0 2007/078645 A2 || 00000 0 000 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T R OO O

International Bureau

(43) International Publication Date
12 July 2007 (12.07.2007)

(10) International Publication Number

WO 2007/078645 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2006/047131

(22) International Filing Date:
8 December 2006 (08.12.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/321,431 28 December 2005 (28.12.2005) US

(71) Applicant (for all designated States except US): NET-
WORK APPLIANCE, INC. [US/US]; 495 East Java
Drive, Sunnyvale, CA 94089 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SARMA, Joydeep,
Sen [IN/US]; 1063 Morse Ave #8-301, Sunnyvale, CA
94089 (US). GOLE, Abhijeet, P. [US/US]; 495 East Java
Drive, Sunnyvales, CA 94089 (US).

(74) Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 12400 Wilshire Boulevard, 7th
Floor, Los Angeles, CA 90025 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: METHOD AND APPARATUS FOR CLONING FILESYSTEMS ACROSS COMPUTING SYSTEMS

(57) Abstract: Data storage methods and apparatus combining read-only and read-write storage are described. Data may be located
by information maintained in a filesystem; each data block is stored in either the read-only storage or the read-write storage.

WO 2007/078645 PCT/US2006/047131

METHOD AND APPARATUS FOR CLONING FILESYSTEMS

ACRO0SS COMPUTING SYSTEMS

FIELD OF THE INVENTION

[0001] The invention relates to filesystem and data storage
management. More specifically, the invention relates to low-level

filesystem sharing coordination.

BACKGROUND

[0002] A filesystem is a data structure (or set of data structures)
and associated logic that facilitate tasks related to storing data in a
computer system: allocating and freeing storage space on mass storage
devices; reading and writing data; creating, modifying and deleting
files; maintaining hierarchical directory structures; and so forth.
Filesystem data structures are typically fairly complex; with
interdependent fields that must be maintained consistently to avoid
data corruption or loss. Various techniques and protocols to maintain
filesystem consistency despite hardware errors and failures, power loss,
and similar exigenciés are known in the art. For example, several mass
storage devices such as hard disk drives can be combinred into a
Redundant Array of Independent Disks (“RAID”) and operated so that
the failure of any single device will not affect the availability of data
stored on the RAID. This addresses the low-level need for reliable
storage of data bits, including the data bits that make up the filesystem
data structures. At a higher logical level, filesystem changes can be
made robustly by, for example, preparing a tentative set of changes, -

then activating all the tentative changes simultaneously with a single,
1

WO 2007/078645 PCT/US2006/047131

atomic “commit” operation. This can help avoid inconsistencies that
might arise if several related data structure changes are involved in a
filesystem operation, but the system or storage units fail partway
through the sequence.

[0003] Filesystems and their underlying mass storage systems
are usually controlled by a single computing system, such as a file
server or a block-based storage server. Data caching, consistency, and
coordination issues make it difficult or impossible in the general case to
permit two independent systems to modify a filesystem
simultaneously. Consequently, the single system (e.g., file server) can
become a bottleneck in serving file operation requests from clients: it
may satura%e its communication resources for receiving requests and
sending responses to clients; it may exhaust its processing or memory
resources for performing the requested operations; or it may reach the
capacity of the interface(s) over which it exchanges data with the mass
storage devices. In a large-capacity storage system, this last resource is
quite likely to be used up at some point, because disks can be added at
will to increase the amount of storage available. Eventually, the
aggregate data transfer bandwidth of all of the disks will exceed that of
the controlling system.

[0004] Methods of making use of the bandwidth of a large cluster
of mass storage devices, and of permitting at least some filesystem
operational load to be moved from the main controlling system, may be

of significant value in the field.

WO 2007/078645 PCT/US2006/047131

SUMMARY OF THE INVENTION

[00051 A filesystem tracks the location of the data blocks
comprising data files, where each data block is stored either on a read-
only storage system or on a read-write storage system. If a data block
on the read-only storage system is to be modified, filesystem logic
moves the block to the read-write storage system and updates the

filesystem data structures accordingly.

