IB2012/053833 kind of national protection available): AE, AG, AL, AM,
. . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(22) International Filing Date: BZ, CA, CH, CL, CN, CO. CR, CU, CZ, DE, DK, DM,
26 July 2012 (26.07.2012) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
13/208,251 11 August 2011 (11.08.2011) Us SC, SD, SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(71) Applicant (for all designated States except US): TELE- ZW.
FONAKTIEBOLAGET L M ERICSSON (PUBL) . L
[SE/SE]; 164 83 Stockholm (SE). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors; and GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(75) Inventors/Applicants (for US only): YEDAVALLI, Kir- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

an [IN/US]; 4280 Delacroix Court, San Jose, CA 95135
(US). BEHESHTI-ZAVAREH, Neda [IR/US]; 3500 Pal-
milla Dr., Unit 1026, San Jose, CA 95134 (US). ZHANG,
Ying [CN/US]; 330 Elan Village Lane, Apt. 206, San Jose,
CA 95134 (US).

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: IMPLEMENTING OSPF IN SPLIT ARCHITECTURE NETWORKS

NETWORK ELEMENT/CONTROLLER
903 905
e 2
INGRESS EGRESS R
MODULE ™ MODULE >
3 907
NETWORK PROCESSOR -t
919
913 NEIGHBOR LINK STATE T
Ty DISCOVERY MANAGEMENT
MODULE MODULE
i 921 ROUTING
915 SHORTEST
ot PATH openrLow [o7 TABLES 1]
CALCULATION [CONTROLLER
MODULE T
917 STATE
- TOPOLOGY DATABASE
LEARNING
MODULE

FIG. 9

(57) Abstract: A method is implemented in a network
element that functions as one of a plurality of controllers
for one of a plurality of areas of a split architecture net-
work. The controller provides a control plane for the area
of the split architecture network where the controller is re-
mote from a plurality of switches providing a data plane
for the area of split architecture network. The controller
facilitates optimized routing across the plurality of areas
of the split architecture network by providing limited in-
tra-area link cost data to other controllers of other areas of
the split architecture network and to traditional routers of
a network including the split architecture network. The
limited intra-area link cost data provides costs of each
possible shortest path traversal of the area of the control-
ler without providing all internal link cost data.

WO 2013/021304 A1 |00V 0O AR 0 0 A0

Published:
— with international search report (Art. 21(3))

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

IMPLEMENTING OSPF IN SPLIT ARCHITECTURE NETWORKS

FIELD OF THE INVENTION

The embodiments of the invention are related to the path finding or routing in
split architecture networks. Specifically, the embodiments of the invention relate to a
method and system for implementing an open shortest path first process for routing

data in networks including a split architecture network and traditional routers.

BACKGROUND

A split-architecture network design introduces a separation between the control
and forwarding components of the network, also referred to as the control plane and the
forwarding or data plane. Split architecture networks can be utilized in an
access/aggregation domain of a carrier-grade network, a mobile backhaul, cloud
computing, and multilayer (L3 & L2 & L1, optical transport network (OTN),
wavelength division multiplexing (WDM)) support, all of which are among the
building blocks of the network architecture.

Unlike the traditional network architecture, which integrates both forwarding
(data) and control planes in the same box, split architecture decouples these two
functions and runs the control plane on servers (controllers) that might be in different
physical locations from the forwarding elements (switches). The split architecture
simplifies the functions and hardware of the forwarding platform and concentrates the
network's intelligence and management into a set of controllers that oversee the
switches. The tight coupling of forwarding and control planes in the traditional network
architecture usually results in a highly complicated control plane and complex network
management. This makes creation of new networking devices expensive and creates a
high barrier to entry for new protocols and technology for potential deployment in these
devices. Despite the rapid improvement on line speeds, port densities, and performance,
the network control plane mechanisms for managing these features have advanced at a
much slower pace.

In a split architecture network, controllers collect information from switches,
and compute and distribute the appropriate forwarding decisions to switches.
Controllers and switches use a control plane protocol to communicate and exchange

information. An example of such protocol is OpenFlow, which provides an open and

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

standard method for a switch to communicate with a controller. Figure 1 is a diagram
of an overview of the OpenFlow interface between a switch and a controller. The
OpenFlow controller communicates with the OpenFlow switch using a secure channel
to configure a forwarding table (flow table).

The forwarding table in an OpenFlow switch is populated with entries
consisting of: rules defining matches for fields in packet headers; actions to be executed
upon detecting a match defined by a rule; and a collection of statistics on the processing
of data packets in the data plane. When an incoming data packet matches a particular
rule, the associated actions are performed on the data packet. A rule contains key fields
from several headers in the protocol stack, for example Ethernet MAC addresses, IP
address, IP protocol, TCP/UDP port numbers as well as the incoming port number. A
set of data packets having similar characteristics can be managed as a flow. A flow can
be defined using any number or combination of the available fields in a data packet. It
is also possible to restrict the rules to match on a subset of the available fields by using
wildcards for the unwanted fields.

The de-coupling of the control plane and data plane of the split architecture
eases the task of modifying the network control logic and provides a programmatic
interface upon which developers can build a wide variety of new protocols and
management applications. In this model, the data and control planes can evolve and

scale independently, while the cost of the data plane elements is reduced.

SUMMARY

A method is described that is implemented in a network element functioning as
one of a plurality of controllers for one of a plurality of areas of a split architecture
network. The controller provides a control plane for the area of the split architecture
network where the controller is remote from a plurality of switches providing a data
plane for the area of split architecture network. The controller facilitates optimized
routing across the plurality of areas of the split architecture network by providing
limited intra-area link cost data to other controllers of other areas of the split
architecture network and to traditional routers of a network including the split
architecture network. The limited intra-area link cost data provides costs for each

possible shortest path traversal of the area of the controller without providing all

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

internal link cost data. The method comprises the steps that follow including learning a
topology of the area of the controller in the split architecture network including each
border switch in the area of the controller, wherein each border switch in the area of the
controller has at least one external port linking the area of the controller to another area
of the split architecture network or to one of the traditional routers in the network. The
steps include computing a shortest path between each border switch pair in the area of
the controller. The steps include storing a cost of each shortest path between each
border switch pair in a routing table of the controller. The steps include identifying
cach neighbor controller in the split architecture network or neighbor traditional router
in the network using a hello protocol, wherein each neighbor controller controls
switches in another area of the split architecture network accessible through at least one
external port of the area of the controller. The steps include exchanging a link state
database with each neighbor controller, the link state database including the cost of
each shortest path between each border switch pair. The steps include calculating a
shortest path tree for the network with the controller as a root of the tree and updating
forwarding tables in switches of the area of the controller to implement forwarding
according to the shortest path tree.

