PC[WORLD INTELLECTUAL PROPERTY ORGANIZATION
: International Bureau

. INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : " | (11) International Publication Number: WO 92/12482

GO6F 11/10 Al (43) International Publication Date: 23 July 1992 (23.07.92)

(21) International Application Number: PCT/US92/00059 | (74) Agents: KONRAD, William, K. et al.; Spensley Horn Ju-
bas & Lubitz, 1880 Century Park East, Fifth Floor, Los

(22) International Filing Date: 3 January 1992 (03.01.92) Angeles, CA 90067 (US).
(30) Priority data: (81) Designated State: JP.
638,167 4 January 1991 (04.01.91) Us
Published
(71) Applicant: ARRAY TECHNOLOGY CORPORATION With international search report.
[US/UE); 4775 Walnut Street, Suite B, Boulder, CO
80301 (US).

(72) Inventors: BRANT, William, A. ; 4784 Dorchester Circle,
Boulder, CO 80301 (US). STALLMO, David, C. ; 59
Beaver Way, Boulder, CO 80304 (US). WALKER, Mark
; 20000 Gist Road, Los Gatos, CA 95030 (US). LUI, Al-
?Grt ; 3164 Heritage Valley Drive, San Jose, CA 95148

S).

(54) Title: FLUID TRANSFER DEVICE AND METHOD OF USE

A fault-tolerant storage device array using a copyback cache storage unit (cc) for temporary storage. When a Write occurs
to the RAID system, the data is immediately written to the first available location in the copyback cache storage unit (cc). Upon
completion of the Write to the copyback cache storage unit (cc), the host CPU (1) is immediately informed that the Write was suc-
cessful. During idle time for relevant storage units (51-55) of the storage system, an error-correction block is computed for each
"pending” data block on the copyback cache storage unit (cc), and the data block and corresponding error-correction block are
copied to their proper location in the RAID system. The copyback cache storage unit (cc) in effect stores “peak load” Write data
and then completes the actual Write operations to the RAID system during relatively quiescent periods of 1/0 accesses by the
CPU (1).

(57) Abstract

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
CA
CF
cG
CH
Cl
™
cs
DE
DK

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria
Benin

Brazil

Cuanadis
Central African Republic
Congo
Switzerland
Cote 'lvoire
Cameroon
Crechoslovakia
Germany
Denmark

KR
Ll
LK
Lu
MC

Spain

Finland

France

Gabon

United Kingdom
Guinca

Greece

Hungary

Taly

Japan

Demacratic People’s Republic
of Korca
Republic of Korea
Licchtenstein

Sri Lanka
fuxembourg
Monaco

Madagascar

Mali

Mongolia
Mauritania

Malawi
Netherlands
Norway

Poland

Romania

Russian Federation
Sudan

Sweden

Senegal

Soviet Union

Chad

Togo

United States of America

WO 92/12482 PCT/US92/00059

10

15

20

25

-

FLUID TRANSFE# DEVICE AND METHOD OF USE
BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention relates to computer system data storage, and more particularly to a

fault-tolerant storage device array using a copyback cache storage unit for

‘temporary storage.

2. Description of Related Art

A typical data processing system generally involves one or more storage units
which are connected to a Central Processor Unit (CPU) either directly or through
a control unit and a channel. The function of the storage units is to store data

and programs which the CPU uses in performing particular data processing tasks.

Various type of storage units are used in current data processing systems. A

typical system may include one or more large capacity tape units and/or disk
drives (magnetic, optical, or semiconductor) connected to the system through

respective control units for storing data.

However, a problem exists if one of the large capacity storage units fails such that
information contained in that unit is no longer available to the system. Generally,

such a failure will shut down the entire computer system.

The prior art has suggested several ways of solving the problem of providing
reliable data storage. In systems where records are relatively small, it is possible
to use error correcting codes which generate ECC syhdrome bits that are
appended to each data record within a storage unit. With such codes, it is
possible to correct a small amount of data that may be read erroneously.
However, such codes are generally not suitable for correcting or recreating long
records which are in error, and provide no remedy at all if a complete storage unit
fails. Therefore, a need exists for providing data reliability external to individual

storage units.

WO 92/12482 PCT/US92/00059

10

15

20

25

30

2-

Other approaches to such "external” reliability have been described in the art. A
research group at the University of California, Berkeley, in a paper entitied "A
Case for Redundant Arrays of Inexpensive Disks (RAID)", Patterson, et al., Proc.
ACM SIGMOD, June 1988, has catalogued a number of different approaches for
providing such reliability when using disk drives as storage units. Arrays of disk

drives are characterized in one of five architectures, under the acronym "RAID" (for

Redundant Arrays of Inexpensive Disks).

A RAID 1 architecture involves providing a duplicate set of "mirror" storage units
and keeping a duplicate copy of all data on each pair of storage units. While
such a solution solves the reliability problem, it doubles the cost of storage. A

number of implementations of RAID 1 architectures have been made, in particular

by Tandem Corporation.

A RAID 2 architecture stores each bit of each word of data, plus Error Detection
and Correction (EDC) bits for each word, on separate disk drives (this is also
known as “bit striping”). For example, U.S. Patent No. 4,722,085 to Flora et al.
discloses a disk drive memory using a plurality of relatively small, independently
operating disk subsystems to function as a large, high capacity disk drive having
an unusually high fault tolerance and a very high data transfer bandwidth. A data
organizer adds 7 EDC bits (determined using the well-known Hamming code) to
each 32-bit data word to provide error detection and error correction capability.
The resultant 39-bit word is written, one bit per disk drive, on to 39 disk drives. I
one of the 39 disk drives fails, the remaining 38 bits of each stored 39-bit word
can be used to reconstruct each 32-bit data word on a word-by-word basis as

each data word is read from the disk drives, thereby obtaining fault tolerance.