BRIEF DESCRIPTION OF DRAWINGS

[0006] Embodiments of the invention are illustrated by way of
example and not by way of limitation in the figures of the
accompanying drawings in which like references indicate similar
elements. It should be noted that references to “an” or “one”
embodiment in this disclosure are not necessarily to the same
embodiment, and such references mean “at least one.”

[0007] Figure 1 shows a sample environment that implements an
embodiment of the invention.

[0008] Figure 2 shows some representative data structures that

may be incorporated in a filesystem.

[0009] Figure 3 shows several ways a file’s contents can be
modified.
[o010] Figure 4 outlines the operations of a cross-system

filesystem clone.
[0011] Figure 5 details some operations of a cross-system
filesystem clone.
[0012] Figure 6 is a block diagram of a system that could

implement an embodiment of the invention.
3

WO 2007/078645 PCT/US2006/047131

DETAILED DESCRIPTION OF DRAWINGS

{0013] Figure 1 shows a computing environment that can
support an embodiment of the invention. Systems 100 and 104 are
storage servers that provide data storage and retrieval services to clients
108, 112 and 116. (A “storage server” may be a traditional file server, or
a server to provide data storage in units other than files — for example,
in fixed-size blocks. The first type of serves is often associated with the
acronym “NAS” for Network Attached Storage, while the second type
goes by the acronym “SAN” for Storage Area Network. Both types of
server functionality are available commercially, for example in the
Fabric-Attached Storage or “FAS” product line from Network
Appliance, Inc. of Sunnyﬁale, California.) Clients can communicate
with the storage servers 100 and 104 through local-area networks
(“LANs") 120 and 124, or over a wide-area network (“WAN") 128 such
as the Internet. Requests to create or delete files, to list directories, to
read or write data, or to perform similar filesystem-related operations
are transmitted from clients to a storage server, and responses are sent
back.
[0014] Each storage server 100, 104 will have at least one mass
storage device to store data and instructions foi- its own use, as well as

_ to store user data files and information about the filesystem within
which the files exist. In Figure 1, each storage server has two “private”
disks that are accessible only to that server (server 100 has disks 132 and
136; server 104 has disks 140 and 144). In the exemplary embodiment of
the invention shown here, each storage server is also connected to a

Fibre Channel (“FC”) switch 148, which mediates access from the

WO 2007/078645 PCT/US2006/047131

servers to an array of disks 152-180. Each server may be able to read or
write to any of the disks in the FC array through switch 148, but
software executing on the servers may cooperate to respect a
convention that, for example, disks in group 184 may only be written by
server 100 and are read-only with respect té server 104, while disks in
group 188 may only be written by server 104 and are read-only to
server 100. Henceforth, references to “read-only storage systems” will
include storage systems on which data cannot be modified (e.g. because
the data on the storage media is fixed and unmodifiable); systems on
which data modification is prevented (e.g. by a write-locking switch or
signal); as well as systems on which data could be written, but is not
(é.g. by convention, agreement, or software design).

[0015] The servers may manage the raw data storage provided
by the disks shown in Figure 1 as a Redundant Array of Independent
Disks (“RAID”), or some intermediate or lower-level hardware,
firmware, or software entity (not shown) could provide reliable storage
without any special arrangements by the servers. Embodiments of the
invention operate logically at a higher level of abstraction, so the
specific details of the storage subsystems will not be considered further.
Instead, embodiments will be described with reference to one or more
“storage systems” that provide either read-only or read-write access to
a series of data blocks, each data block having a unique, sequential
identifying number from zero to the total number of blocks in the
storage volume. An Integrated Device Electronics (“IDE”) or Small
Computer System Interface (“SCSI”) hard disk provides such an
interface, and a RAID can be operated in this way also. However, note

that a data file in a filesystem can also be viewed as a sequence of read-
5

WO 2007/078645 PCT/US2006/047131

only or read-write blocks, so embodiments of the inventioncan be
nested: a clone filesystem according to an embodiment may be
constructed in a data file, which is itself a file on a lower-level
filesystem — even another clone filesystem. Applications for one or two
levels of nesting will be mentioned below; greater numbers of levels are
possible, but may not be particularly useful.

