污水处埋控制设备和方法及污水处理系统

摘要

本发明涉及污水处理控制设备和方法及污水处理系统，该设备包括：多个测量单元，分别具有检测水中用以量测水质的特定成分的传感器；多个有效性验证单元，连接到多个测量单元，用于分别为测量出的成分值确定有效性；多个目标值设定单元，连接到多个有效性验证单元，用于分别为测量出的成分值设定目标值；手动设定单元，用于操作员输入的成分值设定目标值；信号选择单元，用于允许任一目标值设定单元或手动设定单元被连接；PID控制单元，用于为由信号选择单元输入的目标值执行比例、积分或微分操作，以将目标值转换为控制信号；操纵单元，用于依据该转换出的控制信号操纵污水处理设备。采用本发明方案能降低成本，容易维护及安全准确地控制污水处理过程。
1. 一种污水处理控制设备，其特征在于，包括：
多个测量单元，分别具有用于检测水中电导率值的特定成分的传感器；
多个有效性验证单元，分别连接到所述多个测量单元，用于为测量出的成分值确定有效性；
多个目标值设定单元，分别连接到所述多个有效性验证单元，用于为在所述多个测量单元中测量出的成分值设定目标值；
手动设定单元，用于依据操作员输入的成分值，设定目标值；
信号选择单元，用于允许所述多个目标值设定单元中的任一个目标值设定单元或所述手动设定单元被连接；
PID 控制单元，用于对从所述信号选择单元输入的目标值执行比例、积分或微分操作，以将所述目标值转换为控制信号；以及
操纵单元，用于依据所述 PID 控制单元中转换出的所述控制信号，操纵污水处理设备。
2. 如权利要求 1 所述的污水处理控制设备，其特征在于，所述有效性验证单元通过比较所述测量出的成分值的信号，是否满足预设的电压、预设的变动范围、预设的变动速度或在预设时段中的变动数目，来确定所述有效性。
3. 如权利要求 1 所述的污水处理控制设备，其特征在于，所述目标值为依据所述测量出的成分值设定，用以处理污水的操作条件。
4. 如权利要求 1 所述的污水处理控制设备，其特征在于，所述信号选择单元包括选择逻辑单元，所述选择逻辑单元控制以允许所述多个目标值设定单元中的一个目标值设定单元或所述手动设定单元被连接，所述允许被连接的目标值设定单元具有在对应的有效性验证单元中确定有效的成分值。
5. 如权利要求 4 所述的污水处理控制设备，其特征在于，所述选择逻辑单元控制以依据预设的优先级，选择所述多个目标值设定单元中的一个目标值设定单元。
6. 一种污水处理控制方法，其特征在于，包括步骤：
检测水的用以测量水质的特定成分；
确定在所述检测步骤中检测出的成分值的有效性；
为所述成分值设定目标值；
选取与在所述确定有效性的步骤中被确定有效的成分值对应的预目标值；
将在所述选取步骤中选取出的所述目标值转换为控制信号；以及
依据在所述转换步骤中转换出的所述控制信号，操纵污水处理设备。
7. 如权利要求 6 所述的污水处理控制方法，其特征在于，所述检测步骤由用于检测水的所述用以测量水质的特定成分的对应的传感器执行。
8. 如权利要求 6 所述的污水处理控制方法，其特征在于，所述设定目标值的步骤通过设定操作条件来执行，所述操作条件用于对在所述检测步骤中检测出的所述用以测量水质的特定成分进行污水处理。
9. 如权利要求 6 所述的污水处理控制方法，其特征在于，在所述确定有效性的步骤中，所述有效性通过比较对应所述测量出的成分值的信号，是否满足预设的电压、预设的变动范围、预设的变动速度或在预设时段中的变动数目，来确定。
10. 一种污水处理系统，其特征在于，包括：
污水处理设备，包括：至少两个生物反应堆，每个生物反应堆分别连接到流入部分和
泄流部分。所述生物反应堆构造有隧道，用于允许所述至少两个生物反应堆彼此通
过扩散体，安装在所述每个生物反应堆的较低部分，用于选择性地提供空气，以使每个生物反应堆
转变为厌氧段状态、缺氧状态和好氧状态中的一个状态；以及多个水位调节设备，分别安装
在所述生物反应堆的泄流部分，用于调节所述泄流部分的关闭/开启，以改变流动的轨迹；
以及
污水处理控制设备，包括：多个测量单元，分别具有用于检测水中用以量测水质的特定
成分的传感器；多个有效性验证单元，分别连接到所述多个测量单元，用于为测量出的成分
值确定有效性；多个目标值设定单元，分别连接到所述多个有效性验证单元，用于为所述多
个测量单元中测量出的所述成分值设定目标值；手动设定单元，用于依据操作员输入的成
分值，设定目标值；信号选择单元，用于允许所述多个目标值设定单元中的任一个目标值设
定单元或所述手动设定单元被连接；PID 控制单元，用于对从所述信号选择单元输入的目
标值执行比例、积分或微分操作，将所述目标值转换为控制信号；以及操纵单元，用于依据
所述 PID 控制单元转换出的所述控制信号，操纵所述污水处理设备。
污水处理控制设备和方法及污水处理系统

技术领域
[0001] 本发明涉及污水处理控制设备和方法及采用同样设备和方法的污水处理系统，以及涉及更特别地，在污水处理控制设备和方法及采用同样设备和方法的污水处理系统中，如果检测到测量设备设置水量目标值时的异常操作或失败，可以采用另一个测量设备设置所述水量目标值，以及可以采用改良的污水处理设备，以减少操作的成本。

背景技术
[0002] 由于社会已经得到了广泛的发展，因此用水量已经增加，并已采用污水处理设备处理用过的水。在这样的污水处理设备中，生物处理过程已被频繁地应用，以及除所述生物处理过程外，近期物理化学过程也已被应用。
[0003] 该生物处理过程采用微生物分解污染物，以及当采用微生物分解污染物时产生的废污泥。进一步地，在该物理化学处理过程中，添加化学药品和采用搅拌器或类似物混合所述化学药品，以使污染物被快速有效地去除。然而，所述物理化学处理过程是不经济的，因为化学药品的消耗会增加，产生污泥的增加，搅动操作等，导致处理成本的增加。进一步地，该物理化学处理过程不完全适用于要求的，因为如果化学药品的数量太少以至于不能去除污染物，则污染物的去除效率可能降低，而如果化学药品的数量太多，则由于化学药品的不当利用（misappropriation）可能产生其他的污染。
[0004] 同时，虽然不能快速去除污染物，但是所述生物处理过程还是有优点的，因为从长远角度看，该生物处理过程是稳定的、可靠的和经济的，而且不会产生其他的环境影响。不过迄今为止，该生物处理过程遗留了许多改进的空间。
[0005] 传统的污水处理系统接收到水，使污水处理系统的状态可以变换为厌氧状态，缺氧状态和好氧状态中的一个状态，以及该污水处理系统包括污水处理设备和污水处理控制设备，该污水处理设备有生物反应器，为改变流动的轨迹，该生物反应器的进水部分被控制开启/关闭，该污水处理控制设备用于依照给定值，控制所述污水处理设备。
[0006] 由上述各种过程控制的污水处理设备依据流入污水的水质，在不同的条件下控制污水处理过程，以能提高污水处理性能和经济效率，以及将其他的环境污染降到最低。
[0007] 上述污水处理控制设备已采用依靠可编程逻辑控制器（PLC, Programmable Logic Controller）、分散控制系统（DCS, Distributed Control System）和可编程控制器（PC, Programmable Controller）控制设备，在预设的时间间隔内重复开启/关闭操作的时间控制方法，为了定量控制而设置不变目标值的定量控制方法，由操作员手动控制目标值的手动控制方法，或采用给定可变目标值程序控制的可编程控制方法。
[0008] 当采用不变目标值操作该污水处理控制设备时，不可能快速应付外部环境的变化。同时，手动控制方法中，目标值依据操作员的专业水平手动控制。因而，如果操作员不具备专业水平，则不可能有适当的控制，而且污水处理过程可能在操作员的主观控制状态下被控制。
[0009] 因此，近期已被应用于控制污水处理过程的方法中，目标值依据水质载荷和水质
状态被适当地设置，以及有给定程序设置变化的目标值。