An obvious drawback of such a system is the large number of disk drives
required for a minimum system (since most large computers use a 32-bit word),
and the relatively high ratio of drives required to store the EDC bits (7 drives out
of 39). A further limitation of a RAID 2 disk drive memory system is that the
individual disk actuators are operated in unison to write each data block, the bits

of which are distributed over all of the disk drives. This arrangement has a high

WO 92/12482 | PCT/US92/00059

10

15

20

25

30

-3-

data transfer bandwidth, since each individual disk transfers part of a block of
data, the net effect being that the entire block is available to the computer system
much faster than if a single drive were accessing the block. This is advantageous
for large data blocks. However, this arrangement also effectively provides only a
single read/write head actuator for the entire storage unit. This adversely affects
the random access performance of the drive array when data files are small, since

only one data file at a time can be accessed by the "single" actuator. Thus, RAID

2 systems are generally not considered to be suitable for computer systems

designed for On-Line Transaction Processing (OLTP), such as in banking,
financial, and reservation systems, where a large number of random accesses to

many small data files comprises the bulk of data storage and transfer operations.

A RAID 3 architecture is based on the concept that each disk drive storage unit
has internal means for detecting a fault or data error. Therefore, it is not
necessary to store extra information to detect the location of an error; a simpler
form of parity-based error correction can thus be used. In this approach, the
contents of all storage units subject to failure are "Exclusive OR'd" (XOR'd) to
generate parity information. The resulting parity information is stored in a single
redundant storage unit. If a storage unit fails, the data on that unit can be
reconstructed on to a replacement storage unit by XOR'ing the data from the
remaining storage units with the parity information. Such an arrangement has the
advantage over the mirrored disk RAID 1 architecture in that only one additional
storage unit is required for "N" storage units. A further aspect of the RAID 3
architecture is that the disk drives are operated in a coupled manner, similar to a

RAID 2 system, and a single disk drive is designated as the parity unit.

One implementation of a RAID 3 architecture is the Micropolis Corporation Paraliel
Drive Array, Model 1804 SCSI, that uses four paraliel, synchronized disk drives
and one redundant parity drive. The failure of one of the four data disk drives
can be remedied by the use of the parity bits stored on the parity disk drive.
Another example of a RAID 3 system is described in U.S. Patent No. 4,092,732 to
Ouchi.

WO 92/12482 PCT/US92/00059

10

15

20

25

-4-
A RAID 3 disk drive memory sysiem has a much lower ratio of redundancy units
to data units than a RAID 2 system. However, a RAID 3 system has the same
performance limitation as a RAID 2 system, in that the individual disk actuators
are coupled, operating in unison. This adversely affects the random access
performance of the drive array when data files are small, since only one data file
at a time can be accessed by the "single" actuator. Thus, RAID 3 systems are

generally not considered to be suitable for computer systems designed for OLTP

- purposes.

A RAID 4 architecture uses the same parity error correction concept of the RAID 3
architecture, but improves on the performance of a RAID 3 system with respect to
random reading of small files by "uncoupling” the operation of the individual disk
drive actuators, and reading and writing a larger minimum amount of data
(typically, a disk sector) to each disk (this is also known as block striping). A
further aspect of the RAID 4 architecture is that a single storage unit is designated

as the parity unit.

A limitation of a RAID 4 system is that Writing a data block on any of the
independently operating data storage units also requires writing a new parity
block on the parity unit. The parity information stored on the parity unit must be
read and XOR'd with the old data (to "remove" the information content of the old
data), and the reéulting sum must then be XOR'd with the new data (to provide
new parity information). Both the data and the parity records then must be

rewritten to the disk drives. This process is commonly referred to as a "Read-

Modify-Write" sequence.

Thus, a Read and a Write on the single parity unit occurs each time a record is
changed on any of the data storage units covered by the parity record on the
parity unit. The parity unit becomes a bottle-neck to data writing operations since
the number of changes to records which can be made per unit of time is a
function of the access rate of the parity unit, as opposed to the faster access rate
provided by parallel operation of the multiple data storage units. Because of this

limitation, a RAID 4 system is generally not considered to be suitable for computer

WO 92/12482 PCT/US92/00059

10

15

20

25

-5-

systems designed for OLTP purposes. Indeed, it appears that a RAID 4 system

has not been implemented for any commercial purpose.

A RAID 5 architecture uses the same parity error correction concept of the RAID 4
architecture and independent actuators, but improves on the writing performance
of a RAID 4 system by distributing the data and parity information across all of the

available disk drives. Typically, "N + 1" storage units in a set (also known as a

" “redundancy group") are divided into a plurality of equally sized address areas

referred to as blocks. Each storage unit generally contains the same number of
blocks. Blocks from each storage unit in a redundancy group having the same
unit address ranges are referred to as “stripes”. Each stripe has N blocks of data,
plus one parity block on one storage unit containing parity for the remainder of
the stripe. Further stripes each have a parity block, the parity blocks being
distributed on different storage units. Parity updating activity associated with
every modification of data in a redundancy group is therefore distributed over the
different storage units. No single unit is burdened with all of the parity update

activity.