[0016] Figure 2 shows a simplified representation of some of the
data structures that may be included in a filesystem. A first structure
called an “inode” 210 is a metadata container to contain metadata about
a file in the filesystem (metadata may include, for example, the file's
size 220, owner 222, permissions 224, creation time 226, modification
time 228, and other information 230). The inode may also contain data
block numbers 235 so that the file contents can be located on the storage
volume. Every file is associated with an inode. The file associated with
inode 210 is 176 bytes long, and those bytes are stored in data blocks
240, 247 and 252. (In this simple illustration, data blocks of only 64
bytes are used, but in practical systems, larger blocks — usually in sizes
that are powers of two — may be used.) This simple filesystem also
contains a block map structure 260, which indicates, for e_ach data block
in the filesystem, whether the block is in use. For example, in addition
to blocks 240, 247 and 252 which are in use by the data file
corresponding to inode 210, blocks 001 and 236 are marked “in use” in
block map 260. Inodes themselves and the block map are data that may
be stored in some of the data blocks of a storage system.

[0017] Note that neither of the data structures described above
contains the file’s name. The filesystem can implement named files and

a hierarchical directory structure by placing the names and
6

WO 2007/078645 PCT/US2006/047131

. corresponding inode numbers in a file (which is itself associated with
an inode), and treating that file specially as a directory. One inodein a
filesystem is typically designated as the “root directory” of the
filesystem; all other files should be accessible through an inode
associated with a filename in the root directory or in a hierarchical
descendant of the root directory.

[0018] The filesystem data structures described with reference to
Figure 2 support an operational mode that is used by embodiments of
the invention. Consider a filesystem that contains various files and
directories. Figure 3 shows one of those files: inode 310 contains
information to locate data blocks 320, 325 and 330. If the file contents
are modified by a write operation, the new data might simply be placed
into the currently-allocated data blocks, overwriting some of the
existing contents as shown in before-and-after inset 340. However, it
may be useful to preserve the state of the file at a particular time, so
instead of overwriting the existing file contents, a new inode 360 might
be allocated and configured to refer to a new sequence of data blocks.
Data blocks that are not modified can be shared between the original
inode 310 and the new inode 360. Inset 350 shows that original inode
310 continues to list data blocks 320, 325 and 330, while inode 360 lists
data blocks 320, 370 and 330. Data block 370 contains the contents of
block 325 as modified by the write operation. The original version of
the file is available through inode 310, while the modified version is
available through inode 360. Thus, inode 310 describes the file at a
point in time just before modifications began to be made through
another inode. Eventually, inode 360 may be preserved as a second

point-in-time version, and further modifications may be made within a
7

WO 2007/078645 PCT/US2006/047131

third sequence of data blocks located by a third inode. The versions
persist as long as the inodes describing them are maintained. They are
read-only, because some of the data blocks from a file image may be
shared with other file images (or with the active file), so modifications
made through an image inode might cause unwanted changes in other
files as well. For example, if a previously-saved image from a first time
and a second image from a later time happened to share a data block,
and the shared block was allowed to be modified through.an inode
from the second image, the same change would appear in the file in the
first image. The change might be unexpected by software that referred
to the first image, and could cause incorrect operation. The images
described above will be referréd to as read-only, persi;tent point-in-
time images (“RPPI1”). RPPIs are like the Snapshot® functionality
available in storage server products from Network Appliance, Inc. of
Sunnyvale, California.

[0019] RPPIs can be made of directories, too, since they are
simply files that are treated specially for some purposes. Thus, the
filesystem data structures can support an RPPI facility to preserve the
state of any file, directory, or complete hierarchy at a point in time.
Future modifications to the files and directories occur within data block
sequences identified by new inodes, while inodes and blocks that are
not modified can be shared with one or more RPPIs.