[0010] 同时，传统的污水生物处理过程不能有效去除污染物，例如除生化需氧量 (BOD, Biochemical Oxygen Demand) 和悬浮固体 (SS, Suspend Solid) 外的氨和磷，因为诸如生活污水、工业污水和家畜污水的污染物已经增加，而且活性污泥法 (activated sludge method) 的二次处理方法 (facilities) 是有限的，所以水污染实际上仍在持续。

[0011] 因此，为了有效去除诸如氨和磷的污染物的设备和方法已经出现，并依据这些方法的处理方式，将它们归类为物理化学处理方法和生物处理方法。

[0012] 污水生物处理方法包括厌氧段 (anaerobic zone)、缺氧段 (anoxic zone)、好氧段 (aerobic zone) 或类似的段，以及可以被描绘为厌氧 / 缺氧 / 好氧脱氮除磷工艺 (A^2/O)、间歇通风方法和序列间歇式活性污泥法 (SBR, Sequencing Batch Reactor Activated Sludge Process)。

[0013] 在前述 A^2/O 系列污水处理设备中，为了区分厌氧 (段) 状态、缺氧 (段) 状态和好氧 (段) 状态，内部隔断墙被安装在生物反应堆中，以将生物反应堆在空间上分割为多个小室。A^2/O 系列污水处理设备对于大规模污水处理非常有用，能相对抵抗参数变化，以及维持超过预设等级的稳定处理的水质。

[0014] 参照图 1，图 1 为传统 A^2/O 系列污水处理设备的操作流程图，该传统 A^2/O 系列污水处理设备接收流入水，例如污水和污染废水，并将流入水引入生物反应堆。为部分去除悬浮固体物，该流入水已经在初次澄清池中被澄清和处理过。

[0015] 生物反应堆的内部通过隔断墙被分成厌氧段 10、缺氧段 12 和好氧段 14。更进一步地，已经流过生物反应堆的流入水被存储在二次澄清池 16 中，在其中，异物被沉淀后，水泄流出去。

[0016] 在这个时候，在二次澄清池 16 中产生的污泥被重新输入厌氧段，以执行再处理过程。

[0017] 更进一步地，为了提高去除氨的效率，氨氮应留在好氧 (段) 状态被转化为硝酸盐氮，然后，应该采用内部再循环泵或推进型的下移动设备执行内部再循环，进入缺氧 (段) 状态。

[0018] 如上所述，A^2/O 系列污水处理设备通过隔断墙，将各处理阶段彼此分割开来，然而间歇通风和 SBR 系列污水处理设备通过时间控制，单独操作厌氧状态、缺氧状态和好氧状态。

[0019] 也即，传统间歇通风或 SBR 系列污水处理设备有一个生物反应堆，并被控制随着时间的过去，在不同条件下，在厌氧状态、缺氧状态和好氧状态操作该生物反应堆，而不需要在传统 A^2/O 系列污水处理设备中描述的内部再循环。

[0020] 同样地，传统污水处理方法通过空间或时间的分离 (控制) 鉴别厌氧状态、缺氧状态和好氧状态，以及当在好氧状态中维持 2.0mg/L 或比 2.0mg/L 更高的最小溶解氧浓度时，执行传统污水处理方法。另外，在缺氧或厌氧状态下，在生物反应堆中安装搅拌器，以通过物理方法使在搅拌器中的物质可以被充分混合，以及如果执行内部再循环，则需要内部再循环泵或类似物。

[0021] 同时，污水处理设备的操作控制主要依赖于条件，例如流入污水量，流入污水的污染物载荷，和生物反应堆中的微生物浓度。以及这些条件通过流速测量装置、水质检测装
装置、试验值等确定。

[0022] 在污水处理设备的这些操作条件中，流入污水量是最有影响力的，流入污水量依赖时间，日期，月份和季节是非不固定（highly fluid）的。因此，如果污水处理设备根据确定的定量控制条件进行操作，则可能浪费大量的时间和预算来维持正常的操作，因此，实现正常的操作并不容易。更进一步地，因为依赖于试验值的操作条件的变化，导致试验过程变得复杂和需要更长时间，因此很难适应实时变化的诸如流速与污染物载荷量的条件。当目标值是手动确定的时，由于永久驻扎在那里的管理者需要依据可变的条件调整目标值，而存在问题。

[0023] 最近，尽管许多采用流速传感器和水质测量传感器的自动操作控制方法已经出现，但是随着时间的过去（with the passage of time），与传感器最初安装时相比，水质测量传感器的测量灵敏度误差范围增大，以及传感器故障维修（maintenance occurrence）的频率增加，使得存在诸如元件更换和定期维修的技术问题，以及存在诸如元件更换和二次安装成本的经济问题。因此，依赖于传感器的污水处理过程的操作控制并没有真正地实现。

[0024] 图 2 是结构图，示意性的示出了基于现有技术的污水处理系统模式的污水处理控制设备。参照图 2，污水处理控制设备 50 装备有测量单元 51，测量单元 51 具有检测水中特定成分的传感器，以及测量单元 51 连接到目标值设定单元 52 上。当输入来自测量单元 51 测量出的成分值时，目标值设定单元 52 设定污水处理所需的操作条件的目标值。

[0025] 除了污水处理控制设备 50 通过测量单元 51 测量出的设定值自动操作的方法外，污水处理控制设备 50 具有手动设定单元 53，在手动设定单元 53 中，目标值基于操作员输入的成分值设定。更进一步地，污水处理控制设备 50 配备有信号选择单元 55，以选择性地连接到目标值设定单元 52 或手动设定单元 53 上，并配备有自动/手动模式选择单元 54，在自动/手动模式选择单元 54 中，操作员可以自动模式或手动模式，来选择信号选择单元 55。更进一步地，来自信号选择单元 55 的目标值输入被传送到比例、积分、微分（PID, Proportional Integral Derivative）控制单元 56，并通过比例、积分或微分操作，转换为控制信号，另外，PID 控制单元 56 连接到污水处理设备 57 上，以及污水处理设备 57 基于转换出的控制信号操作，以处理污水。