A network element functions as one of a plurality of controllers for one of a
plurality of areas of a split architecture network. The controller provides a control plane
for the area of the split architecture network where the controller is remote from a
plurality of switches providing a data plane for the area of the split architecture
network. The controller facilitates optimized routing across the plurality of areas of the
split architecture network by providing limited intra-area link cost data to other
controllers of other areas of the split architecture network and to traditional routers of a
network including the split architecture network. The limited intra-area link cost data
provides costs of each possible shortest path traversal of the area of the controller
without providing all internal link cost data. The network element comprises an ingress
module configured to receive data over a network and an egress module configured to
transmit data over the network. The network element also includes a network processor
coupled to the ingress module and egress module, the network processor configured to
execute a set of modules comprising a controller module, a topology learning module, a

shortest path calculation module, a neighbor discovery module and a link state

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

management module. The topology learning module is configured to determine a
topology of the area of the controller in the split architecture network including each
border switch in the area of the controller, wherein each border switch has at least one
external port linking the area of the controller to another area of network or a traditional
router in the network. The controller module is configured to provide control plane
functionality for the area of the controller in the split architecture network. The shortest
path calculation module is configured to identify a shortest path between each border
switch in the area of the controller to be shared with neighbor controllers and the
traditional routers and to calculate a shortest path tree for the network with the
controller as the root of the tree. The neighbor discovery module is configured to
identify each neighbor controller in the split architecture network using a hello
protocol, and the link state management module is configured to exchange a link state
database with each neighbor controller. The link state database includes a cost of each
shortest route between each border switch pair in the area of the controller and a
routing table storage device communicatively coupled to the network processor. The
routing table storage device is configured to store routing tables for the controller
module including shortest path information for the area of the controller and between

border switches of the area of the controller.
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings in which like references
indicate similar elements. It should be noted that different references to "an" or "one"
embodiment in this disclosure are not necessarily to the same embodiment, and such
references mean at least one. Further, when a particular feature, structure, or
characteristic is described in connection with an embodiment, it is submitted that it is
within the knowledge of one skilled in the art to effect such feature, structure, or
characteristic in connection with other embodiments whether or not explicitly
described.

Figure 1 is a diagram of one embodiment of an example architecture for a
simple OpenFlow network.

Figure 2 is diagram of an open shortest path first (OSPF) packet header.

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

Figure 3 is a diagram of an OSPF hello packet.

Figure 4 is a diagram of a link state advertisement (LSA) header format.

Figure 5 is a diagram of a router-LSA message.

Figure 6 is a diagram of an example network where OSPF external link cost
information is exchanged.

Figure 7 is a diagram of an example network where OSPF internal link cost
information is exchanged.

Figure 8 is a diagram of one embodiment of an example multiple area
OpenFlow network with multiple controllers.

Figure 9 is a diagram of one embodiment of a network element implementing
the OSPF process.

Figure 10 is a flowchart of one embodiment of process for OSPF routing in a
network with a split architecture area.

Figure 11 is a diagram of an OSPF link state advertisement header format.

Figure 12 is a diagram of a router LSA message.

Figure 13 is a diagram of a split architecture OSPF hello message.

Figure 14 is a diagram of one embodiment of a process of sending a hello

message in a network from a split architecture controller to a traditional router.

DETAILED DESCRIPTION

In the following description, numerous specific details are set forth. However,
it is understood that embodiments of the invention may be practiced without these
specific details. In other instances, well-known circuits, structures and techniques have
not been shown in detail in order not to obscure the understanding of this description.
It will be appreciated, however, by one skilled in the art, that the invention may be
practiced without such specific details. Those of ordinary skill in the art, with the
included descriptions, will be able to implement appropriate functionality without
undue experimentation.

The operations of the flow diagrams will be described with reference to the
exemplary embodiments of Figures 7-9 and 14. However, it should be understood that
the operations of the flow diagram in Figures 10 can be performed by embodiments of

the invention other than those discussed with reference to Figures 7-9 and 14 and the

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

embodiments discussed with reference to Figures 7-9 and 14 can perform operations
different than those discussed with reference to the flow diagram of Figure 10.

The techniques shown in the figures can be implemented using code and data
stored and executed on one or more electronic devices (e.g., an end station, a network
element, server or similar electronic devices). Such electronic devices store and
communicate (internally and/or with other electronic devices over a network) code and
data using non-transitory machine-readable or computer-readable media, such as non-
transitory machine-readable or computer-readable storage media (e.g., magnetic disks;
optical disks; random access memory; read only memory; flash memory devices; and
phase-change memory). In addition, such electronic devices typically include a set of
one or more processors coupled to one or more other components, such as one or more
storage devices, user input/output devices (e.g., a keyboard, a touch screen, and/or a
display), and network connections. The coupling of the set of processors and other
components is typically through one or more busses and bridges (also termed as bus
controllers). The storage devices represent one or more non-transitory machine-
readable or computer-readable storage media and non-transitory machine-readable or
computer-readable communication media. Thus, the storage device of a given
electronic device typically stores code and/or data for execution on the set of one or
more processors of that electronic device. Of course, one or more parts of an
embodiment of the invention may be implemented using different combinations of
software, firmware, and/or hardware.

As used herein, a network element (e.g., a router, switch, bridge, or similar
networking device.) is a piece of networking equipment, including hardware and
software that communicatively interconnects other equipment on the network (e.g.,
other network elements, end stations, or similar networking devices). Some network
elements are “multiple services network elements” that provide support for multiple
networking functions (e.g., routing, bridging, switching, Layer 2 aggregation, session
border control, multicasting, and/or subscriber management), and/or provide support

for multiple application services (e.g., data collection).

Split-Architecture Areas
A single access/aggregation network can be made up of multiple distinct split-

architecture areas working in tandem with multiple traditional routers. As used herein, a

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

split-architecture area is a section of a split architecture network with separate routing
similar to a domain. This can be done to simplify administration over a wide
geographical area, for network robustness or for control-plane scalability. Each split
architecture area can be administered by a separate controller. Depending on the
specific application, controllers of these distinct split-architecture areas need to share
and exchange some information for proper administration of the split architecture

network.

