'

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number-: WO 97/35275
06K 9/00 Al

G (43) International Publication Date: 25 September 1997 (25.09.97)

(21) International Application Number: PCT/US97/04662 | (81) Designated States: DE, GB, JP, European patent (AT, BE, CH,

(22) International Filing Date: 21 March 1997 (21.03.97)

(30) Priority Data:

08/621,120 us

22 March 1996 (22.03.96)

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: CHEN, Wei-Ge; Apartment #143, 4850 156th
Avenue N.E., Redmond, WA 98052 (US). LEE, Ming-
Chieh; 5588 166th Place S.E., Bellevue, WA 98006 (US).

(74) Agent: MEININGER, Mark, M.; Klarquist, Sparkman, Camp-
bell, Leigh & Whinston L.L.P., One World Trade Center,
Suite 1600, 121 S.W. Salmon Street, Portland, OR 97204
(US).

DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
With international search report.

(54) Title: REPRESENTATION AND ENCODING OF GENERAL ARBITRARY SHAPES

(57) Abstract

A hierarchical object encoding technique or
process capable of representing general binary ar-
bitrary shapes that include, for example, embedded
or disconnected components. The method decom-
poses successive layers of general binary arbitrary
shapes into simple arbitrary shapes. Each mask
(80) formed in this manner is a simple arbitrary

140

146

USER FORMS ROUGH
OUTUNE OF OBRJECT
IN KEY FRAME

shape having only a continuous outer boundary

(172). Accordingly, each outer boundary is en-
coded, preferably by a contour encoding method, WO%ECT E 164~ Pﬁ%%"q%w
to provide accurate encoding of general binary FEATURE POINTS
shapes. 158 l
< 198
DETERMINE SPARSE
1707 | MOTION TRANSFORMATION

MASK—+

OUTLINE

1hs

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Amenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korca
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LY
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moklova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
T]
™

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-1-

REPRESENTATION AND ENCODING OF GENERAL ARBITRARY SHAPES

FIELD OF THE INVENTION

The present invention relates to processes for
compressing digital video signals and, in particular, to
an object-based digital video encoding process with error

feedback to increase accuracy.

BACKGROUND OF THE_INVENTION
Full-motion video displays based upon analog

video signals have long been available in the form of
television. With recent increases in computer processing
capabilities and affordability, full-motion video displays
based upon digital video signals are becoming more widely
available. Digital video systems can provide significant
improvements over conventional analog video systems in
creating, modifying, transmitting, storing, and playing
full-motion video sequences.

Digital video displays include large numbers of
image frames that are played or rendered successively at
frequencies of between 30 and 75 Hz. Each image frame is
a still image formed from an array of pixels according to
the display resolution of a particular system. As
examples, VHS-based systems have display resolutions of
320x480 pixels, NTSC-based systems have display
resolutions of 720x486 pixels, and high-definition
television (HDTV) systems under development have display
resolutions of 1360x1024 pixels.

The amounts of raw digital information included
in video sequences are massive. Storage and transmission
of these amounts of video information is infeasible with
conventional personal computer equipment. With reference
to a digitized form of a relatively low resolution VHS
image format having a 320x480 pixel resolution, a full-
length motion picture of two hours in duration could
correspond to 100 gigabytes of digital video information.

By comparison, conventional compact optical disks have

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

2-

capacities of about 0.6 gigabytes, magnetic hard disks
have capacities of 1-2 gigabytes, and compact optical
disks under development have capacities of up to 8
gigabytes.

In response to the limitations in storing or
transmitting such massive amounts of digital video
information, various video compression standards or
processes have been established, including MPEG-1, MPEG-2,
and H.26X. These conventional video compression
techniques utilize similarities between successive image
frames, referred to as temporal or interframe correlation,
to provide interframe compression in which pixel-based
representations of image frames are converted to motion
representations. In addition, the conventional video
compression techniques utilize similarities within image
frames, referred to as spatial or intraframe correlation,
to provide intraframe compression in which the motion
representations within an image frame are further
compressed. Intraframe compression is based upon
conventional processes for compressing still images, such
as discrete cosine transform (DCT) encoding.

Although differing in specific implementations,
the MPEG-1, MPEG-2, and H.26X video compression standards
are similar in a number of respects. The following
description of the MPEG-2 video compression standard is
generally applicable to the others.

MPEG-2 provides interframe compression and
intraframe compression based upon square blocks or arrays
of pixels in video images. A video image is divided into
transformation blocks having dimensions of 16x16 pixels.
For each transformation block Ty in an image frame N, a
search is performed across the image of a next successive
video frame N+1 or immediately preceding image frame N-1
(i.e., bidirectionally) to identify the most similar
respective transformation blocks Tg,,; or Ty,.

Ideally, and with reference to a search of the

next successive image frame, the pixels in transformation

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-3-

_blocks Ty, and Ty,, are identical, even if the transformation

blocks have different positions in their respective image
frames. Under these circumstances, the pixel information
in transformation block T,,, is redundant to that in
transformation block Ty. Compression is achieved by
substituting the positional translation between
transformation blocks Ty and T,,, for the pixel information
in transformation block Tx.;- In this simplified example,
a single translational vector (AX,AY) is designated for
the video information associated with the 256 pixels in
transformation block Ty,,.

Frequently, the video information (i.e., pixels)
in the corresponding transformation blocks Ty and Ty,, are
not identical. The difference between them is designated
a transformation block error E, which often is
significant. Although it is compressed by a conventional
compression process such as discrete cosine transform
(DCT) encoding, the transformation block error E is
cumbersome and limits the extent (ratio) and the accuracy
by which video signals can be compressed.

Large transformation block errors E arise in
block-based video compression methods for several reasons.
The block-based motion estimation represents only
translational motion between successive image frames. The
only change between corresponding transformation blocks T,
and Ty,; that can be represented are changes in the
relative positions of the transformation blocks. A
disadvantage of such representations is that full-motion
video sequences frequently include complex motions other
than translation, such as rotation, magnification and
shear. Representing such complex motions with simple
translational approximations results in the significant
errors.

Another aspect of video displays is that they
typically include multiple image features or objects that
change or move relative to each other. Objects may be
distinct characters, articles, or scenery within a video

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-4-

display. With respect to a scene in a motion picture, for
example, each of the characters (i.e., actors) and
articles (i.e., props) in the scene could be a different
object.

The relative motion between objects in a video
sequence is another source of significant transformation
block errors E in conventional video compression
processes. Due to the regular configuration and size of
the transformation blocks, many of them encompass portions
of different objects. Relative motion between the objects
during successive image frames can result in extremely low
correlation (i.e., high transformation errors E) between
corresponding transformation blocks. Similarly, the
appearance of portions of objects in successive image
frames (e.g., when a character turns) also introduces high
transformation errors E.

Conventional video compression methods appear to
be inherently limited due to the size of transformation
errors E. With the increased demand for digital video
display capabilities, improved digital video compression

processes are required.

In some applications, binary objects are encoded
individually by conventional shape encoding techniques
such as chain coding or polygonal contour approximation.
In conventional 8-point chain coding, for example,
connected pixels forming the outer contour or boundary of
an object are represented in a compressed format according
to the relative positions of adjacent pixels. A
disadvantage of such shape encoding techniques is that
they are capable of accurately representing only solid,
connected shapes. Such objects may be characterized as
having only a continuous outer boundary. While adequate
for representing many types or classes of object, such
representations are inadequate for complex objects having
general shapes that can include interior regions

corresponding to different objects. Because such complex

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-5-

objects frequently are included in general video
sequences, such as live action video, conventional shape
encoding techniques are inadequate for such video
applications.

An example of such an object in a live action
video sequence is a side view of a moving automobile with
windows through which background objects are visible. A
simple conventional shape encoding technique is capable of
identifying the outer contour or outline of such an object
(i.e., the automobile). But such a representation would
be incapable of identifying or encoding separately the
background objects appearing through the automobile window
(i.e., an interior portion or component of the object).
These background objects would be encoded as part of the
automobile object despite having no actual relation to it.
As a consequence, changes in the background objects seen
through the window as the automobile moves would result in
significant errors in the encoding of the automobile
object.

Sometimes, quad tree encoding is utilized to
identify and encode complex objects. 1In quad tree
encoding of binary objects, for example, a right regular
region is subdivided into quadrants whenever the region
includes pixels of both binary states. Resulting
quadrants are successively subdivided into quadrants
whenever they include pixels of both binary states. The
iterative subdivision continues until all pixels in each
resulting quadrant is of a single binary state or until
the subdivision resolution limit is reached.

Quad tree encoding suffers from the disadvantage
of being inefficient because of a fixed subdivision
resolution limit and a fine resolution limit required for
general video applications. The fixed subdivision
resolution limit is not adaptive and is applied regardless
of the complexity of an object configuration; frequently
using computaion resources unneccesarily or inefficiently.
In combination with the fixed subdivision resolution

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-6-

limit, the fine resolution required for general video
applications in quad tree encoding consume excessive
amounts of computation resources.

The limited capabilities of conventional shape
encoding techniques result in increased encoding errors.
Alternatively, quad tree encoding is inefficient and
requires excessive computation resources. These
shortcomings of conventional processes can limit the
affordability and practicality of video compression

encoding.

SUMMARY OF THE INVENTION

The present invention includes a video
compression encoder process for compressing digitized
video signals representing display motion in video
sequences of multiple image frames. The encoder process

utilizes object-based video compression to improve the

accuracy and versatility of encoding interframe motion and

intraframe image features. Video information is
compressed relative to objects of arbitrary

configurations, rather than fixed, regular arrays of

pixels as in conventional video compression methods. This

reduces the error components and thereby improves the
compression efficiency and accuracy. As another benefit,
object-based video compression of this invention provides
interactive video editing capabilities for processing

compresged video information.

In a preferred embodiment, the process or method

of this invention includes identifying image features of
arbitrary configuration in a first video image frame and
defining within the image feature multiple distinct
feature points. The feature points of the image feature
in the first video image frame are correlated with
corresponding feature points of the image feature in a
succeeding second video image frame, thereby to determine
an estimation of the image feature in the second video

image frame. A difference between the estimated and

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-7-

actual image feature in the second video image frame is
determined and encoded in a compressed format.

The encoder process of this invention overcomes
the shortcomings of the conventional block-based video
compression methods. The encoder process preferably uses
a multi-dimensional transformation method to represent
mappings between corresponding objects in successive image
frames. The multiple dimensions of the transformation
refer to the number of coordinates in its generalized
form. The multi-dimensional transformation is capable of
representing complex motion that includes any or all of
translation, rotation, magnification, and shear. As a
result, complex motion of objects between successive image
frames may be represented with relatively low
transformation error.

Another source of error in conventional block-
based video compression methods is motion between objects
included within a transformation block. The object-based
video compression or encoding of this invention
substantially eliminates the relative motion between
objects within transformation blocks. As a result,
transformation error arising from inter-object motion also
is substantially decreased. The low transformation errors
arising from the encoder process of this invention allow
it to provide compression ratios up to 300% greater than
those obtainable from prior encoder processes such as
MPEG-2.

Another aspect of this invention is a
hierarchical object encoding technique or process capable
of representing general binary arbitrary shapes that
include, for example, embedded or disconnected components.
The method decomposes such shapes into solid, simple
arbitrary shapes, which preferably are encoded
individually by contour coding. The decomposition
automatically provides a hierarchical representation of
the general binary arbitrary shape.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-8-

In a preferred embodiment, a bounding box is
defined to completely encompass a general binary arbitrary
shape. The bounding box defines a region of pixels.
Typically, some of the pixels in the bounding box are
bounded by the contour of the general arbitrary shape and
others of the pixels are not. The pixels not bounded by
the contour of the general binary arbitrary shape are
identified to determine the outer boundary of the general
arbitrary shape.

All pixels within the outer boundary of the
general arbitrary shape are assigned a predetermined pixel
value to define a mask, and a difference between the mask
and the original general binary arbitrary shape is
determined to identify embedded or disconnected objects
within the outer boundary of the general binary arbitrary
shape. Any such objects identified are processed
hierarchically in substantially the same manner as the
general arbitrary binary shape.

This method decomposes successive layers of
general binary arbitrary shapes into simple arbitrary
shapes. Each mask formed in this manner is a simple
arbitrary shape having only a continuous outer boundary.
Accordingly, each outer boundary is encoded, preferably by
a contour encoding method, to provide accurate encoding of
general binary shapes.

In an alternative embodiment, non-binary object
information (e.g., object image or transparency data) is
converted to binary object information with a threshold
filter, which assigns the non-binary information either of
two binary states according to the relation of the
information to a predetermined threshold value. The
threshold filter provides, therefore, binary masks
corresponding to the original non-binary object
information. The binary object information is then
processed by the hierarchical object encoding process of
this invention to encode or compress accurately the

contours or boundaries of the binary masks. Preferably,

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

9.

the non-binary object image data may be further processed
to enhance the efficiency at which that data may be
encoded or compressed.

Accurately recognizing and encoding the
disconnected or embedded components of general shapes
provide improved video compression because such general
shapes correspond better to many objects commonly found in
general video image sequences. The disconnected or
embedded components of general shapes cannot be
represented by some conventional shape encoding techniques
and are obtained or represented inefficiently by other
techniques. As a consequence, such general shapes
conventionally are simplified to ignore embedded
components, which can introduce significant encoding
errors during video compression.

The foregoing and other features and advantages
of the preferred embodiment of the present invention will
be more readily apparent from the following detailed
description, which proceeds with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of a computer system

that may be used to implement a method and apparatus
embodying the invention.

Figs. 2A and 2B are simplified representations
of a display screen of a video display device showing two
successive image frames corresponding to a video signal.

Fig. 3A is a generalized functional block
diagram of a video compression encoder process for
compressing digitized video signals representing display
motion in video sequences of multiple image frames. Fig.
3B is a functional block diagram of a master object
encoder process according to this invention.

Fig. 4 is a functional block diagram of an
object segmentation process for segmenting selected

objects from an image frame of a video sequernce,

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-10-

Fig. 5A is simplified representation of display
screen of the video display device of Fig. 2A, and Fig. 5B
is an enlarged representation of a portion of the display
screen of Fig. 5A.

Fig. 6 is a functional block diagram of a
polygon match process for determining a motion vector for
corresponding pairs of pixels in corresponding objects in
successive image frames.

Figs. 7A and 7B are simplified representations
of a display screen showing two successive image frames
with two corresponding objects.

Fig. 8 is a functional block diagram of an
alternative pixel block correlation process.

Fig. 9A is a schematic representation of a first
pixel block used for identifying corresponding pixels in
different image frames. Fig. 9B is a schematic
representation of an array of pixels corresponding to a
search area in a prior image frame where corresponding
pixels are sought. Figs. 9C-9G are schematic
representations of the first pixel block being scanned
across the pixel array of FIG. 9B to identify
corresponding pixels.

Fig. 10A is a schematic representation of a
second pixel block used for identifying corresponding
pixels in different image frames. Figs. 10B-10F are
schematic representations of the second pixel block being
scanned across the pixel array of FIG. 9B to identify
corresponding pixels.

Fig. 11A is a schematic representation of a
third pixel block used for identifying corresponding
pixels in different image frames. Figs. 11B-11F are
schematic representations of the third pixel block being
scanned across the pixel array of Fig. 9B.

Fig. 12 is a function block diagram of a multi-
dimensional transformation method that includes generating

a mapping between objects in first and second successive

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-11-

image frames and quantitizing the mapping for transmission
Oor storage.

Fig. 13 is a simplified representation of a
display screen showing the image frame of Fig. 7B for
purposes of illustrating the multi-dimensional
transformation method of Fig. 12.

Fig. 14 is an enlarged simplified representation
showing three selected pixels of a transformation block
used in the quantization of affine transformation
coefficients determined by the method of Fig. 12.

Fig. 15 is a functional block diagram of a
transformation block optimization method utilized in an
alternative embodiment of the multi-dimensional
transformation method of Fig. 12.

Fig. 16 is a simplified fragmentary
representation of a display screen showing the image frame
of Fig. 7B for purposes of illustrating the transformation
block optimization method of Fig. 15.

Figs. 17A and 17B are a functional block diagram
of a precompression extrapolation method for extrapolating
image features of arbitrary configuration to a predefined
configuration to facilitate compression.

Figs. 18A-18D are representations of a display
screen on which a simple object is rendered to show
various aspects of the extrapolation method of Fig. 14.

Figs. 19A and 19B are functional block diagrams
of an encoder method and a decoder method, respectively,
employing a Laplacian pyramid encoder method in accordance
with this invention.

Figs. 20A-20D are simplified representations of
the color component values of an arbitrary set or array of
pixels processed according to the encoder process of Fig.
19A.

Fig. 21 is a functional block diagram of a
motion vector encoding process according to this

invention.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-12-

Fig. 22 is a functional block diagram of an
alternative quantized object encoder-decoder process.

Fig. 23A is a generalized functional block
diagram of a video compression decoder process matched to
the encoder process of Fig. 3. Fig. 23B is a functional
diagram of a master object decoder process according to
this invention.

Fig. 24A is a diagrammatic representation of a
conventional chain code format. Fig. 24B is a simplified
representation of an exemplary contour for processing with
the chain code format of Fig. 24A.

Fig. 25A is a functional block diagram of a
chain coding process of this invention.

Fig. 25B is a diagrammatic representation of a
chain code format of the present invention.

Fig. 25C is a diagrammatic representation of
special case chain code modifications used in the process
of Fig. 25A.

Fig. 26 is a functional block diagram of a
sprite generating or encoding process.

Figs. 27A and 27B are respective first and
second objects defined by bitmaps and showing grids of
triangles superimposed over the objects in accordance with
the process of Fig. 26.

Fig. 28 is a functional block diagram of a
sprite decoding process corresponding to the encoding
process of Fig. 26.

Fig. 29 is a diagrammatic representation of an
exemplary simple arbitrary binary solid shape
corresponding to a mask of an object included in a frame
of a video sequence.

Fig. 30A is a diagrammatic representation of an
exemplary general binary arbitrary shapes corresponding to
a mask of a complex object in a frame of a video sequence.
Figs. 30B-30D are diagrammatic representations of the
general binary arbitrary shapes as processed according to

the present invention.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-13-

Fig. 31 is a functional block diagram of a
hierarchical decomposition and encoding process capable of
accurately representing general binary arbitrary shapes of
the type shown in Fig. 30A.

Fig. 32 is a functional block diagram of an
encoding process for representing non-binary object

information such as object transparency data.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
=Eans ol Cooen bl 2UN OF PREFERRED EMBODIMENTS

Referring to Fig. 1, an operating environment
for the preferred embodiment of the present invention is a
computer system 20, either of a general purpose or a
dedicated type, that comprises at least one high speed
processing unit (CPU) 22, in conjunction with a memory
system 24, an input device 26, and an output device 28.
These elements are interconnected by a bus structure 30.

The illustrated CPU 22 is of familiar design and
includes an ALU 32 for performing computations, a
collection of registers 34 for temporary storage of data
and instructions, and a control unit 36 for controlling
operation of the system 20. CPU 22 may be a processor
having any of a variety of architectures including Alpha
from Digital, MIPS from MIPS Technology, NEC, IDT,
Siemens, and others, x86 from Intel and others, including
Cyrix, AMD, and Nexgen, and the PowerPc from IBM and
Motorola.

The memory system 24 includes main memory 38 and
secondary storage 40. Illustrated main memory 38 takes
the form of 16 megabytes of semiconductor RAM memory .
Secondary storage 40 takes the form of long term storage,
such as ROM, optical or magnetic disks, flash memory, or
tape. Those skilled in the art will appreciate that
memory system 24 may comprise many other alternative
components.

The input and output devices 26, 28 are also
familiar. The input device 26 can comprise a keyboard, a

mouse, a physical transducer (e.g., a microphone), etc.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-14-

The output device 28 can comprise a display, a printer, a
transducer (e.g. a speaker), etc. Some devices, such as a
network interface or a modem, can be used as input and/or
output devices.

As is familiar to those skilled in the art, the
computer system 20 further includes an operating system
and at least one application program. The operating
system is the set of software which controls the computer
system’s operation and the allocation of resources. The
application program is the set of software that performs a
task desired by the user, making use of computer resources
made available through the operating system. Both are
resident in the illustrated memory system 24.