[0026] 同时，污水处理控制设备 50 包括控制补偿单元，在控制补偿单元中输入的来自信号选择单元 55 的目标值，与来自污水处理设备 57 的水测量出的测量值相比较，然后将被输入到 PID 控制单元 56 的目标值可以被补偿。所述控制补偿单元包括最终测量单元 58，最终测量单元 58 具有安装到污水处理设备 57 出口侧的传感器，以用于检测水的特定成分。所述控制补偿单元还包括比较单元 59，比较单元 59 安装在 PID 控制单元 56 的入口侧，用来比较从设定目标值预测出的特定成分值由最终测量单元 58 检测出的特定成分值，并校正目标值，以使预测出的特定成分值可以聚到检测出的特定成分值中。

[0027] 尽管构造如上的污水处理系统通常采用一个水质测量单元，来测量一个特定的成分，但是当该水质测量单元已使用很长时间后，可能产生传感器灵敏度的差异。因此，产生了测量误差和维修的经济问题。

[0028] 为了解决这些问题，在传统污水处理系统中提出了一个方案，该方案中，安装大量的水质测量单元，以将两个水质测量单元的测量值相互比较，或者当一个水质测量单元故障时，故障的水质测量单元可以被另一个水质测量单元替换，以测量水质。然而，因为
水质测量单元贵，该方案并未作为现实可选的方案被采用。

[0029] 　　因此，归因于传感器的维修增加或不断调整，通常在国内区域采用的大多数污水处理系统，并未在初始安装后使用很长时间。存在不能快速适应外部因素的问题，因此可能失去了污水处理过程的功能，所述外部因素例如有微生物消失、系统故障、流入水的流速变化以及氧化量的变化。

[0030] 　　更进一步地，尽管传统污水处理系统提供采用实时水质监测的监测与控制系统，但其并不提供检测该监测与控制系统是否正常系统，因此，该监测与控制系统的可靠性相当低。另外，如果传统的污水处理厂通过先进的处理方法进行改进，安装隔断墙和水下机器所需的时间太长，以至于污水处理厂的处理效率可能在建设期间急剧降低，从而使邻近的河流污染加重。

[0031] 　　更进一步地，在传统的污水处理系统中，在好氧状态下维持高溶解氧浓度，以及在厌氧或缺氧状态下安装搅拌器并持续搅拌，需要大的操作成本以运行污水处理设备。

[0032] 　　因此，存在提高传统污水处理系统中的污水处理设备的需求，还存在控制污水处理设备的控制方法的基础改进需求。

发明内容

[0033] 　　设计本发明以解决现有技术中的上述问题。本发明的一个目标是提供污水处理控制设备和方法，以及采用同样设备和方法的污水处理系统，以能判定当测量单元中传感器异常操作时可能发生的，测量出的测量值是否异常；当用于测量特定成分的质的测量单元故障时，用于测量另一个特定成分的便宜的测量单元可以被用来替换目标值；从而用所述便宜的测量单元替换所述质的测量单元，因此大幅降低了安装测量单元的费用；测量单元的数目可以被最小化，以容易实施维修；故障的出现可以被最小化；以及尽管多个测量单元中的任何一个测量单元故障，可以采用另一个测量单元，以执行持续的测量，以使无需手动操作，因此能够安全地和准确地控制污水处理过程。

[0034] 　　更进一步地，本发明的另一个目标是提供污水处理控制设备和方法以及采用同样设备和方法的污水处理系统，其能普遍应用于污水处理过程，其中，可以实现最好的控制条件；可以提高氢和磷的去除效率；以及维修的时间和人力可以被最小化，以减少相应预算。

[0035] 　　依据本发明，为了实现目标的一个方面，提供了一种污水处理控制设备，包括：多个测量单元，分别具有用于检测水中用以量测水质的特定成分的传感器；多个验证单元，分别连接到所述多个测量单元，用于为测量出的成分值确定有效性；多个目标值设定单元，分别连接到所述多个验证单元，用于在所述多个测量单元测量出的成分值设定目标值；手动设定单元，用于依据操作员输入的成分值，设定目标值；信号选择单元，用于允许所述多个目标值设定单元中的任一个目标值设定单元或所述手动设定单元被连接；PID调节单元，用于为由所述信号选择单元输入的目标值执行比例、积分或微分操作，将所述目标值转换为控制信号；以及操作单元，用于依据在所述PID调节单元中转换出的所述控制信号，操作污水处理设备。

[0036] 　　在这里，所述有效性验证单元可以通过比较对应所述测量出的成分值的信号，是否满足预设的电压、预设的变动范围、预设的变动速度或在预设时段中的变动数目，来确定所述有效性。更进一步地，所述目标值为依据所述测量出的成分值设定，用以处理污水
的条件。此外，所述信号选择单元可以包括选择逻辑单元，所述选择逻辑单元控制以允许所述多个目标值设定单元中具有在对应的有效性验证单元中确定有效的成分值的一个目标值设定单元，或所述手动设定单元被连接。而且，所述选择逻辑单元可以控制以依依预
设的优先级，选择所述多个目标值设定单元中的一个目标值设定单元。

[0037] 依据本发明的另一方面，提供了一种污水处理控制方法，包括步骤：检测水的由以
量测水质的特定成分；确定在所述检测步骤检测出的成分值的有效性；为所述成分值设定目
标值；选取与在所述确定有效性的步骤中被确定有效的成分值对应的目目标值。将在所述
选取步骤中选取出的所述目标值转换为控制信号；以及依据在所述转换步骤中转换出的所
述控制信号，操纵污水处理设备。

[0038] 此处，所述检测步骤可以由检测水的所述用以量测水质的特定成分的对应的传
感器执行。另外，所述设定目标值的步骤可以通过设定操作条件来执行，所述操作条件用于
对在所述检测步骤中检测出的所述用以量测水质的特定成分进行污水处理。更进一步地，
在所述确定有效性的步骤中，所述有效性可以通过比较对应所述测量出的成分值的信号，
是否满足预设的电压、预设的变动范围、预设的变动速度或在预设时段中的变动数目，来确
定。

[0039] 依据本发明又一个的方面，提供了一种污水处理系统，包括污水处理设备和污水
处理控制设备。所述污水处理设备包括：至少两个生物反应堆，每个生物反应堆分别连接到
流入部分和流曝部分，所述生物反应堆构造有隧道，用于允许所述至少两个生物反应堆彼
此连接；扩散体，安装在所述每个生物反应堆的较低部分，用于选择性地提供空气，以便每
个生物反应堆转变为厌氧状态，曝气状态和好氧状态中的一个状态；以及多个水位调节设
备，分别安装在所述生物反应堆的曝气部分，用于调节所述曝气部分的关闭/开启，以改
变流动的轨迹。所述污水处理控制设备包括：多个测量单元，分别具有用于检测水中用以
量测水质的特定成分的传感器；多个有效性验证单元，分别连接到所述多个测量单元，用于
为测量出的成分值确定有效性；多个目标值设定单元，分别连接到所述多个有效性验证单
元，用于为在所述多个测量单元中测量出的所述成分值设定目标值；手动设定单元，用于依
据操作员输入的成分值，设定目标值；信号选择单元，用于允许所述多个目标值设定单元中
的任一个目标值设定单元或所述手动设定单元被连接；PID 控制单元，用于为由信号选择
单元输入的目标值执行比例、积分或微分操作，将所述目标值转换为控制信号；以及操纵单
元，用于依据在所述 PID 控制单元中转换出的所述控制信号，操纵所述污水处理设备。