Open Shortest Path First Routing

Both traditional networks and split architecture networks must calculate routes
between the switches and other devices serviced by the network. The Open Shortest
Path First (OSPF) is an interior gateway routing protocol. OSPF (defined in RFC 2328)
is a link-state protocol in which a router broadcasts its neighbors’ link-state information
to all the nodes in the routing domain. Using this information every router constructs
the topology map of the entire network in the domain. Each router maintains a link-
state database which reflects the entire network topology. Based on this topology map
and the link cost metrics the routers determine the shortest paths to all other routers
using Dijkstra’s algorithm. This information is in turn used to create routing tables that
are used for forwarding of Internet Protocol (IP) packets.

OSPF enables dividing a routing domain into multiple “areas” that are separated
by Area Border Routers (ABRs) for ease of administration. Each area is identified by a
32 bit identifier, usually the IP address of the main router in the area, with identifier “0”
reserved for the core or backbone of an OSPF network. The broadcast of link state
information is limited to the area and not sent beyond the area. In the OSPF process,
each router (switch) runs a separate copy of the OSPF protocol process for each area it
belongs to. If a router has multiple interfaces that belong to different areas, it runs
multiple copies of the process, one for each interface. Upon boot-up, the OSPF process
of a router initializes all the routing protocol data structures and obtains information
about that router’s active interfaces from lower layers. The router then uses OSPF’s
Hello protocol packets to detect its neighbors. A router transmits Hello packets to its
neighbors and receives Hello packets from its neighbors. On broadcast and point-to-
point networks, the hello packets are sent out on multicast address 224.0.0.5. On non-

broadcast networks, user configuration is required to discover neighbors. On broadcast

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

and non-broadcast multiple access networks (NBMA), the Hello protocol is used to
elect a “Designated Router” and a “Backup Designated Router” for the segment of the
network.

Upon detection of neighbors, the router will try to establish “adjacencies” with
its newly detected neighbors. The adjacencies determine the distribution of routing
information within the area. Routing updates are transmitted and received only on
adjacencies. Upon establishment of an adjacency, the router will synchronize its “link-
state database” with the corresponding router on the other end of the adjacency. For
broadcast and NBMA networks, the Designated Router determines which routers
become adjacent.

Routers periodically advertise their state, also referred to as the “link-state,”
using the Link State Advertisements (LSA). The link-state is also advertised when a
router’s state changes. The LSA contains the adjacencies of the advertising router. A
router floods its LSAs through-out the area. The flooding algorithm ensures reliability
of information to make sure that all routers in the area have the same exact link-state
database. The link-state database consists of the collection of LSAs originated by each
router belonging to the area.

Each router uses this database to calculate the shortest path tree with itself as the
root. The shortest path tree is in turn used to create the router’s routing table. OSPF
messages are transmitted directly encapsulated in IP packets with protocol number 89,
without the use of transport layer protocols such as TCP or UDP. Additionally OSPF
uses its own error detection and correction.

OSPF defines five different packet types. A Hello Packet: OSPF’s Hello
Protocol packets are used to discover and maintain neighbor relationships. A Database
Description Packet: These packets are used for formation of adjacencies. A Link State
Request Packet: These packets are used for downloading link-state databases between
adjacent routers. A Link State Update Packet: These packets are used for OSPF’s
reliable update mechanism. A single Link State Update packet could contain LSAs of
several routers. Link State Ack packet: These packets are used in conjunction with the
Link State Update Packet for OSPF’s reliable update mechanism. OSPF protocol
packets (except the Hello packets) are sent only over adjacencies. Thus all OSPF
protocol packets travel a single Internet Protocol (IP) hop, with the IP address of one

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

router as the source address and the IP address of the other router as the destination
address.

The OSPF defined in RFC 2328 specifies 5 different types of LSAs. Router-
LSA: These LSAs are sent by all the routers in an area. Each LSA contains the states of
the router’s interfaces to an area. The Router-LSAs are flooded throughout a single area
only. Network-LSA: These LSAs are originated by the Designated Router for a
broadcast or NBMA network. This LSA contains the list of routers connected to the
network. Like the Router-LSA, this LSA is also flooded throughout a single area only.
Network Summary LSA: This LSA is originated by the area border router (ABR) and
each LSA describes a route to a destination network outside the area, but still inside the
Autonomous System (AS). Boundary Summary LSA: Like the Network Summary
LSA, this LSA is originated by the border area router (ABR) and it describes routes to
AS boundary routers. AS-external-LSA: This LSA is originated by AS boundary
routers, and they are flooded throughout the AS. Each of these LSAs describes a route
to a destination in another AS. The OSPF Packet Header format is as shown in Figure
2. The Hello Packet format is shown in Figure 3. The LSA Header format is as shown

in Figure 4. The Router LSA Packet format is as shown in Figure 5.

OSPF in a Split-Architecture Network

In a split architecture network, routing messages, like all other control
messages, are exchanged between the controllers. One simple way to implement OSPF
in the split architecture is to ignore the internal costs and only exchange information
about external costs — i.e., the costs of links connecting different network areas. By
doing so, the traditional OSPF messages can be exchanged between controllers, and
each Split Architecture area can be considered as a single node.

In the network depicted in Figure 6, for example, controller B announces that it
has a link to area C with cost of 10 units. However, the routes found based on this
information are sub-optimal. In this implementation because the internal costs are not
provided to other controllers, the controllers will not be able to make decisions based
on actual end-to-end costs. This results in sub-optimal routes when internal costs within
one area vary considerably from one internal path to another.

In an alternate embodiment, the above problem of sub-optimal routes can be

fixed by including the internal costs in the information exchanged between controllers.

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

10

Each controller can calculate the internal-link costs and find the shortest path (i.e., the
least-expensive path) between any two of its border switches. For example, referring
again to Figure 6, when controller C announces the link cost between its own area and
controller F’s area, it adds the shortest-path cost between border switches S1 and S2,
and adds that to the cost information sent to controller B. Similarly, Controller C adds
the shortest-path cost between switches S2 and S3 to the cost between areas C and F,
and sends this information to controller D.

This alternate embodiment also creates problems. This embodiment requires
sending multiple (and possibly different) link cost messages for the same link. For
example, the cost announced by controller C to reach area F is different when this
information is sent to controller B versus when it is sent to controller D, because they
are each based on a different internal-path cost (e.g., if the internal shortest-path cost
between S1 and S2 is different from the cost between S2 and S3, then controller C will
announce two different link costs between its own area and controller F’s area).
Eventually, these two contradicting messages will be received by other controllers,
which will interpret the second message as an update on the first received message,
rather than interpreting them as two separate messages.