For example, in a RAID 5 system comprising 5 disk drives, the parity information
for the first stripe of blocks may be written to the fifth drive; the parity information
for the second stripe of blocks may be written to the fourth drive; the parity
information for the third stripe of biocks may be written to the third drive; etc. The
parity block for succeeding stripes typically “precesses" around the disk drives in

a helical pattern (although other patterns may be used).

Thus, no single disk drive is used for storing the parity information, and the bottle-
neck of the RAID 4 architecture is eliminated. An example of a RAID 5 system is

described in U.S. Patent No. 4,761,785 to Clark et al.

As in a RAID 4 system, a limitation of a RAID 5 system is that a change in a data
block requires a Read-Modify-Write sequence comprising two Read and two Write
operations: the old parity block and old data block must be read and XOR'd, and
the resulting sum must then be XOR'd with the new data. Both the data and the

WO 92/12482 PCT/US92/00059

10

15

-6-
parity blocks then must be rewritten to the disk drives. While the two Read
operations may be done in parallel, as can the two Write operations, modification
of a block of data in a RAID 4 or a RAID 5 system still takes substantially longer
then the same operation on a conventional disk. A conventional disk does not
require the preliminary Read operation, and thus does have to wait for the disk

drives to rotate back to the previous position in order to perform the Write

operation. The rotational latency time alone can amount to about 50% of the time

" required for a typical data modification operation. Further, two disk storage units

are involved for the duration of each data modification operation, limiting the

throughput of the system as a whole.

Despite the Write performance penalty, RAID 5 type systems have become
increasingly popular, since they provide high data reliability with a low overhead
cost for redundancy, good Read performance, and fair Write performance.
However, it would be desirable to have the benefits of a RAID 5 system without

the Write performance penalty resulting from the rotational latency time imposed

by the parity update operation.

The present invention provides such a system.

WO 92/12482 4 PCT/US92/00059

10

15

20

25

-7-

SUMMARY OF THE INVENTION

The present invention solves the error-correction block bottleneck inherent in a
RAID § architecture by recognition that storage unit accesses are intermittent.
That is, at various times one or more of the storage units in a RAID 5 system are
idle in terms of access requests by the CPU. This characteristic can be exploited
by providing a "copyback cache" storage unit as an adjunct to a standard RAID
system. The present invention provides two alternative methods of operating

such a system.

In both embodiments, when a Write occurs to the RAID system, the data is
immediately written to the first available location in the copyback cache storage
unit. Upon completion of the Write to the copyback cache storage unit, the host
CPU is immediately informed that the Write was successful. Thereafter, further
storage unit accesses by the CPU can continue without waiting for an error-

correction block update for the data just written,

In the first embodiment of the invention, during idle time for relevant storage units
of the storage system, an error-correction block (e.g., XOR parity) is computed for
each "pending" data block on the copyback cache storage unit, and the data
block and corresponding error-correction block are copied to their proper location
in the RAID system. Optionally, if a number of pending data blocks are to be
written to the same strip'e, an error-correction block can be calculated from all
data blocks in the stripe at one time, thus achieving some economy of time. In
this embodiment, the copyback cache storage unit in effect s*ores “peak load"
Write data and then completes the actual Write operations to the RAID systeh‘t

during relatively quiescent periods of I/O accesses by the CPU.

In the second embodiment of the invention, after Write data is logged to the
copyback cache storage unit, normal Read-Modify-Write operation by the RAID
system controller continues in overlapped fashion with other CPU I/O accesses,
using Write data in the controller's buffer memory. Performance is enhanced

because the CPU can continue processing as soon as the simple Write operation

WO 92/12482 _ ' PCT/US92/00059

10

15

-8-
to the copyback cache storage unit completes, thus eliminating the delay caused
by a normal Read-Modify-Write RAID system. In this embodiment, the copyback
cache storage unit acts more as a running "log" of Write data. Data integrity is
preserved since the Write data is saved to the copyback cache storage unit and

thus accessible even if the Read-Modify-Write operation to the RAID system never

completes.

The copyback cache storage unit is preferably non-volatile, so that data will not
be lost on a power failure. If the copyback cache storage unit is a disk drive, it
preferably is paired with a "mirror" storage unit for fault tolerance. Optionally, the
copyback cache storage unit may be a solid-state storage unit, which can achieve

substantially faster Write and error-correction block update times than a disk drive.

The details of the preferred embodiments of the present invention are set forth in
the accompanying drawings and the description below. Once the details of the
invention are known, numerous additional innovations and changes will become

obvious to one skilled in the art.

WO 92/12482 ' PCT/US92/00059
9-

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is block diagram of a copyback cache RAID system in accordance with

the present invention.

FIGURE 2 is a flow-chart of Read and Write operation in accordance with a first

5 embodiment of the present invention.

FIGURE 3 is a flow-chart of Read and Write operation in accordance with a

second embodiment of the present invention.

Like reference numbers and designations in the drawings refer to like elements.

WO 92/12482 PCT/US92/00059

10

15

25

-10-

DETAILED DESCRIPTION OF THE INVENTION

Throughout this description, the preferred embodiments and examples shown

should be considered as exemplars, rather than limitations on the present

invention.

