(54) Title: LEPTOSPIRAL OUTER MEMBRANE PROTEINS

(57) Abstract

This invention presents antigenic preparations of Leptospira species outer membrane proteins and their immunogenic fragments which are useful for inducing immune response in animals, e.g., for use as vaccines against diseases caused by leptospirosis. Also presented are methods and kits for diagnosing leptospirosis by detecting the presence of these proteins, their immunogenic fragments, antibodies to these proteins or their fragments, or polynucleotides which encode or are translatable into these proteins or their fragments. Further disclosed are methods for isolating these proteins.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>

LEPTOSPIRAL OUTER MEMBRANE PROTEINS

This invention was made with Government support through funding from the Veterans' Administration Medical Research Funds. The Government has certain rights in this invention.

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to an antigenic preparation and particularly to Leptospira species outer membrane proteins which are used to induce a protective immune response in animals. Such proteins can be used immunologically as vaccines for leptospirosis caused by this organism. Alternatively, diagnosis of leptospirosis can be performed by detecting the presence of the proteins, antibodies to the proteins, or polynucleotides which encode the proteins. Also disclosed are methods for isolating proteins of the outer membranes of microorganisms, e.g. spirochetes such as those of the Leptospira species.

BACKGROUND OF THE INVENTION

Leptospirosis is an important, global human and veterinary health problem. It is a widespread zoonotic disease caused by pathogenic strains of Leptospira species which are capable of infecting most mammalian species. Infection occurs either through direct contact with an infected animal or indirect contact with contaminated soil or water. In livestock, the disease causes economic losses due to abortion, stillbirth, infertility, decreased milk production, and death.

Efforts to control leptospirosis have been hampered because virulent leptospires have the capacity for both long-term survival in the environment as well as persistent infection and shedding by wildlife and
livestock. Currently available leptospiral vaccines produce short-term immunity and do not provide cross-protection against many of the 170 serovars of pathogenic *Leptospira* species (Thiermann, et al., *J. Am. Vet. Med. Assoc.*, 184:722 (1984)). These vaccines consist of inactivated whole organisms or outer envelope preparations which produce seroreactivity as determined by microscopic agglutination of intact organisms. The nature of the protective immunogens in these vaccine preparations has not been conclusively elucidated, although several lines of evidence suggest that lipopolysaccharide-like substance ("LLS") may confer a degree of protection. Commercially available vaccines, which consist of heat or formalin-killed leptospires, produce incomplete or only short-term immunity, requiring their administration annually or semi-annually. In the case of *L. interrogans* serovar *hardjo*, the common bovine pathogen in North America, vaccines prepared in this way are ineffective (Bolin, C. A., et al., *Am. J. Vet. Res.*, 50:161-165 (1989) and Bolin, C. A., *et al.*, *Am. J. Vet. Res.*, 50:2004-2008 (1989)). Thus there is an important need for development of an improved leptospiral vaccine.

The pathogenesis of leptospirosis is similar to that of other spirochetal diseases, including syphilis (caused by *Treponema pallidum*) and Lyme borreliosis (caused by *Borrelia burgdorferi*). Both syphilis and Lyme borreliosis are characterized by widespread dissemination early in the course of disease, including invasion of the central nervous system. *Leptospira* species share this ability with other pathogenic spirochetes such that meningitis is a common manifestation of leptospirosis. Another feature of spirochetal infections is the ability to persist chronically in the host, as manifested in cases of tertiary syphilis and chronic Lyme arthritis.

Identification of outer membrane ("OM") components is essential in the development of protective immunogens for spirochetal diseases. There are at least two classes of leptospiral outer membrane proteins ("OMPs"). One class of leptospiral OMPs are the transmembrane proteins, such as the porin OmpL1 and the TonB-dependent OmpL2, that
are produced in small amounts by pathogenic *Leptospira* species (Haake, D. A., *et al.*, *J. Bacteriol.*, 175:4225-4234 (1993); Haake, D. A., *et al*). Transmembrane OMPs are distinguished from other membrane proteins structurally by the fact that they contain beta-sheet membrane-spanning regions. They are also functionally unique in that they create channels for transport of nutrients across the outer membrane.

A second class of leptospiral OMPs are the lipoproteins, which are produced by *Leptospira* species in generous amounts. Lipoproteins are anchored to membranes by fatty acids attached to their amino-terminal cysteine. Both the outer membrane and cytoplasmic membrane contain lipoproteins, and the signal(s) by which lipoproteins are translocated to the outer membrane are not known. Therefore, in order to define a lipoprotein as an OMP, it must be shown to be a component of isolated leptospiral OM. Several Triton X-114 detergent phase lipoproteins have been identified, including LipL36 (also referred to as "LipL1") and LipL41 (also referred to as "LipL2"). LipL1 and LipL2 are described in Shang, E.S., *et al.*, "Molecular Cloning and Sequence Analysis of the Genes Encoding Two Leptospiral Lipoproteins, LipL1 and LipL2", Abstract No. D-2, in Abstracts of the Annual Meeting of the American Society for Microbiology, May 21-25, 1995, p. 249 (American Society for Microbiology, Washington, DC, 1995), this reference is herein incorporated by reference in its entirety. The Triton-extractable 32-kDa major outer membrane protein is probably also a lipoprotein (Zuerner, *et al.*, *Microbial Pathogenesis*, 10:311-322 (1991)). However, lacking a carefully defined technique for isolating the leptospiral OM, it was not possible to determine to what extent these lipoproteins are found in the OM, nor to identify additional components of the leptospiral OM.

Development of techniques for isolation of the OM from *Leptospira* species and other spirochetes has been difficult because of their unique architecture (Holt, S.C., *Microbiol. Rev.*, 42:114-160 (1978)). Like enteric gram-negative bacteria, spirochetes have both an outer membrane and a cytoplasmic membrane, separated by a periplasmic space. However,
spirochetal architecture differs significantly from that of gram-negative bacteria in that the peptidoglycan cell wall of spirochetes is associated with the cytoplasmic membrane rather than the outer membrane. For this reason, the spirochetal outer membrane is extremely labile and difficult to isolate from components of the underlying cell wall and cytoplasmic membrane which together constitute the protoplasmic cylinder ("PC").

A number of approaches have been used in the isolation of the leptospiral outer membrane {Auran, et al., Infect. Immun., 5:968-975 (1972); Nunes-Edward, et al., Infect. Immun., 48:492-497 (1985); Nicholson, et al., Veterinary Microbiology, 36:123-138 (1993)}. These studies did not take into account spirochetal outer membrane fragility and the lack of OM selectivity of ionic or nonionic detergents {Penn, et al., J. Gen. Microbiol., 131:2349 (1985); Stamm, et al., Infect. Immun., 55:2255 (1987); and Cunningham, et al., J. Bacteriol., 170:5789 (1988)}. Notably lacking from these reports are controls to assess contamination of the OM fraction with PC components. Recently, spirochetal OM isolation has been advanced by developments in three areas. Firstly, specific OM markers such as porins (e.g. OmpL1) have been identified, allowing assessment of efficiency of OM release. Secondly, techniques have been developed for assessing the degree of contamination with PC components. Thirdly, new techniques involving hypotonic citrate and hypertonic sucrose have been found to be of use in the isolation of the OM of Treponema species {Blanco, et al., J. Bacteriol., 176:6088-6099 (1994); Radolf, et al., Infect. Immun., 63:2154-2163 (1995)} and B. burgdorferi {Skare, et al., J. Clin. Invest., 96:2380-2392 (1995); Radolf, et al., Infect. Immun., 63:4244-4252 (1995)}. Without modification, these techniques did not facilitate isolation of the leptospiral OM.

SUMMARY OF THE INVENTION

The present invention presents novel leptospiral outer membrane proteins. Also disclosed are methods for purifying these
proteins from *Leptospira* species. In particular, thirteen OM proteins are disclosed, the molecular masses of these proteins are about 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa, respectively. These proteins, their immunogenic fragments, and antibodies capable of binding to them, are useful for inducing an immune response to pathogenic *Leptospira* species as well as providing a diagnostic target for leptospirosis. Also disclosed are three methods useful for isolating outer membrane proteins of microorganisms such as spirochetes, particularly for isolating leptospiral outer membrane in the form of membrane vesicles.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 presents sucrose gradient fractionation of *L. kirschneri* treated with Citrate/NaCl. Fractions were tested for refractive index and protein concentration.

Fig. 2 presents immunoblots of trichloroacetic acid ("TCA") precipitated fractions from sucrose gradient of *L. kirschneri* treated with Citrate/NaCl. Samples were probed with antisera specific for OmpL1, 32-kDa major outer membrane protein ("MOMP"), LipL36, LipL41, flagella, and GroEL.

Fig. 3 presents results of densitometric analysis of immunoblots of TCA precipitated fractions from sucrose gradient of *L. kirschneri* treated with Citrate/NaCl.

Fig. 4 presents protein silver stain of fractions from sucrose gradient of *L. kirschneri* treated with Citrate/NaCl.

Fig. 5 presents sucrose gradient fractionation of *L. kirschneri* treated with Sucrose/NaCl. Fractions were tested for refractive index and protein concentration.

Fig. 6 presents immunoblots of TCA precipitated fractions from sucrose gradient of *L. kirschneri* treated with Sucrose/NaCl. Samples were probed with antisera specific for OmpL1, 32-kDa MOMP, LipL36, LipL41, flagella, and GroEL.
Fig. 7 presents results of densitometric analysis of immunoblots of TCA precipitated fractions from sucrose gradient of *L. kirschneri* treated with Sucrose/NaCl.

Fig. 8 presents protein silver stain of fractions from sucrose gradient of *L. kirschneri* treated with Sucrose/NaCl.

Fig. 9 schematically presents the third isolation method for leptospiral outer membrane.

Fig. 10 graphically presents the refractive indices and protein densities of the fractions from the second sucrose gradient.

Fig. 11 shows the immunoblots of whole cells (WC), total membrane (TM), and isolated outer membrane (OM) probed with antisera to LipL41 and LipL36 (Fig. 11A), and OmpL1 (Fig. 11B). Fig. 11C shows the silver stain of SDS-PAGE gel of outer membrane (OM), hybrid membrane (HM), total membrane (TM), and whole cell (WC).