Further embodiments that attempt to fix this multiple-cost problem, for example
by modifying the OSPF protocol to allow attributing multiple costs to the same link, the
shortest path found by the controllers in the split architecture might not be the optimal
one. For example, in the scenario depicted in Figure 7, where the numbers on each link
show the costs of the links in either direction, sub-optimal routes would be determined.
In calculating the shortest path from area A to area F, the following steps will be taken:
(1) C announces to B and D: cost 2 (1+1) to reach F; (2) B announces to A: cost 11
(10+1) to reach C; (3) D announces to B: cost 21 (1+20) to reach C (note that there is
only one internal path between border switches S4 and S5 within area D); and (4) B

announces to A: cost 2 (1+1) to reach C.

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

11

When controller A calculates its shortest path to area F, based on the above
information, it chooses path A-B-C-F over other paths because of its smallest cost,
which is 14. However, the optimal routing between A and F, based on all the cost
information shown in Figure 7, is A-B-D-E-D-C-F, which costs only 10. Controller A
is not able to choose this path because the information exchanged between controllers is
not enough for such selection. Therefore, for an optimal routing solution, the OSPF
messages exchanged between controllers need to convey more information about the

internal-link cost, as is discussed further herein below.

OSPF with Abstracted Intra-Area Path Costs

The embodiments of the present invention provide a method and system for
avoiding the disadvantages of the prior art. The prior art and the simple
implementations of OSPF in an split-architecture network as set forth above provide
sub-optimal routing solutions where the shortest path isn’t always accurately
determined and/or an excessive amount of information is provided to identify routes
that is inefficient or doesn’t scale.

The embodiments of the invention overcome these disadvantages of the prior
art. The embodiments of the present invention abstract the intra-area path costs between
each pair of border switches as a direct link associated with a cost value. This solution
provides optimal paths, can be efficiently executed, is scalable and is backward
compatible with conventional routers in non-split-architectures.

In one embodiment, the OSPF routing protocol is implemented between the
controllers in the split architecture to establish optimal (shortest) paths between any two
forwarding elements in the network. The embodiment exposes necessary information of
both the intra-area path cost and the inter-area link cost to the entire multi-area split
architecture network. As mentioned above, the embodiments provide optimality,
efficiency, scalability and backward compatibility.

The routing protocol provides sufficient and accurate information that allows
each split-architecture controller to individually compute the optimal path to reach any
other destination. This is the optimality property that traditional intra-domain routing
protocol (OSPF, IS-IS) provides in traditional networks. However, the definition of
optimal path changes slightly for use in split-architecture networks. In the traditional

network, it is the path with minimum inter-router costs. In the split-architecture

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

12

network context, the optimal path is the path with minimum inter-router cost plus intra-
router cost (or intra SA-area cost).

The embodiments of the split-architecture OSPF (SA-OSPF) routing protocol
allow each router to compute the shortest path decision independently. OSPF converges
at a fast speed. In other words, the split-architecture OSPF protocol does not introduce
additional convergence overhead in comparison to the traditional network OSPF. The
split-architecture OSPF protocol scales to a large network with hundreds of switches.
The scalability can be quantified by both the overhead of the number of messages
exchanged and the storage requirement on the controllers. Incremental deployment is
critical for the adoption of any new proposals on network protocols. The split-
architecture OSPF protocol is backward compatible with conventional routers. This
property increases its potential usage in real network environment,

The embodiments of the split-architecture OSPF abstract the intra-area path cost
between any pairs of border switches as a direct link associated with a cost value. There
are several aspects of the split-architecture OSPF that facilitate this functionality. The
intra-area cost is embedded in the form of conventional OSPF messages to ensure
backward compatibility. The intra-area cost is propagated to all controllers in all areas,
separately from the inter-area cost. This ensures the optimality of shortest path
computation. It ensures that each controller has the complete picture of the entire
network, both inter-area and intra-area. With such sufficient area, computing the
shortest path can be easily done using the Dijkstra algorithm, as in the traditional
OSPF.

The split-architecture OSPF is scalable in that which internal information is to
be propagated to external controllers is carefully managed. One naive approach would
be to send the internal costs between any pairs of split-architecture switches. However,
this would cause scalability issue. Moreover, most of this information is not useful for
decision making on an external controller. The split-architecture OSPF only propagates
the total aggregated cost of any pair of border split-architecture switches.

Figure 8 is a diagram of one example embodiment of a split-architecture
network. The example split-architecture network is divided into separate split-
architecture areas (SAs) 801A-C. Each area 801A-C contains a set of switches. All

switches in the same area are controller by a single logical controller 803A-C. In one

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

13

embodiment, the SAs can be implemented as a primary controller and a set of backup
controllers for redundancy purpose.

The switches in each SA can be any type of router, switch or similar networking
device capable of implementing a data plane of a split architecture network. The
switches can include border split-architecture switches and internal split-architecture
switches. A border split-architecture switch supports split-architecture functions with
an interface connecting to another switch in different SA areas. A border split-
architecture switch is typically controlled by the controller of a single SA area. In other
embodiments, the border split-architecture switch can be in multiple SAs and have
interfaces controlled by each respective SA controller. An internal split-architecture
switch supports split-architecture protocols. It is controlled by the controller in its area.
All its neighbors are within the same SA area.

The switches are in communication with each other over a set of links. These
links can be any type of communication medium including wired or wireless
communication mediums and any combination thereof. The links can be categorized as
either internal links or external links. Internal link are links between two switches
within an SA area, these switches could be either border switches or internal SA area
switch, which belong to the same SA area. External links are links between two SA
switches belonging to different SA areas. In this case, both of the SA switches are
border SA switches.

The links state advertisements (LSAs) 805 are an example set of LSAs
implementing the split-architecture OSPF. Each LSA is an abstraction of a pair of
border switches and the associated costs of traversing the SA area between these two
border switches. These LSAs are generated by each controller and transmitted to the
adjacent controllers. The example LSA set 805 is the set of LSAs for controller 803B
for SA area 801B.

Figure 9 is a diagram of one embodiment of a network element implementing a
controller. In one embodiment, the controller 901 is a router, switch or similar
networking device. The controller 901 can include an ingress module 903, an egress
module 905, a network processor 907 and a storage device 911. The ingress module
903 handles incoming data traffic at the physical and link level and provides this data to

the network processor for further processing. Similarly, the egress module 905 handles

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

14

outgoing data traffic at the physical and link level to transmit it to other devices over a
connected network. These two module function together to enable communication with
other devices over a network.

The network processor 907 is a processing device or set of processing devices
that execute the functions of the network element including each of the functions
related to the control plane of the network that govern the data plane of the network.
The network processor 907 can execute a set of modules including a neighbor
discovery module 913, a OSPF module 915, a topology learning module 917, a link
state management module 919 and an a controller module such as an OpenFlow
controller 921.