In accordance with the practices of persons
skilled in the art of computer programming, the present
invention is described below with reference to symbolic
representations of operations that are performed by
computer system 20, unless indicated otherwise. Such
operations are sometimes referred to as being
computer-executed. It will be appreciated that the
operations which are symbolically represented include the
manipulation by CPU 22 of electrical signals representing
data bits and the maintenance of data bits at memory
locations in memory system 24, as well as other processing
of signals. The memory locations where data bits are
maintained are physical locations that have particular
electrical, magnetic, or optical properties corresponding
to the data bits.

Figs. 2A and 2B are simplified representations
of a display screen 50 of a video display device 52 (e.g.,
a television or a computer monitor) showing two successive
image frames 54a and 54b of a video image sequence
represented electronically by a corresponding video
signal. Video signals may be in any of a variety of video
signal formats including analog television video formats
such as NTSC, PAL, and SECAM, and pixelated or digitized
video signal formats typically used in computer displays,

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-15-

such as VGA, CGA, and EGA. Preferably, the video signals
corresponding to image frames are of a digitized video
signal format, either as originally generated or by
conversion from an analog video signal format, as is known
in the art.

Image frames 54a and 54b each include a
rectangular solid image feature 56 and a pyramid image
feature 58 that are positioned over a background 60.

Image features 56 and 58 in image frames 54a and 54b have
different appearances because different parts are obscured
and shown. For purposes of the following description, the
particular form of an image feature in an image frame is
referred to as an object or, alternatively, a mask.
Accordingly, rectangular solid image feature 56 is shown
as rectangular solid objects 56a and 56b in respective
image frames 54a and 54b, and pyramid image feature 58 is
shown as pyramid objects 58a and 58b in respective image
frames 54a and 54b.

Pyramid image feature 58 is shown with the same
pPosition and orientation in image frames 54a and 54b and
would "appear" to be motionless when shown in the video
Sequence. Rectangular solid 56 is shown in frames S4a and
54b with a different orientation and position relative to
pyramid 58 and would "appear" to be moving and rotating
relative to pyramid 58 when shown in the video sequence.
These appearances of image features 58 and 60 are
figurative and exaggerated. The image frames of a video
sequence typically are displayed at rates in the range of
30-80 Hz. Human perception of video motion typically
requires more than two image frames. Image frames 54a and
54b provide, therefore, a simplified representation of a
conventional video sequence for purposes of illustrating
the present invention. Moreover, it will be appreciated
that the present invention is in no way limited to such
simplified video images, image features, or sequences and,
to the contrary, is applicable to video images and
sequences of arbitrary complexity.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-16-

VIDEO COMPRESSION ENCODER PROCESS OVERVIEW

Fig. 3A is a generalized functional block
diagram of a video compression encoder process 64 for
compressing digitized video signals representing display
motion in video sequences of multiple image frames.
Compression of video information (i.e., video sequences or
signals) can provide economical storage and transmission
of digital video information in applications that include,
for example, interactive or digital television and
multimedia computer applications. For purposes of
brevity, the reference numerals assigned to function
blocks of encoder process 64 are used interchangeably in
reference to the results generated by the function blocks.

Conventional video compression techniques
utilize similarities between successive image frames,
referred to as temporal or interframe correlation, to
provide interframe compression in which pixel-based
representations of image frames are converted to motion
representations. In addition, conventional video
compression techniques utilize similarities within image
frames, referred to as spatial or intraframe correlation,
to provide intraframe compression in which the motion
representations within an image frame are further
compressed.

In such conventional video compression
techniques, including MPEG-1, MPEG-2, and H.26X, the
temporal and spatial correlations are determined relative
to simple translations of fixed, regular (e.g., square)
arrays of pixels. Video information commonly includes,
however, arbitrary video motion that cannot be represented
accurately by translating square arrays of pixels. As a
consequence, conventional video compression techniques
typically include significant error components that limit
the compression rate and accuracy.

In contrast, encoder process 64 utilizes object-
based video compression to improve the accuracy and

versatility of encoding interframe motion and intraframe

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-17-

image features. Encoder process 64 compresses video
information relative to objects of arbitrary
configurations, rather than fixed, regular arrays of
pixels. This reduces the error components and thereby
improves the compression efficiency and accuracy. As
another benefit, object-based video compression provides
interactive video editing capabilities for processing
compressed video information.

Referring to Fig. 3A, function block 66
indicates that user-defined objects within image frames of
a video sequence are segmented from other objects within
the image frames. The objects may be of arbitrary
configuration and preferably represent distinct image
features in a display image. Segmentation includes
identifying the pixels in the image frames corresponding
to the objects. The user-defined objects are defined in
each of the image frames in the video sequence. In Figs.
2A and 2B, for example, rectangular solid objects 56a and
56b and pyramid objects 58a and 58b are separately
segmented.

The segmented objects are represented by binary
or multi-bit (e.g., 8-bit) "alphachannel" masks of the
objects. The object masks indicate the size,
configuration, and position of an object on a pixel-by-
pixel basis. For purposes of simplicity, the following
description is directed to binary masks in which each
pixel of the object is represented by a single binary bit
rather than the typical 24-bits (i.e., 8 bits for each of
three color component values). Multi-bit (e.g., 8-bit)
masks also have been used.

Function block 68 indicates that "feature
points" of each object are defined by a user. Feature
points preferably are distinctive features or aspects of
the object. For example, corners 70a-70c and corners 72a-
72c could be defined by a user as feature points of
rectangular solid 56 and pyramid 58, respectively. The
pixels corresponding to each object mask and its feature

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-18-

points in each image frame are stored in an object
database included in memory system 24.

Function block 74 indicates that changes in the
positions of feature points in successive image frames are
identified and trajectories determined for the feature
points between successive image frames. The trajectories
represent the direction and extent of movement of the
feature points. Function block 76 indicates that
trajectories of the feature points in the object between
prior frame N-1 and current frame N also is retrieved from
the object data base.

Function block 78 indicates that a sparse motion
transformation is determined for the object between prior
frame N-1 and current frame N. The sparse motion
transformation is based upon the feature point
trajectories between frames N-1 and N. The sparse motion
transformation provides an approximation of the change of
the object between prior frame N-1 and current frame N.

Function block 80 indicates that a mask of an
object in a current frame N is retrieved from the object
data base in memory system 24.

Function block 90 indicates that a quantized
master object or "sprite" is formed from the objects or
masks 66 corresponding to an image feature in an image
frame sequence and feature point trajectories 74. The
master object preferably includes all of the aspects or
features of an object as it is represented in multiple
frames. With reference to Figs. 2A and 2B, for example,
rectangular solid 56 in frame 54b includes a side 78b not
shown in frame 54a. Similarly, rectangular solid 56
includes a side 78a in frame 54a not shown in frame 54b.
The master object for rectangular solid 56 includes both
sides 78a and 78b.

Sparse motion transformation 78 frequently will
not provide a complete representation of the change in the
object between frames N-1 and N. For example, an object

in a prior frame N-1, such as rectangular object 54a,

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-19-

might not include all the features of the object in the
current frame N, such as side 78b of rectangular object
54b.

To improve the accuracy of the transformation,
therefore, an intersection of the masks of the object in
prior frame N-1 and current frame N is determined, such as
by a logical AND function as is known in the art. The
mask of the object in the current frame N is subtracted
from the resulting intersection to identify any portions
or features of the object in the current frame N not
included in the object in the prior frame N-1 (e.g., side
78b of rectangular object 54b, as described above). The
newly identified portions of the object are incorporated
into master object 90 so that it includes a complete
representation of the object in frames N-1 and N.

Function block 96 indicates that a quantized
form of an object 98 in a prior frame N-1 (e.g.,
rectangular solid object 56a in image frame 54a) is
transformed by a dense motion transformation to provide a
predicted form of the object 102 in a current frame N
(e.g., rectangular solid object 56b in image frame 54b).
This transformation provides object-based interframe
compression.
| The dense motion transformation preferably
includes determining an affine transformation between
quantized prior object 98 in frame N-1 and the object in
the current frame N and applying the affine transformation
to quantized prior object 98. The preferred affine
transformation is represented by affine transformation
coefficients 104 and is capable of describing translation,
rotation, magnification, and shear. The affine
transformation is determined from a dense motion
estimation, preferably including a pixel-by-pixel mapping,
between prior quantized object 98 and the object in the
current frame N.

Predicted current object 102 is represented by
quantized prior object 98, as modified by dense motion

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-20-

transformation 96, and is capable of representing
relatively complex motion, together with any new image
aspects obtained from master object 90. Such object-based
representations are relatively accurate because the
perceptual and spatial continuity associated with objects
eliminates errors arising from the typically changing
relationships between different objects in different image
frames. Moreover, the object-based representations allow
a user to represent different objects with different
levels of resolution to optimize the relative efficiency
and accuracy for representing objects of varying
complexity.

Function block 106 indicates that for image
frame N, predicted current object 102 is subtracted from
original object 108 for current frame N to determine an
estimated error 110 in predicted object 102. Estimated
error 110 is a compressed representation of current object
108 in image frame N relative to quantized prior object
98. More specifically, current object 108 may be decoded
or reconstructed from estimated error 110 and quantized
prior object 98.

Function block 112 indicates that estimated
error 110 is compressed or "coded" by a conventional
"lossy" still image compression method such as lattice
subband (wavelet) compression or encoding as described in
Multirate Systems and Filter Banks by Vaidyanathan, PTR
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, (1993)
or discrete cosine transform (DCT) encoding as described

in JPEG: Still Image Data Compression Standard by
Pennebaker et al., Van Nostrand Reinhold, New York (1993).

As is known in the art, "lossy" compression
methods introduce some data distortion to provide
increased data compression. The data distortion refers to
variations between the original data before compression
and the data resulting after compression and

decompression. For purposes of illustration below, the

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

21-

compression or encoding of function block 102 is presumed
to be wavelet encoding.

Function block 114 indicates that the wavelet
encoded estimated error from function block 112 is further
compressed or "coded" by a conventional "lossless" still
image compression method to form compressed data 116. A
preferred conventional "lossless" still image compression
method is entropy encoding as described in JPEG: Still
lmage Data Compression Standard by Pennebaker et al. As

is known in the art, "lossless" compression methods
introduce no data distortion.

An error feedback loop 118 utilizes the wavelet
encoded estimated error from function block 112 for the
object in frame N to obtain a prior quantized object for
succeeding frame N+1. As an initial step in feedback
loop 118, function block 120 indicates that the wavelet
encoded estimated error from function block 112 is inverse
wavelet coded, or wavelet decoded, to form a quantized
error 122 for the object in image frame N.

The effect of successively encoding and decoding
estimated error 110 by a lossy still image compression
method is to omit from quantized error 122 video
information that is generally imperceptible by viewers.
This information typically is of higher frequencies. Aas a
result, omitting such higher frequency components
typically can provide image compression of up to about
200% with only minimal degradation of image quality.

Function block 124 indicates that quantized
error 122 and predicted object 102, both for image frame
N, are added together to form a quantized object 126 for
image frame N. After a timing coordination delay 128,
quantized object 126 becomes quantized prior object 98 and
is used as the basis for processing the corresponding
object in image frame N+1.

Encoder process 64 utilizes the temporal
correlation of corresponding objects in successive image

frames to obtain improved interframe compression, and also

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

222

utilizes the spatial correlation within objects to obtain
accurate and efficient intraframe compression. For the
interframe compression, motion estimation and compensation
are performed so that an object defined in one frame can
be estimated in a successive frame. The motion-based
estimation of the object in the successive frame requires
significantly less information than a conventional block-
based representation of the object. For the intraframe
compression, an estimated error signal for each object is
compressed to utilize the spatial correlation of the
object within a frame and to allow different objects to be
represented at different resolutions. Feedback loop 118
allows objects in subsequent frames to be predicted from
fully decompressed objects, thereby preventing
accumulation of estimation error.

Encoder process 64 provides as an output a
compressed or encoded representation of a digitized video
signal representing display motion in video sequences of
multiple image frames. The compressed or encoded
representation includes object masks 66, feature points
68, affine transform coefficients-104, and compressed
error data 116. The encoded representation may be stored
or transmitted, according to the particular application in
which the video information is used.

Fig. 3B is a functional block diagram of a
master object encoder process 130 for encoding or
compressing master object 90. Function block 132
indicates that master object 90 is compressed or coded by
a conventional "lossy" still image compression method such
as lattice subband (wavelet) compression or discrete
cosine transform (DCT) encoding. Preferably, function
block 132 employs wavelet encoding.

Function block 134 indicates that the wavelet
encoded master object from function block 132 is further
compressed or coded by a conventional "lossless" still

image compression method to form compressed master object

10

15

20

25

30

WO 97/35275 PCT/US97/04662

-23-

data 136. A preferred conventional lossless still image
compression method is entropy encoding.

Encoder process 130 provides as an output
compressed master object 136. Together with the
compressed or encoded representations provided by encoder
process 64, compressed master object 136 may be
decompressed or decoded after storage or transmission to
obtain a video sequence of multiple image frames.

Encoder process 64 is described with reference
to encoding video information corresponding to a single
object within an image frame. As shown in Figs. 2A and 2B
and indicated above, encoder process 64 is performed
separately for each of the objects (e.g., objects 56 and
58 of Figs. 2A and 2B) in an image frame. Moreover, many
video images include a background over which arbitrary
numbers of image features or objects are rendered.
Preferably, the background is processed as an ocbject
according to this invention after all user-designated
objects are processed.

Processing of the objects in an image frame
requires that the objects be separately identified.
Preferably, encoder process 64 is applied to the objects
of an image frame beginning with the forward-most object
or objects and proceeding successively to the back-most
object (e.g., the background). The compositing of the
encoded objects into a video image preferably proceeds
from the rear-most object (e.g., the background) and
proceeds successively to the forward-most object (e.g.,
rectangular solid 56 in Figs. 2A and 2B). The layering of
encoding objects may be communicated as distinct layering
data associated with the objects of an image frame or,
alternatively, by transmitting or obtaining the encoded
objects in a sequence corresponding to the layering or
compositing sequence.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-24.

OBJECT SEGMENTATION AND TRACKING

In a preferred embodiment, the segmentation of
objects within image frames referred to in function block
66 allows interactive segmentation by users. The object
segmentation of this invention provides improved accuracy
in segmenting objects and is relatively fast and provides
users with optimal flexibility in defining objects to be
segmented.

Fig. 4 is a functional block diagram of an
object segmentation process 140 for segmenting selected
objects from an image frame of a video sequence. Object
segmentation according to process 140 provides a
perceptual grouping of objects that is accurate and quick
and easy for users to define.

Fig. 5A is simplified representation of display
screen 50 of video display device 52 showing image frame
54a and the segmentation of rectangular solid object 56a.
In its rendering on display screen 50, rectangular solid
object 56a includes an object perimeter 142 (shown spaced
apart from object 56a for clarity) that bounds an object
interior 144. Object interior 144 refers to the outline
of object 56a on display screen 50 and in general may
correspond to an inner surface or, as shown, an outer
surface of the image feature. Fig. 5B is an enlarged
representation of a portion of display screen 50 showing
the semi-automatic segmentation of rectangular solid
object 56a. The following description is made with
specific reference to rectangular solid object 56a, but is
similarly applicable to each object to be segmented from
an image frame.

Function block 146 indicates that a user forms
within object interior 144 an interior outline 148 of
object perimeter 142. The user preferably forms interior
outline 148 with a conventional pointer or cursor control
device, such as a mouse or trackball. Interior outline
148 is formed within a nominal distance 150 from object

perimeter 142. Nominal distance 150 is selected by a user

WO 97/35275 PCT/US97/04662

10

I5

20

25

30

35

225.

to be sufficiently large that the user can form interior
outline 148 relatively quickly within nominal distance 150
of perimeter 142. Nominal distance 150 corresponds, for
example, to between about 4 and 10 pixels.

Function block 146 is performed in connection
with a key frame of a video sequence. With reference to a
scene in a conventional motion picture, for example, the
key frame could be the first frame of the multiple frames
in a scene. The participation of the user in this
function renders object segmentation process 140 semi-
automatic, but significantly increases the accuracy and
flexibility with which objects are segmented. Other than
for the key frame, objects in subsequent image frames are
segmented automatically as described below in greater
detail.

Function block 152 indicates that interior
outline 148 is expanded automatically to form an exterior
outline 156. The formation of exterior outline 156 is
performed as a relatively simple image magnification of
outline 148 so that exterior outline 156 is a user-defined
number of pixels from interior outline 148. Preferably,
the distance between interior outline 148 and exterior
outline 156 is approximately twice distance 150.

Function block 158 indicates that pixels between
interior outline 148 and exterior outline 156 are
classified according to predefined attributes as to
whether they are within object interior 144, thereby to
identify automatically object perimeter 142 and a
corresponding mask 80 of the type described with reference
to Fig. 3A. Preferably, the image attributes include
pixel color and position, but either attribute could be
used alone or with other attributes.

In the preferred embodiment, each of the pixels
in interior outline 148 and exterior outline 156 defines a
"cluster center" represented as a five-dimensional vector
in the form of (r, g, b, x, y). The terms r, g, and b
correspond to the respective red, green, and blue color

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-26-

components associated with each of the pixels, and the
terms x and y correspond to the pixel locations. The m-
number of cluster center vectors corresponding to pixels
in interior outline 148 are denoted as {I,, I,, o I
.}, and the n-number of cluster center vectors
corresponding pixels in exterior outline 156 are denoted
as {O,, O;, . . ., Ou.}.

Pixels between the cluster center vectors I, and
O; are classified by identifying the vector to which each
pixel is closest in the five-dimensional vector space.

For each pixel, the absolute distance d; and d; to each of
respective cluster center vectors I, and O; is computed
according to the following equations:

di=Weoror (| T-Ty | +]g-gy | +]D-D; |) +Weoora (| x-x, | +ly-yi]), Osicm,
dj=wmkm(Ir“rj'+|g‘9j|+|b‘bjl)+wuwm('x'x3|+|Y‘Yj|)r O0sj<n,
in which wgy,, and w4 are weighting factors for the
respective color and pixel position information.

Weighting factors wg,, and w.,.4 are of values having a sum
of 1 and otherwise selectable by a user. Preferably,
weighting factors w.,. and w4 are of an equal value of
0.5. Each pixel is associated with object interior 144 or
exterior according to the minimum five-dimensional
distance to one of the cluster center vectors I, and 0y.

Function block 162 indicates that a user selects
at least two, and preferable more (e.g. 4 to 6), feature
points in each object of an initial or key frame.
Preferably, the feature points are relatively distinctive
aspects of the object. With reference to rectangular
solid image feature 56, for example, corners 70a-70c could
be selected as feature points.

Function block 164 indicates that a block 166 of
multiple pixels centered about each selected feature point
(e.g., corners 70a-70c) is defined and matched to a
corresponding block in a subsequent image frame (e.g., the
next successive image frame). Pixel block 166 is user
defined, but preferably includes a 32 x 32 pixel array

that includes only pixels within image interior 144. Any

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-27-

pixels 168 (indicated by cross-hatching) of pixel block
166 falling outside object interior 144 as determined by
function block 158 (e.g., corners 70b and 70c) are
omitted. Pixel blocks 166 are matched to the
corresponding pixel blocks in the next image frame
according to a minimum absolute error identified by a
conventional block match process or a polygon match
process, as described below in greater detail.

Function block 170 indicates that a sparse
motion transformation of an object is determined from the
corresponding feature points in two successive image
frames. Function block 172 indicates that mask 80 of the
current image frame is transformed according to the sparse
motion transformation to provide an estimation of the mask
80 for the next image frame. Any feature point in a
current frame not identified in a successive image frame
is disregarded.

Function block 174 indicates that the resulting
estimation of mask 80 for the next image frame is delayed
by one frame, and functions as an outline 176 for a next
successive cycle. Similarly, function block 178 indicates
that the corresponding feature points also are delayed by
one frame, and utilized as the initial feature points 180
for the next successive frame.

POLYGON MATCH METHOD

Fig. 6 is a functional block diagram of a
polygon match process 200 for determining a motion vector
for each corresponding pair of pixels in successive image
frames. Such a dense motion vector determination provides
the basis for determining the dense motion transformations
96 of Fig. 3A.

Polygon match process 200 is capable of
determining extensive motion between successive image
frames like the conventional block match process. In
contrast to the conventional block match process, however,
polygon match process 200 maintains its accuracy for
pixels located near or at an object perimeter and

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

8-

generates significantly less error. A preferred
embodiment of polygon match method 200 has improved
computational efficiency.