[0020] Again, an RPPI is a read-only construct, because any- of
the data blocks may be shared with another, active filesystem. If the
shared data blocks were modified through operations on the RPP], the
changes would éppear in the other filesystem even though no

corresponding write operation was performed on a file there. Care
8

WO 2007/078645 PCT/US2006/047131

must be taken to ensure that the inodes and data blocks of the RPPI
_persist as long as any of them are shared with another filesystem.
[0021] Although an RPPI cannot be modified, it can serve as the
basis of an independent, active filesystem containing files and
directories that can be modified. Each such filesystem is called a
“clone.” A clone begins as an identical copy of the RPPI, but as files
and directories are added, deleted and modified, new inodes and data
blocks are allocated exclusively to the clone, replacing or augmenting
those shared with the RPPL
fo022] Storage servers 100 and 104 in Figure 1 can use the RPPlIs
and clones described above as outlined in the flowchart of Figure 4.
First, one storage server establishes a filesystem on a storage system to
which another storage server has read-only access (410). In the system
configuration shown in Figure 1, storage server 100 could establish this
filesystem on the disks in group 184. Next, the storage server makes an
RPPI of the filesystem (420). Then, the second storage server creates a
clone based on the RPPI (430). Initially, this clone can simply point to
the root inode of the RPPI; the second storage server can obtain all the
data from the storage éystem because it has read access to that system.
[0023] As clients of the second storage server create, modify and
delete files and directories on the clone, the second storage server
allocates new inodes and data blocks on a second storage system to
which it has read-write access (440). In the system configuration shown
in Figure 1, storage server 104 could store data for modifications to the
clone on its private disks 140 and 144, or on the disks in group 188.
‘Eventually, if every block shared from the RPPI is modified, all the data

and inodes in the clone filesystem will reside on the second storage
' 9

WO 2007/078645 PCT/US2006/047131

server’s storage systems. The process of migrating RPPI data to the
second storage server’s storage can be expedited if the second storage
server treats any access to shared data as an attempt to modify the data.
For example, even if a client only attempts to read a file from blocks
shared with the RPPI, the second storage server could allocate a new
inode and data blocks in its own storage and copy (“migrate”) the
requested data there. The second storage server might even spend idle
time migrating blocks from the RPPI to the clone.

[6024] A clone filesystem maintained by one storage server that
is based on an RPPI from another storage server (a “cross-system
clone”) as described here may be useful in a number of situations. For-
example, the first storage server may serve requests from live clients
such as web browsers or a relational database engine. Developers may
wish to experiment with the real files and/or data, but such
experimentation may degrade the server’s performance or invalidate
the data. However, if a second storage server is provided to serve a
clone filesystem based on an RPPI of the live filesystem, these u
drawbacks can be avoided because no additional load is placed on the
first storage server, and any changes to the data are confined to the
clone. The second storage server may be able to use more of the
bandwidth available from the shared storage system (to which the
second storage server has read-only access). This may increase the
value of the storage system by increasing the amount of useful work
gotten from it. Additional storage servers can even be added to an
environment to provide more clone filesystems based on the same

RPPIL

10

WO 2007/078645 PCT/US2006/047131

[0025] Note that inodes in the clone will refer to data blocks that
may be either on the read-only storage system (for data still shared with
the RPPI) or on the read-write storage system (for data that has been
migrated to the clone). The clone-serving storage server must be able to
determine where a block fesides so that it can retrieve the data
correctly. One way of distinguishing RPPI blocks from clone blocks is
to augment the block number with information to indicate a storage
subsystem. However, this may require extensive changes to the
filesystem data structures and support programs. For example, every
block number listed in an inode might have to be changed to a block
number and a storage system identifier, and every program that dealt
with inodes would need to be modified to understand these new
inodes. One embodiment of the invention solves this problem
differently.

[0026] Recall that a filesystem includes a data structure to
indicate whether each block in the storage system is in use. This data
structure may be a block map as shown in Figure 2, a list of block
numbers that are “in use,” or some other data structure that can answer
the question, “is block n used?” (The term “block map” will be used for
any data structure that can be used in this way.)