FIGURE 1 is block diagram of a copyback cache RAID system in accordance with
the present invention. Shown are a CPU 1 coupled by a bus 2 to an array
controller 3, which in the preferred embodiment is a fault-tolerant controller. The
array controller 3 is coupled to each of the plurality of storage units $1-S5 (five
being shown by way of example only) by an |/O bus (e.g., a SCSI bus). The
storage units S1-S5 are failure independent, meaning that the failure of one unit
does not affect the physical operation of other units. The array controller 3 is
preferably includes a separately programmable processor (for example, the MIPS
R3000 RISC processor, made by MIPS of Sunnyvale, California) which can act

independently of the CPU 1 to control the storage units.

Also attached to the controller 3 is a copyback cache storage unit CC, which in
the preferred embodiment is coupled to the common I/O bus (e.g., a SCSI bus)
so that data can be transferred between the copyback cache storage unit CC and
the storage units S1-S5. The copyback cache storage unit CC is preferably non-
volatile, so that data will not be lost on a power failure. If the copyback cache
storage unit CC is a disk drive, it preferably is paired with a "mirror" storage unit
CC’ for fault tolerance. The mirror storage unit CC’ is coupled to the controller 3
such that all data written to the copyback cache storage unit CC is also written
essentially simultaneously to the mirror storage unit CC’, in known fashion.
Optionally, the copyback cache storage unit CC may be a solid-state storage unit,
which can achieve substantially faster Write and error-correction block update
times than a disk drive. In such a case, the solid-state storage unit preferably

includes error-detection and correction circuitry, and is either non-volatile or has a

battery backup on the power supply.

WO 92/12482 PCT/US92/00059

10

15

20

25

11-

The storage units S1-S5 can be Qrouped into one or more redundancy groups.
In the illustrated examples described below, the redundancy group comprises all

of the storage units $1-S5, for simplicity of explanation.

The present invention is preferably implemented as a computer program executed
by the controller 3. FIGURE 2 is a high-level flowchart representing the steps of
the Read and Write processes for a first embodiment of the invention. FIGURE 3
is a high-level flowchart representing the steps of the Read and Write processes
for a second embodiment of the invention. The steps shown in FIGURES 2 and 3

are referenced below.

The Peak Load Embodiment

The controller 3 monitors input/output requests from the CPU 1 on essentially a
continuous basis (Step 20). If a Write request is pending (Step 21), the data
block is immediately written to the first available location in the copyback cache
storage unit CC (Step 22) (the data block is also stored on the mirror storage unit
CC', if present). Preferably, writing begins at the first logical block on the
copyback cache storage unit CC, and continues sequentially to the end of the
logical blocks. Thereafter, writing commences again at the first block (so long as
no blocks are overwritten that have not been stored in the array). This preferred
method minimizes time-consuming SEEK operations (i.e., physical movements of a

Read/Write head in a storage unit) in the copyback cache storage unit CC.

Each data block stored on the copyback cache storage unit CC is also flagged
with the location in the array where the data block is ultimatrly to be stored, and
a pointer is set to indicate that the data block is in the copyback cache storage
unit CC (Step 23). This location and pointer information is preferably kept in a
separate table in memory or on the copyback cache storage unit CC. The table
preferably comprises a directory table having entries that include standard
information regarding the size, attributes, and status of each data block. In
addition, each entry has one or more fields indicating whether the data block is

stored on the copyback cache storage unit CC or in the array (S1-S5), and the

WO 92/12482 PCT/US92/00059

10

15

20

25

-12-
"normal" location in the array for the data blocks. Creation of such directory

tables is well-known in the art.

If a data block is written to the copyback cé;:he storage unit CC while a data
block to be stored at the same location in the array is still a "pending block” (a
data block that has been Written to the copyback cache storage unit CC but not
transferred to the array S1-S5), the directory location pointer for the data block is

" changed to point to the "new" version rather than to the "old" version. The old

version is thereafter ignored, and may be written over in subsequent operations.

After a Write request is processed in this fashion, the controller 3 immediately
sends an acknowledgement to the CPU 1 indicating that the Write operation was
successful (Step 24). The monitoring process then repeats (Step 25). Further
storage unit accesses by the CPU 1 can continue without waiting for an error-
correction block update for the data block just written. Thus, the Write "“through-
put" time of the array appears to be the same as a non-redundant system, since
storage of the Write data on the copyback cache storage unit CC does not

require the Read-Modify-Write sequence of a standard RAID system with respect

to operation of the CPU 1.

If a Write request is not pending (Step 21), the controller 3 tests whether a Read
request is pending (Step 26). If a Read request is pending, the controller 3 reads
the directory table to determine the location of each requested data block (Step
27). If a requested data block is not in the array (Step 28), the controller 3 reads
the block from the copyback cache storage unit CC and transfers it to the CPU 1
(Step 29). The monitoring process then repeats (Step 30). If the requested data
block is in the array (Step 28), the controller 3 reads the block from the array (S1-
S5) in normal fashion and transfers it to the CPU 1 (Step 31). The monitoring

process then repeats (Step 32).

Some embodiments of the invention may include disk cache memory in the

controller 3. Read requests may of course be "transparently" satisfied from such

a cache in known fashion.

WO 92/12482 PCT/US92/00059

10

15

20

25

13-

If no Write or Read operation is bending for particular storage units in the array,
indicating that those storage units are "idle" with respect to CPU 1 I/O accesses,
the controller 3 checks to see if any data blocks are "pending blocks" flagged to
locations on the idle storage units. If no pending blocks exist (Step 33), the

controller 3 begins the monitoring cycle again (Step 34).

If a pending block does exist (Step 33), the controller 3 reads a pending block
from the copyback cache storage unit CC (Step 35). The controller 3 then writes
the pending block to the proper location in the array, and computes and stores a

new error-correction block that is computed based upon the pending block.