In addition, the network processor 907 can access data stored within the storage
device 911. The data stored in the storage device 911 can include routing tables 923
and a link state database 925. In other embodiments, the storage device 911 can
include any number of separate local or distributed storage devices and any
arrangement of stored data across these devices. The other modules executed by the
network process can also be loaded from or stored on the storage device 911.

The neighbor discovery module 913 can manage the protocols for
communicating with other devices in a network using a hello protocol or similar
protocol to obtain information about each of the neighboring controllers in a network to
enable proper communication between and configuration of the switches of the SA area
managed by the controller. Any hello protocol or process can be utilized to identify
adjacent controllers and switches for the SA area.

A topology learning module 917 utilizes the information gathered by the
neighbor discovery module 913 to determine a topology of the network within which
the controller operates. This topology information is utilized by the OSPF module 915
to calculate optimal routes through the network. The topology information is also
utilize by the link state management module 919 to track and determine link costs
within the network.

The OSPF module 917 calculates optimum routes between a source or
originating device to a destination device within a network. The OSPF module 917
can store the routing information in a set of routing tables 923. The OSPF module 917

can use the topology information generated by the topology learning module 917 to

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

15

calculate routes between the network elements. In some embodiments, OSPF module
917 can also calculate a spanning tree for the network with the controller at the root to
establish routes to each other device.

A link state management module 919 manages link state information for a
network or an area of the network in a link state database 925. The link state
management module 919 can also generate link state advertisements to be disseminated
to adjacent controllers providing information about the connections between the
controller and other controllers as well as within the SA area of a controller. This
information can be packaged as a set of link state advertisements for each border switch
pair that is sent to other controllers in the network.

The controller 921 can be any type of split-architecture controller to manage the
control plane of the SA area. The controller can implement the OpenFlow protocol or a
similar protocol for managing a split architecture network. The controller module 921
can communicate with switches in the SA area to configure the forwarding of packets
on the data plane. The controller 921 also communicates with other controllers to
exchange neighbor information, link state advertisements and to provide similar
information to peers.

Figure 10 is a flowchart of one embodiment of the operation of the controller to
implement and support OSPF in a split-architecture network. The process is described
in terms of being executed by a controller for sake of clarity, however, the process can
be executed by components of the controller (e.g., an OSPF module) in conjunction
with the specific controller module (e.g., an OpenFlow controller). The process can be
initialized at the time that a controller is activated or reset. In other embodiments, the
process is continuous or periodic. The controller can initialize a set of data structures to
be utilized for storing and manipulating data such as OSPF routing protocol related data
structures (Block 1001).

The controller learns the topology of its assigned SA area including identifying
those switches in the SA area that are border switches (Block 1003). The topology can
be learned through the exchange of link state advertisements or link state databases
with other controllers and traditional routers and through similar mechanisms.
Controllers in different SA areas can communicate with SA-OSPF protocol. The

messages exchanged are similar to traditional OSPF Messages, including the Hello

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

16

messages, Database description, Link State Request, Link State Update, and Link State
Acknowledgement. In particular, in Figure 8, a Link State Update message 805 is
shown. A single Link State Update packet may contain several Link State
Advertisements (LSAs). A separate copy of SA-OSPF's basic routing algorithm runs in
each area. Routers having interfaces to multiple areas run multiple copies of the
algorithm. This data is compiled into a topological map of the SA area and the broader
network in which the SA area is situated.

The controller (e.g., the OSPF module of the controller) calculates the shortest
path between each pair of border switches in the SA area of the controller (Block
1005). This can be performed in conjunction calculating other intra-area routes
between switches. The border switch pair costs though are what is to be shared with
other controllers and traditional routers to enable those controllers and traditional
routers to determine optimum paths that cross the SA area of the controller. The
shortest path is calculated using the learned topology of the SA area. In one
embodiment, Dijkstra’s algorithm is used to compute the shortest paths between any
pairs of border switches The calculated costs of the shortest path for each pair are then
stored with the topological data or with the OSPF routing data (Block 1007).

The controller then identifies neighbor controllers (Block 1009). In one
embodiment, a controller can use the SA-OSPF's Hello Protocol to acquire neighbors.
The controller sends Hello packets to another controller in its neighboring area or a
neighboring traditional router, and in turn receives the Hello packets from other
controllers and traditional routers (Block 1111). On broadcast and point-to-point
networks, the controller dynamically detects controllers or traditional routers in its
neighboring areas by sending its Hello packets to the multicast address. On non-
broadcast networks, some configuration information can be provided to discover
neighboring controllers.

Next, the controller will attempt to form adjacencies with some of its newly
acquired neighboring controllers. Link-state databases are synchronized between pairs
of adjacent controllers (Block 1113) by exchanging LSA messages with the adjacent
controllers (Block 1115). Each LSA message contains the cost of its entire external
links. The controller not only sends to a specific neighbor the cost of links connecting

to this neighbor, but also the cost of links to all neighbors. In addition to sending out

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

17

the cost of external links in the, the controller will also send out the cost of internal
links. The LSA message can be constructed using the SA switch IDs of the two border
switches, together with the two relevant interface IDs. A controller can periodically
advertise the state of its SA area, which is also called link state. Link state is also
advertised when an area's (a controller’s) state changes. An area's adjacencies are
reflected in the contents of its LSAs. This relationship between adjacencies and link
state allows the protocol to detect failure and performance changes in a timely fashion.

LSAs are flooded across multiple SA areas. The flooding process is reliable,
ensuring that all controllers in the entire network have exactly the same link-state
database. This database consists of the collection of LSAs originated by each area
including both inter-area topology and intra-area topology.

From this link state database, each controller calculates a shortest-path tree for
the overall network, with itself as root (Block 1117). This shortest-path tree in turn
yields a routing table for the OSPF protocol. Based on this routing information, the
controller programs the switches in its SA area to route data packets through the SA
area using the calculated shortest paths (Block 1119). The update of the switches can
be accomplished using a control plane protocol (e.g., OpenFlow) over secure channels
or using a similar process.

As changes occur in the network updated link status advertisements can be sent
by the controller (Block 1121). The LSA messages are sent to adjacent controllers to
notify them of changes in the SA area of the controller so that the neighboring
controllers can update their routing as needed.

The split-architecture OSPF differs from traditional OSPF in that a traditional
router looks like a single router to other routers in the network. However, an SA area
will look like N routers to other areas/routers in the network, where N is the number of
border split-architecture switches of the area. The difference is that, while the
traditional OSPF runs a single process on a single router per area and looks like a single
router, the SA-OSPF runs a single process on a single controller of the SA area and
looks like N routers to other controllers.