[0027] The block map (or equivalent) for the clone is initially
empty, because the clone has no locally-stored changes from the RPPL
Thus, any block number listed in an inode will be considered “not in
use” by the clone filesystem block map, and an embodiment of the
invention can infer that the block number refers to the read-only storage
system. When a data block is migrated to the clone, the clone’s block

map will be updated so that the allocated data block is marked “in use,”
11 '

WO 2007/078645 PCT/US2006/047131

and the storage server will know to retrieve the block’s data from the
read-write storage system. It should be clear that each data block is
stored in exactly one of the read-only storage system and the read-write
storage system, and the clone block map indicates which.
[0028] Further consideration of this approach will reveal several
imi;lications that should be borne in mind when implementing some
embodiments of the invention. First, in a normal (non-cross-system
clone) filesystem, the appearance in an inode of a block number that is
marked as ”ndt inuse” in the block map mdicétes an inconsistency in
the filesystem data structures, and may suggest that the filesystem is
corrupted. In an embodiment of the invention, however, the clone
block map’s “not in use” indication really means “not present on the
read-write storage system; get this data from the read-only storage
system.” Thus, although the low-level structures and contents of the
clone block map may be the same as a prior-art block map, the meaning

* of the information in the block map is different. Second, in some
embodiments, the range of block nuﬁbers on the read-only and read-
write storage systems should be coextensive, so that when a data block
is migrated from the RPPI to the clone, the same-numbered block can be
used. Using block numbers this way permits the block map’s meaning
to be adjusted as described, and relieves the implementer of making
larger changes to data structures and logic so that the clone-serving
storage server can locate filesystem data blocks on either the read-only
or read-write storage systems.
[0029] Figure 5 shows a detailed flowchart of some operations of
a storage server operating a clone filesystem that refers to a base RPPI

prepared by a different system. First, the server receives a request to
12

WO 2007/078645 PCT/US2006/047131

perform an operation on a file or directory (500). The request may come
from a client of the server, or may be generated by the storage server
itself, for example as part of a filesystem grooming process such as the
one described in paragraph [0023], where the server may spend some of
its idle time migrating blocks from the RPPI to the clone. The operation
may be a simple read or write, or a more complex operation such as a
file or directory creation, renaming or deletion.

[0030] If the request refers to the file by name (505), the storage
server will parse the hierarchical filesystem structure to locate the inode
associated with the nafne (510). Some requests may refer to the inode
directly, so the parsing operation can be skipped (515).

[0031] Once the inode is known, the data block numbers can be
obtained from it (520). If data blocks are to be added or removed to the
sequence in the inode, and the inode is still shared with the RPPI (525),
a new inode is allocated on the read-write volume (530) and the block
numbers are stored in it (535). Then, data blocks that are no longer to
be shared from the RPPI are marked as “present” in the clone block
map (540). The “present” marking may be identical to an ordinary
filesystem’s “in use” block map marking (refer to Figure 2 and the
associated description). However, because the meaning of clone block
map entries is changed according to an embodiment of the invention,
the “present” marking permits the storage server to determine whether
the data block is present or not present on the read-write volume, rather
than whether the block is in use.The data blocks are copied from the
RPPT to the read-write volume (545), and finally any changes to the data
that are specified by the request will be made in the data blocks on th('e

read-write volume (550).
13

WO 2007/078645 PCT/US2006/047131

[0032] Later, when another access to the clone filesystem occurs
(555), the server obtains block numbers from an inode (560), checks the
block map to determine whether the data block is marked “present” 6r
“not present,” (565), and reads the block from the read-write storage
system if “present” (570) or from the read-only storage system if “not
present” (575). Then, the data can be processed according to the
request, for example by returning the data to the client (580).