Polygon block method 200 is described with
reference to Figs. 7A and 7B, which are simplified
representations of display screen 50 showing two
successive image frames 202a and 202b in which an image
feature 204 is rendered as objects 204a and 204D,
respectively.

Function block 206 indicates that objects 204a
and 204b for image frames 202a and 202b are identified and
segmented by, for example, object segmentation method 140.

Function block 208 indicates that dimensions are
determined for a pixel block 210b (e.g., 15x15 pixels) to
be applied to object 204b and a search area 212 about
object 204a. Pixel block 210b defines a region about each
pixel in object 204b for which region a corresponding
pixel block 210a is identified in object 204a. Search
area 212 establishes a region within which corresponding
pixel block 210a is sought. Preferably, pixel block 210b
and search area 212 are right regular arrays of pixels and
of sizes defined by the user.

Function block 214 indicates that an initial
pixel 216 in object 204b is identified and designated the
current pixel. Initial pixel 216 may be defined by any of
a variety of criteria such as, for example, the pixel at
the location of greatest vertical extent and minimum
horizontal extent. With the pixels on display screen 50
arranged according to a coordinate axis 220 as shown,
initial pixel 216 may be represented as the pixel of
object 214b having a maximum y-coordinate value and a
minimum x-coordinate value.

Function block 222 indicates that pixel block
210b is centered at and extends about the current pixel.

Function block 224 represents an inquiry as to
whether pixel block 210b includes pixels that are not
included in object 204b (e.g., pixels 226 shown by cross-

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

229

hatching in Fig. 7B). This inquiry is made with reference
to the objects identified according to function block 206.
Whenever pixels within pixel block 210b positioned at the
current pixel fall outside object 204b, function block 224
proceeds to function block 228 and otherwise proceeds to
function block 232.

Function block 228 indicates that pixels of
pixel block 210b falling outside object 204b (e.g., pixels
226) are omitted from the region defined by pixel block
210b so that it includes only pixels within object 204b.
As a result, pixel block 210b defines a region that
typically would be of a polygonal shape more complex than

the originally defined square or rectangular region.

Function block 232 indicates that a pixel in
object 204a is identified as corresponding to the current
pixel in object 204b. The pixel in object 204a is
referred to as the prior corresponding pixel. Preferably,
the prior corresponding pixel is identified by forming a
pixel block 210a about each pixel in search area 212 and
determining a correlation between the pixel block 210a and
pixel block 210b about the current pixel in object 204b.
Each correlation between pixel blocks 210a and 210b may be
determined, for example, a means absolute error. The
prior corresponding pixel is identified by identifying the
pixel block 210a in search area 212 for which the mean
absolute error relative to pixel block 210b is minimized.
A mean absolute error E for a pixel block 210a relative to
pixel block 210b may be determined as:

E = Elf-l(Irij_rij, l+'gij_gijl '+|bij’bij' |,

i=0 j=0
in which the terms Yi5» 9i5, and b;; correspond to the
respective red, green, and blue color components
associated with each of the pixels in pixel block 210b and
the terms ri;", 9i3', and by’ correspond to the respective
red, green, and blue color components associated with each

of the pixels in pixel block 210a.

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-30-

As set forth above, the summations for the mean
absolute error E imply pixel blocks having pixel arrays
having mxn pixel dimensions. Pixel blocks 210b of
polygonal configuration are accommodated relatively simply
by, for example, defining zero values for the color
components of all pixels outside polygonal pixel blocks
210b.

Function block 234 indicates that a motion
vector MV between each pixel in object 204b and the
corresponding prior pixel in object 204a is determined. A
motion vector is defined as the difference between the
locations of the pixel in object 204b and the
corresponding prior pixel in object 204a:

MV = (l xi‘xk'lr |Yj‘Y1'|):

in which the terms x; and y; correspond to the respective x-
and y-coordinate positions of the pixel in pixel block
210b, and the terms x,’ and y,'correspond to the respective
x- and y-coordinate positions of the corresponding prior
pixel in pixel block 210a.

Function block 236 represents an inquiry as to
whether object 204b includes any remaining pixels.
Whenever object 204b includes remaining pixels, function
block 236 proceeds to function block 238 and otherwise
proceeds to end block 240.

Function block 238 indicates that a next pixel
in object 204b is identified according to a predetermined
format or sequence. With the initial pixel selected as
described above in reference to function block 214,
subsequent pixels may be defined by first identifying the
next adjacent pixel in a row (i.e., of a common y-
coordinate value) and, if object 204 includes no other
pixels in a row, proceeding to the first or left-most
pixel (i.e., of minimum x-coordinate value) in a next
lower row. The pixel so identified is designated the
current pixel and function block 238 returns to function
block 222.

PCT/US97/04662 -

WO 97/35275

10

15

20

25

30

-31-

Polygon block method 200 accurately identifies
corresponding pixels even if they are located at Or near
an object perimeter. a significant source of error in
conventional block matching processes is eliminated by
omitting or disregarding pixels of pixel blocks 210b
falling outside object 204b. Conventional block matching
processes rigidly apply a uniform pixel block
configuration and are not applied with reference to a
segmented object. The uniform block configurations cause
significant errors for pixels adjacent the perimeter of an
object because the Pixels outside the object can undergo
significant changes as the object moves or its background
changes. With such extraneous pixel variations included
in conventional block matching processes, pixels in the
vicinity of an object perimeter cannot be correlated
accurately with the Corresponding pixels in prior image
frames.

For each pixel in object 204b, a corresponding
prior pixel in object 204a is identified by comparing
Pixel block 210b with a pixel block 210a for each of the
pixels in prior object 204a. The corresponding prior
pixel is the pixel in object 204a having the pixel block
210a that best correlates to pixel block 210b. 1f
pProcessed in a conventional manner, such a determination
can require substantial computation to identify each
Corresponding prior pixel. To illustrate, for pixel
blocks having dimensions of nxn pixels, which are
significantly smaller than a search area 212 having
dimensions of mxm pixels, approximately n?xm? calculations
are required to identify each Corresponding prior pixel in
the prior object 204a.

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-32-

PIXEL BLOCK CORRELATION PROCESS

Fig. 8 is a functional block diagram of a
modified pixel block correlation process 260 that
preferably is substituted for the one described with
reference to function block 232. Modified correlation
process 260 utilizes redundancy inherent in correlating
pixel blocks 210b and 210a to significantly reduce the
number of calculations required.

Correlation process 260 is described with
reference to Figs. 9A-9G and 10A-10G, which schematically
represent arbitrary groups of pixels corresponding to
successive image frames 202a and 202b. In particular,
Fig. S9A is a schematic representation of a pixel block 262
having dimensions of 5x5 pixels in which each letter
corresponds to a different pixel. The pixels of pixel
block 262 are arranged as a right regular array of pixels
that includes distinct columns 264. Fig. 9B represents an
array of pixels 266 having dimensions of gxq pixels and
corresponding to a search area 212 in a prior image frame
202a. Each of the numerals in Fig. 9B represents a
different pixel. Although described with reference to a
conventional right regular pixel block 262, correlation
process 260 1is similarly applicable to polygonal pixel
blocks of the type described with reference to polygon
match process 200.

Function block 268 indicates that an initial pixel block
(e.g., pixel block 262) is defined with respect to a
central pixel M and scanned across a search area 212
(e.g., pixel array 266) generally in a raster pattern
(partly shown in Fig. 7A) as in a conventional block match
process. Figs. 9C-9G schematically illustrate five of the
approximately g® steps in the block matching process
between pixel block 262 and pixel array 266.

Although the scanning of pixel block 262 across
pixel array 266 is performed in a conventional manner,
computations relating to the correlation between them are

performed differently according to this invention. 1In

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-33-

particular, a correlation (e.g., a mean absolute error) is
determined and stored for each column 264 of pixel block
262 in each scan position. The correlation that is
determined and stored for each column 264 of pixel block
262 in each scanned position is referred to as a column
correlation 270, several of which are symbolically
indicated in Figs. 9C-9G by referring to the correlated
pixels. To illustrate, Fig. 9C shows a column correlation
270(1) that is determined for the single column 264 of
pixel block 262 aligned with pixel array 266. Similarly,
Fig. 9D shows column correlations 270(2) and 270(3) that
are determined for the two columns 264 of pixel block 262
aligned with pixel array 266. Figs. 9E-9G show similar
column correlations with pixel block 262 at three
exemplary subsequent scan positions relative to pixel
array 266.

The scanning of initial pixel block 262 over
pixel array 266 provides a stored array or database of
column correlations. With pixel block 262 having r-number
of columns 264, and pixel array 266 having gxq pixels, the
column correlation database includes approximately rq?
number of column correlations. This number of column
correlations is only approximate because pixel block 262
preferably is initially scanned across pixel array 266
such that pixel M is aligned with the first row of pixels
in pixel array 266.

The remaining steps beginning with the one
indicated in Fig. 9C occur after two complete scans of
pixel block 262 across pixel array 266 (i.e., with pixel M
aligned with the first and second rows of pixel array
266) .

Function block 274 indicates that a next pixel
block 276 (Fig. 10A) is defined from, for example, image
frame 202b with respect to a central pixel N in the same
row as pixel M. Pixel block 276 includes a column 278 of
pixels not included in pixel block 262 and columns 280 of
pixels included in pixel block 262. Pixel block 276 does

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-34-

not include a column 282 (Fig. 9A) that was included in
pixel block 262. Such an incremental definition of next
pixel block 276 is substantially the same as that used in
conventional block matching processes.

Function block 284 indicates that pixel block
276 is scanned across pixel array 266 in the manner
described above with reference to function block 268. As
with Figs. 9C-9G, Figs. 10B-10G represent the scanning of
pixel block 276 across pixel array 266.

Function block 286 indicates that for column 278
a column correlation is determined and stored at each scan
position. Accordingly, column correlations 288(1)-288(5)
are made with respect to the scanned positions of column
278 shown in respective Figs. 10B-10F.

Function block 290 indicates that for each of
columns 280 in pixel block 276 a stored column
determination is retrieved for each scan position
previously computed and stored in function block 268. For
example, column correlation 270(1) of Fig. 9C is the same
as column correlation 270’ (1) of Fig. 10C. Similarly,
column correlations 270’ (2), 270’ (3), 270’ (5)-270’(8), and
270’ (15)-270’ (18) of Figs. 10D-10F are the same as the
corresponding column correlations in Figs. 9D, 9E, and 9G.
For pixel block 276, therefore, only one column
correlation 288 is calculated for each scan position. As
a result, the number of calculations required for pixel
block 276 is reduced by nearly 80 percent.

Function block 292 indicates that a subsequent
pixel block 294 (Fig. 11A) is defined with respect to a
central pixel R in the next successive row relative to
pixel M. Pixel block 294 includes columns 296 of pixels
that are similar to but distinct from columns 264 of
pixels in pixel block 262 of Fig. 9A. 1In particular,
columns 296 include pixels A’'-E’ not included in columns
264. Such an incremental definition of subsequent pixel
block 294 is substantially the same as that used in

conventional block matching processes.

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-35.

Function block 298 indicates that pixel block
294 is scanned across pixel array 266 (Fig. 9B) in the
manner described above with reference to function blocks
268 and 276. Figs. 11B-11F represent the scanning of
pixel block 294 across pixel array 266.

Function block 300 indicates that a column
correlation is determined and stored for each of columns
296. Accordingly, column correlations 302(1)-302(18) are
made with respect to the scanned positions of columns 296
shown in Figs. 11B-11F.

Each of column correlations 302(1)-302(18) may
be calculated in an abbreviated manner with reference to
column correlations made with respect to pixel block 262
(Fig. 9A).

For example, column correlations 302 (4)-302(8)
of Fig. 11D include subcolumn correlations 304’ (4)-304" (8)
that are the same as subcolumn correlations 304 (4)-304(8)
of Fig. 9E. Accordingly, column correlations 302(4) -
302(8) may be determined from respective column
correlations 270(4)-270(8) by subtracting from the latter
correlation values for pixels 01A, 02B, 03C, 04D, and 05E
to form subcolumn correlations 304(4)-304(8),
respectively. Column correlations 302(4)-302(8) may be
obtained by adding correlation values for the pixel pairs
56A’, 57B’, 58C’, 59D’ and S0E’ to the respective
subcolumn correlation values 304(4)-304(8), respectively.

The determination of column correlations 302(4) -
302(8) from respective column correlations 270(4)-270(8)
entails subtracting individual pixel correlation values
corresponding to the row of pixels A-E of pixel block 262
not included in pixel block 294, and adding pixel
correlation values for the row of pixels A’-E’ included in
pixel block 294 but not pixel block 262. This method
substitutes for each of column correlations 302(4)-302(8),
one substraction and one addition for the five additions
that would be required to determine each column

correlation in a conventional manner. With pixel blocks

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-36-

of larger dimensions as are preferred, the improvement of
this method over conventional calculation methods is even
greater. Conventional block matching processes
identify only total block correlations for each scan
position of initial pixel block 262 relative to pixel
array 266. As a consequence, all correlation values for
all pixels must be calculated separately for each scan
position. 1In contrast, correlation process 260 utilizes
stored column correlations 270 to significantly reduce the
number of calculations required. The improvements in
speed and processor resource requirements provided by
correlation process 260 more than offset the system
requirements for storing the column correlations.

It will be appreciated that correlation process
260 has been described with reference to Figs. 9-11 to
illustrate specific features of this invention. As shown
in the illustrations, this invention includes recurring or
cyclic features that are particularly suited to execution
by a computer system. These recurring or cyclic features
are dependent upon the dimensions of pixel blocks and
pixel arrays and are well understood and can be
implemented by persons skilled in the art.

MULTI-DIMENSIONAL TRANSFORMATION

Fig. 12 is a functional block diagram of a
transformation method 350 that includes generating a
multi-dimensional transformation between objects in first
and second successive image frames and quantitizing the
mapping for transmission or storage. The multi-
dimensional transformation preferably is utilized in
connection with function block 96 of Fig. 3.
Transformation method 350 is described with reference to
Fig. 7A and Fig. 13, the latter of which like Fig. 7B is a
simplified representation of display screen 50 showing
image frame 202b in which image feature 204 is rendered as
object 204b.

Transformation method 350 preferably provides a

multi-dimensional affine transformation capable of

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-37-

representing complex motion that includes any or all of
translation, rotation, magnification, and shear.
Transformation method 350 provides a significant
improvement over conventional video compression methods
such a MPEG-1, MPEG-2, and H.26X, which are of only one
dimension and represent only translation. In this regard,
the dimensionality of a transformation refers to the
number of coordinates in the generalized form of the
transformation, as described below in greater detail.
Increasing the accuracy with which complex motion is
represented according to this invention results in fewer
errors than by conventional representations, thereby
increasing compression efficiency.

Function block 352 indicates that a dense motion
estimation of the pixels in objects 204a and 204b is
determined. Preferably, the dense motion estimation is
obtained by polygon match process 200. As described
above, the dense motion estimation includes motion vectors
between pixels at coordinates (X;, y;) in object 204b of
image frame 202b and corresponding pixels at locations
(x;", y;') of object 204a in image frame 202a.

Function block 354 indicates that an array of
transformation blocks 356 is defined to encompass object
204b. Preferably, transformation blocks 356 are right
regular arrays of pixels having dimensions of, for
example, 32x32 pixels.

Function block 358 indicates that a multi-
dimensional affine transformation is generated for each
transformation block 356. Preferably, the affine
transformations are of first order and represented as:

X;’' =ax;+by,+c

y;' =dx;+ey;+f,
and are determined with reference to all pixels for which
the motion vectors have a relatively high confidence.
These affine transformations are of two dimensions in that
X; and y; are defined relative to two coordinates: x; and

Yi-

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-38-

The relative confidence of the motion vectors
refers to the accuracy with which the motion vector
between corresponding pixels can be determined uniquely
relative to other pixels. For example, motion vectors
between particular pixels that are in relatively large
pixel arrays and are uniformly colored (e.g., black)
cannot typically be determined accurately. In particular,
for a black pixel in a first image frame, many pixels in
the pixel array of the subsequent image frame will have
the same correlation (i.e., mean absolute value error
between pixel blocks).

In contrast, pixel arrays in which pixels
correspond to distinguishing features typically will have
relatively high correlations for particular corresponding
pixels in successive image frames.

The relatively high correlations are preferably
represented as a minimal absolute value error
determination for particular pixel. Motion vectors of
relatively high confidence may, therefore, be determined
relative to such uniquely low error values. For example,
a high confidence motion vector may be defined as one in
which the minimum absolute value error for the motion
vector is less than the next greater error value
associated with the pixel by a difference amount that is
greater than a threshold difference amount.
Alternatively, high confidence motion vectors may be
defined with respect to the second order derivative of the
absolute error values upon which the correlations are
determined. A second order derivative of more than a
particular value would indicate a relatively high
correlation between specific corresponding pixels.

With n-number of pixels with such high-
confidence motion vectors, the preferred affine
transformation equations are solved with reference to n-
number of corresponding pixels in image frames 202a and
202b. Images frames must include at least three

corresponding pixels in image frames 202a and 202b with

WO 97/35275 PCT/US97/04662

10

15

20

-39-

high confidence motion vectors to solve for the six
unknown coefficients a, b, ¢, 4, e, and f of the preferred
affine transformation equations. With the preferred
dimensions, each of transformation blocks 356 includes 2'°
pixels of which significant numbers typically have
relatively high confidence motion vectors. Accordingly,
the affine transformation equations are over-determined in
that a significantly greater number of pixels are
available to solve for the coefficients a, b, ¢, 4, e, and
f.

The resulting n-number of equations may be

represented by the linear algebraic expression:

: :
X, Y, 1
0 0 {X/o
A A
/
Xl
X, Y, 1 a
b =
c
. e
X,71 Y,-1 1]]
(X, ¥, 1] -
0 0 Y/o
X, ;1 /
Yl
DA A d
e =
f
Y/
X,-1 ¥,-1 1 CN

Preferably these equations are solved by a conventional
singular value decomposition (SVD) method, which provides

a minimal least-square error for the approximation of the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-40-

dense motion vectors. A conventional SVD method is
described, for example, in Numerical Recipes in C, by
Press et al., Cambridge University Press, (1992).

As described above, the preferred two-
dimensional affine transformation equations are capable of
representing translation, rotation, magnification, and
shear of transformation blocks 356 between successive
image frames 202a and 202b. In contrast, conventional
motion transformation methods used in prior compression
standards employ simplified transformation equations of
the form:

X, =X;+g

Yi'=Yi+h

The prior simplified transformation equations
represent motion by only two coefficients, g and h, which
represents only one-third the amount of information (i.e.,
coefficients) obtained by the preferred multi-dimensional
transformation equations. To obtain superior compression
of the information obtained by transformation method 350
relative to conventional compression methods, the
dimensions of transformation block 356 preferably are more
than three times larger than the corresponding 16x16 pixel
blocks employed in MPEG-1 and MPEG-2 compression methods.
The preferred 32x32 pixel dimensions of transformation
blocks 356 encompass four times the number of pixels
employed in the transformation blocks of conventional
transformation methods. The larger dimensions of
transformation blocks 356, together with the improved
accuracy with which the affine transformation coefficients
represent motion of the transformation blocks 356, allow
transformation method 350 to provide greater compression
than conventional compression methods.

It will be appreciated that the affine
coefficients generated according to the present invention
typically would be non-integer, floating point values that
could be difficult to compress adequately without

adversely affecting their accuracy. Accordingly, it is

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-41-

preferable to quantize the affine transformation
coefficient to reduce the bandwidth required to store or
transmit them.

Function block 362 indicates that the affine
transformation coefficients generated with reference to
function block 358 are quantized to reduce the bandwidth
required to store or transmit them. Fig. 14 is an
enlarged fragmentary representation of a transformation
block 356 showing three selected pixels, 364a, 364b, and
364c from which the six preferred affine transformation
coefficients a-f may be determined.

Pixels 364a-364c are represented as pixel
coordinates (X, v1), (x,, y,), and (x5, ¥i3), respectively.
Based upon the dense motion estimation of function block
352, pixels 364a-364c have respective corresponding pixels
(x1"0 vi') s (v v2') (%, Y:’) in preceding image frame
202a. As is conventional, pixel locations (x;, y;) are
represented by integer values and are solutions to the
affine transformation equations upon which the preferred
affine transformation coefficients are based.

Accordingly, selected pixels 364a-364c are used to
calculate the corresponding pixels from the preceding
image frame 202a, which typically will be floating point
values.