In one embodiment, the single SA-OSPF process sends & different Hello packet
to represent each of the N border SA switches, for every Hello packet sent by the OSPF

process in a traditional router. These hello packets are sent on interfaces connected to

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

18

other routers/SA areas. Similarly, a single SA-OSPF process sends N different Router-
LSA packets to represent each of the N Border SA Switches, for every Router-LSA
packet sent by the OSPF process in a traditional router. These LSA packets are sent on
interfaces connected to other routers/ SA areas.

In short, the controller for an SA area manages OSPF as if it has N OSPF
controller processes, where N is the number of border split-architecture switches in the
SA area. This ensures backward compatibility with OSPF running on connected
traditional routers. Thus, the controller sends out A hello packets, N LSA messages and
so forth. For the same number of routers in traditional networks, in split-architecture
networks, SA-OSPF uses a lesser number of protocol packets compared to traditional
OSPF. The savings come from not having to send OSPF protocol packets between the
border SA switches belonging to the same SA area.

LSA Messages

Figure 11 is diagram of an OSPF link state advertisement header format. To
ensure that SA-OSPF is backward compatible, the same format as the standard OSPF
message formats (i.e., the same sequence of fields and length of fields is utilized.
However, the assignment of values to some of the fields can be different.

Figure 12 is a diagram of an SA-OSPF LSA message, specifically, a Router-
LSA type message. A router-LSA is generated by each switch in an area. It describes
the state of the area's interfaces within the area. This message is originated by all
controllers. This LSA describes the collected states of the router's interfaces to a multi-
domain SA network. It is flooded throughout all controllers.

In one embodiment, a router-LSA message is different from the traditional
router-LSA message in four fields of the message (shown in Figure 12): Self Switch
ID, Self Interface 1D, Neighbor Interface 1D, and Neighbor Switch ID. The Switch ID
is the unique 32-bit identifier assigned to each switch in the split architecture. This ID
must be unique among all switches in the multi-area SA domain. In one embodiment,
the highest IP address of the switch is used as the Switch ID. The Self Switch ID is the
identifier of the advertising switch, and the Neighbor Switch ID is the identifier of the
neighboring switch. The Interface ID is the 32-bit identifier assigned to each interface

of a switch. This identifier only needs to be unique in a single switch. The Self

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

19

Interface ID is the Interface ID of the advertising switch and the Neighbor Switch ID is

the Interface ID of the neighboring interface (of the neighboring switch).

Handling of HELLO Messages

OSPF Hello protocol is a mechanism that allows a router to establish and
maintain the adjacency with neighboring routers. The adjacent routers exchange Hello
messages. In broadcast and point-to-point networks, a router can dynamically detect its
neighboring routers by sending Hello messages to a multicast address. Upon receiving
Hello packets, the router form adjacencies among neighbors. Link-state databases are
synchronized between pairs of adjacent routers as well as the routing updates. After the
adjacent is established, a router still needs to periodically exchange Hello messages to
indicate that it is alive. In summary, the purpose of the Hello message is to discover and
maintain neighboring relationships.

Figure 13 is a diagram of the Hello message in SA-OSPF. In the SA-OSPF
protocol, the Hello message can be unchanged. However, the split-architecture
controller needs to construct additional Hello messages to maintain the adjacencies
between neighboring routers and the Split Architecture switch that it connects to.

Figure 14 is a diagram of the Hello message exchanged between a split-
architecture controller and a traditional conventional router. In SA-OSPF, the controller
first constructs an OSPF Hello message on behalf of the border switches. It uses the
border switch’s highest IP address in the field of switch ID. The packet is first injected
to the switch S1 and then sent to the adjacent routers on the egress link.

Thus, a method, system and apparatus for implementing OSPF in a split-
architecture network is described. It is to be understood that the above description is
intended to be illustrative and not restrictive. Many other embodiments will be
apparent to those of skill in the art upon reading and understanding the above
description. The scope of the invention should, therefore, be determined with reference
to the appended claims, along with the full scope of equivalents to which such claims

are entitled.

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

20
CLAIMS
What is claimed is:
1. A method implemented in a network element functioning as one of a plurality

of controllers for one of a plurality of areas of a split architecture network, the
controller to provide a control plane for the area of the split architecture network where
the controller is remote from a plurality of switches providing a data plane for the area
of split architecture network, the controller to facilitate optimized routing across the
plurality of areas of the split architecture network by providing limited intra-area link
cost data to other controllers of other areas of the split architecture network and to
traditional routers of a network including the split architecture network, the limited
intra-area link cost data providing costs of each possible shortest path traversal of the
area of the controller without providing all internal link cost data, the method
comprising the steps of:

learning a topology of the area of the controller in the split architecture network
including each border switch in the area of the controller, wherein each border switch
in the area of the controller has at least one external port linking the area of the
controller to another area of the split architecture network or to one of the traditional
routers in the network;

computing a shortest path between each border switch pair in the area of the
controller;

storing a cost of each shortest path between each border switch pair in a routing
table of the controller;

identifying each neighbor controller in the split architecture network or
neighbor traditional router in the network using a hello protocol, wherein each neighbor
controller controls switches in another area of the split architecture network accessible
through at least one external port of the area of the controller;

exchanging a link state database with each neighbor controller and neighbor
traditional router, the link state database including the cost of each shortest path
between each border switch pair;

calculating a shortest path tree for the network with the controller as a root of

the tree; and

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

21

updating forwarding tables in switches of the area of the controller to implement

forwarding according to the shortest path tree.

2. The method of claim 1, wherein the step of identifying each neighbor controller
further comprising the steps of:
sending a hello packet on each external port of the area of the controller; and
receiving hello packets from each neighbor controller through at least one

external port of the area of the controller.

3. The method of claim 1, wherein the step of exchanging link state data further
comprises the step of sending a link state advertisement to each neighboring controller,

the link state advertisement including a cost to each external link of the controller.

4. The method of claim 1, wherein the step of exchanging link state data further
comprises the step of sending a link state advertisement to each neighbor controller, the
link state advertisement including the cost of the shortest path for each border switch

pair in the area.

5. The method of claim 1, further comprising the step of advertising updated link

status data to each neighboring controller.

6. The method of claim 5, wherein the step of advertising the update link status
data further comprises the step of sending a link status advertisement message with

updated link status data to each neighboring controller.

7. The method of claim 1, wherein the step of updating forwarding tables further
comprising the step of updating forwarding tables of each switch in the area of the

controller using the OpenFlow Protocol.

8. The method of claim 1, further comprising the step of initializing Open Shortest
Path First (OSPF) protocol data structures at the controller.