Fig. 12 shows Leptosprial infection results in an antibody response to outer membrane proteins. Immunoblots of leptospiral proteins unheated (lanes 1); boiled (lanes 2); and immunoprecipitated with antisera specific for LipL36 (lanes 3) and LipL41 (lanes 4).

Fig. 13 presents a two-dimensional immunoblot using infection-derived antisera.

DETAILED DESCRIPTION OF THE INVENTION

The present invention presents novel leptospiral outer membrane proteins. Also disclosed are methods for purifying these proteins from *Leptospira* species. In particular, thirteen OM proteins are disclosed, the molecular masses of these proteins are about 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa, respectively. These proteins, their immunogenic fragments, and antibodies capable of binding to them, are useful for inducing an immune response to pathogenic *Leptospira* species as well as providing a diagnostic target for leptospirosis. Also disclosed are three methods useful for isolating outer membrane proteins
of microorganisms such as spirochetes, particularly for isolating leptospiral outer membrane in the form of membrane vesicles.

By taking into account the unique features of leptospiral architecture, the present invention presents successful modification of the citrate, hypertonic sucrose, and French pressure cell techniques for use in the isolation of leptospiral OM.

The standard method for isolation of the leptospiral outer membrane involves treatment of Leptospira species with hypertonic saline, resulting in salt-altered cells ("SACs") in which the outer membrane is dissociated from the underlying protoplasmic cylinder, followed by release of the outer membrane with the ionic detergent sodium dodecyl sulfate ("SDS") (Auran, et al., Infect. Immun., 5:968-975 (1972); Nunes-Edwards, et al., Infect. Immun., 48:492-497 (1985)). Another study applied a technique developed for isolation of the Haemophilus influenzae outer membrane involving sonication and sodium-N-lauroylsarcosinate (Nicholson, et al., Veterinary Microbiology, 36:123-138 (1993)). Disruption of organisms using sonication or a French Press can result in formation of outer membrane-cytoplasmic membrane hybrids (Osborn, et al., J. Biol. Chem., 247:3962-3972 (1972)). Both of these approaches result in recovery of membrane vesicles containing leptospiral lipopolysaccharide ("LPS"). However, in neither case was an attempt made to evaluate the selectivity of these detergent-based approaches by assessing contamination of the outer membrane fraction with PC components. Due to the unique architecture of spirochetes, and the fragility of the outer membrane, it cannot be assumed that there is differential solubility of leptospiral membranes to SDS or sodium-N-lauroylsarcosinate.

Previously, the use of Triton X-114 in solubilization of the leptospiral outer membrane were examined (Haake, et al., Infect. Immun., 59:1131-1140 (1991); Zuerner, et al., Microbial Pathogenesis, 10:311-322 (1991)). This approach appears to be somewhat selective based upon analysis of the Triton X-114 detergent phase for
contamination with flagella- and penicillin-binding proteins (Haake, et al., *Infect. Immun.*, 59:1131-1140 (1991)). However, some cytoplasmic membrane proteins may be more susceptible to solubilization by Triton X-114 than others. For example, the nonionic detergent Triton X-114 solubilizes the TpN47 lipoprotein of *Treponema pallidum* which has been shown to be a cell wall associated penicillin-binding protein (Weigel, L.M., et al., *Proc. Natl. Acad. Sci. USA*, 91:11611-11615 (1994)). In addition, generation of the Triton X-114 detergent phase may result in loss of certain leptospiral OMPs. For example, proteolytic degradation of the leptospiral 32-kDa major outer membrane protein ("MOMP") has been observed during Triton X-114 phase partitioning (Zuerner, et al., *Microbial Pathogenesis*, 10:311-322 (1991)).

Spirochetal OM isolation has been advanced by developments in three areas. Firstly, specific OM markers such as porins (e.g. OmpL1) have been identified, allowing assessment of efficiency of OM release. Secondly, techniques have been developed for assessing the degree of contamination with PC components. Thirdly, new techniques have been developed for isolation of the spirochetal OM that do not involve the use of detergents or mechanical disruption. It was discovered that exposure of *T. pallidum* and *T. vincentii* to a hypotonic sodium citrate buffer, pH 3.2 resulted in the release of the outer membrane as unilamellar vesicles (Blanco, et al., *J. Bacteriol.*, 176:6088-6099 (1994)). Once released, the outer membrane vesicles could then be isolated by sucrose gradient centrifugation. The hypotonic citrate technique that was applied to the *T. pallidum* has also been applied to the isolation of the *Borrelia burgdorferi* outer membrane (Skare, et al., *J. Clin Invest.*, 96:2380-2392 (1995)). The second new technique involves the use of hypertonic sucrose to release *T. pallidum* and *B. burgdorferi* OMs (Radolf, et al., *Infect. Immun.*, 63:2154-2163 (1995); Radolf, et al., *Infect. Immun.*, 63:4244-4252 (1995)). When these techniques were applied without modification, they did not facilitate isolation of the leptospiral OM. However, by taking into account the unique features of leptospiral architecture, the present
invention was successful in modifying the citrate and hypertonic sucrose techniques for use in the isolation of leptospiral OM.

The OM proteins may be isolated from Leptospira species by the methods of the present invention. For the purpose of convenience, the discussion uses leptospiral OM proteins as examples. However, one skilled in the art would realize that the discussion is also applicable to OM proteins obtained from other microorganisms such as spirochetes using the methods of the present invention with the appropriate modifications known in the art for the particular organisms of interest.

In addition to the thirteen OM proteins disclosed in the "EXAMPLE" section, below, within the definition of the term "OM proteins" are also other OM proteins which are obtainable by the isolation methods disclosed in the present invention, preferably the methods disclosed in the "EXAMPLE" section below.

The present invention discloses three isolation methods. The first two use both hypertonic sucrose and hypotonic citrate buffer to release the leptospiral outer membrane from the protoplasmic cylinder. The third technique for isolation of the leptospiral outer membrane utilizes the French pressure cell, at a pressure sufficient to release the OM, most preferably at about 12,000 lb/in². The first two isolation methods of the present invention preferably have the following combination of features which make them different from the prior art. The methods do not use detergent nor disrupt the organism (e.g. by sonication), even though detergent treatment and disruption of the organism are traditionally used for the extraction of outer membrane proteins. The present methods also use outer membrane markers (such as antisera to LipL36, LipL41, and OmpL1) and markers for PC (such as NADH oxidase, flagella and GroEL) to follow the recovery of the outer membrane proteins. Preferably, the methods modified the prior art by adding NaCl to the citrate or sucrose isolation techniques for the membrane proteins of spirochetes. Most preferably, the methods are used to isolate the leptospiral outer membrane as membrane vesicles. The membrane
vesicles can then be isolated, e.g. by ultracentrifugation, such as by sucrose gradient ultracentrifugation. In both methods, preferably about 1 M of NaCl is used. In the method using citrate and NaCl, preferably the citrate buffer is used at about 25 mM and about pH 3.2. In the method using hypertonic sucrose and NaCl, the hypertonic sucrose is preferably in about 10 mM Tris at about pH 9. In place of NaCl, another chemical may be used if the chemical would disrupt the electrostatic interaction between the PC and the outer membrane such that the PC is not released until the citrate buffer or hypertonic sucrose is added.

In the preferred embodiment of the first two isolation methods, the leptospiral outer membrane ("OM") was isolated in the form of membrane vesicles by the first two techniques. *Leptospira kirschneri* were incubated in 1.0 M NaCl containing either citrate buffer (25 mM pH 3.2) or hypertonic sucrose (10 mM Tris pH 9). The OM was separated from the PC by sucrose density gradient ultracentrifugation. Both techniques facilitated release from the OM from the PC as indicated by analysis of PC markers NADH oxidase, flagella, and the 60-kDa heat shock protein ("GroEL"). However, refractive index analysis indicated that there was better separation of OM from PC components with citrate buffer than with hypertonic sucrose. On the other hand, treatment with hypertonic sucrose resulted in better recovery of known OM components, LPS and OmpL1, than treatment with citrate buffer. The OM fractions contained leptospiral LPS, the porin OmpL1, the lipoproteins LipL41 and LipL36, a 32-kDa major outer membrane protein, as well as a number of OM proteins with molecular masses of about 22-, 24-, 37-, 46-, 51-, 56-, 57-, 70-, 74-, 93-, 101-, and 127-kDa. The use of membrane-specific markers in OM isolation techniques facilitates an accurate description of the leptospiral OM and its components.

The third method, the French pressure technique of leptospiral outer membrane isolation has an advantage over the hypertonic sucrose and hypotonic citrate buffer techniques because it uses mechanical
disruption to more efficiently release the outer membrane in the form of membrane vesicles.

The present invention also presents the use of a digoxigenin-ampicillin conjugate, a sensitive probe for penicillin-binding proteins (Weigel, L. M., et al., Antimicrob. Agents Chemother., 38(2): 330-336 (1994)), which are located exclusively in the cytoplasmic membrane. This conjugate may be used in combination with any isolation technique, including the three isolation techniques disclosed herein. In the following EXAMPLE 2, the digoxigenin-ampicillin conjugate was found to be a more sensitive probe for the cytoplasmic membrane than measures of NADH oxidase activity. In addition, penicillin-binding proteins, the targets of the digoxigenin-ampicillin conjugate, are more specific for the cytoplasmic membrane than antisera to flagella or GroEL.

Once isolated, the OM proteins can be further purified. The OM proteins may also be sequenced using methods known in the art to obtain their amino acid and nucleotide sequences, or using methods similar to those described for example, below, and in Shang, E.S., et al., "Molecular Cloning and Sequence Analysis of the Genes Encoding Two Leptospiral Lipoproteins, LipL1 and LipL2", Abstract No. D-2, in Abstracts of the Annual Meeting of the American Society for Microbiology, May 21-25, 1995, p. 249 (American Society for Microbiology, Washington, DC, 1995); Shang, E.S., et al., Infection & Immunity, 64: 2322-2330 (1996) and U.S. Patent Application Serial No. 08/444,646 filed on May 19, 1995, "Leptospira Membrane Proteins" of Haake, D.A., et al. All these references are herein incorporated by reference in their entirety.