[0033] Building a clone filesystem inside a data file on a lower-
level filesystem provides a useful level of abstraction with respect to
data block numbers. Blocks within a data file can be numbered from
zero to the number that fit within the file, without regard to a physical
block number that might be used to obtain the contents of the block
from an underlying hardware storage system. Thus, a single level of
nesting (a filesystem within a file on a lower-level filesystem) permits
the use of “virtual block numbers” that can be coextensive with the
block numbers in an RPPI. In addition, the lJower-level filesystem may
support sparse files - that is, blocks that are allocated to the file but
have not yet been filled with any data may not need to be taken from
the pool of free blocks available to the lower-level filesystem.
Therefore, the clone filesystefn can be very efficient, using little more
physical storage on the read-write storage system than is necessary to
contain the differences between the RPPI and the clone.

[0034] Regarding implementation of the block map (or similar
data structure) in the clone filesystem, a bitmap or equivalent indexed
structure may provide good performance, but may also occupy a
significant amount of storage space (one bit or other unit for each block

in the RPPI, regardless of whether the block has been migrated to the
14

WO 2007/078645 PCT/US2006/047131

clone). In systems where the clone is only lightly modified from the
RPP], a list of block numbers that are present in the clone may require
less space, but may not perform as well as a bitmap. In some
embodiments, the block map data structure may change dynamically as
the number of blocks on the read-write storage system increases. For
example, while the number of blocks is below a threshold, a list may be
used, but if the number of blocks exceeds the threshold, the block map
could be changed to a bitmap structure.

[0035] Figure 6 is a block diagram of hardware and software
elements that may be present in a storage server that implements an
embodiment of the invention. Cen&al processing units (“CPUs") 610
coordinate the operations of the remaining hardware elements under
the control of software instructions that may be stored in memory 620
or on a mass storage device such as hard disk 630. Memory 620 may
contain, among other fhings, instructions and data to implement the
filesystem control logic 623 as described above. In particular, logic to
copy a data block from read-only storage to read-write storage and
update a clone filesystem when the data block is to be modified might
reside here (626). This system has several network adapters 650 for
receiving requests from clients and sending responses. Storage
adapters 660 and 670 connect to storage subsystems such as private
disks 140 and 144 in a read-write storage subsystem 680, or shared disks
152, 156, 160, 168 and 172 in read-only storage subsystem 184. System
bus 640 permits the various hardware components to communicate
with each other and exchange commands and data.

[0036] An embodiment of the invention may be a machine-

readable medium having stored thereon instructions which cause a
15

WO 2007/078645 PCT/US2006/047131

processor to perform operations as described above. In other
embodiments, the operations might be performed by specific hardware
components that contain hardwired logic. Those operations might
alternatively be performed by any combination of programmed
computer components and custom hardware components.

[0037] A machine-readable medium may include 4any mechanism
for storing or transmitting information in a form readable by a machine
(e-g., a computer), ihcluding but not limited to Compacf Disc Read-Only
Memory (CD-ROMs), Read-Only Memory (ROMs), Random Access
Memory (RAM), Erasable Programmable Read-Only Memory
(EPROM), and a transmission over the Internet.

[0038] The applications of the present invention have been
described largely by reference to specific examples and in terms of
particular allocations of functionality to certain hardware and/or
software components. However, those of skill in the art will recognize
that file operations on a filesystem that is partially shared between two
computing systems can also be prociuced by software and hardware
that distribute the functions of embodiments of this invention
differently than herein described. Such variations and implementations

are understood to be apprehended according to the following claims.

16

WO 2007/078645 PCT/US2006/047131

Claims

We claim:

1. An apparatus comprising:

a read-only storage system to contain a fead-only data block;

a read-write storage system to contain a modifiable data block;
and

a filesystem to indicate a location of a data block of a file;
wherein

each data block indicated by the filesystem is stored in exactly

one of the read-only storage system and the read-write storage system.

2. The apparatus of claim 1 wherein the read-only storage system is
shared between a first processor and a second processor, the first
processor having read-only access to the storage system and the second

processor having read-write access to the storage system.

3. The apparatus of claim 1, further comprising:
logic to copy a data block from the read-only storage system to
the read-write storage system and update the filesystem if the data

block is to be modified.

4. The apparatus of claim 1 wherein the read-only storage system
comprises a first redundant array of independent disks (“RAID”), and

the read-write storage system comprises a second RAID.