Quantization of these floating point values is
performed by converting to integer format the difference
between corresponding pixels (X;-%X";, yi-¥';). The affine
transformation coefficients are determined by first
calculating the pixel values (x’;, y';) from the difference
vectors and the pixel values (X;, yi), and then solving the
multi-dimensional transformation equations of function
block 358 with respect to the pixel values (x’,, y’,).

As shown in Fig. 14, pixels 364a-364c preferably
are distributed about transformation block 356 to minimize
the sensitivity of the quantization to local variations
within transformation block 356. Preferably, pixel 364a
is positioned at or adjacent the center of transformation

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-42-

block 356, and pixels 364b and 364c are positioned at
upper corners. Also in the preferred embodiment, the
selected pixels for each of the transformation blocks 356
in object 204b have the same positions, thereby allowing
the quantization process to be performed efficiently.

Another aspect of the quantization method of
function block 362 is that different levels of
quantization may be used to represent varying degrees of
motion. As a result, relatively simple motion (e.g.,
translation) may be represented by fewer selected pixels
364 than are required to represent complex motion. With
respect to the affine transformation equations described
above, pixel 364a (x,, y,) from object 204b and the
corresponding pixel (x,’, y,’) from object 204a are
sufficient to solve simplified affine transformation
equations of the form:

X, =y,+C

Y1 =y,+£,
which represent translation between successive image
frames. Pixel 364a specifically is used because its
central position generally represents translational motion
independent of the other types of motion. Accordingly, a
user may selectively represent simplified motion such as
translation with simplified affine transformation
equations that require one-third the data required to
represent complex motion.

Similarly, a pair of selected pixels (x,, y,)
(e.g., pixel 364a) and (x,, y,) (i.e., either of pixels
364b and 364c) from object 204b and the cbrresponding
pixels (x,’, vy,’) and (x,’, vy,') from object 204a are
sufficient to solve simplified affine transformation
equations of the form:

X; ' =ax;+cC

Yy =ey;+f,
which are capable of representing motions that include
translation and magnification between successive image

frames. In the simplified form:

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-43.

X'=acosfx+sinby+c

Y'=-sinfx+acosfy+f
the corresponding pairs of selected pixels are capable of
representing motions that include translation, rotation,
and isotropic magnification. 1In this simplified form, the
common coefficients of the x and y variables allow the
equations to be solved by two corresponding pairs of
pixels.

Accordingly, a user may selectively represent
moderately complex motion that includes translation,
rotation, and magnification with partly simplified affine
transformation equations. Such equations would require
two-thirds the data required to represent complex motion.
Adding the third selected pixel (x3, y;) from object 204b,
the corresponding pixel (x;', y;') from object 204a, and
the complete preferred affine transformation equations
allows a user also to represent shear between successive
image frames.

A preferred embodiment of transformation method
350 (Fig. 12) is described as using uniform transformation
blocks 356 having dimensions of, for example, 32x32
pixels. The preferred multi-dimensional affine
transformations described with reference to function block
358 are determined with reference to transformation blocks
356. It will be appreciated that the dimensions of
transformation blocks 356 directly affect the compression
ratio provided by this method.

Fewer transformation blocks 356 of relatively
large dimensions are required to represent transformations
of an object between image frames than the number of
transformation blocks 356 having smaller dimensions. A
consequence of uniformly large transformation blocks 356
is that correspondingly greater error can be introduced
for each transformation block. Accordingly, uniformly
sized transformation blocks 356 typically have moderate
dimensions to balance these conflicting performance
constraints.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-44.

TRANSFORMATION BLOCK OPTIMIZATION

Fig. 15 is a functional block diagram of a
transformation block optimization method 370 that
automatically selects transformation block dimensions that
provide a minimal error threshold. Optimization method
370 is described with reference to Fig. 16, which is a
simplified representation of display screen 50 showing a
portion of image frame 202b with object 204b.

Function block 372 indicates that an initial
transformation block 374 is defined with respect to object
204b. Initial transformation block 374 preferably is of
maximal dimensions that are selectable by a user and are,
for example, 64x64 pixels. Initial transformation block
374 is designated the current transformation block.

Function block 376 indicates that a current
signal-to-noise ratio (CSNR) is calculated with respect to
the current transformation block. The signal-to-noise
ratio preferably is calculated as the ratio of the
variance of the color component values of the pixel within
the current transformation block (i.e., the signal) to the
variance of the color components values of the pixels
associated with estimated error 98 (Fig. 3).

Function block 378 indicates that the current
transformation block (e.g., transformation block 374) is
subdivided into, for example, four equal sub-blocks 380a-
380d, affine transformations are determined for each of
sub-blocks 380a-380d, and a future signal-to-noise ratio
is determined with respect to the affine transformations.
The future signal-to-noise ratio is calculated in
substantially the same manner as the current signal-to-
noise ratio described with reference to function block
376.

Inquiry block 382 represents an inquiry as to
whether the future signal-to-noise ratio is greater than
the current signal-to-noise ratio by more than a user-
selected threshold amount. This inquiry represents a

determination that further subdivision of the current

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-45-

transformation block (e.g., transformation block 374)
would improve the accuracy of the affine transformations
by at least the threshold amount. Whenever the future
signal-to-noise ratio is greater than the current signal-
to-noise ratio by more than the threshold amount, inquiry
block 382 proceeds to function block 384, and otherwise
proceeds to function block 388.

Function block 384 indicates that sub-blocks
380a-380d are successively designated the current
transformation block, and each are analyzed whether to be
further subdivided. For purposes of illustration, sub-
block 380a is designated the current transformation and
processed according to function block 376 and further sub-
divided into sub-blocks 386a-386d. Function block 388
indicates that a next successive transformation block 374°
is identified and designated an initial or current
transformation block.

PRECOMPRESSION EXTRAPOLATION METHOD

Figs. 17A and B are a functional block diagram
of a precompression extrapolation method 400 for
extrapolating image features of arbitrary configuration to
a predefined configuration to facilitate compression in
accordance with function block 112 of encoder process 64
(both of Fig. 3). Extrapolation method 400 allows the
compression of function block 112 to be performed in a
conventional manner such as DCT or lattice wavelet
compression, as described above.

Conventional still image compression methods
such a lattice wavelet compression or discrete cosine
transforms (DCT) operate upon rectangular arrays of
pixels. As described above, however, the methods of the
present invention are applicable to image features or
objects of arbitrary configuration. Extrapolating such
objects or image features to a rectangular pixel array
configuration allows use of conventional still image
compression methods such as lattice wavelet compression or
DCT. Extrapolation method 400 is described below with

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-46-

reference to Figs. 18A-18D, which are representations of
display screen 50 on which a simple object 402 is rendered
to show various aspects of extrapolation method 400.

Function block 404 indicates that an
extrapolation block boundary 406 is defined about object
402. Extrapolation block boundary 406 preferably is
rectangular. Referring to Fig. 18A, the formation of
extrapolation block boundary 406 about object 402 is based
upon an identification of a perimeter 408 of object 402
by, for example, object segmentation method 140 (Fig. 4).
Extrapolation block boundary 406 is shown encompassing
object 402 in its entirety for purposes of illustration.
It will be appreciated that extrapolation block boundary
406 could alternatively encompass only a portion of object
402. As described with reference to object segmentation
method 140, pixels included in object 402 have color
component values that differ from those of pixels not
included in object 402.

Function block 410 indicates that all pixels
412 bounded by extrapolation block boundary 406 and not
included in object 402 are assigned a predefined value
such as, for example, a zero value for each of the color
components.

Function block 414 indicates that horizontal
lines of pixels within extrapolation block boundary 406
are scanned to identify horizontal lines with horizontal
pixel segments having both zero and non-zero color
component values.

Function block 416 represents an inquiry as to
whether the horizontal pixel segments having color
component values of zero are bounded at both ends by
perimeter 408 of object 402. Referring to Fig. 18B,
region 418 represents horizontal pixel segments having
color component values of zero that are bounded at both
ends by perimeter 408. Regions 420 represent horizontal
pixel segments that have color component values of zero

and are bounded at only one end by perimeter 408.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-47-

Function block 416 proceeds to function block 426 for
regions 418 in which the pixel segments have color
component values of zero bounded at both ends by perimeter
408 of object 402, and otherwise proceeds to function
block 422.

Function block 422 indicates that the pixels in
each horizontal pixel segment of a region 420 is assigned
the color component values of a pixel 424 (only exemplary
ones shown) in the corresponding horizontal lines and
perimeter 408 of object 402. Alternatively, the color
component values assigned to the pixels in regions 420 are
functionally related to the color component values of
pixels 424.

Function block 426 indicates that the pixels in
each horizontal pixel segment in region 418 are assigned
color component values corresponding to, and preferably
equal to, an average of the color component values of
pixels 428a and 428b that are in the corresponding
horizontal lines and on perimeter 408.

Function block 430 indicates that vertical lines
of pixels within extrapolation block boundary 406 are
scanned to identify vertical lines with vertical pixel
segments having both zero and non-zero color component
values.

Function block 432 represents an inquiry as to
whether the vertical pixel segments in vertical lines
having color component values of zero are bounded at both
ends by perimeter 408 of object 402. Referring to Fig.
18C, region 434 represents vertical pixel segments having
color component values of zero that are bounded at both
ends by perimeter 408. Regions 436 represent vertical
pixel segments that have color component values of zero
and are bounded at only one end by perimeter 408.

Function block 432 proceeds to function block 444 for
region 434 in which the vertical pixel segments have color
component values of zero bounded at both ends by perimeter

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-48-

408 of object 402, and otherwise proceeds to function
block 438.

Function block 438 indicates that the pixels in
each vertical pixel segment of region 436 are assigned the
color component values of pixels 442 (only exemplary ones
shown) in the vertical lines and perimeter 408 of object
402. Alternatively, the color component values assigned
to the pixels in region 436 are functionally related to
the color component values of pixels 442.

Function block 444 indicates that the pixels in
each vertical pixel segment in region 434 are assigned
color component values corresponding to, and preferably
equal to, an average of the color component values of
pixels 446a and 446b that are in the horizontal lines and
on perimeter 408.

Function block 448 indicates that pixels that
are in both horizontal and vertical pixel segments that
are assigned color component values according to this
method are assigned composite color component values that
relate to, and preferably are the average of, the color
component values otherwise assigned to the pixels
according to their horizontal and vertical pixel segments.

Examples of pixels assigned such composite color
component values are those pixels in regions 418 and 434.

Function block 450 indicates that regions 452 of
pixels bounded by extrapolation block boundary 406 and not
intersecting perimeter 408 of object 402 along a
horizontal or vertical line are assigned composite color
component values that are related to, and preferably equal
to the average of, the color component values assigned to
adjacent pixels. Referring to Fig. 18D, each of pixels
454 in regions 452 is assigned a color component value
that preferably is the average of the color component
values of pixels 456a and 456b that are aligned with pixel
454 along respective horizontal and vertical lines and
have non-zero color component values previously assigned
by this method.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-49.

A benefit of object extrapolation pProcess 400 is
that is assigns smoothly varying color component values to
pixels not included in object 402 and therefore optimizes
the compression capabilities and accuracy of conventional
still image compression methods. 1In contrast, prior art
zero padding or mirror image methods, as described by
Chang et al., "Transform Coding of Arbitrarily-Shaped
Image Segments," ACM Multimedia, pp. 83-88, June, 1993,
apply compression to extrapolated objects that are filled
with pixels having zero color components values such as
those applied in function block 410. The drastic image
change than occurs between an object and the zero-padded
regions introduces high frequency changes that are
difficult to compress or introduce image artifacts upon
compression. Object extrapolation method 400 overcomes
such disadvantages.

ALTERNATIVE ENCODER METHOD

Fig. 19A is a functional block diagram of an
encoder method 500 that employs a Laplacian pyramid
encoder with unique filters that maintain nonlinear
aspects of image features, such as edges, while also
providing high compression. Conventional Laplacian
pPyramid encoders are described, for example, in the
Laplacian Pyramid as a Compact Image Code by Burt and
Addleson, IEEE Trans. Comm., Vol. 31, No. 4, pp. 532-540,
April 1983. Encoder method 500 is capable of providing
the encoding described with reference to function block
112 of video compression encoder process 64 shown in Fig.
3, as well as whenever else DCT on wavelet encoding is
suggested or used. By way of example, encoder method 500
is described with reference to encoding of estimated error
110 (Fig. 3).

A first decimation filter 502 receives pixel
information corresponding to an estimated error 110 (Fig.
3) and filters the pixels according to a filter criterion.
In a conventional Laplacian pyramid method, the decimation
filter is a low-pass filter such as a Gaussian weighting

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-50-

function. In accordance with encoder method 500, however,
decimation filter 502 preferably employs a median filter
and, more specifically, a 3x3 nonseparable median filter.

To illustrate, Fig. 20A is a simplified
representation of the color component values for one color
component (e.g., red) for an arbitrary set or array of
pixels 504. Although described with particular reference
to red color component values, this illustration is
similarly applied to the green and blue color component
values of pixels 504.

With reference to the preferred embodiment of
decimation filter 502, filter blocks 506 having dimensions
of 3x3 pixels are defined among pixels 504. For each
pixel block 506, the median pixel intensity value is
identified or selected. With reference to pixel blocks
506a-506c, for example, decimation filter 502 provides the
respective values of 8, 9, and 10, which are listed as the
first three pixels 512 in Fig. 20B.

It will be appreciated, however, that decimation
filter 502 could employ other median filters according to
this invention. Accordingly, for each group of pixels
having associated color component values of {a,, a,,

a,.,} the median filter would select a median value a,.

A first 2x2 down sampling filter 514 samples
alternate pixels 512 in vertical and horizontal directions
to provide additional compression. Fig. 20C represents a
resulting compressed set of pixels 515.

A 2x2 up sample filter 516 inserts a pixel of
zero value in place of each pixel 512 omitted by down
sampling filter 514, and interpolation filter 518 assigns
to the zero-value pixel a pixel value of an average of the
opposed adjacent pixels, or a previous assigned value if
the zero-value pixel is not between an opposed pair of
non-zero value pixels. To illustrate, Fig. 20D represents
a resulting set or array of value pixels 520.

A difference 522 is taken between the color

component values of the set of pixelgs 504 and the

WO 97/35275 PCT/US97/04662

10

15

20

25

30

-51-

corresponding color component values for set of pixels 520
to form a zero-order image component I,.

A second decimation filter 526 receives color
component values corresponding to the compressed set of
pixels 515 generated by first 2x2 down sampling filter
514. Decimation filter 526 preferably is the same as
decimation filter 502 (e.g., a 3x3 nonseparable median
filter). Accordingly, decimation filter 526 functions in
the same manner as decimation filter 502 and delivers a
resulting compressed set or array of pixels (not shown) to
a second 2x2 down sampling filter 528.

Down sampling filter 528 functions in the same
manner as down sampling filter 514 and forms a second
order image component L, that also is delivered to a 2x2
up sample filter 530 and an interpolation filter 531 that
function in the same manner as up sample filter 516 and
interpolation filter 518, respectively. A difference 532
is taken between the color component values of the set of
pixels 515 and the resulting color component values
provided by interpolation filter 531 to form a first-order
image component I,.

The image components 1I,, I,, and L, are
respective

of colosetsmponent values that represent the color
component values for an nxn array of pixels 504.

Image component I, maintains the high frequency
components (e.g., edges) of an image represented by the
original set of pixel 504. Image components I, and L,
represent low frequency aspects of the original image.
Image components I,, I, and L, provide relative compression
of the original image. Image component I, and I, maintain
high frequency features (e.g., edges) in a format that is

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-52-

highly compressible due to the relatively high correlation
between the values of adjacent pixels. Image component L,
is not readily compressible because it includes primarily
low frequency image features, but is a set of relatively
small size.

Fig. 19B is a functional block diagram of a
decoder method 536 that decodes or inverse encodes image
components I,, I,, and L, generated by encoder method 500.
Decoder method 536 includes a first 2x2 up sample filter
538 that receives image component L, and interposes a
pixel of zero value between each adjacent pair of pixels.
An interpolation filter 539 assigns to the zero-value
pixel a pixel value that preferably is an average of the
values of the adjacent pixels, or a previous assigned
value if the zero-value pixel is not between an opposed
pair of non-zero-value pixels. First 2x2 up sample filter
538 operates in substantially the same manner as up sample
filters 516 and 530 of Fig. 19A, and interpolation filter
539 operates in substantially the same manner as
interpolation filters 518 and 531.

A sum 540 is determined between image component
I, and the color component values corresponding to the
decompressed set of pixels generated by first 2x2 up
sample filter 538 and interpolation filter 539. A second
2x2 up sample filter 542 interposes a pixel of zero value
between each adjacent pair of pixels generated by sum 540.
An interpolation filter 543 assigns to the zero-value
pixel a pixel value that includes an average of the values
of the adjacent pixels, or a previous assigned value if
the zero-value pixel is not between an opposed pair of
non-zero-value pixels. Up sample filter 542 and
interpolation filter 543 are substantially the same as up
sample filter 538 and interpolation filter 539,
respectively.

A sum 544 sums the image component I, with the
color component values corresponding to the decompressed
set of pixels generated by second 2x2 up sample filter 542

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-53-

and interpolation filter 543. Sum 544 provides
decompressed estimated error 110 corresponding to the
estimated error 110 delivered to encoder process 500.

TRANSFORM CODING OF MOTION VECTORS

Conventional video compression encoder
processes, such as MPEG-1 or MPEG-2, utilize only sparse
motion vector fields to represent the motion of
significantly larger pixel arrays of a regular size and
configuration. The motion vector fields are sparse in
that only one motion vector is used to represent the
motion of a pixel array having dimensions of, for example,
16 x 16 pixels. The sparse motion vector fields, together
with transform encoding of underlying images or pixels by,
for example, discrete cosine transform (DCT) encoding,
provide conventional video compression encoding.

In contrast, video compression encoding process
64 (Fig. 3) utilizes dense motion vector fields in which
motion vectors are determined for all, or virtually all,
pixels of an object. Such dense motion vector fields
significantly improve the accuracy with which motion
between corresponding pixels is represented. Although the
increased accuracy can significantly reduce the errors
associated with conventional sparse motion vector field
representations, the additional information included in
dense motion vector fields represent an increase in the
amount of information representing a video sequence. In
accordance with this invention, therefore, dense motion
vector fields are themselves compressed or encoded to
improve the compression ratio provided by this invention.

Fig. 21 is a functional block diagram of a
motion vector encoding process 560 for encoding or
compressing motion vector fields and, preferably, dense
motion vector fields such as those generated in accordance
with dense motion transformation 96 of Fig. 3. It will be
appreciated that such dense motion vector fields from a
selected object typically will have greater continuity or
"smoothness" than the underlying pixels corresponding to

WO 97/35275 PCT/US97/04662

10

15

20

25

30

-54-

the object. As a result, compression or encoding of the
dense motion vector fields will attain a greater
compression ratio than would compression or encoding of
the underlying pixels.

Function block 562 indicates that a dense motion
vector field is obtained for an object or a portion of an
object in accordance with, for example, the processes of
function block 96 described with reference to Fig. 3.
Accordingly, the dense motion vector field will correspond
to an object or other image portion of arbitrary
configuration or size.

Function block 564 indicates that the
configuration of the dense motion vector field is
extrapolated to a regular, preferably rectangular,
configuration to facilitate encoding or compression.
Preferably, the dense motion vector field configuration is
extrapolated to a regular configuration by precompression
extrapolation method 400 described with reference to Figs.
17A and 17B. It will be appreciated that conventional
extrapolation methods, such as a mirror image method,
could alternatively be utilized.

Function block 566 indicates that the dense
motion vector field with its extrapolated regular
configuration is encoded or compressed according to
conventional encoding transformations such as, for
example, discrete cosine transformation (DCT) or lattice
wavelet compression, the former of which is preferred.

Function block 568 indicates that the encoded
dense motion vector field is further compressed or encoded
by a conventional lossless still image compression method
such as entropy encoding to form an encoded dense motion
vector field 570. Such a still image compression method
is described with reference to function block 114 of Fig.
3.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-55-

COMPRESSION OF QUANTIZED OBJECTS FROM PREVIOUS
VIDEO FRAMES

Referring to Fig. 3, video compression encoder
process 64 uses quantized prior object 98 determined with
reference to a prior frame N-1 to encode a corresponding
object in a next successive frame N. As a consequence,
encoder process 64 requires that quantized prior object 98
be stored in an accessible memory buffer. With
conventional video display resolutions, such a memory
buffer would require a capacity of at least one megabyte
to store the quantized prior object 98 for a single video
frame. Higher resolution display formats would require
correspondingly larger memory buffers.