The present application claims both the native and synthetic amino acid and nucleotide sequences. Unless otherwise modified, the term "protein" as used herein encompasses both native and synthetic polypeptide and peptide. Synthetic protein includes recombinant and chemically synthesized protein. Unless otherwise indicated, the term "OM proteins" include both the native and synthetic versions of the proteins.
The term "nucleotide sequence" includes both the DNA and RNA sequences. For example, the nucleotide sequence for a particular OM protein ("OM nucleotide sequence") include the gene ("OM gene") encoding the protein, its complementary DNA, and the RNA corresponding to the foregoing; also included are messenger RNA encoding for the OM protein, its complementary RNA, and the DNA corresponding to the foregoing. Further, as used in this application the nucleotide sequences include: (1) the DNA sequences encoding the OM proteins, (2) the nucleotide sequences (which may be RNA or DNA) complementary to the foregoing sequences, (3) the corresponding RNA sequences to the DNA sequences wherein the Thymidine ("T") in the disclosed DNA sequences is replaced with Uracil ("U"), (4) nucleotide sequences wherein other nucleotides known in the art such as nucleotide analogs, replace those in the foregoing sequences, for example, 5-methyl-cytosine replacing cytosine, and (5) nucleotide sequences that are for example, within a 20% and preferably 10% variance to the foregoing nucleotide sequences.

Since nucleotide codons are redundant, also within the scope of this invention are equivalent nucleotide sequences which include: nucleotide sequences which code for or can be translated into the OM proteins, their protein variants, functional equivalents, or derivatives. These nucleotide sequences may also be used in the practice of the invention.

In addition to the above, OM nucleotide sequences also include: (1) nucleotide sequences that are capable of hybridizing to the coding sequences of the respective nucleotide sequences, under stringent hybridization conditions, and (2) fragments of or mutagenized nucleotide sequences of those disclosed herein which (a) encode or can be translated into proteins having substantially the same biological characteristics/activities of the respective OM proteins; or (b) are able to provoke cellular and/or humoral response in an animal vaccinated with the nucleotide sequences. Preferably, the determinative biological
characteristic/activity is the retention of at least one immunoepitope. Preferably, when used in an immunoassay for *Leptospira* species, these proteins are immunoreactive with antibodies directed to *Leptospira* species but not detectably immunoreactive with non-*Leptospira* species specific antibodies found in a biological sample.

As herein defined, a "biological sample" can be a biological fluid or tissue sample. Examples of a biological fluid sample include: blood, serum, plasma, tear, milk, urine, and cerebro-spinal fluid. Examples of a biological tissue sample include tissue samples from the liver and kidney and tissue of endothelial origin. A biological sample can also include feces and discharge. Thus, for example, immunohistochemical assay can be conducted on these tissue samples. Preferably, these samples are from mammals, such as humans, wild and domestic mammals. More preferably, these proteins and the immunoassays can additionally distinguish between pathogenic *Leptospira* species and non-pathogenic *Leptospira* species. Alternatively, the fragments of nucleotide sequences can be nucleotide probes of at least 10 nucleotides in length. Preferably, when used in a hybridization assay for *Leptospira* species, under moderate to stringent hybridization condition, these probes do not detectably hybridize to the nucleotide sequences of non-*Leptospira* species organisms which are found in a biological sample. Alternatively, the nucleotide sequences hybridize to at least 10 consecutive nucleotides in the coding sequences of the above listed nucleotide sequences. The nucleotide sequences include a nucleotide sequence which encodes a protein containing at least 8; more preferably, 5 to 6; and most preferably, 4 amino acids. Preferably, the protein is specific to *Leptospira* species or retain one or more biological functions of *Leptospira* species. Most preferably, these nucleotide sequences and the hybridization assays can additionally distinguish between pathogenic *Leptospira* species and non-pathogenic *Leptospira* species.

The terms "OM proteins", as used in relation to proteins include the respective proteins described in the "EXAMPLE" section, below, and
outer membrane proteins obtainable by the methods of the present invention, most preferably leptospiral outer membrane proteins obtainable from the isolation methods of the "EXAMPLE" section below, and: (1) protein variants of these proteins; e.g. these protein variants may contain amino acid sequences that have for example, at least 90% or more preferably at least 95% of their amino acids matching the sequences of the OM proteins, excluding their signal peptides; (2) the functional equivalents of these proteins and their variants, respectively; and (3) the derivatives, including fragments, of the OM proteins and their variants, respectively. Preferably, when used in an immunoassay for Leptospira species, these proteins are immunoreactive (the immunoreactive OM proteins are also referred to as "OM antigens") with antibodies directed to Leptospira species but not detectably immunoreactive with non-Leptospira species specific antibodies found in a biological sample.

More preferably, these proteins and the immunoassays can additionally distinguish between pathogenic Leptospira species and non-pathogenic Leptospira species. Preferably, the proteins are specific to Leptospira species or retain one or more biological functions of Leptospira species. Thus, preferably, the fragment claimed in this application contains at least one immunogenic epitope of Leptospira species and more preferably, of pathogenic Leptospira species. More preferably, the fragment is capable of being bound by polyclonal antibodies directed to Leptospira species. In the case of antibodies which recognize linear epitopes, they generally bind to epitopes defined by at least about 3 to 10 amino acids.

Alternatively or additionally, these proteins preferably possess the ability to provoke cellular and/or humoral response in an animal vaccinated with the proteins. More preferably, the cellular and/or humoral response is directed against Leptospira species, especially pathogenic Leptospira species. Most preferably, animals vaccinated with these proteins are immunized against leptospirosis or such vaccinations ameliorate the disease in infected animals. The animal is preferably a
mammal. More preferably, the animal is a human or a domestic animal. Alternatively, these proteins or their amino acid sequences are preferably derivable from the membrane proteins of *Leptospira* species and are immunoreactive with antibodies raised against one or more OM proteins, such as the OM proteins disclosed in the "EXAMPLE" section, below.

The variants can result from, e.g. substitution, insertion, or deletion of the amino acid sequences of the OM proteins. The derivatives of the proteins and their variants, include fragments of these proteins and their immunogenic epitopes. As described above, preferably, too, each variant retains at least one immunoepitope of *Leptospira* species and more preferably, of pathogenic *Leptospira* species. Preferably the immunoepitope is specific to *Leptospira* species and more preferably, to pathogenic *Leptospira* species.

Two amino acid sequences are functionally equivalent if they have substantially the same biological activities such as the ability to provoke cellular and/or humoral response in an animal vaccinated with the proteins. The proteins may be fused to other proteins, for example, signal sequence fusions may be employed in order to more expeditiously direct the secretion of the OM proteins. Further, each of the OM proteins disclosed herein may be fused to one or more of the other OM proteins, or the LipL1 and/or LipL2 disclosed in Shang, E.S., *et al.*, "Molecular Cloning and Sequence Analysis of the Genes Encoding Two Leptospiral Lipoproteins, LipL1 and LipL2", Abstract No. D-2, in Abstracts of the Annual Meeting of the American Society for Microbiology, May 21-25, 1995, p. 249 (American Society for Microbiology, Washington, DC, 1995); Shang, E.S., *et al.*, *Infection & Immunity*, 64: 2322-2330 (1996) and U.S. Patent Application Serial No. 08/444,646 filed on May 19, 1995, "*Leptospira* Membrane Proteins" of Haake, D.A., *et al.* The nucleotide sequences encoding these fusion proteins are also included in the present invention. A heterologous signal may also replace the native signal of an OM protein, and when the resulting fusion is recognized, *i.e.* processed and cleaved by the host cell, the OM protein is secreted.
Signals are selected based on the intended host cell, and may include bacterial, yeast, insect, and viral sequences.

Substitutional variants of the proteins disclosed herein are those in which at least one residue in the disclosed sequences has been removed and a different residue inserted in its place. Preferably, the amino acid change is conservative. Thus, modifications of the OM proteins' primary amino acid sequences also include conservative variations. The term "conservative variation" as used herein denotes the replacement of an amino acid residue by another, biologically similar residue. Examples of conservative variations include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic for aspartic acids, or glutamine for asparagine, and the like. The term "conservative variation" also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide.

Further, as is the case for all proteins, the precise chemical structure depends on a number of factors. As ionizable amino and carboxyl groups are present in the molecule, a particular protein may be obtained as an acidic or basic salt, or in neutral form. All such preparations which retain their activity when placed in suitable environmental conditions are included in the definition. Additionally, the primary amino acid sequence may be augmented by derivatization using sugar moieties (glycosylation) or by other supplementary molecules such as lipids, phosphate, acetyl groups and the like, more commonly by conjugation with saccharides. The primary amino acid structure may also aggregate to form complexes, most frequently dimers. Certain aspects of such augmentation are accomplished through post-translational processing systems of the producing host; other such modifications may be introduced in vitro. In any event, such modifications are included in the definition so long as the activity of the
protein is not destroyed. It is expected that such modifications may quantitatively or qualitatively affect the activity, either by enhancing or diminishing the activity of the protein in various assays.

Individual amino acid residues in the chain may also be modified by oxidation, reduction, or other derivatization, and the protein may be cleaved to obtain fragments which retain activity. Such alterations which do not destroy activity do not remove the protein sequence from the definition. The following discusses some of the modifications in further detail by way of example.

Thus, glycosylation variants are included within the scope of OM proteins. They include variants completely lacking in glycosylation (unglycosylated) and variants having at least one less glycosylated site than the native form (deglycosylated) as well as variants in which the glycosylation has been changed.

The invention also includes a method of producing the membrane lipoproteins of Leptospira species using recombinant DNA techniques. Recombinant OM fusion proteins may be produced in Escherichia coli (E. coli). These proteins can be used to immunize a mammal to generate antisera. The genes for the L. kirschneri OM proteins may be cloned into a plasmid vector which is then used to transform E. coli.

After the OM proteins have been isolated, surface immunoprecipitation of the OM proteins using antiserum raised to whole L. kirschneri, may be used to generate a fraction which may be subjected to reducing SDS-polyacrylamide gel electrophoresis ("SDS-PAGE"). The electrophoresed fraction may then be transferred to a sequencing membrane and an N-terminal sequences of the proteins, may be determined. Based upon the N-terminal amino acid sequence, degenerate oligonucleotide probes may be synthesized for each of the proteins. An L. kirschneri genomic DNA library may then be probed with the oligonucleotides and inserts identified as containing the coding sequence for each of the OM proteins.
Sequence analysis of the structural genes may be conducted to
determine their number of bases and amino acids. Immunoblot and
immunohistochemical studies may be used to determine the correlation
between leptospiral pathogenicity and reactivity with antisera to each of
the OM proteins. All or some strains of pathogenic and non-pathogenic
Leptospira species may be tested. These tests are preferably carried out
to determine which OM proteins are specific to virulent Leptospira
species such that they can be used in diagnostic tests directed to virulent
Leptospira species. The sequence analysis, immunohistochemical and
immunoblot studies may be conducted using methods known in the art,
such as described in Shang, E.S., et al., "Molecular Cloning and
Sequence Analysis of the Genes Encoding Two Leptospiral Lipoproteins,
of the American Society for Microbiology, May 21-25, 1995, p. 249
(American Society for Microbiology, Washington, DC, 1995); or methods
disclosed in Shang, E.S., et al., J. Infection & Immunity, 64: 2322-2330
(1996) and U.S. Patent Application Serial No. 08/444,646 filed on May

The bacterial genes for the OM proteins can be derived from any
strain of pathogenic Leptospira species.