[0040] 附图说明

[0041] 图 1 为传统 A²/O 系列污水处理设备的流程图；

[0042] 图 2 为示意性的示出基于现有技术的污水处理控制设备的结构图；

[0043] 图 3 为示意性的示出基于本发明的污水处理控制设备的结构图；

[0044] 图 4 为示出在基于本发明的污水处理控制设备中确定有效性的过程的流程图；

[0045] 图 5 为示意性的示出基于本发明的生物反应堆的透视图；

[0046] 图 6 为示意性的示出基于本发明的污水处理设备的结构图；

[0047] 图 7 为示出基于本发明的污水处理设备的生物反应堆内部的剖视图；

[0048] 图 8 为基于本发明的污水处理设备的改进实施例的结构图；

[0049] 图 9 为示出基于本发明另一个实施例的污水处理设备的结构图；
具体实施方式

[0054]  在下文中，将参照附图对依据本发明的优选实施例进行详细描述。

[0055]  图 3 为示意图，示出基于本发明的污水处理设备的结构图；以及图 4 为示出在基于本发明的污水处理系统的污水处理控制设备中设置有效成分过程的流程图。

[0056]  基于本发明的污水处理系统包括包含生物反应堆的污水处理设备 108，其中，水被引入所述生物反应堆，所述生物反应堆被分为厌氧段、缺氧状态和好氧状态的一个状态，以及所述生物反应区的沉降部分的关闭/开启被调整，以改变水的轨迹；还包括污水处理控制设备 100，用于在对水的特定成分测量出的成分值确定有效性，并通过产生与所述目标值成比例的控制信号，来实现污水处理设备。

[0057]  此处，污水处理控制设备 100 具有测量单元 101，用于分别检测水的多个特定成分。在所述多个测量单元 101 的个数，与将被测量水的成分的数目一致，以及在所述多个测量单元 101 中提供的传感器用来分别检测所述每个特定成分。例如，所述每个测量单元 101 可以测量溶解氧（DO, Dissolved Oxygen）、硝酸盐（NO₃）、氨（NH₃）、磷酸盐（PO₄）、混合溶液悬浮固体（MLSS, Mixed Liquor Suspended Solid）浓度、气流速度和气压、水位或污泥界面、浊度、pH 以及类似成分。在所述中，所述溶解氧可被用于测量与水中的所述成分值，以用微生物去除污水污染物。更进一步地，所述硝酸盐可被用于测量由微生物处理的氨氮反应物。此外，所述混合溶液悬浮固体表示包含在被处理的污水中的悬浮固体，并可被用于测量污水处理过程中微生物的浓度。另外，所述测量单元 101 可以测量水的温度、生化需氧量（BOD, Biochemical Oxygen Demand）、化学需氧量（COD, Chemical Oxygen Demand）、氧化还原电位（ORP, Oxidation-Reduction Potential）等，及类似物。

[0058]  此处，所述多个测量单元 101 被分别连接到多个有效性验证单元 102。所述多个有效性验证单元 102 确定在所述多个测量单元 101 中测量出的成分值的有效性。

[0059]  所述有效性验证单元 102 确定所述测量单元的成分值的信号是否由预先确定的电压激活，或所述测量单元的成分值的变动范围是否包含在预先确定的范围内。更进一步地，所述多个有效验证单元 102 通过确定所述测量单元的成分值的变动速度来确定有效性，以及可以通过在预定时间段内的变动数目来确定所述传感器是否正常地运行。

[0060]  另外，所述多个有效验证单元 102 分别连接到多个目标值设定单元 103 上，在所述目标值设定单元 103 中，为在每个测量单元 101 中测量出的成分值设定目标值。

[0061]  在所述目标值设定单元 103 中，将被输入的成分值的目标值已经预先经函数关系设置。例如，如果氨（NH₃）的成分值被输入，所述目标值设定单元 103 可以获得溶解氧（DO, Dissolved Oxygen）的目标值。此处，NH₃ 的所述目标值函数可以表示为化学式 1；

[0062]  化学式 1
[0063] \( \text{NH}_4^+ + O_2 \rightarrow \text{NO}_3^- \)

[0064] 换句话说，如果输入 \( \text{NH}_4^+ \) 的所述成分值，则可以获得经化学方法转化为硝酸盐（\( \text{NO}_3^- \)）所必须的 \( O_2 \) 的所述成分值。另一方面，如果输入 \( \text{NO}_3^- \) 的所述成分值，则可以获得转化 \( \text{NH}_4^+ \) 所必须的 \( O_2 \) 的所述成分值。

[0065] 如上所述，可以采用特定成分的可选函数，例如，氧的吸收速度（OUR，Oxygen Uptake Rate）可以通过采用 BOD 和 MLSS 输入流速度计算得到，因此，DO 可以被测出。

[0066] 随后介绍设定原则，通过所述设定原则可以替代所述目标值。

[0067] 氮化合反应是在好氧状态下，通过氮化合微生物将氨氧化为亚硝酸和硝酸的过程，以及氮化合反应被归类为氨氧化过程和亚硝酸氧化过程，并被表示成化学式 2：

[0068] 化学式 2

\[ \text{NH}_4^+ + 1.5 O_2 \rightarrow \text{NO}_2^- + H_2O + 2H^+ \]

[0069] \( \text{NO}_2^- + 0.5 O_2 \rightarrow \text{NO}_3^- + H_2O \)

[0070] 理论上将氨氧化为硝酸的总需氧量大约为 4.57g-\( O_2/g-N \)，其中在氨氧化和亚硝酸氧化过程中的需氧量分别为 3.43g-\( O_2/g-N \) 和 1.14g-\( O_2/g-N \)。此时，氮化合微生物将废水中的碳酸氢用作无机碳源，在在氮化合过程中产生的氢离子（\( H^+ \)）将导致废水中的碱度减小。理论上，需要 7.14mg 的碱度（例如 CaCO_3）氧化 1mg 的 \( \text{NH}_4^- - N \)。

[0071] 在氮化合反应的细胞合成过程中需要无机碳。此时，大部分从氮的氧化获得的能量被用来将二氧化碳还原为细胞。所述考虑细胞合成的化学计算式可以被表示为化学式 3：

[0072] 化学式 3

\[ 1\text{NH}_4^+ + 1.44O_2 + 0.0496C_2H_5O_2 \rightarrow 0.99\text{NO}_3^- + 0.01C_2H_3N_2O_2 + 0.97H_2O + 1.99H^+ + 0.5O_2 + 0.03 \]

[0073] 1CO_2 + 0.00619NH_4^- + 0.0124H_2O \rightarrow 1\text{NO}_3^- + 0.00619C_2H_3N_2O_2 + 0.00619H^+ \]