Fig. 22 is a functional block diagram of a
quantized object encoder-decoder (codec) process 600 that
compresses and selectively decompresses quantized prior
objects 98 to reduce the required capacity of a quantized
object memory buffer.

Function block 602 indicates that each quantized
object 98 in an image frame is encoded on a block-by-block
manner by a lossy encoding or compression method such as
discrete cosine transform (DCT) encoding or lattice sub-
band (wavelet) compression.

Function block 604 indicates that the encoded or
compressed quantized objects are stored in a memory buffer
(not shown) .

Function block 606 indicates that encoded
quantized objects are retrieved from the memory buffer in
anticipation of processing a corresponding object in a
next successive video frame.

Function block 608 indicates that the encoded
quantized object is inverse encoded by, for example, DCT
or wavelet decoding according to the encoding processes
employed with respect to function block 602.

Codec process 600 allows the capacity of the
corresponding memory buffer to be reduced by up to about
80%. Moreover, it will be appreciated that codec process

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-56-

600 would be similarly applicable to the decoder process
corresponding to video compression encoder process 64.

VIDEO COMPRESSION DECODER PROCESS OVERVIEW

Video compression encoder process 64 of Fig. 3
provides encoded or compressed representations of video
signals corresponding to video sequences of multiple image
frames. The compressed representations include object
masks 66, feature points 68, affine transform coefficients
104, and compressed error data 116 from encoder process 64
and compressed master objects 136 from encoder process
130. These compressed representations facilitate storage
or transmission of video information, and are capable of
achieving compression ratios of up to 300 percent greater
than those achievable by conventional video compression
methods such as MPEG-2.

It will be appreciated, however, that retrieving
such compressed video information from data storage or
receiving transmission of the video information requires
that it be decoded or decompressed to reconstruct the
original video signal so that it can be rendered by a
display device such as video display device 52 (Figs. 2A
and 2B). As with conventional encoding processes such as
MPEG-1, MPEG-2, and H.26X, the decompression or decoding
of the video information is substantially the inverse of
the process by which the original video signal is encoded
or compressed.

Fig. 23A is a functional block diagram of a
video compression decoder process 700 for decompressing
video information generated by video compression encoder
process 64 of Fig. 3. For purposes of consistency with
the description of encoder process 64, decoder process 700
is described with reference to Figs. 2A and 2B. Decoder
process 700 retrieves from memory or receives as a
transmission encoded video information that includes
object masks 66, feature points 68, compressed master
objects 136, affine transform coefficients 104, and

compressed error data 116.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-57-

Decoder process 700 performs operations that are
the inverse of those of encoder process 64 (Fig. 3).
Accordingly, each of the above-described preferred
operations of encoder process 64 having a decoding
counterpart would similarly be inversed.

Function block 702 indicates that masks 66,
feature points 68, transform coefficients 104, and
compressed error data 116 are retrieved from memory or
received as a transmission for processing by decoder
pProcess 700.

Fig. 23B is a functional block diagram of a
master object decoder process 704 for decoding or
decompressing compressed master object 136. Function
block 706 indicates that compressed master object data 136
are entropy decoded by the inverse of the conventional
lossless entropy encoding method in function block 134 of
Fig. 3B. Function block 708 indicates that the entropy
decoded master object from function block 706 is decoded
according to an inverse of the conventional lossy wavelet
encoding process used in function block 132 of Fig. 3B.

Function block 712 indicates that dense motion
transformations, preferably multi-dimensional affine
transformations, are generated from affine coefficients
104. Preferably, affine coefficients 104 are quantized in
accordance with transformation method 350 (Fig. 12), and
the affine transformations are generated from the
quantized affine coefficients by performing the inverse of
the operations described with reference to function block
362 (Fig. 12).

Function block 714 indicates that a quantized
form of an object 716 in a prior frame N-1 (e.g.,
rectangular solid object 56a in image frame 54a) provided
via a timing delay 718 is transformed by the dense motion
transformation to provide a predicted form of the object
720 in a current frame N (e.g., rectangular solid object
56b in image frame 54b) .

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-58-

Function block 722 indicates that for image
frame N, predicted current object 720 is added to a
guantized error 724 generated from compressed error data
11l6. In particular, function block 726 indicates that
compressed error data 116 is decoded by an inverse process
to that of compression process 114 (Fig. 3A). 1In the
preferred embodiment, function blocks 114 and 726 are
based upon a conventional lossless still image compression
method such as entropy encoding.

Function block 728 indicates that the entropy
decoded error data from function block 726 is further
decompressed or decoded by a conventional lossy still
image compression method corresponding to that utilized in
function block 112 (Fig. 3A). 1In the preferred
embodiment, the decompression or decoding of function
block 728 is by a lattice subband (wavelet) process or a
discrete cosine transform (DCT) process.

Function block 722 provides quantized object 730
for frame N as the sum of predicted object 720 and
quantized error 724, representing a reconstructed or
decompressed object 732 that is delivered to function
block 718 for reconstruction of the object in subsequent
frames.

Function block 734 indicates that quantized
object 732 is assembled with other objects of a current
image frame N to form a decompressed video signal.

SIMPLIFIED CHAIN ENCODING

Masks, objects, sprites, and other graphical
features, commonly are represented by their contours.

As shown in and explained with reference to FIG. 5A, for
example, rectangular solid object 56a is bounded by an
object perimeter or contour 142. A conventional process
or encoding or compressing contours is referred to as
chain encoding.

FIG. 24A shows a conventional eight-point

chain code 800 from which contours on a conventional

WO 97/35275 PCT/US97/04662

10

15

20

25

30

-59.

recta-linear pixel array are defined. Based upon a
current pixel location X, a next successive pixel
location in the contour extends in one of directions
802a-802h. The chain code value for the next successive
pixel is the numeric value corresponding to the
particular direction 802. As examples, the right,
horizontal direction 802a corresponds to the chain code
value O, and the downward, vertical direction 802g
corresponds to the chain code value 6. Any continuous
contour can be described from eight-point chain code
800.

With reference to FIG. 24B, a contour 804
represented by pixels 806 designated X and A-G can be
encoded in a conventional manner by the chain code
sequence {00764432}. In particular, beginning from
pixel X, pixels A and B are positioned in direction 0
relative to respective pixels X and A. Pixel C is
positioned in direction 7 relative to pixel B.
Remaining pixels D-G are similarly positioned in
directions corresponding to the chain code values listed
above. In a binary representation, each conventional
chain code value is represented by three digital bits.

FIG. 25A is a functional block diagram of a
chain code process 810 of the present invention capable
of providing contour compression ratios at least about
twice those of conventional chain code processes. Chain
code process 810 achieves such improved compression
ratios by limiting the number of chain codes and
defining them relative to the alignment of adjacent
pairs of pixels. Based upon experimentation, it has
been discovered that the limited chain codes of chain
code process 810 directly represent more than 99.8% of
pixel alignments of object or mask contours. Special
case chain code modifications accommodate the remaining

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-60-

less than 0.2% of pixel alignment as described below in
greater detail.

Function block 816 indicates that a contour is
obtained for a mask, object, or sprite. The contour may
be obtained, for example, by object segmentation process
140 described with reference to FIGS. 4 and 5.

Function block 818 indicates that an initial
pixel in the contour is identified. The initial pixel
may be identified by common methods such as, for
example, a pixel with minimal X-axis and Y-axis
coordinate positions.

Function block 820 indicates that a
predetermined chain code is assigned to represent the
relationship between the initial pixel and the next
adjacent pixel in the contour. Preferably, the
predetermined chain code corresponds to a forward
direction.)

FIG. 25B is a diagrammatic representation of a
three-point chain code 822 of the present invention.
Chain code 822 includes three chain codes 824a, 824b,
and 824c that correspond to a forward direction 826a, a
leftward direction 826b, and a rightward direction 826c,
respectfully. Directions 826a-826c are defined relative
to a preceding alignment direction 828 between a current
pixel 830 and an adjacent pixel 832 representing the
preceding pixel in the chain code.

Preceding alignment direction 828 may extend
in any of the directions 802 shown in Fig. 24A, but is
shown with a specific orientation (i.e., right,
horizontal) for purposes of illustration. Direction
826a is defined, therefore, as the same as direction
828. Directions 826b and 826c differ from direction 828
by leftward and rightward displacements of one pixel.

It has been determined experimentally that
slightly more than 50% of chain codes 824 correspond to

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-61-

forward direction 826a, and slightly less than 25% of
chain codes 824 correspond to each of directions 826b
and 826cC.

Function block 836 represents an inquiry as to
whether the next adjacent pixel in the contour conforms
to one of directions 826. Whenever the next adjacent
pixel in the contour conforms to one of directions 826,
function block 836 proceeds to function block 838, and
otherwise proceeds to function block 840.

Function block 838 indicates that the next
adjacent pixel is assigned a chain code 824
corresponding to its direction 826 relative to the
direction 828 along which the adjacent preceding pair of
pixels are aligned.

Function block 840 indicates that a pixel
sequence conforming to one of directions 826 is
substituted for the actual nonconformal pixel sequence.
Based upon experimentation, it has been determined that
such substitutions typically will arise in fewer than
0.2% of pixel sequences in a contour and may be
accommodated by one of six special-case modifications.

FIG. 25C is a diagrammatic representation of
the six special-case modifications 842 for converting
non-conformal pixel sequences to pixel sequences that
conform to directions 826. Within each modification
842, a pixel sequence 844 is converted to a pixel
sequence 846. In each of pixel sequences 844 of
adjacent respective pixels X', X2, A, B, the direction
between pixels A and B does not conform to one of
directions 826 due to the alignment of pixel A relative
to the alignment of pixels X' and XZ.

In pixel sequence 844a, initial pixel
alignments 850a and 852a represent a nonconformal right-
angle direction change. Accordingly, in pixel sequence
846a, pixel A of pixel sequence 844a is omitted,

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-62-

resulting in a pixel direction 854a that conforms to
pixel direction 826a. Pixel sequence modifications
842b-842f similarly convert nonconformal pixel sequences
844b-844f to conformal sequences 846b-846f,
respectively.

Pixel sequence modifications 842 omit pixels
that cause pixel direction alignments that change by 90°
or more relative to the alignments of adjacent preceding
pixels X1 and X2. One effect is to increase the minimum
radius of curvature of a contour representing a right
angle to over three pixels. Pixel modifications 842
cause, therefore, a minor loss of extremely fine contour
detail. According to this invention, however, it has
been determined that the loss of such details is
acceptable under most viewing conditions.

‘ Function block 860 represents an inquiry as to
whether there is another pixel in the contour to be
assigned a chain code. Whenever there is another pixel
in the contour to be assigned a chain code, function
block returns to function block 836, and otherwise
proceeds to function block 862.

Function block 862 indicates that nonconformal
pixel alignment directions introduced or incurred by the
process of function block 840 are removed. 1In a
preferred embodiment, the nonconformal direction changes
may be omitted simply by returning to function block 816
and repeating process 810 until no nonconformed pixel
sequences remain, which typically is achieved in fewer
than 8 iterations. In an alternative embodiment, such
incurred nonconformal direction changes may be corrected
in "real-time" by checking for and correcting any
incurred nonconformal direction changes each time a
nonconformal direction change is modified.

Function block 864 indicates that a Huffman

code is generated from the resulting simplified chain

WO 97/35275 PCT/US97/04662

10

15

20

25

30

-63-

code. With chain codes 824a-824c corresponding to
directions 826A-826C that occur for about 50%, 25% and
25% of pixels in a contour, respective Huffman codes of
0, 11, and 10 are assigned. Such first order Huffman
codes allow chain process 810 to represent contours at a
bit rate of less than 1.5 bits per pixel in the contour.
Such a bitrate represents approximately a 50%
compression ratio improvement over conventional chain
code processes.

It will be appreciated that higher order
Huffman coding could provide higher compression ratios.
Higher order Huffman coding includes, for example,
assigning predetermined values to preselected sequences
of first order Huffman codes.

SPRITE GENERATION

The present invention includes generating
sprites for use in connection with encoding determinate
motion video (movie). Bitmaps are accreted into bitmap
series that comprise a plurality of sequential bitmaps
of sequential images from an image source. Accretion is
used to overcome the problem of occluded pixels where
objects or figures move relative to one another or where
one figure occludes another similar to the way a
foreground figure occludes the background. For example,
when a foreground figure moves and reveals some new
background, there is no way to build that new background
from a previous bitmap unless the previous bitmap was
first enhanced by including in it the pixels that were
going to be uncovered in the subsequent bitmap. This
method takes an incomplete image of a figure and looks
forward in time to find any pixels that belong to the
image but are not to be immediately visible. Those
pixels are used to create a composite bitmap for the

figure. With the composite bitmap, any future view of

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-64-

the figure can be created by distorting the composite
bitmap.

The encoding process begins by an operator
identifying the figures and the parts of the figures of
a current bitmap from a current bitmap series. Feature
or distortion points are selected by the operator on the
features of the parts about which the parts of the
figures move. A current grid of triangles is
superimposed onto the parts of the current bitmap. The
triangles that constitute the current grid of triangles
are formed by connecting adjacent distortion points.

The distortion points are the vertices of the triangles.
The current location of each triangle on the current
bitmap is determined and stored to the storage device.

A portion of data of the current bitmap that defines the
first image within the current location of each triangle
is retained for further use.

A succeeding bitmap that defines a second
image of the current bitmap series is received from the
image source, and the figures and the parts of the
figure are identified by the operator. Next, the
current grid of triangles from the current bitmap is
superimposed onto the succeeding bitmap. The distortion
points of current grid of triangles are realigned to
coincide with the features of the corresponding figures
on the succeeding bitmap. The realigned distortion
points form a succeeding grid of triangles on the
succeeding bitmap of the second image. The succeeding
location of each triangle on the succeeding bitmap is
determined and stored to the storage device. A portion
of data of the succeeding bitmap that defines the second
image within the succeeding location of each triangle is
retained for further use.

The process of determining and storing the

current and succeeding locations of each triangle is

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-65-

repeated for the plurality of sequential bitmaps of the
current bitmap series. When that process is completed,
an average image of each triangle in the current bitmap
series is determined from the separately retained data.
The average image of each triangle is stored to the
storage device.

During playback, the average image of each
triangle of the current bitmap series and the current
location of each triangle of the current bitmap are
retrieved from the storage device. A predicted bitmap
is generated by calculating a transformation solution
for transforming the average image of each triangle in
the current bitmap series to the current location of
each triangle of the current bitmap and applying the
transformation solution to the average image of each
triangle. The predicted bitmap is passed to the monitor
for display.

In connection with a playback determinate
motion video (video game) in which the images are
determined by a controlling program at playback, a
sprite bitmap is stored in its entirety on a storage
device. The sprite bitmap comprises a plurality of data
bits that define a sprite image. The sprite bitmap is
displayed on a monitor, and the parts of the sprite are
identified by an operator and distortion points are
selected for the sprite’s parts.

A grid of triangles is superimposed onto the
parts of the sprite bitmap. The triangles that
constitute the grid of triangles are formed by
connecting adjacent distortion points. The distortion
points are the vertices of the triangles. The location
of each triangle of the sprite bitmap is determined and
stored to the storage device.

During playback, a succeeding location of each
triangle is received from a controlling program. The

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-66-

sprite bitmap and the succeeding location of each
triangle on the sprite bitmap are recalled from the
storage device and passed to the display processor. The
succeeding location of each triangle is also passed to
the display processor.

A transformation solution is calculated for
each triangle on the sprite bitmap. A succeeding bitmap
is then generated in the display processor by applying
the transformation solution of each triangle derived
from the sprite bitmap the defines the sprite image
within the location of each triangle. The display
processor passes the succeeding sprite bitmap to a
monitor for display. This process is repeated for each
succeeding location of each triangle requested by the
controlling program.

As shown in Fig. 26, an encoding procedure for
a movie motion video begins at step 900 by the CPU 22
receiving from an image source a current bitmap series.
The current bitmap series comprises a plurality of
sequential bitmaps of sequential images. The current
bitmap series has a current bitmap that comprises a
plurality of data bits which define a first image from
the image source. The first image comprises at least
one figure having at least one part.

Proceeding to step 902, the first image is
displayed to the operator on the monitor 28. From the
monitor 28, the figures of the first image on the
current bitmap are identified by the operator. The
parts of the figure on the current bitmap are then
identified by the operator at step 904.

Next, at step 906, the operator selects
feature or distortion points on the current bitmap. The
distortion points are selected so that the distortion
points coincide with features on the bitmap where

relative movement of a part is likely to occur. It will

10

15

20

25

30

WO 97/35275 PCT/US97/04662

-67-

be understood by those skilled in the art that the
figures, the parts of the figures and the distortion
points on a bitmap may be identified by the computer
system 20 or by assistance from it. It is preferred,
however, that the operator identify the figures, the
parts of the figures and the distortion points on a
bitmap.

Proceeding to step 908, a current grid of
triangles is superimposed onto the parts of the current
bitmap by the computer system 20. With reference to
Fig. 27A, the current grid comprises triangles formed by
connecting adjacent distortion points. The distortion
points form the vertices of the triangles. More
specifically, the first image of the current bit map
comprises a figure, which is a person 970. The person
970 has six parts corresponding to a head 972, a torso
974, a right arm 976, a left arm 978, right leg 980, and
a left leg 982. Distortion points are selected on each
part of the person 970 so that the distortion points
coincide with features where relative movement of a part
is likely to occur. A current grid is superimposed over
each part with the triangles of each current grid formed
by connecting adjacent distortion points. Thus, the
distortion points form the vertices of the triangles.

At step 910, the computer system 20 determines
a current location of each triangle on the current
bitmap. The current location of each triangle on the
current bitmap is defined by the location of the
distortion points that form the vertices of the
triangle. At step 912, the current location of each
triangle is stored to the storage device. A portion of
data derived from the current bitmap that defines the
first image within the current location of each triangle
is retained at step 914.

10

15

20

25

30

WO 97/35275 PCT/US97/04662

-68-

Next, at step 916, a succeeding bitmap of the
current bitmap series is received by the CPU 22. The
succeeding bitmap comprises a plurality of data bits
which define a second image of the current bitmap
series. The second image may or may not include figures
that correspond to the figures in the first image. For
the following steps, the second image is assumed to have
figures that corresponds to the figures in the first
image. At step 918, the current grid of triangles is
superimposed onto the succeeding bitmap. The second
image with the superimposed triangular grid is displayed
to the operator on the monitor 28.

At step 920, the distortion points are
realigned to coincide with corresponding features on the
succeeding bitmap by the operator with assistance from
the computer system 20. The computer system 20 realigns
the distortion using block matching. Any mistakes are
corrected by the operator. With reference to Fig. 27B,
the realigned distortion points form a succeeding grid
of triangles. The realigned distortion points are the
vertices of the triangles. More specifically, the
second image of the succeeding bitmap of person 200
includes head 972, torso 974, right arm 976, left arm
978, right leg 980, and left leg 982. 1In the second
image, however, the right arm 980 is raised. The
current grids of the first image have been superimposed
over each part and their distortion points realigned to
coincide with corresponding features on the second
image. The realigned distortion points define
succeeding grids of triangles. The succeeding grids
comprise triangles formed by connecting the realigned
distortion points. Thus, the realigned distortion point
form the vertices of the triangles of the succeeding
grids.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-69-

Proceeding to step 922, a succeeding location
of each triangle of the succeeding bitmap is determined
by the computer system 20. At step 924, the succeeding
location of each triangle on the succeeding bitmap is
stored the storage device. A portion of data derived
from the succeeding bitmap that defines the second image
within the succeeding location of each triangle is
retained at step 926. Step 926 leads to decisional step
928 where it is determined if a next succeeding bitmap
exists.

If a next succeeding bitmap exists, the YES
branch of decisional step 928 leads to step 930 where
the succeeding bitmap becomes the current bitmap. Step
930 returns to step 916 where a succeeding bitmap of the
current bitmap series is received by the CPU 22. 1If a
next succeeding bitmap does not exist, the NO branch of
decisional step 928 leads to step 932 where an average
image for each triangle of the current bitmap series is
determined. The average image is the median value of
the pixels of a triangle. Use of the average image
makes the process less susceptible to degeneration.
Proceeding to step 934, the average image of each
triangle of the current bitmap series is stored to the
storage device.