The invention includes polynucleotides encoding the leptospiral
OM proteins. These polynucleotides include DNA and RNA sequences
which encode the protein. As discussed previously, it is understood that
all polynucleotides encoding all or a portion of each of the OM proteins
are also included herein, so long as they exhibit a function of the OM
protein, such as the ability to induce or bind antibody. Such
polynucleotides include both naturally occurring and intentionally
manipulated, for example, mutagenized polynucleotides.

DNA sequences of the invention can be obtained by several
methods. For example, the DNA can be isolated using hybridization
procedures which are well known in the art. These include, but are not
limited to: 1) hybridization of probes to genomic libraries to detect
shared nucleotide sequences and 2) antibody screening of expression libraries to detect shared structural features.

Hybridization procedures are useful for the screening of recombinant clones by using labeled mixed synthetic oligonucleotide probes where each probe is potentially the complete complement of a specific DNA sequence in the hybridization sample which includes a heterogeneous mixture of denatured double-stranded DNA. For such screening, hybridization is preferably performed on either single-stranded DNA or denatured double-stranded DNA. By using stringent hybridization conditions directed to avoid non-specific binding, it is possible, for example, to allow the autoradiographic visualization of a specific DNA clone by the hybridization of the target DNA to that single probe in the mixture which is its complete complement (Wallace, et al., Nucleic Acid Research, 9:879 (1981)).

Alternatively, an expression library can be screened indirectly for the OM peptides having at least one epitope using antibodies to the OM proteins. Such antibodies can be either polyclonally or monoclonally derived and used to detect expression product indicative of the presence of OM DNA. Generally, a lambda gt11 library is constructed and screened immunologically according to the method of Huynh, et al. {in DNA Cloning: A Practical Approach, D.M. Glover, ed., 1:49 (1985)}.

The development of specific DNA sequences encoding the OM proteins can also be obtained by: (1) isolation of a double-stranded DNA sequence from the genomic DNA, and (2) chemical manufacture of a DNA sequence to provide the necessary codons for the polypeptide of interest.

DNA sequences encoding the OM proteins can be expressed in vitro by DNA transfer into a suitable host cell. "Recombinant host cells" or "host cells" are cells in which a vector can be propagated and its DNA expressed. The term also includes any progeny of the subject host cell. It is understood that not all progeny are identical to the parental cell
since there may be mutations that occur at replication. However, such progeny are included when the terms above are used.

The term "host cell" as used in the present invention is meant to include not only prokaryotes, but also, such eukaryotes as yeasts, filamentous fungi, as well as plant and animal cells. The term "prokaryote" is meant to include all bacteria which can be transformed with the gene for the expression of an OM protein of Leptospira species. Prokaryotic hosts may include Gram negative as well as Gram positive bacteria, such as *E. coli*, *S. typhimurium*, and *Bacillus subtilis*.

A recombinant DNA molecule coding for an OM protein can be used to transform a host using any of the techniques commonly known to those of ordinary skill in the art. Especially preferred is the use of a plasmid containing the OM protein coding sequence for purposes of prokaryotic transformation. Where the host is prokaryotic, such as *E. coli*, competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl₂ method by procedures well known in the art. Alternatively, MgCl₂ or RbCl can be used. Transformation can also be performed after forming a protoplast of the host cell.

In the present invention, the OM nucleotide sequence may be inserted into a recombinant expression vector. The term "recombinant expression vector" refers to a plasmid, virus or other vehicle known in the art that has been manipulated by insertion or incorporation of OM genetic sequence. Such expression vectors contain a promoter sequence which facilitates the efficient transcription of the inserted genetic sequence in the host. The expression vector typically contains an origin of replication, a promoter, as well as specific genes which allow phenotypic selection of the transformed cells. The transformed prokaryotic hosts can be cultured according to means known in the art to achieve optimal cell growth.

Various shuttle vectors for the expression of foreign genes in yeast have been reported {Heinemann, *et al.*, *Nature*, 340:205 (1989); Rose, *et al.*, *Gene*, 60:237 (1987)}. Biologically functional DNA vectors capable of
expression and replication in a host are known in the art. Such vectors are used to incorporate DNA sequences of the invention.

Methods for preparing fused, operably linked genes and expressing them in bacteria are known and are shown, for example, in U.S. Patent No. 4,366,246 which is incorporated herein by reference. The genetic constructs and methods described therein can be utilized for expression of the OM proteins in prokaryotic hosts.

Examples of promoters which can be used in the invention are: rec A, trp, lac, tac, and bacteriophage lambda pR, or pL. Examples of plasmids which can be used in the invention are listed in Sambrook, et al. (Molecular Cloning, Cold Spring Harbor Laboratories, 1982).

Antibodies provided in the present invention are immunoreactive with one or more OM proteins. These antibodies can be polyclonal antibodies or monoclonal antibodies. Polyclonal antibodies can be produced according to methods known in the art, such as, vaccinating an animal with an OM protein, collecting and purifying the animal’s antisera directed against the OM protein. Monospecific polyclonal antibodies can also be produced using methods known in the art. Antibody which consists essentially of pooled monoclonal antibodies with different epitopic specificities, as well as distinct monoclonal antibody preparations are also provided. Monoclonal antibodies are made from antigen containing fragments of the protein by methods well known in the art (Kohler, et al., Nature, 256:495 (1975); Current Protocols in Molecular Biology, Ausubel, et al., ed., (1989)). For example, monoclonal antibodies can be produced by the method of Kohler and Milstein (Nature, 256:495-497 (1975)) by immortalizing spleen cells from an animal inoculated with the immunogen or a fragment thereof, usually by fusion with an immortal cell line (preferably a myeloma cell line), of the same or a different species as the inoculated animal, followed by the appropriate cloning and screening steps. The antibodies may also be recombinant monoclonal antibodies produced according to the methods disclosed in Reading, United States Patent Number 4,474,893, or Cabilly
et al., United States Patent Number 4,816,567. The antibodies may also be chemically constructed according to the method disclosed in Segel et al., United States Patent Number 4,676,980.

The term antibody, or immunoglobulin, as used in this invention includes intact molecules as well as fragments thereof, such as Fab, F(\(\text{ab}^\prime\))\(_2\), Fv, and single chain antibody ("SCA") which are capable of binding an epitopic determinant on an OM protein. SCA is a genetically engineered fused single chain molecule containing the variable region of the light chain and the variable region of the heavy chain linked by a suitable polypeptide linker. Methods for making these fragments are known in the art, see e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1988).

As discussed previously, minor modifications of the OM proteins' primary amino acid sequences may result in proteins which have substantially equivalent function compared to the OM proteins described herein. Such modifications may be deliberate, as by site-directed mutagenesis, or may be spontaneous. All proteins produced by these modifications are included herein as long as OM protein functions exist.

Isolation and purification of microbially expressed proteins, or fragments thereof, provided by the invention, may be carried out by conventional means including preparative chromatography and immunological separations involving monoclonal or polyclonal antibodies.

The invention extends to any host modified proteins according to the methods described, or modified by any other methods, commonly known to those of ordinary skill in the art, such as, for example, by transfer of genetic material using a lysogenic phage, and which result in a prokaryote expressing the leptospiral gene for an OM protein. Prokaryotes transformed with the leptospiral gene encoding an OM protein are particularly useful for the production of proteins which can be used for the immunization of an animal.

In one embodiment, the invention provides a pharmaceutical composition useful for inducing an immune response to pathogenic
Leptospira species in an animal comprising an immunologically effective amount of one or more OM proteins in a pharmaceutically acceptable carrier. The term "immunogenically effective amount," as used in describing the invention, is meant to denote that amount of leptospiral antigen which is necessary to induce in an animal the production of an immune response to Leptospira species. The OM proteins are particularly useful in sensitizing the immune system of an animal such that, as one result, an immune response is produced which ameliorates the effect of Leptospira species infection.

OM proteins i.e., their variants, functional equivalents, and derivatives, which are effective vaccines against leptospirosis, can be screened for using the methods described in Bolin, C. A., et al., Am. J. Vet. Res., 52:1639-1643 (1991) and Bey, R. F., et al., Infect. Immun., 10:1051-1056 (1974). The vaccination methods disclosed in these references can also be used for vaccinating animals with one or more OM proteins.

OM proteins can be administered, alone or in combination, e.g. parenterally by injection, rapid infusion, nasopharyngeal absorption, dermal absorption, and enterally, e.g., orally. Pharmaceutically acceptable carrier preparations for parenteral administration include sterile or aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Carriers for occlusive dressings can be used to increase skin permeability and enhance antigen absorption. Liquid dosage forms for oral administration may generally comprise a liposome solution containing the liquid dosage form. Suitable forms for suspending the liposomes include emulsions, suspensions, solutions, syrups, and elixirs containing inert diluents commonly used in the art, such as purified water.
Besides the inert diluents, such compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.

For example, recombinant bacteria and viruses expressing one or more OM proteins can be used as vaccines in the above compositions, and be administered, e.g. orally. The vaccines can also be added to baits against potential carriers of *Leptospira* species such as rodents so that they will not be infected by *Leptospira* species and be carriers in spreading *Leptospira* species and the disease to humans and other animals, such as domestic animals.