[0074] 氨氧化酶和氨氧化酶的产量分别被应用为 0.08g-VSS/g-\( \text{NH}_4^- - N \) 和 0.05g-VSS/g-\( \text{N}_2O_3^- - N \)。此外，\( \text{C}_2H_3N_2O_2 \) 表示亚硝化单胞菌。

[0075] 通常熟知的是，氮化合反应主要由化能自养的细菌引起。在涉及氮化合反应的微生物中，亚硝化单胞菌（Nitrosomonas sp.）是一种典型的微生物，通过亚硝化单胞菌，氨通过硝酸氧化为亚硝酸，以及涉及氮化合反应的微生物还有其他诸如亚硝酸菌（Nitrosospira briensis）、亚硝化球菌（Nitrosococcus nitrosoa）和亚硝酸亚铁菌（Nitrosoyobacter multiformis）。将亚硝酸氧化为硝酸的主要微生物是硝化杆菌（Nitrobacter sp.），以及还知道有诸如硝酸菌属菌（Nitrosospina gracilis）和运动亚硝化球菌（Nitrosococcus mobilis）的海里的微生物。

[0076] 如上所述，因为涉及氮化合过程的反应发生在场反应堆中（在通风状态下），所述控制关系和流动被类推为简化的反应式，例如 ‘\( \text{NH}_4^+ \) 的量 + \( O_2 \) 的量 → \( \text{NO}_3^- \) 的量’，所以被控制的物质为 \( O_2 \)（或溶解氧（DO，Dissolved Oxygen）），以及控制所需的关联参数为 \( \text{NH}_4^+ \) 和 \( \text{NO}_3^- \)。

[0077] 更进一步地，通过定量化学反应关系，氨（\( \text{NH}_4^+ \）（也就是所述反应量）、氧（也就是所述所需的量）和硝酸盐（也就是所述产品量），通过在控制系统中安装 \( \text{NH}_4^+ \)、\( \text{NO}_3^- \) 和 DO 测量单元，能测量所述反应堆的状态（定量反应的量），以及在通风过程中所需氧的数量能通过测出的 \( \text{NH}_4^+ \) 和 \( \text{NO}_3^- \) 来估计。

[0078] 而且，因为在所述反应式中反应从左侧流到右侧，相互的反比例运算依据与消耗
和产出关系相符的反应式，发生在 NH₄ 和 NO₃ 之间。更确切地说，不断地 O₂ 消耗反应使得 NH₄ 减少，NO₃ 增多。

[0080] 依据所述相互的反应关系，所需 O₂ 量可以通过 NH₄ 和 NO₃ 设置。所述 DO 需求量的负担曲线与 NH₄ 成正比，而所述 DO 需求量的负担曲线与 NO₃ 成反比。

[0081] 尽管每个负担曲线理论上是线性的，然而归因于实际操作的状态参数，例如季节、时间、负载、水质构成比例、微生物活性、水温和气候，他们是非线性比例的。更进一步地，每个非线性比例曲线参照为引入污水处理厂的实际执行的多种经验操作或初始化运行中获得的数据绘制。

[0082] 更进一步地，所述污水处理控制设备 100 可基于上述每个测量单元 101 检测出的成分值，自动设置目标值。如果有大的状态变化，例如污水处理控制设备 100 故障或气候巨变 (Climate Flood)，所述污水处理控制设备 100 可以使操作员自由设置目标值。最终，可以包括用于使操作员直接输入成分值的手动设定单元 104。

[0083] 同时，所述污水处理控制设备 100 包括信号选择单元 106，用于选择性地允许多个目标值设定单元 103 中的任一个目标值设定单元或所述手动设定单元 104 被连接。所述信号选择单元 106 包括选择逻辑单元 105，用于控制所述多个目标值设定单元 103 中具有在对应的有效性验证单元中被验证有效的成分值的一个目标值设定单元被连接，或控制手动设定单元 104 被连接。

[0084] 所述选择逻辑单元 105 选择目标设定单元 103 中有效性被基于预先确定的优先级验证了的一个目标设定单元。更确切地说，所述选择逻辑单元 105 依据时序逻辑，检测指定为第一优先级的第一成分值，以及如果无异常，选择所述第一成分值。然而，如果所述指定为第一优先级的第一成分值异常，选择逻辑单元 105 检测并选择指定为第二优先级的第二成分值。如上所述，所述选择逻辑单元 105 基于每个成分值的优先级检查每个成分值，以及如果所有的成分值都异常，所述目标值基于操作员输入所述手动设定单元 104 的设定值设置。

[0085] 更进一步地，所述污水处理控制设备 100 包括 PID 控制单元 107，用于为从信号选择单元 106 输入的目标值，执行比例、积分或微分操作，以将所述目标值转换为控制信号。另外，所述污水处理控制设备 100 可以进一步包括控制补偿单元，在所述控制补偿单元中，从所述信号选择单元 106 输入的目标值，与通过从所述污水处理设备 108 的水中测量获得的测量值彼此相互比较，于是将所述使用到 PID 控制单元 107 的目标值可以被补偿。

[0086] 所述控制补偿单元包括最终测量单元 109，最终测量单元 109 具有安装在所述污水处理设备 108 出口侧的传感器，以检测水的特定成分，还包括比较单元 110，比较单元 110 安装在所述 PID 控制单元 107 的入口侧，并比较从所述设定的目标值预测出的特定成分值，与通过所述最终测量单元 109 直接测量的特定成分值，以及所述预测值的特定成分值被聚合到所述检测出的特定成分值中。

[0087] 如上所述，所述污水处理控制设备 100 能够快速应对出现的或未出现的任何问题，归因于新流入水的环境变化或处理状态，和外部环境的变化，可以能够维持稳定处理过的水质，处理费用也能大幅下降。

[0088] 由上述所述污水处理控制设备 100 控制的所述污水处理设备的构造和操作将在下面阐述。
图 5 为示意图示出了基于本发明的生物反应堆的透视图，另外，图 6 为示意图示出了基于本发明的污水处理设备的结构图，以及图 7 为示出了基于本发明的污水处理设备的生物反应堆内部的剖视图。

如图 5-7 所示，所述污水处理设备 108 具有两个生物反应堆 210 和 220（适合于大量液体）。所述两个生物反应堆 210 和 220 互相连接，以及污水可以交互。另外，所述每个生物反应堆 210 和 220 被连接到流入部分 211, 212, 221 和 222，用于使污水被引入经过所述生物反应堆 210 和 220 的较高和较低端，以及连接到流程部分 214 和 224，用于流程经每个生物反应堆 210 和 220 净化后的污水。

最终，所述生物反应堆 210 和 220 具有流入和流程部分，分别连接到所述流入部分 211, 212, 221 和 222，以及所述流程部分 214 和 224。

更进一步地，所述流入部分 211, 212, 221 和 222 分别连接到所述生物反应堆 210 和 220 的所述较高和较低端。开启和关闭单元 270 被安装在所述流入部分 211, 212, 221 和 222 的出口部分，以便所述流程部分 214 和 224 的开启状态能被所述开启和关闭单元 270 的控制来调节。