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

22

9. A network element functioning as one of a plurality of controllers for one of a
plurality of areas of a split architecture network, the controller to provide a control
plane for the area of the split architecture network where the controller is remote from a
plurality of switches providing a data plane for the area of the split architecture
network, the controller to facilitate optimized routing across the plurality of areas of the
split architecture network by providing limited intra-area link cost data to other
controllers of other areas of the split architecture network and to traditional routers of a
network including the split architecture network, the limited intra-area link cost data
providing costs of each possible shortest path traversal of the area of the controller
without providing all internal link cost data, the network element comprising:

an ingress module configured to receive data over a network;

an egress module configured to transmit data over the network;

a network processor coupled to the ingress module and egress module, the
network processor configured to execute a set of modules comprising a controller
module, a topology learning module, a shortest path calculation module, a neighbor
discovery module and a link state management module,

the topology learning module configured to determine a topology of the
area of the controller in the split architecture network including each border
switch in the area of the controller, wherein each border switch has at least one
external port linking the area of the controller to another area of the network or
to a traditional router in the network,

the controller module configured to provide control plane functionality
for the area of controller in the split architecture network,

the shortest path calculation module configured to identify a shortest
path between each border switch in the area of the controller to be shared with
neighbor controllers and the traditional routers and to calculate a shortest path
tree for the network with the controller as the root of the tree,

the neighbor discovery module configured to identify each neighbor
controller and traditional routers in the network using a hello protocol, and

the link state management module configured to exchange a link state

database with each neighbor controller and traditional routers in the network,

WO 2013/021304 PCT/IB2012/053833

10

15

20

25

30

23

the link state database including a cost of each shortest route between each

border switch pair in the area of the controller; and

a routing table storage device communicatively coupled to the network
processor, the routing table storage device configured to store routing tables for the
controller module, including shortest path information for the area of the controller

and between border switches of the area of the controller.

10. The network element of claim 9, wherein the neighbor discovery module is
configured to send a hello packet on each external port of the area and receive hello

packets from each neighbor controller through at least one external port of the area.

1. The network element of claim 9, wherein the link sate management module is
further configured to send a link state advertisement to each neighboring controller, the

link state advertisements including the cost to each external link of the controller.

12. The network element of claim 9, wherein the link state management module is
further configured to send a link state advertisement to each neighbor controller, the
link state advertisement including the cost of the shortest path for each border switch

pair in the area of the controller.

13. The network element of claim 9, wherein the link state management module is

further configured to advertise updated link status data to each neighboring controller.

14. The network element of claim 9, wherein the link status management module is
further configured to send a link status advertisement message with updated link status

data to each neighboring controller.

15. The network element of claim 9, wherein the controller module is further
configured to update forwarding tables of each switch in the area of the controller using

the OpenFlow Protocol.

WO 2013/021304 PCT/IB2012/053833

24

16. The network element of claim 9, wherein the shortest path calculation module is
further configured to initialize Open Shortest Path First (OSPF) protocol data structures

at the controller.

WO 2013/021304

PCT/IB2012/053833
1/14

Secure
/v/v channel ‘ ’

Flow
~_table | OpenFlow Controller

OperiFlow Switch

FIG. 1

(PRIOR ART)

WO 2013/021304 PCT/IB2012/053833
2114

0 1 2 3
0123456789012345678901234567890°1
S S SRS S N S S S SO SN S S S SR S
| Version # | Type l Packet length
tatatatotatatotatototatatotatotatatatatototatatatatatatatatatato
| Router ID
tototetotatototatotototototatatatatatatatatot ot ot ot oot atatatato
l Area ID
todmtotatatotototatatatotatototadot ottt ot ot oot f et et e bt o bm b o
] Checksum } AuType
tetotatatatotot ot ottt ot atatototototetototatat ot tototatatatatata
i Authentication
totototototototototatotatatatat ot ot atatatmt ot ot oot otetatatatata
[Authentication
S S S S S TSR S SRS S S S S

F— b b —

FIG. 2

WO 2013/021304 PCT/IB2012/053833
3/14

0 1 2 3
012345678901234567890123456789°01
totetetotmtatototototototototototototatotatatatotatatatatatatatat
| Version # | Type | Packet length]
totototetotatototatatatatatetatat ettt atatotatatatatatatatatatatat
[Router ID ;
totototototatatatotototatotototatatatotat ot ot atotat ot b oot —d o=t
| Area ID |
totmtetotototatatototat
] Checksum | AuType |
tototetototototototototatotatatatatatetatatatatatatatatatatatatat
] Authentication |
e St U S I e e s e
] Authentication]
totmtmtototatmtototot ot ot etotat ot atatatatatatatatatatotatotatatat
[Network Mask]
Fotototototatotototatetatatatatetatatatatatatatatatatatatatatatat
] HelloInterval | Options ' Rtr Pri |
totetetototatotat
| RouterDeadInterval]
totetetetototatatatatatotatotetatatatatatatotatatatatatatatatatat
] Designated Router }
e s T R O s S Ut
| Backup Designated Router]
tototetototatetatatatotat-t
] Neighbor]
tottetotototot ot ot atot ot ototatatototadototof ot ot ot ettt ettt -t

l

FIG. 3

WO 2013/021304 PCT/IB2012/053833
4/14

0 1 2 3
01234567890123456789012345678901
totototatatatotatototatatatotototototatatot ot ot et md ettt e b et atat
] LS age] Options] LS type |
s AR O O S S TS S S S MU SN NS S S SN S RS
[Link State ID |
totototat ot et et mtot et ot ot ot ot et ot ottt ot et et at o e e bbb oot
| Advertising Router l
o St MR L M S S S S Y S S S S S
| LS sequence number |
s (N RN M S T S S S S S S S AR R N
| LS checksum | length]
Rl s Sk A M S S S U SN SN S S S S s