It is also possible for the antigenic preparations containing one or more OM proteins of the invention to include an adjuvant. Adjuvants are substances that can be used to nonspecifically augment a specific immune response. Normally, the adjuvant and the antigen are mixed prior to presentation to the immune system, or presented separately, but into the same site of the animal being immunized. Adjuvants can be loosely divided into several groups based on their composition. These groups include oil adjuvants (for example, Freund's Complete and Incomplete Adjuvants), mineral salts (for example, AlK(SO₄)₂, AlNa(SO₄)₂, AlNH₄(SO₄), silica, alum, Al(OH)₃, Ca₃(PO₄)₂, kaolin, and carbon), polynucleotides (for example, poly IC and poly AU acids), and certain natural substances (for example, wax D from *Mycobacterium tuberculosis*, as well as substances found in *Corynebacterium parvum*, *Bordetella pertussis*, and members of the genus *Brucella*).

In another embodiment, a method of inducing an immune response to pathogenic *Leptospira* species in animal is provided. Many different techniques exist for the timing of the immunizations when a multiple immunization regimen is utilized. It is possible to use the antigenic preparation of the invention more than once to increase the levels and diversity of expression of the immune response of the immunized animal. Typically, if multiple immunizations are given, they will be spaced two to four weeks apart. Subjects in which an immune
response to Leptospira species is desirable include any animal
susceptible to Leptospira species infection. The animals are preferably
mammals. Examples of the mammals are: humans, domestic and wild
mammals. The domestic mammals include: livestock such as cattle,
swine, goats, horses, buffaloes; and pets such as dogs.

Generally, the dosage of one or more of the OM proteins
administered to an animal will vary depending on such factors as age,
condition, sex and extent of disease, if any, and other variables which
can be adjusted by one of ordinary skill in the art.

The antigenic preparations of the invention can be administered as
either single or multiple dosages and can vary, e.g. from about 10 µg to
about 1,000 µg for the leptospiral OM antigen per dose, more preferably
from about 50 µg to about 700 µg OM antigen per dose, most preferably
from about 50 µg to about 300 µg OM antigen per dose.

When used for immunotherapy, the antibodies, preferably
monoclonal antibodies or SCA, of the invention may be unlabeled or
labeled with a therapeutic agent. These agents can be coupled either
directly or indirectly to the antibodies of the invention. One example of
indirect coupling is by use of a spacer moiety. These spacer moieties, in
turn, can be either insoluble or soluble (Diener, et al., Science, 231:148
(1986)) and can be selected to enable drug release from the antibody
molecule at the target site. Examples of therapeutic agents which can be
coupled to the antibodies for immunotherapy are drugs, radioisotopes,
lectins, and toxins.

The labeled or unlabeled antibodies can also be used in
combination with therapeutic agents such as those described above.
Especially preferred are therapeutic combinations comprising the
antibody and immunomodulators and other biological response modifiers.

When the antibody is used in combination with various therapeutic
agents, such as those described herein, the administration of the
antibody and the therapeutic agent usually occurs substantially
contemporaneously. The term "substantially contemporaneously" means
that the antibody and the therapeutic agent are administered reasonably close together with respect to time. Usually, it is preferred to administer the therapeutic agent before the antibody. For example, the therapeutic agent can be administered 1 to 6 days before the antibody. The administration of the therapeutic agent can be daily, or at any other interval, depending upon such factors, for example, as the nature of the disorder, the condition of the patient and half-life of the agent.

The dosage ranges for the administration of antibodies are those large enough to produce the desired effect in which the onset symptoms of the leptospiroal disease are ameliorated. The dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the subject and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any complication. Dosage can vary, e.g., from about 0.1 mg/kg to about 2000 mg/kg, preferably about 0.1 mg/kg to about 500 mg/kg, in one or more dose administrations daily, for one or several days. Generally, when the antibodies are administered conjugated with therapeutic agents, lower dosages, comparable to those used for in vivo diagnostic imaging, can be used.

The antibodies can be administered parenterally by injection or by gradual perfusion over time. The antibodies can be administered intravenously, intraperitoneally, intramuscularly, subcutaneously, intracavity, or transdermally, alone or in combination with effector cells.

Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose,
dextrose and sodium chloride, lactated Ringer's intravenous vehicles
include fluid and nutrient replenishers, electrolyte replenishers (such as
those based on Ringer's dextrose), and the like. Preservatives and other
additives may also be present such as, for example, antimicrobials, anti-
5 oxidants, chelating agents and inert gases, preferably isolated or
substantially pure, and the like.

An animal may also be vaccinated or treated using the disclosed,
preferably isolated or in substantially pure composition, nucleic acid
sequences, their mutagenized sequences or fragments thereof, which
10 may be directly administered or incorporated into a plasmid and
administered into the animal. The nucleic acid sequences may be mixed
with a pharmaceutically acceptable carrier prior to administration. The
administrations may be by means of microinjection or particle
bombardment using methods known in the art. For example, the
injection may be by means of a gene gun, such as described in Yang,
15 N.-S. et al., Gene Therapy via Particle Bombardment: Applications of the
Accell Gene Gun, in Gene Therapeutics: Methods and Applications of

In a further embodiment, the invention provides a method of
detecting a pathogenic Leptospira species-associated disorder in a
subject comprising contacting a cell component with a reagent which
binds to the cell component. The cell component can be nucleic acid,
such as DNA or RNA, or it can be protein. When the component is
20 nucleic acid, the reagent is a nucleic acid probe or polymerase chain
reaction ("PCR") primer. When the cell component is protein, the
reagent is an antibody probe. The probes are detectably labeled, for
example, with a radioisotope, a fluorescent compound, a bioluminescent
compound, a chemiluminescent compound, a metal chelator or an
25 enzyme. Those of ordinary skill in the art will know of other suitable
labels for binding to the antibody, or will be able to ascertain such, using
routine experimentation.
For purposes of the invention, an antibody or nucleic acid probe specific for an OM protein may be used to detect the presence of the respective OM protein (using antibody) or polynucleotide (using nucleic acid probe) in biological samples. Any specimen containing a detectable amount of the OM antigen or polynucleotide can be used. Preferred specimens of this invention are a biological fluid or tissue sample. Preferred examples of a biological fluid sample include: blood, serum, plasma, tear, milk, urine, and cerebro-spinal fluid. Preferred examples of a biological tissue sample include tissue samples from the liver and kidney and tissue of endothelial origin.

When the cell component is nucleic acid, it may be necessary to amplify the nucleic acid prior to binding with a *Leptospira* species specific probe. Preferably, PCR is used, however, other nucleic acid amplification procedures such as ligase chain reaction ("LCR"), ligated activated transcription ("LAT") and nucleic acid sequence-based amplification ("NASBA") may be used.

Another technique which may also result in greater sensitivity consists of coupling antibodies to low molecular weight haptens. These haptens can then be specifically detected by means of a second reaction. For example, it is common to use such haptens as biotin, which reacts with avidin, or dinitrophenyl, pyridoxal, and fluorescein, which can react with specific antihapten antibodies.

Alternatively, an OM protein can be used to detect antibodies to the respective OM protein in a specimen. The OM proteins of the invention is particularly suited for use in immunoassays in which they can be utilized in liquid phase or bound to a solid phase carrier. In addition, the OM proteins used in these assays can be detectably labeled in various ways.

Examples of immunoassays which can utilize the OM proteins are competitive and noncompetitive immunoassays in either a direct or indirect format. Examples of such immunoassays are the radioimmunoassay ("RIA"), the sandwich (immunometric assay) and the
Western blot assay. Detection of antibodies which bind to one or more of the OM proteins of the invention can be done utilizing immunoassays which run in either the forward, reverse, or simultaneous modes, including immunohistochemical assays on biological samples. The concentration of an OM protein which is used will vary depending on the type of immunoassay and nature of the detectable label which is used. However, regardless of the type of immunoassay which is used, the concentration of the OM proteins utilized can be readily determined by one of ordinary skill in the art using routine experimentation.

The OM proteins of the invention can be bound to many different carriers and used to detect the presence of antibody specifically reactive with the polypeptide. Examples of well-known carriers include glass, polystyrene, polyvinyl chloride, polypropylene, polyethylene, polycarbonate, dextran, nylon, amyloses, natural and modified celluloses, polyacrylamides, agaroses, and magnetite. The nature of the carrier can be either soluble or insoluble for purposes of the invention. Those skilled in the art will know of other suitable carriers for binding a particular OM protein or will be able to ascertain such, using routine experimentation.

There are many different labels and methods of labeling known to those of ordinary skill in the art. Examples of the types of labels which can be used in the present invention include enzymes, radioisotopes, colloidal metals, fluorescent compounds, chemiluminescent compounds, and bioluminescent compounds.

For purposes of the invention, the antibody which binds to an OM protein may be present in various biological samples. Any sample containing a detectable amount of antibodies to an OM protein can be used. Preferred specimens of this invention are: a biological fluid or tissue sample. Preferred examples of a biological fluid sample include: blood, serum, plasma, tear, milk, urine, and cerebro-spinal fluid.

Preferred examples of a biological tissue sample include tissue samples from the liver and kidney and tissue of endothelial origin.
The antibodies of the invention, preferably monoclonal antibodies and SCA, directed toward an OM protein, are also useful for the in vivo detection of antigen. The detectably labeled antibody is given in a dose which is diagnostically effective. The term "diagnostically effective" means that the amount of detectably labeled monoclonal antibody is administered in sufficient quantity to enable detection of leptospiral OM antigen for which the antibodies are specific.

The concentration of detectably labeled antibody which is administered should be sufficient such that the binding to those cells, body fluid, or tissue having one or more of the OM proteins is detectable compared to the background. Further, it is desirable that the detectably labeled antibody be rapidly cleared from the circulatory system in order to give the best target-to-background signal ratio.

As a rule, the dosage of detectably labeled antibody for in vivo diagnosis will vary depending on such factors as age, sex, and extent of disease of the subject. The dosage of antibody can vary, e.g., from about 0.001 mg/m² to about 500 mg/m², preferably 0.1 mg/m² to about 200 mg/m², most preferably about 0.1 mg/m² to about 10 mg/m². Such dosages may vary, for example, depending on whether multiple injections are given, and other factors known to those of skill in the art.