每个开启和关闭单元 270 是电功率水闸，以及包括具有垂直移动杆 274 的汽缸 272，和连接到所述汽缸 272 的所述杆 274 的遮挡板 276，以遮挡所述流入部分 211, 212, 221 或 222 的出口部分。

更进一步地，用于提供空气的扩散体 (diffusers) 230 被安装在每个生物反应堆 210 或 220 的较低部分。所述扩散体 230 选择性地提供空气到所述生物反应堆 210 或 220 中，从而所述生物反应堆 210 或 220 可以被转变为厌氧段状态、缺氧状态和好氧状态中的一个状态。另外，通过控制从扩散体 230 提供空气的射入位置，所述厌氧段状态、缺氧状态和好氧状态可以在所述生物反应堆 210 或 220 中共存。

更进一步地，可以安装多个扩散体 230。较佳地，所述扩散体 230 被安装为朝向流入部分 211, 212, 221 和 222。从而所述每个扩散体 230 放置在对应的流入部分 211, 212, 221 或 222 的较低部分。

另外，用于提供空气的主要供气管 232 被连接到所述扩散体 230，以及所述送风机 236 安装在主要供气管 232 上提供空气。更进一步地，用于调节供应空气量的阀装置 234 被安装在每个扩散体 230 和它的主要供气管 232 之间的连接部分。所述阀装置 234 可以包括整流针阀 (electric needle valve)、整流蝶形阀 (electric butterfly valve) 或整流球形阀 (electric ball valve)，以及所述阀装置 234 的调节可以使得提供给每个扩散体 230 的空气量被控制。从而所述污水处理设备 108 能在不停止所述送风机 236 的运作的前提下，阻止或调节通过所述扩散体 230，提供给所述生物反应堆 210 和 220 的每个部分的供气。

此外，用于调整提供的污水流速的流速调整区域 (未示出) 可以被安装到所述生物反应堆 210 和 220 的所述流入部分 211, 212, 221 和 222 的入口部分。从而恒定的污水流速可被提供给所述生物反应堆 210 和 220。

更进一步地，用于调整所述流程部分 214 和 224 的关闭/开启，以改变流动轨迹的水位调节设备 280，被安装在所述生物反应堆 210 和 220 的流程部分 214 和 224 上。从而，在所述生物反应堆 210 和 220 中的所述水位调节设备 280 的调节，可在缺氧（段）状态中的硝酸盐污水受重力作用而流动，因此，可以通过相对小的动力获得内在的再循环效应。
所述水位调节设备280用于通过调节所述澄清部分214和224的出口高度，来调节所述澄清部分214和224的关闭/开启，以及用于通过调节所述澄清部分214和224溢流处的流动速度，来改变流动轨迹。最终，所述水位调节设备280包括用于关闭其出口的关闭/开启装置，和用于调节所述关闭/开启装置高度的高度调节装置。

图8为基于本发明的污水处理设备108改进实施例的结构图。用于初次澄清流入的污水中包含的异物的初次澄清池240，可以被安装在流速调节区域与流入部分211,212,221和222的入口部分之间。更进一步地，用于二次澄清处理过的污水中包含的异物的二次澄清池250，可以被安装在所述生物反应堆210和220的澄清部分214和224上。此外，可以安装多个初次澄清池240和多个二次澄清池250，以增强异物的沉淀性能。

同时，所述二次澄清池250装有返流通道255，用于允许所述二次澄清池250与所述生物反应堆210和220的所述流入部分211,212,221和222相连通，因此所述返流通道255使得在二次澄清池250中沉降的污泥部分，通过所述流入部分211,212,221和222，被返回到所述生物反应堆210和220，并在其中被重新处理。

图9所示，示出了基于本发明另一个实施例的污水处理设备108的结构图，附加厌氧段218和228可以被分别安装在所述生物反应堆210和220的前端，所述流入的污水和所述从返流通道255返回的污泥被引入该附加厌氧段218和228。较佳地，用于混合和提供污水和污泥的所述附加厌氧段218和228可以装备有搅拌器，用于物理地搅拌所述污水和污泥。

在本发明中，所述附加厌氧段218和228可被分别安装在所述生物反应堆210和220的侧面，以及一个附加厌氧段可以被安装在所述生物反应堆210和220的前端，以允许污水和污泥在混合状态下被混合并提供。

另外，参照图10，示出了基于本发明另一实施例的污水处理设备的结构图，代替前述所述厌氧段218和228，用于混合和分配流入的污水和返回的活性污泥的混合及分配池245，可被安装在所述生物反应堆210和220的前端。可以安装多个混合及分配池245，以使所述流入的污水和返回的活性污泥可被完全混合和分配。


图12所示，根据本发明，所述污水处理设备108具有控制系统，所述控制系统可以快速地和灵活地适应外部环境和流入负荷量。

所述控制系统被划分为水质监测控制系统和调节系统。所述水质监测控制系统基于预先输入的控制逻辑，实时分析数据，并管理和控制控制每个控制部分。同样，所述调节系统被允许接收并诊断输入到所述水质监测控制系统的数据和数据结果，以及监测和确定根据前述控制逻辑的操作是否合理。更进一步地，所述调节系统采用所述输入数据，执行自仿
真，以实现对当前操作状态和预测的理解。更进一步地，在所述数据已被审阅后，所述调节
系统分析所述审阅出的结果，以构建新的控制逻辑，将所述新的控制逻辑传送回所述水质
监测控制系统，以及随后允许所述水质监测控制系统通过所述新的控制逻辑被操作。
[0107] 如上所述，所述调节系统可以快速应对出现的或未出现的任何问题，归因于新输
入水质的环境变化或处理状态，以及外部环境的变化，从而可以维持稳定的处理过的水质，
处理费用也能被大幅降低。
[0108] 最终，用于分析水质的测量传感器被安装在所述生物反应堆 210 和 220 的每一个
中，以及由所述测量传感器传送的用于分析水质的数据被输入到所述水质监测控制系统
中。
[0109] 此时，所述水质监测控制系统将所述数据输入已编程的控制逻辑中，以自动控制
基于部分（sector—based）的状态变化，污水和污泥被引入位置的变化，污泥返回速度的调
节，污水流入量的调节，以及在所述生物反应堆 210 和 220 的好氧部分中基于部分的合适的
溶解氧浓度。
[0110] 更进一步地，所述水质监测控制系统将所述输入的数据和所述结果值发送给所述
调节系统。
[0111] 所述调节系统依据输入到所述水质监测控制系统的数据和所述结果值，监测所述
水质监测控制系统的操作状态，从而防止异常操作。更进一步地，所述调节系统依据所述输
入数据和所述结果值执行仿真，用以预测所述污水处理设备 108 的操作，从而诊断和估计
当前状态，然后提出出合适的控制逻辑。
[0112] 图 12 为示出了基于本发明的污水处理设备 108 中调节系统的估计单元的结构图。
所述估计单元包括测量单元，所述测量单元由用于测量 NH₄⁻、NO₃⁻、PO₄⁻、DO，流通空气量、混合
溶液悬浮固体（MLSS, Mixed Liquid SuspendedSolids）、流速，以及类似物的传感器组成；
所述估计单元还包括控制器，用于控制好氧/缺氧状态，DO 设置点，回流流速，以及类似物，
所述估计单元还包括操作器，由所述控制控制器执行。此处，所述好氧/缺氧状态控制器由
关于 NH₄⁻、NO₃⁻、PO₄⁻，DO，以及类似物的传感器组成，而所述 DO 设置点控制器则由关于 MLSS，流速，
以及类似物的传感器组成。更进一步地，所述返回流速控制器由关于 MLSS，流速，以及
类似物的传感器组成。
[0113] 另外，每个操纵器灵活地确定所述好氧/缺氧状态。确定在通风状态中适当的 DO
值，或维持反应堆中适当的 MLSS 浓度。
[0114] 如上所述，所述基于仿真结果提取出的新的控制逻辑被传送到所述水质监测控制系统
中，以实时控制所述水质监测控制系统。
[0115] 除 DO 测量传感器外，氢离子浓度（pH）传感器，MLSS 传感器，氨氮（NH₄⁺）传感
器，硝酸盐氮（NO₃⁻）传感器，磷酸盐磷（PO₄⁻）传感器，氧化还原电位（ORP, Oxidation
Reduction Potential）传感器，以及类似的传感器可以作为测量传感器附加安装在所述生
物反应堆 210 和 220 中，且每个传感器通常在线连接到所述水质监测控制系统。
[0116] 同时，分别控制生物反应堆 210 和 220 的每个区域的所述水质监测控制系统，与传
统的方案（schemes）不同，在传统方案中，
[0117] 在整个处理过程的所有好氧状态下，溶解氧浓度用恒定标准（例如，至少 2.0mg/ L）
相等地维持，或空气供应量依据通风过程是否发生来控制，或由调频方案（frequency
另外，传统的水质监测控制系统，控制系统，专家控制系统，或类似系统，其与基于传统的监测控制系统（SCADA, Supervisory Control and Data Acquisition）安装在中心位置的主服务计算机通信时，允许管理者通过人机界面直接控制所述系统，SCADA已被用于监测和控制在另一个远端位置（例如所述中心位置）处远程安装的装置和设备，所述系统由预先输入的控制逻辑自动操作。如果结合了附加仿真，则仿真的结果将通过预先输入的类似假定，呈现给操作者作为操作方法。