Next, at step 936, the current location of
each triangle on the current bitmap is retrieved from
the storage device. An affine transformation solution
for transforming the average image of each triangle to
the current location of the triangle on the current
bitmap is then calculated by the computer system 20 at
step 938. At step 940, a predicted bitmap is generated
by applying the transformation solution of the average
image of each triangle to the current location of each
triangle on the current bitmap. The predicted bitmap is
compared with the current bitmap at step 942.

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-70-

At step 944 a correction bitmap is generated.
The corrected bitmap comprises the data bits of the
current bitmap that were not accurately predicted by the
predicted bitmap. The corrected bitmap is stored to the
storage device at step 948. Step 948 leads to
decisional step 950 where it is determined if a
succeeding bitmap exists.

If a succeeding bitmap exists, the YES branch
of decisional step 950 leads to step 952 where the
succeeding bitmap becomes the current bitmap. Step 952
returns to step 936 where the current location of each
triangle on the current bitmap is retrieved from the
storage device. If a next succeeding bitmap does not
exist, the NO branch of decisional step 950 leads to
decisional step 954 where it is determined if a
succeeding bitmap series exists. If a succeeding bitmap
series does not exist, encoding is finished and the NO
branch of decisional step 954 leads to step 956. 1If a
succeeding bitmap series exists, the YES branch of
decisional step 954 leads to step 958 where the CPU 22
receives the succeeding bitmap series as the current
bitmap series. Step 956 returns to step 902 where the
figures of the first image of the current bitmap series
is identified by the operator.

The process of Fig. 26 describes generation of
a sprite or master object 90 for use by encoder process
64 of Fig. 3. The process of utilizing master object 90
to form predicted objects 102 is described with
reference to Fig. 28.

As shown in Fig. 28, the procedure begins at
step 1000 with a current bitmap series being retrieved.
The current bitmap series comprises a plurality of
sequential bitmaps of sequential images. The current
bitmap series has a current bitmap that comprises a

plurality of data bits which define a first image from

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-71-

the image source. The first image comprises at least
one figure having at least one part.

At step 1002, the average image of each
triangle of the current bitmap series is retrieved from
the storage device. The average image of each triangle
is then passed to a display processor (not shown) at
step 704. It will be appreciated that computer system
20 (Fig. 1) can optionally include a display processor
or other dedicated components for executing for
processes of this invention. Proceeding to step 1006,
the current location of each triangle on the current
bitmap is retrieved from the storage device. The
current location of each triangle is passed to the
display processor at step 1008.

Next, an affine transformation solution for
transforming the average image of each triangle to the
current location of each triangle on the current bitmap
is calculated by the display processor at step 1010.
Proceeding to step 1012, a predicted bitmap is generated
by the display processor by applying the transformation
solution for transforming the average image of each
triangle to the current location of each triangle on the
current bitmap.

At step 1014, a correction bitmap for the
current bitmap is retrieved from the storage device.

The correction bitmap is passed to the display processor
at step 716. A display bitmap is then generated in the
display processor by overlaying the predicted bitmap
with the correction bitmap. The display processor
retains a copy of the average image of each triangle and
passes the display bitmap to the frame buffer for
display on the monitor.

Next, at decisional step 1020, it is
determined if a succeeding bitmap of the current bitmap

series exists. If a succeeding bitmap of the current

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-72-

bitmap series exists, the YES branch of decisional step
1020 leads to step 1022. At step 1022, the succeeding
bitmap becomes the current bitmap. Step 1022 returns to
step 1006 where the location of each triangle on the
current bitmap is retrieved from the storage device.

Returning to decisional step 1020, if a
succeeding bitmap of the current bitmap series does not
exist, the NO branch of decisional step 1020 leads to
decisional step 1024. At decisional step 1024, it is
determined if a succeeding bitmap series exists. If a
succeeding bitmap series does not exist, then the
process is finished and the NO branch of decisional step
1024 leads to step 1026. If a succeeding bitmap series
exists, the YES branch of decisional step 1024 leads to
step 1028. At step 1028, the succeeding bitmap series
becomes the current bitmap series. Step 1028 returns to
step 1000.

REPRESENTATION AND ENCODING OF GENERAL ARBITRARY SHAPES

Fig. 29 is a diagrammatic representation of a
solid binary arbitrary feature or shape 1100
representing a binary mask of an arbitrary object
included in a frame of a video image sequence. As
described hereinabove, each frame of a video image
sequence typically includes multiple objects
corresponding to multiple image features such as
characters, props, and background. The configuration of
solid shape 1100 is arbitrary to represent any such
object having a solid or continuous interior.

As a binary representation relative to its
background 1102, solid shape 1100 corresponds to a mask,
such as those described hereinabove with respect to
Figs. 2A, 2B, and 3A, by which objects are identified
and encoded. Solid shape 1100 is characterized by a
continuous outer contour or boundary 1104 and a uniform

or single-state interior 1106 within boundary 1104.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-73-

Solid shape 1100 includes no disconnected or embedded
portions of different binary states. Solid shape 1100
is capable of being compressed or encoded accurately
with respect to its boundary 1104 by conventional
contour coding techniques such as chain coding or
polygonal contour approximation, or by the simplified
chain encoding process described hereinabove with
reference to Figs. 25A-25C.

Fig. 30 is a diagrammatic representation of a
general binary arbitrary feature or shape 1110
representing a binary mask of an arbitrary object
included in the frame of a video image sequence.
General shape 1110 preferably corresponds to a binary
mask distinct from its background 1112 by which objects
are identified and encoded. The configuration of
general shape 1110 is general in that it represents
generally any object, including objects having
discontinuous or embedded regions or components within
their interiors. 1In this regard, solid shape 1100
represents a simplified subset of general shape 1110.

General shape 1110 includes multiple
continuous contours or boundaries 1114 that are
disconnected or enclosed within each other. Fig. 30A
shows a first set of disconnected boundaries 1l14a-1114c
corresponding to a first hierarchical level, a second
set of disconnected boundaries 1114d-1114f corresponding
to a second hierarchical level, and a third set of
disconnected boundaries 11149 and 1114h corresponding to
a third hierarchical level. Boundaries 1114a-1114h
bound or encompass corresponding uniform or single-state
components l1ll16a-1116h. Accordingly, general shape 1110
includes disconnected components (e.g., 1ll4a and 1114c)
and embedded components (e.g., 1ll4e and 1114g) within
host components (e.g., 1114a and 1114e); the embedded
components being of different binary states than their

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-74.-

host components. Embedded components are analogous to
holes or islands within host components correspond to
islands or holes, respectively.

Accurately recognizing and encoding the
disconnected or embedded components of solid shape 1110
provide improved video compression because such general
shapes correspond better to many objects commonly found
in general video image sequences. The disconnected or
embedded components of general shape 1110 cannot be
represented by some conventional shape encoding
techniques and are represented inefficiently by other
techniques. As a consequence, such general shapes
conventionally are simplified to ignore embedded
components, which can introduce significant encoding
errors during video compression.

Fig. 31 is a functional block diagram of a
hierarchical decomposition and encoding process 1130
capable of accurately representing general arbitrary
shape 1110 with its disconnected and embedded components
1116a-1116h. Hierarchical process 1130 automatically
decomposes general binary arbitrary shapes into distinct
component masks that have continuous boundaries and no
embedded components of contrasting binary states.
Process 1130 is hierarchical in that embedded components
are decomposed from host components iteratively to form
hierarchical levels of component masks. Each component
mask is capable of being compressed or encoded
accurately with respect to its boundary by conventional
contour coding techniques such as chain coding or
polygonal contour approximation, or by the simplified
chain coding process described hereinabove with
reference to Figs. 25A-25C.

Hierarchical process 1130 receives binary
shape data 1132 corresponding to general arbitrary shape
1110, which may include simple solid shapes and general

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-75-

shapes having disconnected or embedded components. For
purposes of explanation, hierarchical representation
process 1130 is described with reference to general
arbitrary shape 1110 with its embedded and disconnected
components 1ll6a-1116h, but is similarly applicable to
simple shape 1100.

Process block 1134 indicates that a bounding
box 1136 of pixels (Fig. 30B) is defined about and
éncompasses components 1116a-1116h of general arbitrary
shape 1110. Preferably, bounding box 1136 is a right
regular array of pixels with dimensions selected
automatically or by a user. It will be appreciated that
bounding box 1136 as used with respect to process 1130
preferably is oversized relative to the components
1116a-1116h of general arbitrary shape 1110. In some
applications, a bounding box is deemed as being fitted
closely to an enclosed feature. Bounding box 1136 is
preferably oversized to assure that all components of a
shape are enclosed.

Process block 1140 indicates that an initial
pixel 1142 within bounding box 1136 and corresponding to
background 1112 is sought. In the preferred binary
representation, background 1112 is of a known binary
state. 1Initial pixel 1142 is sought initially at a
selected corner of bounding box 1136 (e.g., the upper
left corner shown in Fig. 30B). If that location
corresponds to general shape 1110 rather than background
1112, a search is commenced successively at the
remaining corners and along the boundaries of bounding
box 1136 to identify an initial pixel 1142 correspondlng
to the background 1112.

Decision block 1144 represents an inquiry
whether an initial pixel 1142 is identified along the
boundary of bounding box 1136 and corresponding to
background 1112. Whenever such an initial pixel 1142 is

10

15

20

25

30

WO 97/35275 PCT/US97/04662

-76-

identified, decision block 1144 proceeds to process
block 1146. Whenever no pixel along the boundary of
bounding box 1136 corresponds to background 1112,
decision block 1144 proceeds to process block 1148.
Process block 1146 indicates that all pixels
of the binary state corresponding to background 1112 and
connected together with initial pixel 1142 are assigned
the opposite binary state. As a result, bounding box
1136 is "filled" around major objects 1lll6a-1116c and
forms shapes complementary to major objects 1116a-1116c.
This filling of bounding box 1136 may be performed by
any conventional filling technique such as region grow,
which is explained in Computer Graphics: Principles and
Practice, 2d ed., Foley et al., Addison-Wesley Publishig
Co., N.Y., (1991). As shown in Fig. 30C, the filling of
background 1112 in bounding box 1136 leaves unfilled
complementary connected components 1142a-1142c
corresponding to respective major objects 1ll6a-1116c.
Connected components 1142a-1142c encompass all objects
embedded within major objects 1116a-1116c a provide a
first hierarchical decomposition of general object 1110.
Process block 1148 indicates that the pixels
within bounding box 1136 of the same binary state as,
and connected to, the pixels along the boundary of
bounding box 1136 are assigned the opposite binary
state. It will be appreciated that the pixels filled by
this process block relate not to background 1112, but
rather an object or objects (not shown) that extend to
the boundary of bounding box 1136. As a result,
bounding box 1136 is "filled" around objects embedded
within one or more host objects and forms shapes
complementary to the embedded objects. This filling of
bounding box 1136 may be performed by the same filling
technique used in connection with process block 1146.

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-77-

Process block 1150 indicates that connected
components formed by process blocks 1146 and 1148 are
identified and filled. With reference to the connected
components formed by process block 1146, for example,
connected components 1142a-1142c are identified by their
contrasting binary state from that of the filled
background 1112 and preferably are filled to form solid
masks corresponding to respective major objects 1l1l6a-
1116c. The solid masks corresponding to connected
components 1142a-1142c provide a basis for identifying
and processing similarly objects embedded within major
objects 1116a-1116c.

Process block 1152 indicates that a boundary
or contour of each of the connected components
identified by process block 1150 is encoded or
compressed by a contour coding technique such as
conventional chain coding or conventional polygonal
contour approximation, or preferably, by the simplified
chain coding process described hereinabove with
references to Figs. 25A-25C. It will be appreciated
that each of the connected components (e.g., connected
components 1142a-1142c) is effectively a simple binary
object capable of being represented accurately by such
contour encoding techniques. Complementary components
1142a-1142c represent one level of general arbitrary
object decomposition that accurately represents objects
at a common level of hierarchical decomposition.
Subsequent iterations of process 1130 provides analogous
representations of successively embedded objects.

Difference block 1154 indicates that a logical
difference is taken between the complementary components
identified in accordance with process block 1150 and the
corresponding objects in the original binary shape data
1132. The difference is determined on a pixel-by-pixel

basis. For example, the difference between major

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-78-

objects 1116a-1116c and the solid masks formed from
respective complementary components 11l42a-1142c
identifies any discontinuous objects embedded within
objects 1ll6a-1116c. Fig. 30D is a diagrammatic
representation of the resulting difference showing that
within major object 11l16a (shown in outline for
reference purposes) embedded objects 1116d and 1116e are
identified and that within major object 1116b (shown in
outline for reference purposes) embedded object 1116f is
identified. Fig. 30D also demonstrates that the absence
of a difference between major object 1114c and
complementary component 1142c indicates that no objects
are embedded therein. As a result, encoding boundary
1116c of object 1114c completely describes and
represents in a compressed formal object 11l4c.

Difference block 1154 identifies discontinuous
embedded objects (e.g. 1116d, 1ll16e, and 1116f), which
are delivered to process block 1132 for processing in
the same manner as were major objects 11ll6a-1116c.
Moreover, each successively embedded layer of objects,
such as objects 1116g and 1116h within object 111l6e,
also is processed successively in this manner. Thus,
successively embedded objects or layers are processed
hierarchically by this method to encode accurately
general arbitrary binary shapes. The difference
operation of difference block 154 functions to identify
discontinuous embedded objects. This function could be
achieved alternatively by assigning the other binary
state to the complementary components and summing them
with the original binary shape data.

It will be appreciated that as binary objects,
successively embedded discontinuous components alternate
between first and second binary states. For reference
purposes, objects identified by even-numbered operations

of difference block 1154 (e.g. 0, 2...) are referred to

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-79-

as "islands" and include in Fig. 30A objects 1l116a-
11l16c, 1116g, and 1116h. Objects identified by odd-
numbered operations of difference block 1154 (e.g. 1,
3...) are referred to as "holes" and include in Fig. 30a
objects 1116d, 1116e, and 1116f.

Reconstruction or recomposition of general
binary arbitrary shape 1110 from the contour encoded
objects identified hierarchically by encoding process
1130 may be performed hierarchically according to the
sequence in which successive islands and holes are
identified. Each successive hierarchical level is
overlaid on a previous, hierarchically higher level.
For example, complementary components 1142a-1142c would
initially be decoded or decompressed from their contour
encoded formats, as is known in the art or described
above. Subsequently, complementary components 1142d-
1142f corresponding to holes 1116d-1116f would be
decoded or decompressed and overlaid on complementary
components 1ll42a and 1142b. Finally, complementary
components 1142g and 1142h corresponding to embedded
islands 1116g and 1116h would be decompressed and
overlaid onto the reconstructed shape. As a result,
general arbitrary shape 1110 corresponding to a binary
mask may be accurately encoded and decoded for
compressed storage or transmission.

Fig. 32 is a functional block diagram of an
encoding process for representing non-binary object
information such as object transparency data, which is
sometimes referred to as an alpha channel. As is known
in the art, each pixel of a video image has a pixel
value corresponding to predefined image characteristics.
Frequently, pixels are assigned color component values
corresponding to red, green, and blue-color components
that together provide a substantially full color range.

Each color component could be represented, for example,

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-80-

by an 8-bit digital value. Alternatively, pixel values
can be represented by a YUV uniform color space in which
Y represents luminance and U and V represent
chromaticity, as is known in the art. Each of such Y,
U, and V color space components also could be
represented by 8-bit digital values.

In addition to such color space
representations for the pixels of an image, some object
based video image representations include a transparency
or "alpha" channel that represents the relative
transparency of the pixels corresponding to a selected
object. Alpha channels commonly are used in video
coding or compression, as well as computer graphics,
image composition, etc. On a normalized scale, for
example, an alpha or transparency value of 0 could
represent complete transparency and correspond to an
object (e.g. background) over which any other object
with a non-zero transparency value would be rendered.
In contrast, a normalized transparency value of 1 could
represent complete opacity such that a corresponding
object would be rendered over any other object in an
image. It will be appreciated that such transparency
values can be represented by at least 8-bit, and
frequently 12- or 16-bit, digital values and that the
relative transparency values of overlapping objects is
used to represent and render overlapping objects.

Encoding or compressing video data that
includes a transparency channel requires that the
transparency channel also be encoded or compressed.
However, acceptable encoding of a transparency channel
requires that the boundaries of transparency
representation be accurately encoded and decoded.
Erroneous representations of the transparency channel
boundaries of an object or objects creates discernible

and undesirable discontinuities in a decompressed or

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-81-

regenerated image. An aspect of the present invention
is, therefore, identifying the significance of
accurately encoding transparency channel boundaries and
providing a process for doing so.

Fig. 32 is a functional block diagram of an
encoding process 1160 for representing non-binary object
information, such as object transparency data, so as to
maintain accurate representations of object boundaries.
Encoder process 1160 provides accurate transparency data
boundary identification and encoding by hierarchical
encoding process 1130 (Fig. 31). 1In addition, encoding
process 1160 utilizes precompression extrapolation
method 400 (Figs. 17A and 17B) for extrapolating
transparency values for objects of arbitrary
configuration to a predefined configuration to
facilitate compression or encoding in a conventional
manner, such as by discrete cosine transform (DCT) or
lattice wavelet compression, as described above.

This combination of hierarchical encoding
process 1130 and precompression extrapolation method 400
allows transparency data to be encoded efficiently while
maintaining highly accurate representations of
transparency data boundaries. Moreover, it will be
appreciated that encoding process 1160 would be
similarly applicable to other multi-value object data
types for which accurate boundary representations and
compression efficiency are necessary or desirable.

Encoding process 1160 receives multi-value
transparency data 1162 corresponding to a region of a
video image frame. Typically, transparency data 1162
would correspond to one or more objects, some of which
may be partly or completely overlapping others.
Different transparency values typically would be
associated with different ones of the objects according
to the relative transparency or opacity of the objects.

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-82-

Process block 1164 indicates that a threshold
filter is applied to the transparency data. The
threshold filter typically would have a relatively low,
sometimes zero, threshold value to distinguish highly or
completely transparent objects (e.g., background) from
other objects. The threshold filter of process block
1164 provides a binary image representation that can
include general arbitrary shapes of the type described
hereinabove.

Process block 1168 indicates that the binary
transparency data are applied to hierarchical encoding
process 1130. Encoder process 1130 hierarchically
decomposes and encodes the binary transparency data to
provide precise encoded representations of the
corresponding boundaries of the transparency data, as
described above with reference to Fig. 31.

Process block 1170 indicates that the
transparency data 1162 received by encoding process 1160
are extrapolated to a predefined configuration to
facilitate compression. Preferably, the transparency
data are extrapolated by precompression extrapolation
method 400, described hereinabove with reference to
Figs. 17A and 17B, and the predefined configuration of
extrapolation block boundary 406 (Figs. 18) corresponds
to bounding box 1136 of encoding process 1130.

Process block 1172 indicates that the
extrapolated transparency data are encoded by an
intraframe encoding process such as DCT or lattice
wavelet encoding. It will be appreciated, however, that
interframe encoding as described above with reference to
process 64 can also be applied to the transparency data,
resulting in a residual signal that preferably would be
encoded by DCT or lattice wavelet encoding.

Encoding process 1160 provides as compressed

or encoded data for storage or transmission an encoded

WO 97/35275 PCT/US97/04662

10

15

20

-83-

boundary representation at process block 1168 and an
intra-frame encoded representation of the transparency
data at process block 1172. Decoding of this
information includes conventional intra-frame decoding
of the transparency value data (e.g. DCT or wavelet),
decoding the boundary information corresponding to the
binary transparency objects identified by the threshold
filter of process block 1164, and applying the decoded
boundary information as a mask to the decoded
transparency value information to represent
reconstituted or decompressed transparency data.