For in vivo diagnostic imaging, the type of detection instrument available is a major factor in selecting a given radioisotope. The radioisotope chosen must have a type of decay which is detectable for a given type of instrument. Still another important factor in selecting a radioisotope for in vivo diagnosis is that the half-life of the radioisotope be long enough so that it is still detectable at the time of maximum uptake by the target, but short enough so that deleterious radiation with respect to the host is minimized. Ideally, a radioisotope used for in vivo imaging will lack a particle emission, but produce a large number of photons in the 140-250 key range, which may be readily detected by conventional gamma cameras.
For *in vivo* diagnosis, radioisotopes may be bound to immunoglobulin either directly or indirectly by using an intermediate functional group. Intermediate functional groups which often are used to bind radioisotopes which exist as metallic ions to immunoglobulins are the bifunctional chelating agents such as diethylenetriaminepentacetic acid ("DTPA") and ethylenediaminetetraacetic acid ("EDTA") and similar molecules. Typical examples of metallic ions which can be bound to the monoclonal antibodies of the invention are 111In, 97Ru, 67Ga, 68Ga, 72As, 89Zr, and 201Tl.

The antibodies of the invention can also be labeled with a paramagnetic isotope for purposes of *in vivo* diagnosis, as in magnetic resonance imaging ("MRI") or electron spin resonance ("ESR"). In general, any conventional method for visualizing diagnostic imaging can be utilized. Usually gamma and positron emitting radioisotopes are used for camera imaging and paramagnetic isotopes for MRI. Elements which are particularly useful in such techniques include 157Gd, 55Mn, 162Dy, 52Cr, and 56Fe.

The antibodies, preferably monoclonal antibodies and SCA, of the invention can also be used to monitor the course of amelioration of *Leptospira* species associated disorder. Thus, by measuring the increase or decrease of one or more of the leptospiral OM proteins or antibodies to one or more of the OM proteins present in various body fluids or tissues, it would be possible to determine whether a particular therapeutic regimen aimed at ameliorating the disorder is effective.

The materials for use in the method of the invention are ideally suited for the preparation of a kit. Such a kit may comprise a carrier means being compartmentalized to receive in close confinement one or more container means such as vials, tubes, and the like, each of the container means comprising one of the separate elements to be used in the method. For example, one of the container means may comprise a binding reagent which binds one or more of the OM proteins, such as an antibody. A second container may further comprise one or more of the
OM proteins. The constituents may be present in liquid or lyophilized form, as desired.

In the above discussion, the diagnostic tests, e.g. nucleic acid hybridization assays or immunoassays, may test for one or more of the OM proteins. Alternatively, they may consist of panel tests which test for both the OM proteins or OM nucleotide sequences, in combination with other proteins or nucleic acid sequences specific for *Leptospira* species, in particular pathogenic *Leptospira* species, such as OmpL1 {Haake, D. A., *et al.*, *J. Bacteriol.*, 175:4225-4234 (1993); U.S. patent application Serial No. 08/040,747, "Cloned Leptospira Outer Membrane Protein" to Haake, D.A., *et al.*, filed on March 31, 1993} and OmpL2 {U.S. patent application Serial No. 08/249,013, "Cloned Leptospira Outer Membrane Protein" to Haake, D. A., *et al.*, filed on May 25, 1994}. Similarly, the compositions, e.g. for immunoassays or vaccinations, may consist of an OM protein, singly. Alternatively, they may consist of a cocktail containing more than one OM protein, or these proteins in combination with other proteins specific for *Leptospira* species, in particular pathogenic *Leptospira* species, such as OmpL1 and OmpL2. The antibody compositions may consist of antibodies specific to an OM protein. Alternatively, they may consist of a cocktail containing antibodies to more than one OM protein, or to these proteins and other proteins specific for *Leptospira* species, in particular pathogenic *Leptospira* species, such as OmpL1 and OmpL2. The hybridization assays are preferably run at moderate to stringent conditions. The immunoassays are preferably conducted under conditions of reduced non-specific binding. Thus, the test kits and methods using these compositions are varied accordingly.

The following examples are intended to illustrate but not limit the invention. While they are typical of those that might be used, other procedures known to those skilled in the art may alternatively be used.

EXAMPLES
EXAMPLE 1

ISOLATION OF LEPTOSPIRA PROTEINS USING THE FIRST TWO
METHODS

The following example describes the isolation of twelve OM
proteins having the molecular weights of approximately 22-, 24-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa, respectively.

MATERIALS AND METHODS

were received from C. A. Bolin (National Animal Disease Center,
Agricultural Research Service, U.S. Department of Agriculture, Ames,
Iowa) and passaged in bovine serum albumin Tween-80 medium
(bovuminar PLM-5 microbiological media, Intergen).

Antisera. Antisera to LipL36 and LipL41 was prepared as
previously described for OmpL1 (Haake, et al., J. Bacteriol., 175:4225
(1993)). Briefly, New Zealand White rabbits were immunized with
purified His6 fusion proteins, expressed by E. coli JM109 (Invitrogen)
transformed with the pRSET plasmid (Invitrogen) containing the genes
encoding the respective proteins. Rabbit antiserum to the 32-kDa MOMP
and anti-flagellar monoclonal antibody 1H8 were generous gifts of Dr.
Richard Zuerner, National Animal Disease Center, USDA, Ames, Iowa.
Rabbit antiserum to leptospiral GroEL was a generous gift of Dr. Ben
Adler, Department of Microbiology, Monash University, Australia.

Gel electrophoresis and immunoblotting. Samples for SDS-
PAGE were solubilized in final sample buffer ("FSB") composed of 62.5
mM Tris hydrochloride (pH 6.8), 10% glycerol, 5% 2-mercaptoethanol,
and 2% SDS. Samples for immunoblots to be probed with OmpL1
antiserum were solubilized in FSB containing 8M urea. Proteins were

were transferred to nitrocellulose (Schleicher & Schuell Inc, Keene, New Hampshire) for immunoblotting. For antigenic detection on immunoblots, the nitrocellulose was blocked with 5% nonfat dry milk in PBS - 0.1% Tween-20 ("PBS-T"), incubated for one hour with antiserum diluted 1:5000 (unless otherwise noted) in PBS-T, and proved with Donkey anti-rabbit antiserum conjugated to horseradish peroxidase (Amersham Corporation, Arlington Heights, Illinois). Antigen-antibody binding was detected using the Enhanced Chemiluminescence System ("ECL", Amersham). Blots were incubated in ECL reagents for one minute and then exposed to XAR-5 film (Kodak).

L. kirschneri OM isolation in citrate/NaCl. *L. kirschneri* (8 x 10^{10}) were washed once in phosphate buffered saline (pH 7.4). The pellet was resuspended in 70 ml of 25 mM citrate pH 3.2, 1M NaCl. The leptospiral suspension was placed in a sterile 100 ml flask with a magnetic stir bar and mixed for two hours at room temperature. The suspension was centrifuged at 28,000 rpm (SW28 rotor) for one hour to pellet membranes. The pellet was thoroughly resuspended in 25 mM citrate pH 3.2, 1M NaCl containing 27% sucrose (w/v) and loaded on a continuous 27-55% sucrose (w/v) gradient (in 25 mM citrate pH 3.2, 1M NaCl) in Beckman ultraclear tubes and centrifuged overnight at 40,000 rpm in an SW41 rotor. The entire gradient was separated into 0.4 ml fractions by pipetting from the top of the gradient. The refractive index of each fraction was measured with a refractometer. Due to a contaminant in the citric acid, trichloroacetic acid ("TCA") precipitation had to be performed prior to determining the protein concentration on the fractions using the BCA protein assay system (Pierce BCA Applications Note #12, Pierce Chemicals Co., Rockford, Illinois). *β*-NADH oxidase activity was measured as described below. Material for SDS-PAGE and/or
immunoblot analysis was obtained by TCA precipitation performed by incubation with 4 volumes of 5% TCA for sixteen hours at 4°C. Precipitated material was collected by centrifugation for fifteen minutes at top speed in a microfuge, washed with acetone, centrifuged for five minutes at top speed in a microfuge, then resuspended in sample buffer.

L. kirschneri OM isolation in sucrose/NaCl. *L. kirschneri* (4 x 10^10) were washed once in phosphate buffered saline (pH 7.4). The pellet was resuspended in 4 ml of TNSEDR buffer consisting of 10 mM Tris pH 9, 1M NaCl, 27% sucrose (w/v), 2 mM EDTA, 1 unit/ml DNAse, and 0.25 microgram/ml RNAse. The leptospiral suspension was placed in a 2059 tube (Falcon) with a magnetic stir bar. After mixing for four hours at room temperature the suspension was centrifuged for fifteen minutes at 3000 x g to remove aggregated material. The supernatant was loaded on a continuous 27-55% sucrose (w/v) gradient (in 10 mM Tris pH 9, 1M NaCl, 2 mM EDTA) in Beckman ultraclear tubes and centrifuged overnight at 28,000 rpm in an SW28 rotor. The entire gradient was separated into 0.8 ml fractions by pipetting from the top of the gradient. The refractive index of each fraction was measured with a refractometer. The protein concentration was determined on the fractions using BCA protein assay system of Pierce Chemicals Co. (Rockford, Illinois). β-NADH oxidase activity was measured as described below. Material for SDS-PAGE and/or immunoblot analysis was obtained by TCA precipitation as described above.

β-NADH oxidase assay. β-NADH oxidase assays were conducted as described previously {Osborn, *et al.*, *J. Biol. Chem.*, 247:3962-3972 (1972); Norris, *et al.*, *Microbiol. Rev.*, 57:750-779 (1993); Skare, *et al.*, *J. Clin. Invest.*, 96:2380-2392 (1995); Stanton, *et al.*, *J. Bacteriol.*, 175:2980-2987 (1993}) except that 0.5 mM DTT was added to all buffers used in the outer membrane isolation procedure. A sample of each fraction was diluted in 50 mM Tris pH 7.5, 0.2 mM DTT, and 0.1 mM β-NADH and incubated in the dark at room temperature. The amount of β-NADH present in each sample was determined by
measuring the absorbance at 340 nm at the beginning and end of the incubation period. The amount of β-NADH oxidase activity was determined by the rate of β-NADH catalysis.

RESULTS

L. kirschneri OM isolation in citrate/NaCl. When the hypotonic citrate technique developed for OM isolation from *Treponema* species and *B. burgdorferi* was applied without modification, there was insufficient recovery of the leptospiral OM. Modifications of the hypotonic citrate technique included addition of 1M NaCl during all stages of isolation procedure. In addition, it was essential to thoroughly resuspend the ultracentrifugation pellet in 25 mM citrate pH 3.2, 1M NaCl containing 27% sucrose (w/v) prior to loading on the sucrose gradient.