In the preferred embodiment of the invention, the error-correction blocks contain
parity information. Thus, update of the error-correction block for the pending
block can be accomplished by reading the old data block and old error-correction
block corresponding to the array location indicated by the location information for
the pending block stored in the directory (Step 36). The controller 3 then XOR's
the old data block, the pending data block, and the old error-correction block to
generate a new error-correction block (Step 37). The new error-correction block
and the pending block are then written to the array S1-S5 at their proper locations

(Step 38).

Optionally, if a number of pending blocks are to be written to the same stripe,
error-correction can be calculated for all data blocks in the stripe at one time by
reading all data blocks in the stripe that are not being updated, XOR'ing those
data blocks with the pending blocks to generate a new error-correction block, and
writing the pending blocks and the new error-correction block to the array. This

may achieve some economy of time.

After the pending block is transferred from the copyback cache storage unit CC
to the array, the directory entry for that block is modified to indicate that the data
block is in the array rather than in the copyback cache storage unit CC (Step 39).

Thereatter, the controller 3 begins the monitoring cycle again (Step 40).

WO 92/12482 PCT/US92/00059

10

15

20

25

30

14-

Although the invention has been described in terms of a sequential branching
process, the invention may also be implemented in a multi-tasking system as
separate tasks executing concurrently. Thus, the Read and Write processes
described above, as well as the transfer of pending data blocks, may be
implemented as separate tasks executed concurrently. Accordingly, the tests
indicated by Steps 21, 26, and 33 in FIGURE 2 may be implicitly performed in the

calling of the associated tasks for Writing and Reading data blocks, and transfer

~ of pending blocks. Thus, for example, the transfer of a pending block from the

copyback cache storage unit CC to a storage unit in the array may be performed
concurrently with a Read operation to a different storage unit in the array.
Further, if the array is of the type that permits the controller 3 to "stack" a number
of I/O requests for each storage unit of the array (as is the case with many SCSI-
based RAID systems), the operations described above may be performed

"concurrently" with respect to accesses to the same storage unit.

The Data Log Embodiment
As in the embodiment describe above, the controller 3 monitors input/output

requests from the ‘CPU 1 on essentially a continuous basis (Step 50). In this
embodiment, the controller 3 is provided with a relatively large (for example, one
megabyte) data buffer to temporarily store data to be written to the array. If a
Write request is pending (Step 51), the data block is immediately written by the
controller 3 to the first available location in the copyback cache storage unit CC
(Step 52) (the' data block is also stored on the mirror storage unit CC’, if present).
Preferably, writing begins at the first logical block on the copyback cache storage
unit CC, and continues sequentially to the end of the logical biocks. Thereatfter,
writing commences again at the first biock (so long as no blocks are overwritten
that have not been stored in the array). This preferred method minimizes SEEK

operations in the copyback cache storage unit CC.

in the first embodiment, SEEK operations are required to retrieve pending blocks
during idle times to transfer to the array. In this embodiment, the copyback
cache storage unit CC acts as a running "log" of Write data. In contrast with the

first embodiment, SEEK operations normally are necessary only to change to a

WO 92/12482 PCT/US92/00059

10

15

20

25

-16-

next data-writing area (e.g., a next cylinder in a disk drive) when the current area
is full, or to reset the Read/Write head back to the logical beginning of the

storage unit after reaching the end, or to retrieve data blocks after a failure.

Each data block stored on the copyback cache storage unit CC is also flagged
with the location in the array where the data block is ultimately to be stored and

the location of the data block in the copyback cache storage unit CC, and a

' pointer is set to indicate that the data block is in the controller buffer (Step 53).

As before, such location and pointer information is preferably kept in a directory
table.

Because of the buffer in the controller 3, the definition of a “pending block" in the
second embodiment differs somewhat from the definition in the first embodiment
described above. A "pending block" is a data block that has been Written to the
copyback cache storage unit CC but not transferred from the controller buffer to

the array S1-S5.

If a data block is written to the copyback cache storage unit CC while a data
block to be stored at the same location in the array is still a “pending block” in
the controlier buffer, the directory location pointers for the data block are changed
to point to the "new" version rather than to the "old" version both in the copyback
cache storage unit CC and in the buffer. The old version is thereafter ignored,

and may be written over in subsequent operations.

After a Write request is processed in this fashion, the contrc'ler 3 immediately
sends an acknowledgement to the CPU 1 indicating that the Write operation was
successful (Step 54). The monitoring process then repeats (Step 55). Further
storage unit accesses by the CPU 1 can continue without waiting for an error-
correction block update for the data block just written. Thus, the Write response
time of the array appears to be the same as a non-redundant system, since
storage of the Write data on the copyback cache storage unit CC does not
require the Read-Modify-Write sequence of a standard RAID system with respect

to operation of the CPU 1.

WO 92/12482 PCT/US92/00059

10

15

20

25

-16-
If a Write request is not pending (Step 51), the controller 3 tests whether a Read
request is pending (Step 56). If a Read request is pending, the controller 3 reads
the directory table to determine the location of each requested data block (Step
57). If a requested data block is in the array (Step 58), the controller 3 reads the
block from the array (S1-S5) in normal fashion and transfers it to the CPU 1 (Step
59). The monitoring process then repeats (Step 60).

" If a requested data block is not in the array (Step 58), it is in the buffer of the

controlier 3. The controller 3 transfers the data block from its buffer to the CPU 1
(Step 61). This operation is extremely fast compared to the first embodiment,
since the buffer operates at electronic speeds with no mechanically-imposed

latency period. The monitoring process then repeats (Step 62).