FIG. 4

WO 2013/021304 PCT/IB2012/053833
5/14

0 1 2 3
01234567890123456789012345678901
totetotototototototototat oot oot ot ot ot o tat et ottt ot et et e b et =t
] LS age l Options | 1]
Fodetotototot ot ot tot ot ot otat ot ot ot ottt at et ot et et et ad b et et
| Link State ID |
totetotatetatatototototatototototatototototatotatotatatatatatatat
l Advertising Router |
tototototototototatototatatatotatotattototototatat oot atotatatat

| LS sequence number
Fotototototototototototatatotatotatatatatotatatatotatatatatatatat
| LS checksum | length |
T T o o SO SRR A LU S P RS SO S S S
] 0 |V|E|B| 0] # links]
totetotmtetotatetotatatatotatototatotatatotodotatatatototafatatat
] Link ID }
e e et S S S S TS S S AP S S S
; Link Data |
totmtot et etotetetetatatatotototototatatot ot ot atototatat ot et mtatat
] Type] TOS] metric
S S S e S S S S NS NS
l-+-+-+-+-+-+-+-+-+-+-+—+-+-+-+-+-+-+-+-+-+-+-+-+-+~+-+-+-+-+-+-l
[TOS 0] TOS metric]
totototototot oot ottt otot ot et ot ot ot et et et et et et et et e d e e bt
| Link ID |
et S L Ot L SO FANS U 0 S S S SO S
, Link Data]
totmtetet ot et atotatotatototototatototototatotatatmtotat ot et ot et et

| |
FIG. 5

B

WO 2013/021304 PCT/IB2012/053833
6/14

FIG. 6

WO 2013/021304 PCT/IB2012/053833
714

FIG. 7

PCT/IB2012/053833

WO 2013/021304

8/14

G08 "\

/

los'z0'7al VST

SYUI| [BULEIXT

Syul feulay|

YoUMS 40 [ewau|

[05'e'DL'VIvST

[05'19'1 'Vl vST

[001L'1'D'1 V1 VS

==

WO 2013/021304

9/14

PCT/IB2012/053833

FIG. 9

NETWORK ELEMENT/CONTROLLER
901
903 905
~ vl
| INGRESS | EGRESS -
”| MODULE "l MODULE >
A 907
NETWORK PROCESSOR . 911
919
913 NEIGHBOR LINK STATE
“—"TY DISCOVERY MANAGEMENT
MODULE MODULE I———
I 921 ROUTING 923
915 SHORTEST L TABL'ES —~J/
N PATH OPENFLOW < . i
CALCULATION CONTROLLER
MODULE LINK 925
o STATE [}
LEARNING)
MODULE

WO 2013/021304 PCT/IB2012/053833

10/14
T 4001
! CONTROLLER INITIALIZES OSPF ROUTING .y
: PROTOCOL DATA STRUCTURE ;

B v e o . - ———— e - - — -y - o W " -]
3 1003
LEARN NETWORK TOPOLOGY OF ASSIGNED -
SPLIT ARCHITECTURE (SA) AREA INCLUDING BORDER
SWITCHES
v 1005

COMPUTE SHORTEST PATH BETWEEN EACH PAIR B
OF BORDER SWITCHES IN THE SA AREA

! 1007
STORE COST OF EACH SHORTEST ROUTE BETWEEN [/
BORDER SWITCH PAIRS
! 1009
IDENTIFY NEIGHBOR CONTROLLER USING HELLO U
PROTOCOL "
|___ _SENDANDRECEIVE HELLOPACKETS ____r—~~

EXCHANGE LINK STATE DATABASES WITH NEIGHBORING 113

CONTROLLERS AND OTHER CONTROLLERS INCLUDING COST | >~
OF EXTERNAL LINKS AND COST OF SHORTEST ROUTE FOR
EACH BORDER SWITCH PAIR s
| SEND LSA MESSAGES TO NEIGHBOR CONTROLLERS |~
1117
CALCULATE SHORTEST PATH TREE FOR NETWORK WITH ~_/
CONTROLLER AS ROOT
1119
UPDATE TABLES TO IMPLEMENT FORWARDING ~_
ACCORDING TO SHORTEST PATH TREE
___________________ v iy
i ADVERTISE UPDATED LINK STATUS DATA F\/m
b pe o o o v o e e . o "~ — - o — oy i
i
1

PCT/IB2012/053833

WO 2013/021304

11/14

L1 "Old

‘Kien i siuajuao auy jo syejap ,adf] 7, a4 uo Buipusdag

)

091

4ousT wnsyoaL) §1 a

JBquiny sousnbeg §7 %

1gnoy BuisieApy 9

Q1 g yun &

sdf] §1 by S 0

il ol 6z)8e| | fse|vzfsz|a)zfozlen]anulolalnlelalnlalels!; wﬂ%

PCT/IB2012/053833

WO 2013/021304

12/14

A E
(1 J8noy JogybieN)
Q1 8%epaj Joqubien]
Q1 aoegay]
™ 0 ad| -
0%
Q1 youmg JogybieN 897
) 2o JogubiaN 93¢
EETETTES et
AN 0 adf) 26!
suondg G133 A XN 09
yibus) wnsyy) §1 8l
JaQINN 30uanbag § 9%
1 YoUMS 483 %9
Q18IS T &
| L1olo a6y §1 0
AN ARANAR AL AR A AR AR AN AT AR VAR AR AT A A IR AR RN N R AR mmm

WO 2013/021304 PCT/IB2012/053833
13/14

0 1 2 3
0123456789012345678901234567890¢01
tetetetatototototototatatatatatatatototatotatototatatototatatatat
| Version # | 1 | Packet length l
tototetetotatatotototadadododotodtot ot ot ot oot et et et e bbb et e bt
Switch ID |
=tetetetetotototototatototatotatot ot ot ot ot ot et ettt et ot o totatadt
Area ID |
mtetetotatotetadtototototatotatatatatototototatotatotatatatotatt
Checksum | AuType i
R s ok S L LR R S Y Y SOt S WY SIS S W
Authentication
—tetetotetetototototototototatatat ot ot otat ot ottt ot ot ot otot ot
Authentication
—tetetetetetototatotototatatadatot ot ototat ot et et atot ottt atato
Network Mask
B e e e e K s Sy U S N S SRS S N N A
HelloInterval | Options } Rtr Pri
=tetetetetotototototatototatototatotatatotatatat ot ot oo tatotatn
RouterDeadInterval
B et e e e O o S N N U S S U S S
Designated Router
totetetetetotatototototatatotatototototototat ot ot atototatatatata
| Backup Designated Router
R e e e e o ot S N S S Y N S S S W R SO
! Neighbor
tetetetetetatotototototatatatatatotot ot otot ot ot ot ot oot ot ot ot ot

|

+

i S H N —

e e —
+
i
+
1
+
i
+
i

—— e e

FIG. 13

PCT/IB2012/053833

WO 2013/021304

14/14

¥l "Old

JBIN0J [BUONUBAUOD ‘mvw

SYUI| [BUIBIXT

SYUI| [eUBIY] - -~~~

Youms 40 sopiog [Z2

{

| Jajjonuo)

[v] oljeH

J3}N0J [2UONUBAUOY ‘MN...@'

S Wy

	DESCRIPTION
	CLAIMS
	DRAWINGS