After ultracentrifugation of the sucrose gradient, three discrete bands were visible, two light bands (L1c and L2c) and one heavy band (Hc). Results of refractive index analysis were as follows:

<table>
<thead>
<tr>
<th>Band</th>
<th>Fraction #</th>
<th>Refractive Index</th>
<th>Density (g/ml)</th>
<th>Sucrose Density (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1c</td>
<td>17</td>
<td>1.398</td>
<td>1.17</td>
<td>39.2%</td>
</tr>
<tr>
<td>L2c</td>
<td>19</td>
<td>1.401</td>
<td>1.18</td>
<td>40.7%</td>
</tr>
<tr>
<td>Hc</td>
<td>28</td>
<td>1.416</td>
<td>1.22</td>
<td>48.0%</td>
</tr>
</tbody>
</table>

The protein concentration of the fractions gradually increased as the sucrose density increased, peaking in fraction #28, which contained band Hc and the majority of PC material (Fig. 1). The fraction containing band Hc contained 4.7×10^{-4} IU of β-NADH oxidase activity. No β-NADH oxidase activity was found in any of the other fractions. Immunoblot
analysis revealed that band Hc also contained most of the leptospiral GroEL and flagella (Fig. 2). Although some GroEL and flagella was found in band L2c, band L1c contained no GroEL and only a small amount of flagella. As determined by densitometric analysis (Fig. 3), band L1c contained in fraction 17 contained less than 10% of the amount of flagella found in band Hc. This result suggests that the more buoyant material in band L1c was more free of PC contaminants than band L2c. Bands L1c and L2c contained >50% of the amounts of porin OmpL1, lipoproteins LipL36 and LipL41, and the 32-kDa MOMP relative to the amounts found in band Hc. Release of these proteins from the PC material in band Hc was best for LipL36, as determined by densitometric analysis (Fig. 3). Analysis of the citrate/NaCl fractions by periodate silver stain revealed that the amount of leptospiral LPS peaked in fractions 17-21, which contained bands L1c and L2c (data not show). Protein silver stain of the citrate gradient fractions revealed that in addition to the 32-kDa MOMP, LipL36, and LipL41, several additional bands were enriched in bands L1c and L2c, including proteins with molecular masses of approximately 37-, 46-, 67-, 70-, 74-, and 101-kDa (Fig. 4).

L. kirschneri OM isolation in sucrose/NaCl. The hypertonic sucrose technique developed for OM isolation from *Treponema* species and *B. burgdorferi* was applied without modification, there was poor recovery of the leptospiral OM. Addition of 1M NaCl greatly improved release of OmpL1 and leptospiral LPS from the PC fraction. In addition, simple rocking of the bacterial suspension in the sucrose/NaCl solution was insufficient to release the leptospiral OM. Stirring with a magnetic microstirbar (2mm diameter) provided the proper amount of mechanical agitation for OM release. The size of the stirbar and the rate of mixing were important. It was found that contamination of the OM fraction with PC components could occur if the bacterial suspension was mixed too rapidly with a larger diameter stirbar (5/16").
After ultracentrifugation of the sucrose gradient, three discrete bands were visible, two light bands (L1s and L2s) and one heavy band (Hs). Results of refractive index analysis were as follows:

<table>
<thead>
<tr>
<th>Band</th>
<th>Fraction #</th>
<th>Refractive Index</th>
<th>Density (g/ml)</th>
<th>Sucrose Density (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1s</td>
<td>14</td>
<td>1.393</td>
<td>1.16</td>
<td>36.4%</td>
</tr>
<tr>
<td>L2s</td>
<td>22</td>
<td>1.402</td>
<td>1.18</td>
<td>41.1%</td>
</tr>
<tr>
<td>Hs</td>
<td>34</td>
<td>1.416</td>
<td>1.22</td>
<td>48.0%</td>
</tr>
</tbody>
</table>

The protein concentration of the sucrose gradient fractions peaked in three places (Fig. 5.). The first protein peak occurred in the most buoyant portion of the gradient containing leptospiral proteins that were unable to enter the gradient. The second protein peak contained band L2s and the highest concentration of OM components OmpL1 and leptospiral LPS, as determined by immunoblot (Fig. 6) and periodate silver stain (data not shown). The third protein peak contained band Hc and the majority of PC material. Fraction #34 containing band Hs contained the most β-NADH oxidase activity: 8.8×10^4 IU. Although some β-NADH oxidase activity was found in fractions denser than fraction #34, no β-NADH oxidase activity was found in any of the more buoyant fractions. Immunoblot analysis revealed that band Hs also contained most of the leptospiral GroEL and flagella (Fig. 6). No GroEL or flagella was found in bands L1s or L2s. Band L1s contained the highest concentration of the 32-kDa MOMP while band L2s contained the highest concentration of the porin OmpL1, and the lipoproteins LipL36 and LipL41. Release of these proteins from the PC material in band Hc was best for LipL36, as determined by densitometric analysis (Fig. 7). Protein silver stain of the citrate gradient fractions that in addition to the 32-kDa MOMP, LipL36, and LipL41, several additional bands were enriched in bands L2s, including proteins with molecular masses of
approximately 22-, 24-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa (Fig. 8).

EXAMPLE 2

ISOLATION OF LEPTOSPIRA PROTEINS USING FRENCH PRESS AND DIGOXIGENIN-AMPCILLIN CONJUGATES

Leptospira kirschneri, strain RM52, was grown to mid log phase (density less than 2×10^8/ml) in bovine serum albumin Tween-80 medium (bovuminar PLM-5 micorbiological media, Intergen, Purchase, New York).

Bacteria were washed once in 0.1 M phosphate-buffered saline, pH 7.4 (PBS) containing 5 mM MgCl$_2$ and resuspended in 10 ml of HNSE buffer [20 mM HEPES, pH 7.6, 1 M NaCl, 10% sucrose (weight/volume), 1 mM EDTA] at 4°C. Bacteria were passed three times through a French pressure cell at 12,000 lb/in2. The following were added to the suspension: DNAse (1 unit/ml), RNAse (0.25 µg/ml), and egg white lysozyme (500 µg/ml). After incubation at 4°C for 2 hours, the suspension was passed through a 0.2 micron filter and the outer membrane was isolated by isopycnic ultracentrifugation in two successive steps as shown schematically in Fig. 9. In the first step, the material was layered onto a discontinuous gradient consisting of 5 ml of 55%, 15 ml of 37%, and 10 ml of 20% sucrose in HNE buffer (20 mM HEPES, pH 7.4, 1 M NaCl, 1 mM EDTA). The gradient was placed in a Beckman SW28 rotor and centrifuged (100,000 x g for 16 hr). The material that moved into the 20% pad (enriched outer membrane) was collected and layered onto a second discontinuous gradient consisting of 5 ml of 50%, 16 ml of 34%, and 8 ml of 25% sucrose in HNE buffer. The gradient was placed in Beckman SW28 rotor and centrifuged (100,000 x g for 16 hr).

One milliliter fractions were collected from the bottom of each tube. The density of each fraction was estimated by measuring the refractive index with a refractometer. The protein concentration of each fraction was estimated by measuring the A_{280}. The fraction were analyzed for protoplasmic cylinder contamination by addition of
digoxigenin-ampicillin conjugate for detection of penicillin-binding protein by chemiluminiscence (Weigel, L. M., et al., *Antimicrob. Agents Chemother.*, 38(2): 330-336 (1994)). Prior to analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), samples were precipitated with trichloroacetic acid and solubilized in final sample buffer (FSB) composed of 62.5 mM Tris hydrochloride (pH 6.8), 10% glycerol, 5% 2-mercaptoethanol, and 2% SDS. Proteins were separated on a 12% gel with a discontinuous buffer system (Laemml, U.K., *Nature* (London), 227: 680-685 (1970)), and stained with Coomasie brilliant blue, silver (Wray, W., et al., *Anal. Biochem.*, 118: 197-203 (1981)), or were transferred to nitrocellulose (Schleicher and Schuell) for immunoblotting. For antigenic detection on immunoblots, the nitrocellulose was blocked with 5% nonfat dry milk in PBS - 0.1% Tween-20 (PBS-T), incubated for one hour with primary antisera diluted 1:5000 (unless otherwise noted) in PBS-T, and probed with Donkey anti-rabbit antiserum conjugated to horseradish peroxidase (Amersham). Primary antisera used in this study included rabbit polyclonal antisera specific for the porin OmpL1, the lipoproteins LipL41 and LipL36, and monoclonal antibody F71C2-1 (gift of R. A. Hartskeerl, Royal Tropical Institute, Amersham) specific for leptospiral LPS. Antigen-antibody binding was detected using the Enhanced Chemiluminescence System (ECL, Amersham). Blots were incubated in ECL reagents for one minute and then exposed to XAR-5 film (Kodak).

RESULTS

Figure 10 shows the refractive indices and protein densities of the fraction from the second sucrose gradient. Detection of leptospiral penicillin-binding proteins by digoxigenin-ampicillin conjugate was ampicillin inhibitable. The outer membrane banded at fraction #17 and was found to contain LipL41 and LipL36 (Fig. 11A), OmpL1 (Fig. 11B), and LPS (data not shown), but was free of contamination by penicillin binding proteins (data not shown), indicating successful separation of the
leptospiral outer membrane from protoplasmic cylinder contaminants. The pattern of bands detected using the digoxigenin-ampicillin conjugate was inhibitable by free ampicillin, demonstrating that the detected bands are penicillin-binding proteins. Analysis of the proteins in the isolated outer membrane in fraction #18 by SDS-PAGE and silver stain revealed known outer membrane protein including LipL32 (MOMP), LipL36, and LipL41. The isolated outer membrane also included proteins with molecular masses of approximately 22-, 24-, 30-, 37-, 46-, 51-, 56-, 70-, and 74-kDa (Fig. 11C). The 30-kDa protein is new and was not observed using the first two isolation techniques in EXAMPLE 1, above. The 22-kDa protein is hereby identified as LapL22. A minor protein peak at fraction #5 was found to contain LPS and OmpL1 but was also contaminated by penicillin-binding proteins, indicating a hybrid population of outer and inner membrane vesicles.