因此，所述传统的控制系统不具有能检查问题是否出现的配置，所以管理者直接控制所述控制系统。这是因为在国内先进的污水处理方案中需要被控制的部分是非常小的，从而被控制的需要可能相当低，以及即使真实的污水处理厂控制系统被安装，其与操作的人力并无差别。

同时，所述依据本发明的控制系统实时接收从传感器输入的信息，以及即使当诸如外部环境变化、水速变动，以及类似状态依据所述输入的信息变化时，所述调节系统被允许产生最适宜的控制逻辑。因此所述依据本发明的控制系统能快速和灵活地应对污水处理环境的变化，提高有机物质、氮和磷的处理效率，以维持稳定的处理后的水质，以及降低操作人力，从而减少维护和管理费用。

参照图 13(a) 至 (d)，示出了依据本发明的污水处理设备 108 的应用实例，下面将描述依据本发明的污水处理方法。

首先，如图 13(a) 所示，污水和返回的活性污泥被引入到第一生物反应堆 210 的较低端。所述污水和返回的活性污泥在不提供空气的厌氧状态下被引入第一生物反应堆 210 中，此时，所述污水和返回的活性污泥未被完全混合，所以其以活塞流形式 (plug-flow type) 流动。另外，第一生物反应堆 210 的中部和较高端转变为缺氧状态。

同时，第二生物反应堆 220 维持好氧状态并泄流已被完全处理过的污水。

然后，如果预设时间已过，流入第一生物反应堆 210 的污水停止，如图 13(b) 所示。然后，污水和返回的活性污泥被引入第二生物反应堆 220 的较高端。此时，第一生物反应堆 210 的较高和较低端以及中间部分被提供空气，以使他们可以转变为好氧状态。

同时，第二生物反应堆 220 的较高和较低端以及中间部分未被提供空气，从而使他们可以转变为缺氧状态，以泄流处理过的污水。

然而，如果预设的时间已过，如图 13(c) 所示，当污水和返回的活性污泥被引入到第二生物反应堆 220 的较低端时，流入第二生物反应堆 220 的较高端的污水和返回的活性污泥被阻止。此时，污水和返回的活性污泥尚未充分混合，所以其以活塞流形式流动。另外，第二生物反应堆 220 的中部和较高端被转变为缺氧状态。更进一步地，第一生物反应堆 210 被转变为好氧状态，以及完全处理过的污水被泄流。

然后，如果预设的时间已过，如图 13(d) 所示，流入第二生物反应堆 220 较低端的污水被阻止。然后，污水和返回的活性污泥被引入到第一生物反应堆 210 的较高端。

此时，第一生物反应堆 210 的较高和较低端以及中间部分被转变为缺氧状态。然后，完全处理过的污水被泄流。更进一步地，第二生物反应堆 220 的较高和较低端以及中间部分被转变为好氧状态。

如上所述，针对每一阶段的处理时间依据流入污水的载荷而改变，以及增加每一
阶段的处理时间或省略个别阶段都是可能的。

0130 同时，在污水被引入生物反应堆 210 和 220 之前的阶段，生物反应堆 210 和 220
被维持在好氧状态并去除其中的有机物质。更进一步，通过氨氮 (NH\textsubscript{4}\textsuperscript{+} - N) 被转化为硝酸
盐氮 (NO\textsubscript{3}\textsuperscript{-} - N) 的氮化过程，将被处理的污水和返回的活性污泥与其中积累的硝酸盐氮
(NO\textsubscript{3}\textsuperscript{-} - N) 被引入，并执行扩放过程。与此同时，执行硝酸盐氮 (NO\textsubscript{3}\textsuperscript{-} - N) 的脱氨过程。

0131 同时，参照美国环保署 (EPA, Environmental Protection Agency) 提议的氮控制
手册 (1993)，脱氮过程中主要因素是食物与微生物的比例，污泥有机负荷 (F/M) 比例，以及
特定的脱氮率 (SDNR, Specific Denitrification Rate) 和 F/M 比例彼此成比例。

0132 按照惯例，SDNR 可以等同于 0.03 倍的 F/M 比例与 0.029 的和，表示为等式一；

0133 等式一

\[ SDNR = 0.03 \frac{F}{M} + 0.029 \]

0134 因此，在传统的 F/I/O、间歇通风或 SBR 方法中，污染和污泥在充分混合状态下相互反
应，流入的水中的有机物 (F) 量减少而微生物 (M) 量不变，从而可以维持低的 F/M 比例。
因此，在碳源不足时，碳源被优先用在生物累积或细胞合成中，而不是用在实际的脱氮过程
中，从而由于碳源已绝对不足，则需要延后的水压保留时间，以提高脱氮的效率。