If no Write or Read operation is pending for particular storage units in the array,
indicating that those storage units are "idle" with respect to CPU 1 |/O accesses,
the controller 3 checks to see if any data blocks in its buffer are “pending blocks"
flagged to locations on the idle storage units. If no pending blocks exist (Step

63), the controller 3 begins the monitoring cycle again (Step 64).

If a pending block does exist (Step 63), the controller 3 accesses the pending
block (Step 65), and then computes and stores a new error-correction block
based upon the pending block. As before, in the preferred embodiment of the
invention, the error-correction blocks contain parity information. Thus, update of
the error-carrection block for the pending block can be accomplished by reading
the old data block and old error-correction block corresponding to the array
location indicated by the location information for the pending block stored in the
directory (Step 66). The controller 3 then XOR's the old data block, the pending
data block, and the old error-correction block to generate a new error-correction

block (Step 67). The new error-correction block and the pending block are then

written to the array S1-S5 (Step 68).

Optionally, if a number of pending blocks are to be written to the same stripe,

error-correction can be calculated for all data blocks in the stripe at one time by

WO 92/12482 PCT/US92/00059

10

15

20

25

-17-
reading all data blocks in the stfipe that are not being updated, XOR'ing those
data blocks with the pending blocks to generate a new error-correction block, and
writing the pending blocks and the new error-correction block to the array. This

may achieve some economy of time.

After the pending block is transferred from the buffer of the controller 3 to the

array, the directory is modified to indicate that the pending block is no longer

- valid in the copyback cache storage unit CC or in the buffer (Step 69). The old

pending block is thereafter ignored, and may be written over in subsequent

operations. The controller 3 then restarts the monitoring cycle (Step 70).

If a failure to the system occurs before all pending blocks are written from the
buffer to the array, the controller 3 can read the pending blocks from the
copyback cache storage unit CC that were not written to the array. The controller

3 then writes the selected pending blocks to the array.

Again, although the invention has been described in terms of a sequential
branching process, the invention may also be implemented in a multi-tasking
system as separate tasks executing concurrently. Accordingly, the tests indicated
by Steps 51, 56, and 63 in FIGURE 3 may be implicitly performed in the calling of
the associated tasks for Writing and Reading data blocks, and transfer of pending
blocks. |

The present invention therefore provides the benefits of a RAID system without the
Write performance penalty resulting from the rotational latency time imposed by
the standard error-correction update operation, so long as a non-loaded condition
exists with respect to I/O accesses by the CPU 1. Idle time for any of the array
storage units is productively used to allow data stored on the copyback cache
storage unit CC to be written to the array (either from the cache itself, or from the
controlier buffer) during moments of relative inactivity by the CPU 1, thus

improving overall performance.

WO 92/12482 PCT/US92/00059

10

15

20

-18-

A number of embodiments of the present invention have been described.
Nevertheless, it will be understood that various modifications may be made
without departing from the spirit and scope of the invention. For example, the
present invention can be used with RAID 3, RAID 4, or RAID 5 systems.
Furthermore, an error-correction method in addition to or in lieu of XOR-generated
parity may be used for the necessary redundancy information. One such method

using Reed-Solomon codes is disclosed in U.S. Patent Application Serial No.

- 270,713, filed 11/14/88, entitled "Arrayed Disk Drive System and Method" and

commonly assigned.

As another example, in many RAID systems, a "hot spare" storage unit is provided
to immediately substitute for any active storage unit that fails. The present
invention may be implemented by using such a "hot spare” as the copyback
cache storage unit CC, thus eliminating the need for a storage unit dedicated to
the copyback cache function. If the "hot spare" is needed for its primary purpose,

the RAID system can fall back to a non-copyback caching mode of operation until

a replacement disk is provided.

As yet another example, the copyback cache storage unit CC may be attached to

the controller 3 through a dedicated bus, rather than through the preferred

common /O bus (e.g., 2a SCSI bus).

Accordingly, it is to be understood that the invention is not to be limited by the

specific illustrated embodiment, but only by the scope of the appended claims.

o

WO 92/12482 | PCT/US92/00059
q0-

CLAIMS

1. A fauli-tolerant storage device array including:

a. a plurality of failure independent storage units for storing information in
the form of stripes of blocks, the types of blocks including at least data
blocks and associated error-correction blocks;

5 b. at least one copyback cache storage unit for temporarily storing data
blocks;

c. astorage unit controller, coupled to the plurality of storage units and to
the at least one copyback cache storage unit, including control means
for:

10 (1) writing received data blocks initially onto the at least one copyback
cache storage unit as pending data blocks;
(2) during idle time of at least some of the plurality of storage units:

(a) reading at least one pending data block from at least one
copyback cache storage unit;

15 (b) generating an associated error-correction block for each
pending data block;

(c) writing each such read pending data block and associated
error-correction block to a corresponding stripe of the idle
storage units;

20 (3) reading requested data blocks from at least one copyback cache
storage unit when such requested data blocks have not been
written to the plurality of storage units, otherwise from the plurality

of storage units.

2. The storage device array of claim 1, wherein the control means substantially
immediately acknowledges the completion of writing a received record to the

at least one copyback cache storage unit.