EXAMPLE 3
CHARACTERIZATION OF LapL22

LapL22 is a LPS-associated protein of Leptospira species with a molecular mass of 22 kDa. LapL22 was initially identified as a component of the isolated leptospiral outer membrane. The electrophoretic mobility of LapL22 was also noted to be modifiable by heat, an exclusive property of integral outer membrane proteins with beta-sheet structure. Shang, E.S. et al., Infect. Immun. 63(8): 3174-81 (1995). The following experiment examined the humoral immune response to L. kirschneri infection in the hamster model of leptospirosis and showed the association of LapL22 with leptospiral LPS. Surface-exposure of LapL22 is implied by the fact that LPS is found exclusively on the surface of bacterial outer membranes.

Generation of Infection-Derived Antisera

Hamsters in Group One were infected with culture-adapted, virulent L. kirschneri. Ten days after infection, liver tissue from one of
the hamsters in Group One was obtained as a source of host-adapted *L. kirschneri*. The host-adapted *L. kirschneri* were immediately inoculated into hamsters in Group Two. Hamsters from both groups surviving twenty-eight days after challenge were euthanized and serum harvested for immunoblot studies. In this way, two types of infection-derived antisera were generated:

SCA = Serum from Group One hamsters infected with Culture-Adaped *L. kirschneri*.

SHA = Serum from Group Two hamsters infected with Host-Adaped *L. kirschneri*.

Immunoblot Analysis of Leptospiral Proteins

L. kirschneri proteins were separated by SDS-PAGE and probed with SCA and SHA sera. Four of the antigens recognized by these sera have been characterized: (1) The 33-kDa porin, OmpL1; (2) the 36-kDa lipoprotein, LipL36; (3) The 41-kDa lipoprotein, LipL41; and (4) A form of leptospiral LPS which migrates over a broad range from 24-30 kDa apparent molecular mass, designated herein as LPS\(^{24-30}\). Serum from Group One hamsters infected with Culture-Adaped *L. kirschneri* also produce several LPS species (*Haake, D. A., *et al.*, *Infect. Immun.*, 59(3): 1131-40 (1991)). In addition to LPS\(^{24-30}\), a smaller form of LPS is produced which migrates at 18-20 kDa apparent molecular mass, herein designated LPS\(^{18-20}\).

As shown in Fig. 12, SCA immunoblots reacted with leptospiral LPS\(^{24-30}\), heat modifiable OmpL1, and non-heat-modifiable proteins LipL36, LipL41, and two additional proteins with molecular masses of 37-, and 46-kDa. SHA sera also reacted with OmpL1, LipL41, and the 37- and 46-kDa proteins. However, SHA sera reacted more strongly than SCA sera with heat-modifiable proteins with molecular masses of 14-, 22-kDa, and less strongly with leptospiral LPS\(^{24-30}\) and the 36-kDa protein.
Hamster sera from uninfected littermates was nonreactive (data not shown).

SHA antisera was used to probe immunoblots of two-dimensional SDS-PAGE gels in order to determine the migration of the 14-, and 22-kDa heat-modifiable proteins in unboiled samples. As shown in Fig. 13, the 14-kDa protein migrates with an apparent molecular mass of 18-20 kDa in unboiled samples, while the 22-kDa protein migrates with an apparent molecular mass of 24-30 kDa in unboiled samples. This experiment indicates that the 14- and 22-kDa proteins are heat-modifiable because they are associated with LPS18-20 and LPS24-30, respectively, in unboiled samples. This protein-LPS association is stable in sodium dodecyl sulfate at room temperature, but is lost after boiling, presumably due to denaturation of LapL22.

The foregoing is meant to illustrate, but not to limit, the scope of the invention. Indeed, those of ordinary skill in the art can readily envision and produce further embodiments, based on the teachings herein, without undue experimentation.

All publications and patent applications mentioned in this Specification are herein incorporated by reference to the same extent as if each of them had been individually indicated to be incorporated by reference.
I claim:

1. An isolated protein selected from the group consisting of proteins isolated from leptospiral outer membrane and having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa.

3. The substantially pure protein of claim 2, wherein said protein does not contain detectable level of protoplasmic cylinder contaminants.

4. A pharmaceutical composition useful for inducing an immune response to *Leptospira* in an animal comprising an immunogenically effective amount of one or more leptospiral outer membrane proteins or their immunogenic fragments, in a pharmaceutically acceptable carrier, wherein said leptospiral outer membrane proteins are selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa.

5. A method of inducing an immune response to *Leptospira* in an animal comprising immunizing the animal with one or more proteins or their fragments, wherein said proteins are selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa.
6. A pharmaceutical composition useful for inducing an immune response to pathogenic *Leptospira* in an animal comprising a pharmaceutically acceptable carrier and an immunogenically effective amount of antibodies which bind one or more leptospiral outer membrane proteins or their immunogenic fragments, wherein said leptospiral outer membrane proteins are selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, 127-kDa.

7. An antibody capable of binding a protein or its immunogenic fragment, wherein said protein is selected from the group consisting of leptospiral outer membrane proteins having the molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa.

8. The antibody of claim 7, wherein the antibody is polyclonal.

9. The antibody of claim 7, wherein the antibody is monoclonal.

10. A method of detecting *Leptospira* in a sample comprising the steps of contacting the sample with a nucleic acid sequence probe capable of binding to a nucleic acid sequence encoding a leptospiral outer membrane protein, and detecting such binding, wherein said leptospiral outer membrane proteins are selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa.
11. A method of detecting *Leptospira* in a sample comprising the steps of:

contacting the sample with an antibody capable of binding a leptospiral outer membrane protein or its immunogenic fragment, and

detecting such binding,

wherein said leptospiral outer membrane protein is selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa.

12. A method for detecting in a sample, an antibody capable of binding an antigen, the method comprises:

contacting the sample with the antigen under conditions which allow the antibody to bind to the antigen, and

detecting the binding of the antibody to the antigen;

wherein the antigen is selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, 127-kDa, and immunogenic fragments of the foregoing.

13. A kit useful for detecting an antigen, the kit comprising one or more containers containing a reagent capable of binding the antigen, said antigen is selected from the group consisting of a protein, an immunogenic fragment of the protein, a nucleotide sequence encoding the protein, a nucleotide sequence which can be translated into the protein; wherein the protein is selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa.
14. The kit of claim 13, wherein the reagent is selected from the group consisting of: an antibody and a nucleotide acid sequence specific for the antigen.

15. A kit useful for the detection of an antibody to an antigen, the kit comprising one or more containers containing the antigen, wherein the antigen is selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa, and immunogenic fragments of the foregoing.

16. A method for isolating leptospiral outer membrane proteins, comprising the steps of:
 (a) incubating a leptospire in hypotonic salt-citrate or hypertonic salt-sucrose solution, and
 (b) separating outer membrane of the leptospires from protoplasmic cylinder of the leptospires by density gradient centrifugation.

17. A method for isolating leptospiral outer membrane proteins, comprising the steps of:
 (a) incubating leptospires in a hypertonic salt-sucrose solution,
 (b) releasing outer membrane of the leptospires in the form of a membrane vesicle by means of a French pressure cell,
 (c) treating the leptospires with lysozyme, and
 (d) isolating the outer membrane of the leptospires by isopycnic centrifugation.

18. The method of claim 17, further comprising the step of analyzing the isolated outer membrane for cytoplasmic contamination, wherein said analyzing step utilizes digoxigenin-ampicillin conjugate.
19. A method for vaccinating an animal, comprising the step of administering to the animal a nucleotide sequence encoding a protein or its immunogenic fragment, said protein is selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa.

20. A pharmaceutical composition useful for inducing an immune response to *Leptospira* in an animal comprising one or more nucleotide sequences selected from the group consisting of nucleotide sequences encoding or translatable into one or more proteins or immunogenic fragments of the proteins, wherein said proteins are selected from the group consisting of leptospiral outer membrane proteins having molecular masses of about: 22-, 24-, 30-, 37-, 46-, 51-, 56-, 67-, 70-, 74-, 93-, 101-, and 127-kDa.
FIG. 6-2

LipL41

Flagella

GroEL

SUBSTITUTE SHEET (RULE 26)
Figure 9: Leptospiral Outer Membrane Isolation Method
Figure IIC
FIG. 12

LEPTOSPIRAL INFECTION RESULTS IN AN ANTIBODY RESPONSE TO OUTER MEMBRANE PROTEINS

OMPs
1 2 3 4

SCA
1 2 3 4

SHA
1 2 3 4

SUBSTITUTE SHEET (RULE 29)

LipL41
LipL36
OmpL1

LipL41
LipL36
OmpL1

LipL41
OmpL1

14.4-
14.4-
14.4-
14.4-
21.5-
21.5-
21.5-
21.5-
31-
31-
31-
31-
45-
45-
45-
45-
66-
66-
66-
66-
Figure 13: Two Dimensional Immunoblot Using Infection-Derived Antiserum
INTERNATIONAL SEARCH REPORT

PCT/US 97/01003

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07K14/20 A61K39/02 C07K16/12 C12Q1/68 G01N33/53

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 95 32220 A (UNIVERSITY OF CALIFORNIA) 30 November 1995 cited in the application</td>
<td></td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C. X Patent family members are listed in annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"*" document member of the same patent family

Date of the actual completion of the international search: 10 June 1997
Date of mailing of the international search report: 23. 06. 97

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV RIJSWijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016

Authorized officer: Rempp, G

Form PCT/ISA/210 (second sheet) (July 1993)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D. A. HAACE ET AL.: "IDENTIFICATION AND CLONING OF A LEPTOSPIRAL OUTER MEMBRANE PROTEIN."</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see paragraph D-63</td>
<td></td>
</tr>
<tr>
<td>A,P</td>
<td>WO 96 36355 A (UNIV CALIFORNIA) 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>November 1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cited in the application</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

PCT/US 97/01003

Box I Observations where certain claims were found unsearable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. X Claims No.: 5,199 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although these claims are directed to a method of treatment of ((diagnostic method practised on) the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. □ Claims No.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. □ Claims No.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

□ The additional search fees were accompanied by the applicant's protest.

□ No protest accompanied the payment of additional search fees.

Form PCT/ISA.210 (continuation of first sheet (1)) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9532220 A</td>
<td>30-11-95</td>
<td>AU 2654495 A</td>
<td>18-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2190999 A</td>
<td>30-11-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0760823 A</td>
<td>12-03-97</td>
</tr>
<tr>
<td>WO 9636355 A</td>
<td>21-11-96</td>
<td>AU 5863796 A</td>
<td>29-11-96</td>
</tr>
</tbody>
</table>