Having illustrated and described the
principles of the present invention in a preferred
embodiment, it should be apparent to those skilled in the
art that the embodiment can be modified in arrangement and
detail without departing from such principles.
Accordingly, we claim as our invention all such
embodiments as come within the scope and spirit of the
following claims and equivalents thereto.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-84-

WE CLAIM:

1. A method of encoding a general arbitrary
binary image feature in an image segment of a video image
frame, the image feature being bounded by a feature
boundary and including plural feature pixels that each
have a binary pixel value, the image feature including a
feature subcomponent with a subcomponent boundary that is
separate from the feature boundary, and the image segment
including the plural feature pixels and plural non-feature
pixels of the image frame, the method comprising the
steps:

defining the image segment with a predetermined
configuration about the image feature;

identifying the feature boundary within the
image segment and assigning a binary pixel value of a
predetermined state to pixels bounded by the feature
boundary to form a feature mask;

determining a difference between the image
feature and the feature mask to identify the feature
subcomponent with the subcomponent boundary that is
separate from the feature boundary; and

designating the feature subcomponent as a newly
designated image feature and repeating these method steps
for the newly designated image feature to identify any
feature subcomponent thereof.

2. The method of claim 1 further comprising
encoding each image feature separately.

3. The method of claim 1 further comprising
encoding each image feature with reference to its feature
boundary.

4. The method of claim 1 in which identifying
the feature boundary includes identifying a first pixel
within the image segment but not within the image feature.

5. The method of claim 1 in which identifying
the feature boundary includes identifying plural connected
pixels that are within the image segment but not within

the image feature.

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-85-

6. A computer-readable medium having stored
thereon computer-exectable instructions for performing the
method of claim 1.

7. A method of encoding a general arbitrary
image feature in an image segment of a video image frame,
the image feature being bounded by a feature boundary and
including plural feature pixels that each have a pixel
value, the image feature including an embedded feature
component with a component boundary that is separate from
the feature boundary, the method comprising the steps:

successively identifying the boundaries of the
image feature and feature component ;

successively forming masks in relation to the
successively identified boundaries of the image feature
and feature component;

encoding the image feature and feature
component; and

successively determining differences between the
masks and the corresponding image feature or feature
component to identify, respectively, the feature component
and any embedded feature subcomponent within the feature
component .

8. The method of claim 7 in which encoding the
image feature and feature component includes encoding them
separately.

9. The method of claim 7 in which encoding the
image feature and feature component includes encoding
their boundaries.

10. A computer-readable medium having stored
thereon computer-exectable instructions for performing the
method of claim 7.

11. The method of claim 7 in which the image
feature is a binary image feature that includes plural
feature pixels that each have a binary pixel value.

12. The method of claim 7 in which the image
feature is a non-binary image feature that includes plural
feature pixels that have non-binary pixel values.

10

15

20

25

30

35

WO 97/35275 PCT/US97/04662

-86-

13. The method of claim 12 in which the non-
binary pixel values represent feature transparency.

14. The method of claim 12 in which identifying
the boundaries of the image feature and feature component
includes applying a threshold filter to the non-binary
pixel values to
form a binary representation of the pixel values.

15. The method of claim 12 in which encoding the
image feature and feature component includes encoding
their boundaries and the method further comprises encoding
of the non-binary pixel values of the image feature
separately from the image feature boundary.

16. The method of claim 15 in which encoding of
the non-binary pixel values of the image feature
separately from the image feature boundary includes
extrapolation of the non-binary pixel values of the image
feature to a predefined configuration to facilitate
encoding.

17. A method of encoding multi-bit image
transparency data for a general arbitrary image feature in
a video image frame, the image feature being bounded by a
feature boundary and including plural feature pixels that
each have a pixel value including a multi-bit image
transparency value, the image feature including an
embedded feature component with a component boundary that
is separate from the feature boundary, the method
comprising the steps:

successively identifying boundaries between the
image transparency values of the image feature and feature
component;

successively forming masks in relation to the
successively identified image transparency boundaries of
the image feature and feature component;

encoding image transparency boundaries of the
image feature and feature component; and

successively determining differences between the

masks and the corresponding image feature or feature

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-87-

component to identify, respectively, the feature component
and any embedded feature subcomponent within the feature
component .

18. The method of claim 17 in which identifying
the image transparency boundaries of the image feature and
feature component includes applying a threshold filter to
the multi-bit image transparency values to form binary
representations of the values.

19. The method of claim 17 further comprising
encoding the multi-bit image transparency values of the
image feature separately from the image feature boundary.

20. The method of claim 17 in which encoding of
the multi-bit image transparency values of the image
feature separately from the image feature boundary
includes extrapolation of the multi-bit image transparency
values of the image feature to a predefined configuration
to facilitate encoding.

21. A computer-readable medium having stored
thereon computer-exectable instructions for performing the
method of claim 17.

22. A computer-readable medium having stored
thereon a data structure representing multi-bit image
transparency data for a general arbitrary image feature in
an image segment of a video image frame, the image feature
being bounded by a feature boundary and including plural
feature pixels that each have a pixel value including a
multi-bit image transparency value, the image feature
including an embedded discontinuous feature component with
& component boundary that is separate from the feature
boundary, the data structure comprising:

encoded binary contour representations of image
transparency boundaries of the image feature and feature
component; and

encoded representations of the multi-bit image
transparency values within image transparency boundaries
of the image feature and feature component .

WO 97/35275 PCT/US97/04662

10

15

20

25

30

35

-88-

23. A method of encoding a general arbitrary
image feature in an image segment of a video image frame,
the image feature being bounded by a feature boundary and
including plural feature pixels that each have a pixel
value, the image feature including at least one feature
component with a component boundary that is separate from
the feature boundary, and the image segment including the
plural feature pixels and plural non-feature pixels of the
image frame, the method comprising the steps:

(a) defining the image segment with a
predetermined configuration about the image feature;

(b) identifying the feature boundary within the
image segment and assigning a binary pixel value of a
predetermined state to pixels bounded by the feature
boundary to form a feature mask;

(c) determining a difference between the image
feature and the feature mask to identify the feature
component with the component boundary that is separate
from the feature boundary; and

(d) designating the feature component as a newly
designated image feature and repeating steps (a)-(c) for
the newly designated image feature; and

(e) repeating step (d) for any feature component
within the newly designated image feature.

24. The method of claim 23 further comprising
encoding each designated image feature separately.

25. The method of claim 23 further comprising
encoding each designated image feature with reference to
its feature boundary.

26. The method of claim 23 in which identifying
the feature boundary includes identifying a first pixel
within the image segment but not within the image feature.

27. The method of claim 23 in which identifying
the feature boundary includes identifying plural connected
pixels that are within the image segment but not within

the image feature.

WO 97/35275 PCT/US97/04662
-89-

28. A computer-readable medium having stored

thereon computer-exectable instructions for performing the
method of claim 23.

PCT/US97/04662

WO 97/35275

1/33

8¢

\

("D13 “YILINRId
AvV1dsia)

IOIN3a 1Nd1NO

— - — —— e — —— — —

{"213 "3DIN3Q ONUNIOJ
‘AQAYOIADI)

3OIA3A LNdNI

A

\

9

— — —, —— — ——— G — — A — — —— — — T — — —

|
|
_
J%8 | uNn AYOWIW !
‘_ TOULNOD AIVANODIS _
e i
1 su3isoF > _
bE \ |
0€ |
_ AJOWIW _
ny NIV _
% ge—7 !
43 “
ndd W3LSAS AJOWIW _
|
) \ |

0Z ¥3LNdINOD ¥

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662 -

2/33

| —50

543

52

Fig. 2A

~52

Fig. 2B

SUBSTITUTE SHEET (RULE 26)

PCT/US97/04662

WO 97/35275

3/33

147
e

430D
AJOYINT

Z|
Z

43000

1313AvM

N J0Oya3
aalvnisa

oLl

911 9z1 8!
viva ﬁ -l.lﬂ...J -
811 | N 1D3rg0 o I'NeN
a3SSIIINOD a3zUNVNO | AVT3Q
0zl ' _ g
NETTeh) A\ N N 1D3r80
X J N douu3 N4 Q3ZIINVNO
137V aszunvno [
ISYIANI N
y
153r90
(N 1D3rso y
| aadaroud J* WHOSNVaIL 3SN3a omwm%:o
<0l SIN3DI44I0D 96
WIOASNVRIL
> 08
¥l » .
103r90 40
NSYW
\ INHOASNVRIL 3SAVdS
b9 <
o4 8.
N <IN
SIROLIINVIL
SIOLDINVAL
INIOd
J¥NLV3d
SINIOd
WLV ve ‘Bl

89

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662
4/33
140
146
USER SELECTS
USER FORMS ROUGH FEACRSELECTS
OUTLINE OF OBJECT
IN KEY FRAME KEY FRAME
180
152 162 % FEATURE
POINTS
A4
DEFINE AND MATCH
XA D ILINE 164-"| PIXEL BLOCKS ABOUT | [DELAY
FEATURE POINTS " N—N-1
158
- Y 178
CLASSIFY PIXELS e DETERMINE SPARSE
BETWEEN OUTUNES 170 | MOTION TRANSFORMATION
MASK—>
OUTLINE
‘ OBJECT
176 PERIMETER
142
80 "¢
TRANSFORM
MASK
174
N
DELAY
M N—N-1

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662

5/33

L —50

52

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662

6/33

SEGMENT OBJECTs | 206

208 200

DETERMINE PIXEL BLOCK /
AND SEARCH AREA

214
7

IDENTIFY INITIAL PIXEL

222
S

CENTER PIXEL BLOCK <
ABOUT CURRENT PIXEL

228
/

DEFINE PIXEL BLOCK TO
OMIT PIXELS OUTSIDE OBJECT

232
: i

IDENTIFY PRIOR
CORRESPONDING PIXEL

r

234
e

A

DETERMINE MOTION VECTORS
BETWEEN CORRESPONDING PIXELS

238
el

IDENTIFY NEXT
CURRENT PIXEL

y

Fig. 6

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662 _

7/33
210
f \a r—212 T
=1 _— 50
=iy 17
«t—1 2022
52
-
204a
L
e N N NS
Fig. 7A
— - |
—212
Y —210b L — 50
L7
226 2\16
2020
52
g
204b
L
. N’ N
Fig. 7B
L —

SUBSTITUTE SHEET (RULE 26)

WO 97/35275

8/33

PCT/US97/04662

268

SCAN INITIAL PIXEL BLOCK
ACROSS SEARCH AREA;
DETERMINE AND STORE

COLUMN CORRELATIONS

260
/

y

274
/

DEFINE NEXT HORIZONTAL PIXEL
BLOCK IN HORIZONTAL DIRECTION

y

284
p

SCAN NEXT (HORIZONTAL) PIXEL BLOCK
ACROSS SEARCH AREA

y

286
Z

DETERMINE COLUMN CORRELATIONS
FOR NEXT COLUMN

y

250
-

RETRIEVE PRIOR COLUMN
CORRELATIONS

y

292
pZ

DEFINE NEXT VERTICAL PIXEL
BLOCK IN VERTICAL DIRECTION

h4

298
-~

SCAN NEXT (VERTICAL) PIXEL
BLOCK ACROSS SEARCH AREA

4

300
~

DETERMINE COLUMN CORRELATIONS
FROM COLUMN CORRELATIONS FOR
PREVIOUS PIXEL BLOCKS
IN VERTICAL DIRECTION

'SUBSTITUTE SHEET (RULE 26)

WO 97/35275

9/33

PCT/US97/04662 -

282
C INITIAL BLOCK 262
FIQ.OA """ %" ¢ 1 g «

F G H I J

K L M N 0

P Q R S T

LU \ W X Y
264
Fig.9B
OBJECT 266
01 02 03 04 05 06 07 08 09 00
12 13 14 15 16 17 18 19 10 11
23 24 25 26 27 28 29 20 21 22
34 35 36 37 38 39 30 31 32 33
45 46 47 48 49 40 41 42 43 44
56 57 58 59 50 51 52 53 54 55
67 68 69 60 61 62 63 64 65 66
78 79 70 71 72 73 74 75 76 77
89 80 81 82 83 84 85 86 87 88
90 91 92 93 94 95 96 97 98 99
Fig.9C

INITIAL BLOCK SCANNING OBJECT (Step 1}

270(1) — 266
01E 1} 02 03 04 05 06 07 08 09 00
12] 13 14 15 16 17 18 19 10 11 .
230 ¢~ 24 25 26 27 28 29 20 21 22
34T | 35 36 37 38 39 30 31 32 33
45Y) 46 47 48 49 40 41 42 43 44
56 57 58 59 50 51 52 53 54 55
67 68 69 60 61 62 63 64 65 66
78 79 70 71 72 73 74 75 76 77
89 80 81 82 83 84 85 86 87 88
90 91 92 93 94 95 96 97 98 99

Fig.9D
INITIAL BLOCK SCANNING OBJECT (Step 2)

270(2) 270 (3) 266
01D} 02E]}]}| 03 04 05 06 07 08 09 00 .
121 13J 14 15 16 17 18 19 10 11
23Ng” 2404 25 26 27 28 29 20 21 22
34S] 35T] 36 37 38 39 30 31 32 33
45X) 46Y) 47 48 49 40 41 42 43 44
56 57 58 59 50 51 52 53 54 55
67 68 69 60 61 62 63 64 65 66
78 79 70 71 72 73 74 75 76 77
89 80 81 82 83 84 85 86 87 88
90 91 92 93 94 95 96 97 98 99

SUBSTITUTE SHEET (RULE 26)

WO 97/35275

10/33

INITIAL BLOCK SCANNING ORJECT (Step 5)

270(4) 270(5)

01A]| 02B}| 03C}| 04D)| 05E
12F] | [13G| | [14H]} |[151] | [16]
23Ky J24 L J25My/ J26N ¥) 270
34P] N135Q] 136 R} 1375|138 T
45U} | l46V) | l4 48XJ| |49Y
56 | 57 | 58 | 59 | 50
67 |68 |69 |60 | 61
78 |79 |7 |71 |72
g9 |8 |8 |8 |&
90 |91 |92 |93 |94
304({4) 304(5] 304{6) 304(7) 304(8]

Fig.9FE

270(6) 270(7) 270(8)

06
17
28
39
40
51
62
73
84
95

INITIAL BLOCK SCANNING OBJECT (Step 6)

270(9) 270(10) 270(11) 270(12) 270(13)
06 E
17]
280

01 0ZA
12 13F
23 24
34 35P
45 46U
56 57
67 68
78 79
89 80
90 91

03B
14G
25L
36Q
47V

58
69
70
81
92

04C
15H
26M
37R
48W
59
60
71
82
a3

16

50
61
72
83
94

05D

I

27N
388
49X

39T

40Y

51
62
73
84
95

18
29

- 30

07
18
29
30
41
52
63
74
85
96

INIMAL BLOCK SCANNING OBJECT (Step Q+5)
270(14) 270(15) 270(16) 270{17} 270{(18)

01 02
12A] | 13B
23F1 | 24G
34K/ 35L
45P] 46Q
56U) 57V
67 68
78 79
89 80
90 91

03 _|os | o5
14C]\| 15D} | 16E
28] | 261]| 277
36My 37N¥ 380
47R| 48s| 49T
58w 59X| 50Y
69 ~ 60 61
0 7172
81 8§ &
92 93 o4

92

74
85
96

SUBSTITUTE SHEET (RULE 26)

08
19
20
31
42

75
86
97

PCT/US97/04662

09
10

32

11
22
33

55
65 66
76
87

98

22
33

S5

21
32

R

65
76
87
98

83

09

21
32

65
76
87
98

WO 97/35275

PCT/US97/04662
SUBS 101/33 BLO
. EQUENT HORIZONTAL BLOCK 276
Flg 10A B C D E v o«
G H I J Vv
L M N 0 w
Q R S T X
.V \4 - X Y , #
280 278
Fig.10B

SUBSEQUENT HORIZONTAL BLOCK SCANNING OBJECT (Step 1)

288(1})
01U’} 102 03 04
12V 1113 14 15
23W ¢/ 24 25 26
34X} 35 36 37
45Y) 46 47 48
56 57 58 99
67 68 69 60
78 79 70 71
89 80 81 82
90 91 92 93

Fig.10C

05 06
16 17
27 28
38 39
49 40
90 31
61 62
72 73
83 84
94 95

07

08 09 00
19 10 11
20 21 22
31 32 33
42 43 44

53 54 55
64 65 66
75 76 77
86 87 88
97 98 99

SUBSEQUENT HORIZONTAL BLOCK SCANNING ORJECT (Step 2)

270°(1) 288(2)
01E}i02U] {03 04
121113V} |14 15
230 ¢/ 24 W /25 26
34T} 35X| 36 37
45Y]) 46Y) 47 48
96 57 58 59
67 68 69 60
78 79 70 71
89 80 81 82
90 91 92 93

Fig.10D

05 06
16 17
27 28
38 39
49 40
50 51
61 62
72 73
83 84
94 95

07
18
29
30
41
92
63
74
85
96

42 43 44
53 o4 55
64 65 66
75 76 77
86 87 88
97 98 99

SUBSEQUENT HORIZONTAL BLOCK SCANNING OBJECT (Step 3}

270(2) 270°(3) 288(3)
01D 102 E]}03U’] |04
12111131114V} |15
23N 24 O 25W'¢’ 26
34S| 35T] 36X} 37
45X) 46Y) 47Y) 48
56 57 58 59
67 68 69 60
78 79 70 71
89 80 81 82
90 91 92 93

SUBSTITUTE SHEET (RULE 26)

05 06
16 17
27 28
38 39
49 40
50 51
61 62
72 73
83 84
94 95

08 09 00
19 10 11
20 21 22
31 32 33
42 43 4
03 54 55
64 65 66
75 76 77
86 87 88
97 98 99

WO 97/35275

12/33

PCT/US97/04662

SUBSEQUENT HORIZONTAL BLOCK SCANNING OBJECT (Step 6)
270°(5) 270'(6) 270'(7] 270'(8) 288(4)

01 02B|J103C
12 13G} |14H
23 24L ¢ 25M
34 35Q] 36R
45 46V] 47TW
56 57 o8

67 68 69

SUBSEQUENT HORIZONTAL BLOCK SCANNIN

04D} |05E} |06 U] (07
151} /16J) /17V]| |18
26N ¢ 270 ¢ 28W ¢/ 29
37S| 38T] 39X’] 30
48X]J 49Y) 40Y) 41

59 50 51 52
60 61 62 63
71 72 73 74
82 83 84 85
93 94 95 96

270°(15) 27016} 270°(17) 270°(18) 2885

01 02 03

12 13B} | 14C
23 24GJ | 25H
34 35L ¢ 36M
45 46Q] 47R
96 97V) 58W

67 68 69
78 79 70

89 80 81
90 91 92
Fig.10F

04 05 06 07

15D} | 16E] | 17U’] |18
261])27)]1)28v} |29
37N’ 380 ¢ 39W &/ 30
48S| 49T| 40X 41
9X]) 50Y) 51Y) 52

60 61 62 63
71 72 73 74
82 83 84 85
93 94 95 96

SUBSTITUTE SHEET (RULE 26)

09 00
10 11
21 22
32 33
43 44
o4 55
65 66
76 77
87 88
98 9

G OBJECT (Step Q+6)

09 00
10 11
21 22
32 33
43 44
o4 55
65 66
76 77
87 88
98 99

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662
13/33
Fia.11A SUBSEQUENT VERTICAL BLOCK 294
d. F G H I J
K L M N 0o
P Q R S T
U v W X Y
LA B’ C D’ E
96
Fig.11B
INIT] [/E)l:_z BILOCK SCANNING OBJECT (Step Q+1)
302(1)
01 02 03 04 05 06 07 08 09 00
12J 1113 14 15 16 17 18 19 10 11
2301} |24 25 26 27 28 29 20 21 22
HUT ¢35 36 37 38 39 30 31 32 33
45Y] 46 47 48 49 40 4] 42 43 44
56E’) 57 58 59 50 51 52 53 54 55
67 68 69 60 61 62 63 64 65 66
78 79 70 71 72 73 74 75 76 77
89 80 81 82 83 84 85 86 87 88
90 91 92 93 94 95 96 97 98 99
Fig.11C
INITIAL BLOCK SCANNING OBJECT (Step Q+2)
302(2) 302(3)
01 02 03 04 05 06 07 08 09 00
12T 113] § |14 15 16 17 18 19 10 11
23N112401})25 26 27 28 29 20 21 22
34S /35T 736 37 38 39 30 31 32 33
45X | 46Y] 47 48 49 40 41 42 43 44
56D’) S7E'J 58 59 50 51 52 53 54 55
67 68 69 60 61 62 63 64 65 66
78 79 70 71 72 73 74 75 76 77
89 80 81 82 83 84 85 86 87 88
90 91 92 93 94 95 96 97 98 99
Fig.11D
INITIAL BLOCK SCANNING OBJECT (Step Q+5)
302(4) 302(5) 302(6) 302(7) 302(8)
01 02 03 04 05 06 07 08 09 00
12F} \ U3G] | (14H]| |51} {f16]) | 17 18 19 10 11
23K1 | J24 L} | J25M] |J26N| {J270] | 28 29 20 21 22
P 5Q 6RHIB7S ¢ 138T ¢ 39 30 31 32 33
5U 6V 8X]| 49Y| 40 41 42 43 4
56A7 | 57Bj | 58C}| 59D)| S0E] 51 52 53 54 55
67 68 69 60 61 62 63 64 65 66
78 79 70 71 72 73 74 75 76 77
89 80 81 82 83 84 85 86 87 88
90 91 92 93 94 95 96 97 98 99
304'(4) 304'(5) 304'(6) 304'(7) 304'(8)