5. A machine-implemented method of managing data blocks in a
filesystem comprising:

storing a data block number in a metadata container;

17

WO 2007/078645 PCT/US2006/047131

storing data to make a présent/not—present determination for a
data block in a block map;

reading a data block corresponding to the data block number
from a first storage system if the block map indicates that the data block
is present; and '

reading a data block corresponding to the data block number
from a second storage system if the block map indicates that the data

. block is not present.

6. The machine-implemented method of claim 5 wherein the first
storage system permits read-write access, and the second storage

- system permits read-only access.

7. The machine-implemented method of claim 5, further
comprising:

copying a data block from the second storage system to the first
storage system;

updating the block map to indicate that the block is present; and

updating a metadata container to reflect a number of the data

block on the first storage system.

8. 'The machine-implemented method of claim 7 wherein the
copying and updating operations are performed in response to a client

request.

9. The machine-implemented method of claim 8 wherein the client

request is a read request.

18

WO 2007/078645 PCT/US2006/047131

10. The machine-implemented method of claim 8 wherein the client

request is a write request.

11. The machine-implemented method of claim 5 wherein the block
map comprises a list of block numbers that are present on the first

storage system.

12. The machine-implemented method of claim 5 wherein the block

map comprises a bitmap of blocks of the first storage system.

13. The machine-implemented method of claim 5 wherein the block
map comprises a list of numbers of blocks that are present on the first
storage system if a size of the list is less than a critical size, and

the block .map comprises a bitmap of blocks of the first storage
system if a number of blocks on the first storage system is greater than

or equal to the critical size.

14. A machine-readable rhedium containing instrucﬁons that, when
executed by a processor, cause the processor to perform operations
comprising:
parsing a hierarchical filesystem structure to locate a data block
of a .file; '
reading the data block of the file from a first, read-only storage
device;
storing the data block on a second, writeable storage device; and
altering the hierarchical filesystem to indicate that the data block

is stored on the second, writeable storage device.

19

WO 2007/078645 PCT/US2006/047131

15. The machine-readable medium of claim 14 wherein the
hierarchical filesystem comprises:

a metadata container to contain a block number of a data block;
and

a block map to indicate which one of two storage systems

contains the data block.

16. The machine-readable medium of claim 14, containing additional
instructions to cause the processor to perform operations comprising:
receiving a request from a client to operate on the file; and

transmitting a response to the client.

17. The machine-readable medium of claim 16, wherein the request

is to read data from the file.

18. The machine-readable medium of claim 16, wherein the request

is to write data to the file.

19. A system comprising:

a first array of storage devices;

a second array of storage devices;

a modifiable filesystem structure which contains at least one
reference to data on the first array of storage devices; and

a processor which has read-only access to the first array of
storage devices and which has read-write access to the second array of

storage devices.

20. The system of claim 19 wherein the filesystem structure is stored

on the second array of storage devices.

20

WO 2007/078645 PCT/US2006/047131

21. The system of claim 19 wherein the first array of storage devices

is shared with at least one other system.

22. The system of claim 19, further comprising: |
transfer logic to copy data from the first array of storage devices
to the second array of storage devices; and
filesystem logic to alter the filesystem to reference the copied

_data on the second array of storage devices.

23. The system of claim 19, wherein the first array of storage devices
and the second array of storage devices are separate redundant arrays

of independent disks (“RAIDs").

21

WO 2007/078645 PCT/US2006/047131

1/6

Router

120 124

!
!

200 e 104

WO 2007/078645

PCT/US2006/047131

Inode
220 Size 17k bytes
222 QOwner al
224 — Permissions read~uwrite
226 —}——» Creation Time 18 Nov 18k3 20:028:34

228~

- Modification Time
230—+e(other information) ..
235 —————— Data Blocks

19 Nov 1863 Iu:42:1)

240 24? 252
/ \ \

210
//’

Four score and s
even ysars ago o
ur fathers broug
ht forth on this

continent. a ne
w nation. concei
ved in Libertyas

and dedicated to

the proposition
that all men ar
e created equal-

240 - 247 252
Block Map
[anu T | E— fonen 235 EEM 237 o34 [23o| B 242
242llzy3 aw, aus[eusl 24a aua”asu 251 ﬁ 253 - an
260

Figure 2

(prior art)

WO 2007/078645

cane et aenn

[

- en

(...inode metadata...)