WO 92/12482 PCT/US92/00059

-20-
3. The storage device array of .claim 1, wherein the control means function of
generating an associated error-correction block for each pending data block
further includes generating a new error-correction block as a function of at
least the pending data block, and a corresponding old error-correction block
5 and corresponding old data block read from the corresponding stripe of the

idle storage units.

4, The storage device array of claim 3, wherein the control means function of
generating a new error-correction block further includes:
a. reading a corresponding old data block from the corresponding stripe of
the idle storage units;
5 b. reading a corresponding old error-correction block from the correspond-
ing stripe of the idle storage units;
c. exclusively-OR'ing the old data block, the old error-correction block, and

the pending data block, thereby generating a new error-correction block.

“y

WO 92/12482 PCT/US92/00059
21-

5. A method for storing data in a fault-tolerant storage device array comprising a
plurality of failure independent storage units for storing information in the form
of stripes of blocks, the types of blocks including at least data blocks and
associated error-correction blocks, including the steps of:

5 a. providing at least one copyback cache storage unit for temporarily
storing data blocks;
b. writing received data blocks initially onto the at least one copyback
cache storage unit as pending data blocks;
C. during idle time of at least some of the plurality of storage units:
10 (1) reading at least one pending data block from at least one
copyback cache storage unit;
(2) generating an associated error-correction block for each such read
pending data block;
(3) writing each such read pending data block and associated error-
15 correction block to a corresponding stripe of the idle storage units;
d. reading requested data blocks from at least one copyback cache storage
unit when such requested data blocks have not been written to the

plurality of storage units, otherwise from the plurality of storage units.

6. The method of claim 5, further including the step of substantially immediately
acknowledging the completion of writing a received record to the at least one

copyback cache storage unit.

7. The method of claim 5, wherein the step of generating an associated error-
correction block for each pending data block comprises the steps of:
a. generating a new error-correction block as a function of at least the
pending data block, and a corresponding old error-correction block and
5 corresponding old data block read from the corresponding stripe of the

idle storage units.

WO 92/12482

10

15

20

PCT/US92/00059

22-

The method of claim 7, wherein the step of generating a new error-correction

block comprises the steps of:

a.

reading a corresponding old data block from the corresponding stripe of
the idle storage units;

reading a corresponding old error-correction block from the correspond-

ing stripe of the idle storage units;
exclusively-OR’ing the old data block, the old error-correction block, and

the pending data block, thereby generating a new error-correction block.

A fault-tolerant storage device array including:

a.

a plurality of failure independent storage units for storing information in

the form of stripes of blocks, the types of blocks including at least data

blocks and associated error-correction blocks;

at least one copyback cache storage unit for temporarily storing data

blocks;

a storage unit controller, coupled to the plurality of storage units and to

the at least one copyback cache storage unit, having a buffer memory

and including control means for:

(1) writing received data blocks initially onto the at least one copyback
cache storage unit;

(2) temporarily storing received data blocks in the buffer memory as
pending data blocks;

(3) during idle time of at least some of the plurality of storage units:

(a) accessing at least one pending data block from the buffer
memory;

(b) generating an associated error-correction block for each
pending data block;

(c) writing each such read pending data block and associated
error-correction block to a corresponding stripe of the idie
storage units;

(4 reading requested data blocks from the buffer memory when such
requested data blocks have not been written to the plurality of

storage units, otherwise from the plurality of storage units.

Y

WO 92/12482 ' PCT/US92/00059

-28-

10. The storage device array of 'claim 9, wherein the control means substantially
immediately acknowledges the completion of writing a received record to the

at least one copyback cache storage unit.

11. The storage device array of claim 9, wherein the control means function of
generating an associated error-correction block for each pending data block
further includes generating a new error-correction block as a function of at
least the pending data block, and a corresponding old error-correction block

5 and corresponding old data block read from the corresponding stripe of the

idle storage units.

12. The storage device array of claim 11, wherein the control means function of
generating a new error-correction block further includes:
a. reading a corresponding old data block from the corresponding stripe of
the idle storage units;
5 b. reading a corresponding old error-correction block from the correspond-
ing stripe of the idle storage.units;
c. exclusively-OR'ing the old data block, the old error-correction block, and

the pending data block, thereby generating a new error-correction block.

13. The storage device array of claim 9, further including means for reading
selected data blocks from the at least one copyback cache storage unit and
writing such selected data blocks to the plurality of storage units upon a
failure of the storagé unit controller to write all corresponding data blocks

5 from the buffer memory to the plurality of storage units.

WO 92/12482

10

15

PCT/US92/00059

24-

14. A method for storing data in a fault-tolerant storage device array comprising a

plurality of failure independent storage units for storing information in the form

of stripes of blocks, the types of blocks including at least data blocks and

associated error-correction blocks, including the steps of:

a.

providing a buffer memory and at least one copyback cache storage unit

for temporarily storing data blocks;

writing received data blocks initially onto the at least one copyback

cache storage unit;

temporarily storing received data blocks in the buffer memory as pending

data blocks;

during idle time of at least some of the plurality of storage units:

(1) accessing at least one pending data block from the buffer memory;

(2) generating an associated error-correction block for each such read
pending data block; |

(3) writing each such read pending data block and associated error-
correction block to a corresponding stripe of the idle storage units;

reading requested data blocks from the buffer memory when such

requested data blocks have not been written to the plurality of storage

units, otherwise from the piurality of storage units.

- 15. The method of claim 14, further including the step of substantially immediately

acknowledging the completion of writing a received record to the at least one

copyback cache storage unit.