WO 97/35275

14/33

INITIAL BLOCK SCANNING OBJECT (Step Q+6]
302(9) 302(10) 302(11) 302(12) 302{13]

01 02 03 04 05 06 07
12 13F 1 114G} |15H] |160] (17] |18
23 24K 1 /2511 126M| [27N] /2801 |29
K2 35P ¢~736Q ~/37R ¢/ 3857 39T ¢ 30
45 46U | 47V | 48W]| 49X| 40Y] 41
56 S57A’) 58B’J 59CJ 50D 51E’) 52

67 68 69 60
78 79 70 71
89 80 81 82
90 91 92 93

61 62 63
72 73 74
83 84 85
M 95 96

INMTIAL BLOCK SCANNING OBJECT (Step 2Q4+5)
302(14) 302(15) 302(16) 302(17) 302(18)

02 02 03 04 06 07
18 13 14 15 17 18
23F| |24G]) |25H] | 261 J11]28 29
38K| /35L] |36M] | 37N 01]/39 30
49P o 46Q o~ 47R¢” 48S T ¢ 40 41
56Ul 57V] 58W] 59X Y] 51 52
6IA] 68B'J 69C) 60D’ E'jJ 62 63
78 79 70 71 73 74
89 80 81 82 84 85
99 91 92 93 95 96

Fig.11F

SUBSTITUTE SHEET (RULE 26)

PCT/US97/04662

09 00
10 11
21 22
32 33
43 44
54 55
65 66
76 77
87 88
98 99
09 00
10 11
21 22
32 33
43 44
4 95
65 66
76 77
87 88
98 99

WO 97/35275 PCT/US97/04662

15/33
Fig. 12 352
3 350
DETERMINE DENSE MOTION
ESTIMATION
354
DEFINE TRANSFORMATION
BLOCK ARRAY -

, <
GENERATE AFFINE TRANSFORMATIONS

QUANTIZE AFFINE TRANSFORMATION | _—362

COEFFICIENTS
. 5
Fig. 14 e
364b—" ‘\ ' [TN 364
\
\
\
| |
/
/
,) I
—L_{\ VL] |]
364a

SUBSTITUTE SHEET (RULE 26)

WO 97/35275

PCT/US97/04662

16/33

-
f [Y X | /// 1/,—50
) L N
< N } L2026
\\/ / _//—52
% 2040 T

SUBSTITUTE SHEET (RULE 26)

WO 97/35275

PCT/US97/04662

17/33

Fig. 15

372
370 DEFINE INITIAL
\ TRANSFORMATION BLOCK
- 376
- CALCULATE CURRENT
SIGNAL-TO-NOISE RATIO
/~ 378
SUBDIVIDE CURRENT TRANSFORMATION
BLOCK AND CALCULATE
FUTURE SIGNAL-TO-NOISE RATIOS
382
IS
SIGNAL-TO-NOISE
RATIO DIFFERENCE
GREATER THAN
THRESHOLD

384 ~ e 388
DESIGNATE EACH DESIGNATE NEXT
SUB-BLOCK THE CURRENT TRANSFORMATION

TRANSFORMATION BLOCK BLOCK

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662

18/33

Fig. 17A

- 404
DEFINE EXTRAPOLATION

400 \ BLOCK BOUNDARY
: 410
ASSIGN VALUES TO PIXELS
IN EXTRAPOLATION BLOCK
BUT NOT OBJECT
s 414

SCAN HORIZONTAL LINES FOR
PIXEL SEGMENTS WITH ASSIGNED
AND UNASSIGNED VALUES

416

HORIZONTAL
SEGMENT BOUNDED
AT BOTH ENDS
BY OBJECT

PERIMETER

422 \ ~ 426
ASSIGN VALUES ASSIGN AVERAGES
OF PERIMETER OF PERIMETER
PIXELS _ PIXELS

SCAN VERTICAL LINES FOR
PIXEL SEGMENTS WITH ASSIGNED |~ 430
AND UNASSIGNED VALUES

l

(To Fig. 178

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662

19/33

(From Fig. 17A)

432

IS
VERTICAL
SEGMENT BOUNDED
AT BOTH ENDS
BY OBJECT

PERIMETER

438 ~ 444
ASSIGN VALUES ASSIGN AVERAGES
OF PERIMETER OF PERIMETER
PIXELS PIXELS

v

ASSIGN COMPOSITE PIXEL VALUES
TO OVERLAPPING HORIZONTAL | — 448
AND VERTICAL PIXEL SEGMENTS

ASSIGN COMPOSITE ASSIGNED
VALUES TO REMAINING |~ 450
NON-OBRJECT PIXELS

Fig. 17B

'SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662 -

20/33
Fig. 18A
S}O
F / 406,]
412
408 402 Fig.
50
412 j h
| 42011 s
424
—420
420- j
Fig. 18C

436

N 1452
456b
402
456b J
1L :,45621 r[j452

4524+
p =il

454
SUBSTITUTE SHEET (RULE 26)

454

PCT/US97/04662

WO 97/35275

21/33

°I

BES
/

Z{z

'T
144 (034
AOUYT
- . NETRIE NETRIE,
Q31vWLIST |« NP2 NOLV1O4Y3LIN] [* 2}z | VA NOILVIOdY3LNI
+ +
0t mvm a8 mmm
9e5
"] #— 2Z£9 o] «—— 225
o LAy
- P
NETRIE S 4314
NOUYIOdY3LNI NOLWVIOJYILNI
4 \ 4
819
zlz € Z1Z o
7 O£s 925 Y 715 0S
~ ~
o A3LT4 NETN[E
T < 212 I nouwwipag F 212 I nouwwidag [
879 VIS

009

L [OFNE]
G31IvWILST

Ol

¢l

d61 ‘Bid

Y61 ‘Biyg

SUBSTITUTE SHEET (RULE 26)

PCT/US97/04662 -

WO 97/35275
22/33
130
L /
Fig. 3B
90 132 }34 136
MASTER WAVELET | | ENTROPY
OBJECT CODER >| CODER
704
706 708 90
INVERSE
ENTROPY MASTER
> WAVELET
DECODER CODER OBJECT
Fig. 20A
504
506b 506¢ :

5063 LV CETSPE Fig. 20C
N4 |6 [e]ito]i15] 120 4: 12 15 515
1578 |9i10]i14] 15) 10; 12 14 8 10 12
e [i0[igh 93] 110 9 9 9 10 10 9
17 12.11.8 11 8 6 5 8
'8 13 911 7 9 5 2 4

Fig. 20B , Fig. 20D

&« <

8§ 9 10 12 12
9 10 10 11 11
10 10 10 9 9

8§ 9 10 11 12
9 9 10 10 105
10 10 10 95 9

SUBSTITUTE SHEET (RULE 26)

WO 97/35275

23/33

Fig. 21

OBTAIN DENSE MOTION
VECTOR FIELD

|

PCT/US97/04662

560

562
—

EXTRAPOLATE DENSE MOTION
VECTOR FIELD TO REGULAR
CONFIGURATION

564
e

I

LOSSY ENCODING

LOSSLESS ENCODING

}

CENCODED DENSE MOTION

VECTOR FIELD

Fig. 22

EOUANTIZED PRIOR OBJECT
6
7

LOSSY ENCODING

!

STORAGE

604
|~

I 606
RETRIEVAL

608

DECODING

566
=

T 568

570

98

600
-

02

T 98

[OUANT(ZED PRIOR OBJECT

SUBSTITUTE SHEET (RULE 26)

PCT/US97/04662

WO 97/35275

24/33

sago K
7€/ Tiawassy | N e/
L
E%m_wés J N ¥ouy3 | V\/ N 103r80 [-N<—N
FSUIANI "\ @3zuNvno "7 | a3zunvno | 1 AV13d
7 o/, 8lL 9L
8L el =
123r40
— 153r80
a0 L WJO4SNVL 3SNIQ Je— ¥ILSYW
a3zZIINVNO
43000 Q3SSTIINOD .
AJOYIN3T 07/ Zl/ /
7 / 14V) 06
9L 911 WHOASNVaL 08
| ETYEINED)
N
\4 12340 40 .
NSV
SINIDIH430D
WHOISNVAL
501 IWHOISNVIL 3SHVdS
8L
viva 99 N «I-N
JAITDIN/ANTNILIY SINOLOINVAIL
—
0L SANOLDINVAL
INIOd o
AN1V3S B
SINIOd
\ N1V N Y¢Z ‘DI
00/ 89

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662

25/33

802¢

802d
. 802b
Fig. 24A \ }]
PRIOR ART - ooz

802e ‘;f/ L\::T://—sth

802f 8029
[] 245
PRIOR ART
X |A|B
G C | «—4—s80¢
F|E|Df ~—sg04
Fig. 25B
824b
826b 1 822
830 "
\ —/”’JL///’A' 824a
X, 7 X <> F~
828 826a
832 \ R~ 824c
826¢

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662

26/33

Fig. 25A 816

810 OBTAIN CONTOUR

IDENTIFY |~ 818

INITIAL
PIXEL
f— 820
ASSIGN NITIAL CHAIN CODE
P » 836
CONFORMAL
L) DIRECTION NO
?
838~ | 840
ASSIGN CHAIN CODE SUBSTITUTE SPECIAL
TO NEXT PIXEL CASE MODIFICATION
y y
860
YES _ANOTHER

PIXEL
?

REMOVE INCURRED |~ 862
NONCONFORMAL
DIRECTION CHANGES

A 4

GENERATE HUFFMAN CODE | — 864
FROM CHAIN CODES

SUBSTITUTE SHEET (RULE 26)

WO 97/35275

844b

X
850¢
x*b —<7_L' a
x! /(852¢

852e

Xsz(
/< 852f
x! ‘

826 SUBSTITUTE SHEET (RULE 26)

PCT/US97/04662
27/33
842
r'd
846a
a
X2 /q
8543
x! /<
826
a 846b
T_/ 852a
X 2
X 1/<v
826
846¢
x 2
X "
b ‘?Ad
854d\¢
a
854d
\i 2
X 7
846¢
a e
854¢
\i 2
x! ~
846f

Xl

Fig. 25C

WO 97/35275

28/33

Fig. 26

— 900

RECEIVE FROM AN IMAGE SOURCE
A CURRENT BITMAP SERIES

PCT/US97/04662

~902 &

IDENTIFY THE FIGURES OF THE
FIRST IMAGE ON CURRENT BITMAP

904§
| IDENTIFY THE PARTS OF THE FIGURES

~906)

SELECT DISTORTION POINTS FOR EACH
FEATURE ON THE CURRENT BITMAP

~908 4

SUPERIMPOSE A GRID OF TRIANGLES UPON
THE PARTS OF THE CURRENT BITMAP

~910 |

DETERMINE A CURRENT LOCATION
OF EACH TRIANGLE

~912 |}

STORE THE CURRENT LOCATION OF EACH
TRIANGLE TO THE STORAGE DEVICE

~914 |

RETAIN A PORTION OF DATA DERIVED FROM
THE CURRENT BITMAP THAT DEFINES THE
FIRST IMAGE WITHIN THE CURRENT LOCATION
OF EACH TRIANGLE ON THE CURRENT BITMAP

928

DETERMINE IF
A NEXT SUCCEEDING
BITMAP EXISTS

930

RETAIN A PORTION OF DATA DERIVED FROM
THE CURRENT BITMAP THAT DEFINES THE
FIRST IMAGE WITHIN THE CURRENT LOCATION
OF EACH TRIANGLE ON THE CURRENT BITMAP

y

~916 i‘

RECEIVE FROM THE CURRENT BITMAP
SERIES A SUCCEEDING BITMAP

~918 |}

SUPERIMPOSE THE CURRENT GRID OF
TRIANGLES ONTO THE SUCCEEDING BITMAP

~920 4

REALIGN THE DISTORTION POINTS TO
COINCIDE \WITH CORRESPONDING
FEATURES ON THE SUCCEEDING BITMAP

~922 1

DETERMINE A SUCCEEDING LOCATION OF
EACH TRIANGLE ON THE SUCCEEDING BITMAP

~924 1

STORE THE SUCCEEDING LOCATION OF
EACH TRIANGLE TO THE STORAGE DEVICE

~926)

RETAIN A PORTION OF DATA DERIVED
FROM THE SUCCEEDING BITMAP THAT
DEFINES THE SECOND IMAGE WITHIN THE
SUCCEEDING LOCATION OF EACH
TRIANGLE ON THE SUCCEEDING BITMAP

t

P

232 2 2

DETERMINE AN AVERAGE IMAGE OF EACH
TRIANGLE IN THE CURRENT BITMAP SERIES
FROM THE SEPARATELY RETAINED DATA

—934 :

STORE THE AVERAGE IMAGE OF EACH
TRIANGLE TO THE STORAGE DEVICE

»

4 % — 936
RETRIEVE THE CURRENT LOCATION OF
EACH TRIANGLE FROM A CURRENT BITMAP

_—938 i

CALCULATE A TRANSFORMATION
SOLUTION FOR TRANSFORMING THE
AVERAGE IMAGE OF EACH TRIANGLE

TO THE LOCATION OF EACH
TRIANGLE ON THE CURRENT BITMAP

—940 |
[GENERATE A PREDICTED BITMAP

—942 !

COMPARE THE PREDICTED BITMAP
WITH THE CURRENT BITMAP

— 944]
DETERMINE A CORRECTION BITMAP

—948 |
’ STORE THE CORRECTION BIT! W;]

950

DETERMINE
IF A SUCCEEDING BITMAP
EXISTs

—952

THE SUCCEEDING BITMAP
BECOMES THE CURRENT BITMAP

DETERMINE
IF A SUCCEEDING SERIES
EXISTS

— 958

RECEIVE THE SUCCEEDING BITMAP
SERIES AS THE CURRENT BITMAP SERIES

y

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662 -

29/33

[0 0]
=
/ N
o8]
o~
~N
o~
3 -
Q|
o 2 \E
i i i
Q0
N
3
< & 3 4
o~
I~ > 8
Q)|
o~ o~

SUBSTITUTE SHEET (RULE 26)

WO 97/35275 PCT/US97/04662

30/33
Fig. 28
(START)

_— 1000

RETRIEVE THE CURRENT BITMAP t
SERIES FROM THE STORAGE DEVICE

1l _—1002

RETRIEVE THE AVERAGE IMAGE OF

EACH TRIANGLE OF THE CURRENT

BITMAP SERIES FROM THE 1022
STORAGE DEVICE

! 1004 THE SUCCEEDING BITMAP BECOMES

THE CURRENT BITMAP
PASS THE AVERAGE IMAGE OF EACH
TRIANGLE TO DISPLAY PROCESSOR

Y] 006 v <

RETRIEVE THE LOCATION OF EACH
TRIANGLE ON THE CURRENT BITMAP
FROM THE STORAGE DEVICE

! _—1008

PASS THE CURRENT LOCATION OF EACH
TRIANGLE TO DISPLAY PROCESSOR - 4

Il _—io010

CALCULATE A TRANSFORMATION SOLUTION
FOR TRANSFORMING THE AVERAGE IMAGE
OF EACH TRIANGLE TO THE CURRENT LOCATION
OF EACH TRIANGLE ON THE CURRENT IMAGE

L —1012

GENERATE A PREDICTED BITMAP
IN THE DISPLAY PROCESSOR

! _—io014

RETRIEVE THE CORRECTION BITMAP
FOR THE CURRENT BITMAP
FROM THE STORAGE DEVICE

—1016 1028

PASS THE CORRECTION BITMAP THE SUCCEEDING BITMAP SERIES
TO THE DISPLAY PROCESSOR BECOMES THE CURRENT BITMAP

+__—10i8

GENERATE A DISPLAY BITMAP OF THE FIRST
IMAGE IN THE DISPLAY PROCESSOR BY
OVERLAYING THE PREDICTED BITMAP

WITH THE CORRECTION BITMAP

1020

DETERMINE IF
A SUCCEEDING
BITMAP EXISTS

1024

DETERMINE
IF A SUCCEEDING BITMAP
SERIES EXISTS

7 3

SUBSTITUTE SHEET (RULE 26)

PCT/US97/04662 -

31/33
Fig. 29
1102 1100
1104
Fig. 30B
-~
1142

Fig. 30C ////

. 11164
Fig. 30D ;-g-\ >\, 1116a
1116f ..\ Neo
_%5,/ DA 1116g
Z/ ,'/'/ '/ /
1116b---- e T 1116e

SUBSTITUTE SHEET (RULE 26)

WO 97/35275

Fig. 31

32/33

/BINARY SHAPE

DATA

l

DEFINE
BOUNDING BOX

l

SEARCH AN
INITIAL PIXEL

1144

EXIST? MO

1132

PCT/US97/04662

1130
/

YES 1146
4

FILL THE
"OUTSIDE"

¢ f1150

EACH CONNECT [©

IDENTIFY
AND FILL

1148
/

FILL THE
BOUNDING BOX

COMPONENT

[1152

1154

SUBSTITUTE SHEET (RULE 26)

FIND CONTOURS

ANDCODE [~

WO 97/35275 PCT/US97/04662

33/33

Fig. 32 1160

1164
1162 [

ALPHA CHANNEL
DATA / THRESHOLD

1170 " | PRECOMPRESSION
EXTRAPOLATION |e—

(METHOD 400)
1168
l v [
172" INTRA-FRAME GENERAL BINARY
CODING SHAPE CODING

¢ l

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/04662

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6K 9/00
US CL :Please Sce Extra Sheet.

According to Intcmational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.s. :

Minimum documentation scarched (classification system followed by classification symbols)
382/232, 233, 235, 236, 238, 239, 240, 241, 242, 243, 251, 252, 253

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

APS
search terms: feature?, mask?, boundary

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of documeat, with indication, where appropriate, of the relevant passages

Relevant to claim No.

1-23, column 5, lines 23-68.

X US 5,020,121 A (ROSENBERG) 28 May 1991, abstract,
column 1, lines 13-40, column 2, lines 3-59, column 3, lines

1-28

D Further documents are listed in the continuation of Box C. D See patent family annex.

hd Special categorics of cited documents;

A" d defining the g i state of the ast which is not considered
%0 be of pasticular relevance

"E* mﬁrm—ﬂu-un&hmﬁl‘n‘u

"L* dmvﬁqyﬁw““umchﬂa)wvhﬂ’l
cited 40 cstablish the publication date of amother citatioa or other
special reason (a8 specified)

0 document reforring 10 aa oral disclosure, use, oxhibition or other
means

N dmmmbumﬁmmuu«m
the priority date claimed

™ Inter document published afier the intermational filing date or priority
dats and not i conflict with the application but cited to underntand the

principle or theory underlying the iavention

document of pasticular relevance; the claimed invention cansot be
mmdumhemﬂuﬂuhvdve-hvmnq
when the docutent is tmken alone

documcnt of particular relevance; the chimed invention caanot be
comsidered 10 involve an inventive step whea the document is
combined with one or more other such documents, such combination
being obvious 10 & person skilled in the art

document mamber of the same pateat family

x*

ye

8

Date of the actual completion of the international search

- Date of mailing of the international search report

09 Jux 1987

05 MAY 1997
Name and mailing address of the ISA/US uthorized officer
g:mmiuioncr of Patents and Trademarks \ U w
x PCT <
Washingtoa, D.C. 20231 LEO BOUDREAU (IW
Facsimile No. (703) 305-3230 hone No. (703) 308-7595

Form PCT/ISA/210 (second shoet)July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/04662

A. CLASSIFICATION OF SUBJECT MATTER:
USCL :

382/232, 233, 235, 236, 238, 239, 240, 241, 242, 243, 251, 252, 253

Form PCT/ISA/210 (extra sheet)(July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