0135 正相反，为了维持 F/M 比例在恒定的高度，当前系统控制返回的活性污泥量，以使
返回的活性污泥可以与流入的水混合，或者被引入与流入水的位置不同的另一位置，从
而通过控制缺氧状态中的 MLSS，维持高的 F/M 比例。生物反应堆 210 和 220 中的活性污泥，
与生物反应堆 210 和 220 中的污水适当的混合，而不是完全沉淀在生物反应堆 210 和 220
中，从而可以以理想的活性污泥形式被扩散。因此，利用流入的污水，活性污泥与生物反应堆
210 和 220 中的大量的硝酸盐氮 (NO\textsubscript{3}\textsuperscript{-} - N) 接触，以使脱氮过程可以执行。

0136 此时，高 F/M 比例使得脱氮过程的执行比完全混合反应更加速快，从而在缺氧
(段) 状态的水压保留时间可大幅减少。在所述过程中最要要的控制因素是在引入阶段前
好氧状态中的溶解氧浓度，和用于阻止微生物在空气未被提供的时间点和厌氧 / 缺氧状
态中被沉淀。众所周知，如果生物反应堆 210 和 220 中的溶解氧浓度不小于 0.2mg/L，那么
氧被激活作为电子受体，从而真正的脱氮过程可能不被执行。所以，如果在好氧状态中维持
高的溶解氧浓度，则在空气中不再被提供的时间点和溶解氧浓度降低到小于或等于 0.2mg/L
的时间点之间，需要大量的时间。

0137 特别地，因为搅拌过程不被执行，生物反应堆 210 和 220 中微生物和各种污染物之
间的接触比例大幅降低，从而生物反应堆 210 和 220 中的溶解氧浓度不能被降低到小于或
等于 0.2mg/L。

0138 更进一步地，如果溶解氧浓度维持在不低于 0.2mg/L 则流入的水中的有机物与生
物反应堆 210 和 220 中的氧结合，使得脱氮过程中所需的有机物显著不足，从而脱氮比例不
可避免地维持在较低水平。由于前述提及的问题，好氧状态中的溶解氧浓度被维持在不于
0.2mg/L，从而在空气不被提供的时间点后流入的有机物可能不被用于执行脱氮过程，根据
传统间歇空气提供过程中时间控制方案的厌氧 / 好氧方案呈现出非常低的脱氮
效率。

0140 为了解决这些问题，在线溶解氧测量传感器被安装在扩散体 230 的每个区域，扩
散体 230 被分别安装在生物反应堆 210 和 220 的较低部分。除了在线溶解氧测量传感器外，在线 pH 传感器、MLSS 传感器、氨氮 (NH₄+–N) 传感器、硝酸盐氮 (NO₃–N) 传感器、磷酸盐磷 (PO₄–P) 传感器、氧化还原电位 (ORP) 传感器，以及类似传感器也可被安装，以监测生物反应堆 210 和 220 的状态。此时，依据预设值，水质监测控制系统利用实时测量出的每种污染物浓度，分别控制通风过程是否出现和在每一好氧状态中的溶解氧浓度。此时，在好氧状态中的溶解氧浓度被维持在 0.5mg/L 到 2.0mg/L 的范围内，但是在所有好氧状态中的每一溶解氧浓度彼此不同。

【0141】在氨合化过程中实际的限制因素是受温度影响的微生物的最大特定增长率 $\mu_{X}$。这个因素可从 EPA 提议的氨控制手册 (1993) 中知获 $(\mu_{X} = 0.47e^{-0.088\text{温度}^{-1.5}})$。

【0142】因此，通过注入有机物的氧化和氨合化过程所需的最少的空气量，可以减少多余的能量，以降低操作成本。

【0143】传统的污水处理方法已严格禁止空气被提供，因为在厌氧或缺氧（段）状态下提供空气使得氨合化效率降低。更进一步地，为了在生物反应堆中维持溶解氧浓度低于或等于 0.2mg/L，传统的污水处理方法已将搅拌器维持在低的速度，以使归因于在生物反应堆表面上的再通风过程的溶解氧浓度的增加可被阻止。

【0144】然而，这是因为归因于包含在内部再循环水中的溶解氧，使在厌氧或缺氧状态中的溶解氧浓度增加，因此，如果在内部再循环水的溶解氧浓度维持在低水平，以及空气被即时引入，那么在生物反应堆中的溶解氧浓度不增加。

【0145】因此，因为在现有污水处理方法中，生物反应堆厌氧/缺氧状态中的微生物被快速沉淀，所以微生物与生物反应堆 210 和 220 中硝酸盐氨的接触比例可能减小。因此，依据生物反应堆中的微生物浓度，少量的空气通过安装在较低部分的扩散体被即时提供，以使微生物快速沉积，所述生物反应堆中的微生物浓度被预先在监测系统中设定。

【0146】此时，为了阻止归因于在厌氧/缺氧状态中的空气提供导致的活塞流分解，空气持续地通过安装的扩散体中的仅仅部分线路来提供，而不是通过整个较低的通风来提供，以及如果高浓度微生物是安全的，那么当污泥量减少时，空气不可以被提供。

【0147】空气提供主要由监控系统控制，以及调节系统确定所述空气提供是否被控制。

【0148】如上所述依据本发明的污水处理控制设备和方法，以及采用同样方法和设备的污水处理系统具有优点，其中，当测量单元中传感器异常操作时，可以判定来自所述传感器的测量值是否异常；当用于测量特定成分的贵的测量单元故障时，用于测量另一个特定成分的便宜的测量单元可被用来转换目标值，以使该的测量单元能被便宜的测量单元替换，从而大幅降低安装测量单元的费用；测量单元的数目可以被最小化，从而很容易实施维修；故障的出现可以被最小化；以及即使任一个测量单元故障，另一个测量单元可被继续用于执行测量，以使无需人为操作，从而可以安全地和准确地控制污水处理过程。另外，本发明可被普遍地应用于污水处理过程；实现最佳的控制条件；以及最小化维修时间和与之相关的维修人力，从而降低预算。更进一步地，当活性污泥方法被改进为改良的处理结构，本发明不需要安装附加内部隔断墙，从而大幅减少了构造时间间隔和阻止了在构造时间间隔内，邻近的河水被污染。此外，每个生物反应堆可被转换为厌氧状态、缺氧状态和好氧状态，以及每种状态可以共存，以使有极好的空间适应性。而且，在好氧状态的每个区域中的溶解氧浓度能被分别控制在 0.5mg/L 到 2.0mg/L 的区间内，以使用操作成本降低。另外，污水被引
入的部分维持在活塞流形式的缺氧状态，以提高脱氨比率，因此高水位脱氨作用可以提高磷的消散速度。更进一步地，采用水位调节设备能调节泄流部分的开口高度，而不用另外采用内部循环泵的搅动和内部再循环，操作费用可以大幅降低。同样，在线水质测量单元被安装在生物反应堆中，以使生物反应堆中的水质可被实时检测。安装依据预先输入的控制逻辑，用于控制生物反应堆的水质监测控制系统，以及用于监测、控制、诊断和预测水质监测控制系统的操作状态的调节系统，来管理和控制监测控制系统，从而可以提高污水处理设备的操作效率。

【0149】尽管参照附图对依据本发明的污水处理控制设备和方法进行了说明，本发明的保护范围并不仅限于上述实施例和附图。显然，本领域的技术人员可以在通过权利要求定义的本发明的保护范围内，对其进行各种改动和变形。
图 1