16. The method of claim 14, wherein the step of generating an associated error-

correction block for each pending data block comprises the steps of:

a.

generating a new error-correction block as a function of at least the
pending data block, and a corresponding old error-correction block and

corresponding old data block read from the corresponding stripe of the

idle storage units.

WO 92/12482 PCT/US92/00059
-25-

17. The method of claim 16, wherein the step of generating a new error-correction
block comprises the steps of:
a. reading a corresponding old data block from the corresponding stripe of
the idle storage units;
5 ~ b. reading a corresponding old error-correction block from the correspond-
ing stripe of the idle storage units;
c. exclusively-OR'ing the old data block, the old error-correction block, and

the pending data block, thereby generating a new error-correction block.

18. The method of claim 14, further including the steps of reading selected data
blocks from the at least one copyback cache storage unit and writing such
selected data blocks to the piurality of storage units upon a failure of the
storage unit controller to write all corresponding data blocks from the buffer

5 memory to the plurality of storage units.

WO 92/12482 PCT/US92/00059

PD-0809SD
1/3

CPU

Py [}
o ' CONTROLLER
| [B @

FIG. 1

WO 92/12482 PCT/US92/00059

2/3

PD-0809SD

«

Yrite Block
to Cache

Update
Dlnelorgu
peint o butfer
€ tiag orray
jocat fon

opereljon lo

55

Return to Start

Read

Brecke?

Rccaes s
Pending Biock

ol;l'do!-
>
Blocks o
fsgged
strtpe

XOR oid dets €
par 1ty blocke
v/ Pending
Block for nesv
par i1y block

Store nev
pority bleck £
Pending Block

ot flagged
srroy location

Update
Directory
eniry lo
point to

srray

Return te Start

67

68

69

10

inter to
ats Block

Birectory for

64

S7

Read Oate
Block from
srrey and
trenster to
cPY

Read Dol
Block trom
bufter and
tronater to
Py

Return to Stert

FIG. 2

]

Return to Stert

62

WO 92/12482

¥rite Biock
to Cache

Undate
Directory to
point lo cache
€ tleg srray
jocetion

Acknovledge
Urfte
opersiion to
(d21]

Return to Stert

hm

Blocke

3/3

Read »
Pending Block

Read oid dets
parity
Jocke on
(3] d
atripe

XOR oid dats £
blocke

per ity block

Store ney
eor ity block §
Pending Black

at ¢lagged
srray locstion

Update
Direclory
entry lo
point teo

array

Return 1o Start

an

40

£l

Read
Otrectory tor

Boln\or te
ste Block

1

PCT/US92/00059

PD-0809SD

Reed Date
Block from
srray end
trongfer to
Py

Resd Date
Block from
Cache ond
trengfar to
cPU

R

Return to Stert

Return to Stert

29

INTERNATIONAL SEARCH REPORT
‘ International Appiication No. PCT/US92/00059

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate ail) ¢
Accgu?ing to international Patent Classification (IPC) or to both National Classification and IPC
IrC F 11/10

U.S.Cl.: 395/575

Il. FIELDS SEARCHED

Mini Documentation Searched 7

Classification System Classification Symbois

371/10.1,40.1,40.2,51.1;
U.s. 364/200,900

Documentation Searched other than Minimum Documentation
to the Extent that such D ts are Included in the Fields Searched §

I1l. DOCUMENTS CONSIDERED TO BE RELEVANT ¢
Category * Citation of Document, 1! with indication, where appropriate, of the relevant passages 12 Relevant to Claim No. 13

Y Us, A, 4,761,785 (CLARKE, ET AL.) 02 August 1988 1-18
(figures 1 and 2, col. 1, lines 50-59; col. 5, lines
37-56; col. 8, lines 40-68; col. 9, lines 1-68;

col. 10 lines 1-34).

Y,P | US, A, 4,995,041 (HETHERINGION ET AL.) 19 February 1-18
1991 (figure 1, col. 1, lines 55-58; col. 2, lines
30-54; col. 8, lines 43-50). :

A | US, A, 4,791,642 (TAYLOR ET AL.) 13 December 1988 1-18
(figure 3B, col. 13, lines 30-52).

A Us, A, 4,958,351 (FLORA ET AL.) 18 September 1990 1-18
(figure 5, col. 9, lines 31-40).

i e s o T S b o o i i
“A" document defining the generai state of the art which is not : underlying the
considered to be of particular relevance ;:l:lvo:“tlgnundonund the principle or theory underlying
“E" earlier document but published on or after the international ux* document of particular relevance; the claimed invention

filing date cannot be considered novel or cannot be considered to
“L" document w.lgcth may tmﬂ:‘w I;loul.-nhl"m'o“nriodrltly cl:im(szhor involve an inventive step

which Is cited to establish-the publication date of another “y" document of particular relevance; the claimed invention

citation or other spacial reason (as specified) Cannot be considered to involve an invcntivtohstop w.l‘udn the
“ov t referring t | disclosure, use, exhibition or document is combined with one or more other such docu-

© g?::mn::ar:: orring fo an oral claclosure, das. ¢ mo&l‘ta. ln.uch combination being obvious to a person skiled

“p* document published prior to the international filing date but in the a

later than the priority date claimed “&" document member of the same patent family

1V. CERTIFICATION
Date of the Actual Completion of the international Search Date of Mailing of this |nz"uﬂoml Search Report

26 February 1992 31 MAR 193)

International Searching Authority Signature of AuthorW
ISA/US Robert Beausoliel %: é

Form PCTASA210 (secend sheet) (Rev.11-87)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