310
Ve

3/6

PCT/US2006/047131

Figure 3

Blocks

pped in a pi fac

"1 59408128481L11745

(::*_B-LHL5325535&H7Q 230781b40L2ALR0S LO955056823L7253
3238462643383279 998L280348253421 »1 5940812848L1L4745
50288419716934993 170L798214808b51 0244102701938521
2510582097994 459 3282306L4709384Y 10555964 46229449
320 325 330
Before write operation: 340,
: 3120 :
(...inode metadata...) .
1’//’ N
3G 325 330) '
C::; 3.14159265358929 230781L40L286203 LD95505822317253] |
32384h2bY 3333279 3986280348253421 [T 5940812848111 745 |
5028841971693993 1706798214808551 028410270193852L | »
75105820974944 59 32823DLLN7?09384Y 105559kL44L229489 !
320 325 330
After write operation: .
(...inode metadata...) / 310 .
Blocks 320 325 330 F> 5
(:::’ 3.14159265358979 EERrcip. I'm tra L095505822317253 | ¢
32384L2R43383279 .

{...inode metadata...)

Blocks

3a0 378 330

EElilHelps, I'm tra
pped in a pi fac
1882144808651

5028841971693993 tory '‘REFFREDET Y 02841027014938521L

?510582097494459 2823DLEY 709344 Y LD5559L446229489

320 325 330
""" - T 350t
(...inode metadata...) | /~ 310 '
Blocks 320 325 338:
<:::; 3.L41.592L5358979 230781640L286204 L0955058223L7253 E
3I23A4LELY3383279 "} 998LRA03NBREIHRL [T 59408L2848LL1L7US T .
5028a419?)b93993 370L?98214808bL5) 028410270193452L 1} |
751058209?7494459 323230LLY47073844 105559L44b229489 § -
320 33¢ :

~ e rr s et v e

WO 2007/078645

4/6

Establish Filesystem on
Shared Storage System

410

Create Point-in-Time
Image of Filesystem

420

Y

Create Clone based on

Read-Only, Persistent

Point-In-Time Image
{RPPI) (on Second System)

430

¥

Migrate Modified Data to
Second System’s Storage

440

C D

PCT/US2006/047131

WO 2007/078645

Receive Request to
Operate on File/Directory

l 500

Request
Specifies File Name
? 505
Yes

Parse Hierarchical
Filesystem Structure
to Find Inode

510

Get Data Block
Numbers from Inode

520

Add
Data Blocks, Inode
Shared

? 525

Yes

Allocate Inode on
Read/Write Storage System

530

A

Store Data Block Numbers
In Newly-Allocated Inode

535

Mark Unshared Data
Blocks as “Present” in |-
Cloue Block Map

540

i '
Migrate Data from
RPPI to Read/Write
Storage System

545

PCT/US2006/047131

5/6

Figure 5

2

Make Any Requested
Changes to Data Block

l 550

Recetve Client Reguest

1 555

Get Data Block
Numbers from Inode

l 560

. Block

Number “In Use” in

No Block Map Yes
(Not Present) ? (Present)

Read Block from Read Block from
Read-Only (RPPI) Read-Write (Clone)
Storage System Storage System
575 570

4

Return Data to Client
580

C -)

WO 2007/078645

6/6

PCT/US2006/047131

Memory
Filesystem
Control
Logic 623
Copy/ Instructions
CrPu %Ione &
ogic Data
610 626
620 630
System Bus
640
650 Storage Adapters
| o @ = B
_— ® e 8
@E = = o =
= B3 | [T 660 T 670
M A 7o 1001
Adapters
........................... : >

............................

.
crrsan e

7,
o

R PP I PV YIIE IS A renr s tay

® S Ad Y ¥aEwsEERr S 2w .

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings

