(12) 发明专利

(10) 授权公告号 CN 101039434 B
(45) 授权公告日 2010.05.12

(21) 申请号 200610126154.0
(22) 申请日 2006.08.25
(30) 优先权数据
2006-070170 2006.03.15 JP
(73) 专利权人 富士通株式会社
地址 日本神奈川县川崎市
(72) 发明人 数井康彦 伊藤宏弘
(74) 专利代理机构 北京三友知识产权代理有限公司 11127
代理人 黄纶伟 迟军

(51) Int. Cl.
HO4N 7/32 (2006.01)
HO4N 9/77 (2006.01)

(56) 对比文件
US 5218435 A, 1993.06.08, 摘要, 权利要求
10, 12, 14, 说明书第5栏第32-55行, 第6栏第1-16行, 附图1.
CN 1364384 A, 2002.08.14, 全文．

(54) 发明名称
视频编码装置

(57) 摘要
本发明提供一种视频编码装置。该视频编码装置基于在视频的多个帧之间预测的运动矢量的预测结果，来执行对所述视频的压缩编码。在运动矢量检测/补偿单元针对上述视频的帧内指定的小块基于所述运动矢量的预测结果执行运动补偿时，上述视频编码装置所包括的量化化参数控制单元计算所述小块内的亮度分量的预测误差的累积值相对于所述小块内的色分量的预测误差的累积值的比值，作为用于上述运动矢量的预测精度指标，并基于所述预测精度指标来对执行所述小块的图像信息量化化的量化化单元进行控制。
1. 一种视频编码装置，该视频编码装置基于在由亮度分量和色差分量表示的视频的多个帧之间预测的运动矢量的预测结果来执行对所述视频的压缩编码，所述视频编码装置包括：

亮度分量预测误差计算单元，其用于针对在所述视频的所述帧内指定的小块，通过基于所述运动矢量的所述预测结果来计算亮度分量的预测误差；

色差分量预测误差计算单元，其用于通过所述运动补偿预测来计算色差分量的预测误差；

量子化方法确定单元，其用于基于由所述亮度分量预测误差计算单元计算的所述亮度分量的所述预测误差的输入和由所述色差分量预测误差计算单元计算的所述色差分量的所述预测误差的输入，来从多个量子化方法中确定最佳量子化方法，以及

量子化单元，用于通过由所述量子化方法确定单元确定的所述量子化方法来对图像数据进行量子化，其中

所述图像数据的量子化包括预测误差像素的量子化，该预测误差像素是所述小块与所述小块之间的差，即与对应于设置所述小块的所述视频帧的运动补偿帧中的小块相对应的小块，

所述量子化方法确定单元用于基于所述亮度分量的所述预测误差的输入和所述色差分量的所述预测误差的输入来确定由所述量子化单元执行的所述预测误差像素的量子化方法，当基于预测精度指标而判定运动矢量的所述预测精度下降时使得所述量子化单元对所述预测误差像素执行量子化时的量子化参数更小，并且当一个所述小块内的所述色差分量的所述预测误差的累积值变得大于该所述小块内的所述亮度分量的所述预测误差的累积值时，所述运动矢量的所述预测精度的下降表示为预测精度指标。

2. 根据权利要求1所述的视频编码装置，其中，

所述量子化方法确定单元在所述小块内的所述色差分量的所述预测误差的所述累积值相对于所述小块内的所述亮度分量的所述预测误差的所述累积值的比值变得大于预定阈值时，将所述运动矢量的所述预测精度的下降表示为预测精度指标。

3. 根据权利要求1所述的视频编码装置，其中，

所述量子化方法确定单元进一步基于已经过压缩编码的视频的信息量对所述量子化单元进行控制，由此改变所述量子化之后的图像信息中的亮度分量的信息量。

4. 根据权利要求3所述的视频编码装置，其中，

所述量子化方法确定单元执行用于减少在所述量子化单元进行的所述量子化之后的图像信息中的亮度分量的所述信息量的所述控制，由此将所述经压缩编码的视频的所述信息量限制在预定阈值内。

5. 根据权利要求4所述的视频编码装置，其中，

由所述量子化方法确定单元施加的所述控制是用于进行如下操作的控制：将所述量子化后图像信息中的亮度分量的所述系数值的绝对值小于预定值的所述系数值减小到零。

6. 根据权利要求4所述的视频编码装置，其中，

由所述量子化方法确定单元施加的所述控制是用于加大所述量子化的死区宽度的所述控制。

7. 一种用于基于所述亮度分量和所述色差分量表示的视频的多个帧之间预测的运动矢量
的预测结果来执行对所述视频的压缩编码的方法，所述方法包括以下步骤：

计算基于在所述视频的帧内指定的小块的运动矢量预测结果而执行运动补偿时对上述小块内的亮度分量预测误差的累积值相对于在执行上述运动补偿时对小块内的色差分量预测误差的累积值的比值，作为上述运动矢量的预测精度指标；以及

基于上述预测精度指标，来控制所述小块的图像信息的量子化；

其中

所述小块的量子化包括预测误差像素的量子化，该预测误差像素是所述小块与下述小块之差，即与对应于设置所述小块的视频帧的运动补偿帧中的小块相对应的小块。

对所述量子化的控制包括以下步骤：当基于所述预测精度指标而判定所述运动矢量的预测精度下降时，使得对所述预测误差像素执行量子化时的量子化参数更小，并且

对所述量子化的控制包括以下步骤：当一个小块内的所述色差分量的预测误差的累积值大于该小块内的所述亮度分量的预测误差的累积值时，将所述运动矢量的预测精度的下降表示为预测精度指标。

8. 根据权利要求7所述的方法，其中，

所述量子化的所述控制进一步基于已经过压缩编码的视频的信息量来控制所述量子化，由此改变所述量子化之后的图像信息内的亮度分量的信息量。
视频编码装置

技术领域
[0001] 本发明涉及多媒体编码和解码技术，具体地涉及一种压缩编码技术，该技术用于通过由亮度分量和色差分量表示动态彩色图像，来在帧之间执行运动预测编码。

背景技术
[0002] 视频的信息量通常非常大，如果采用视频的原始形式对编码和解码系统中的视频压缩编码进行开发和标准化。代表性示例包括 MPEG-1、MPEG-2、MPEG-4 和 AVC/H.264。
[0003] 上述标准采用所谓的“帧间运动预测编码”。帧间运动预测编码是这样一种方法：搜索帧之间的高相关部分，并且之后对帧与随后的帧之间的位置差（即，运动矢量）和像素差（即，预测误差）进行编码。这样可以实现高压缩效率，因为在视频中连续帧之间的相关性通常较高，使得与原始像素值相比，像素差值变得更小。
[0004] 运动矢量的搜索和/或确定方法并不由上述标准规定。因此，编码装置的图像质量性能极大地依赖于对运动矢量的预测精度。同时，检测运动矢量的处理量随着搜索范围大小或搜索位置数量而极大地增加，因此，图像质量与装置的电路尺寸和/或功耗之间存在着消长平衡。
[0005] 通常仅将亮度分量用于检测运动矢量。这是因为色差的分辨率比亮度分量的分辨率更细，如果仅减小色差部分的分辨率，则将主观图像（subjective image）质量的劣化限制到最小。这可以解释为什么信息比率 Y:Cb:Cr 一般采用 4:2:0 的形式，其中 Y 是动态彩色图像中的亮度分量，Cb 和 Cr 是动态彩色图像中的色差分量。
[0006] 这种仅采用亮度分量的运动矢量检测方法在处理普通图像时没有困难，但是在亮度分量一致（即，不存在纹（texture））而且仅在色差分量中存在纹理的图像情况下该方法使得运动矢量的预测精度降低，从而可能导致主观图像质量的严重劣化。
[0007] 以下参照图 1 对上述问题进行说明。
[0008] 图 1 中所示的画面示例示出了红色圆形单前景物体（由阴影圆形表示）从右向左移动的情况。注意到，对于该示例，假设前景和背景的亮度分量分别恒定不变，在该画面示例中仅色差对于两者不同。
[0009] 参照图 1，行（a）示出了当前帧的图像分量，并且（b）示出了在当前时刻之前的单位时间的帧的图像分量。图 1 中所示的虚线箭头为图 1 所示的示例中的正确运动矢量。但是假设，由于在该图中所示的示例中在该帧的画面上亮度分量是一致的，因此将该运动矢量错误地检测为该图中所示的实线箭头。图 1 的行（c）示出了在对作为错误检测的结果所得到的运动进行补偿之后的帧的图像分量。
[0010] 通过从当前帧的图像分量中减去运动补偿帧，获得运动补偿后帧。注意，该运动补偿帧是在当前时刻之前单位时间的帧在空间上移动了一运动矢量的量而得到的帧。如上所述，由于将运动矢量错误地检测为实线箭头，因此图 1 的示例中的运动补偿帧为行（b）中所示的帧中的红色前景物体（该红色前景物体以与上述实线箭头相反的移动）。
(a) 中所示的当前帧中减去运动补偿帧之后，运动补偿后帧使出现了除红色前景物体以外的青色（即红色的补色）物体图像（由图 1 中的黑色圆形表示）。

[0011] 因此，在亮度分量一致的情况下，相关度的使用有时候导致检测到错误的运动矢量而非能够获得正确的运动矢量。因此，当与原始图像帧（即行（a）中的帧）的信息量相等时，运动补偿后帧（即行（c）中的帧）的信息量变更大，这一点可从图 1 中清楚看出。但是，在这一点上，为了保持有关已预测的位元传输率（bit rate）（即，生成信息量）的限制，必须增加量化参数（即量化化分辨率），从而导致增大了色差分量的量化化误差。此外，由于在该情况中亮度分量是一致的，因此色差的量化化误差在视觉上变得明显，由此严重劣化了主观图像质量。

[0012] 关于该问题，例如，日本专利公报《特开平 8-102965 号》已公开了一种技术，该技术在搜索运动矢量时使用亮度分量的预测误差的累加值与色差分量的预测误差的累加值之和，来确定运动矢量的精度估计值。

[0013] 解决该问题的另一个可能的方法可以是：使小块（在该小块中预测到发生图像劣化）的量化化参数（即适应量化化）最小化。例如，日本专利公报《特开平 7-107481 号》、《特表 2001-522174 号》和《特开 2002-64829 号》已分别公开了普通的适应量化化技术。

[0014] 在这些公开的技术中，在日本专利公报《特开平 7-107481 号》中公开的技术被构造成在根据块的活动性（activity）、均匀性和累积度来确定量化化参数。在这些日本专利公报《特表 2001-522174 号》中公开的技术被设计成具有预定色（例如人类肤色）的块的量化化参数最小化。最后，在日本专利公报《特开 2002-64829 号》中公开的技术被设计成参照另一个帧的块来放大块的信息量。

[0015] 在日本专利公报《特开平 8-102965 号》中公开的技术在搜索运动矢量中始终使用色差分量，因此当与仅使用亮度分量的情况相比时算术运算量增大。这就提出了一个问题：当使用诸如数码相机的编码装置时，需要抑制电路尺寸和功耗。

[0016] 另外，在生成对所根据图像发生图像劣化的小块的预测时，在日本专利公报《特开平 7-107481 号》、《特表 2001-522174 号》和《特开 2002-64829 号》中公开的技术也存在问题。

发明内容

[0017] 考虑上述问题，本发明的目的是为了在仅使用亮度分量搜索运动矢量时降低在亮度分量一致的情况下主观图像质量的劣化。

[0018] 根据本发明的一个方面，提供了一种视频编码装置，其基于在由亮度分量和色差分量表示的视频的多个帧之间预测的运动矢量的预测结果，来执行对视频的压缩编码，所述视频编码装置包括：亮度分量预测误差计算单元，其用于针对在所述视频的所述帧中指定的小块，通过基于所述运动矢量的预测结果的运动补偿预测，来计算亮度分量的预测误差；色差分量预测误差计算单元，其用于通过所述运动补偿预测来计算色差分量的预测误差；量化化方法确定单元，其用于基于由所述亮度分量预测误差计算单元计算的所述亮度分量预测误差输入和由所述色差分量预测误差计算单元计算的所述色差分量预测误差的输入，从多个量化化方法中确定最佳量化化方法；和量化化单元，用于通过由所述量化化方法确定单元确定的所述量化化方法来对图像数据进行量化化。

[0019] 该结构使得在仅使用亮度分量搜索运动矢量的过程中，能够对运动矢量的预测精
度的偏差进行检测，并根据前述检测结果来改变小块的量化化的精度。

[0020] 同样根据本发明，可以将上述视频编码装置构造成：所述量化化方法确定单元在
所述小块内的所述色差分量的累积值变化量大于所述小块内的所述亮度分量的累积值时，将
所述运动矢量的预测精度的下降表示为预测精度指标。

[0021] 该结构能够实现用于在所述预测精度指标指示出运动矢量的预测精度下降时提
高小块的量化化的精度的控制。

[0022] 在该情况下，所述结构也可以是：所述量化化方法确定单元在小块内的所述色差
分量预测精度的累积值相对于小块内的所述亮度分量预测精度的累积值的比值大于预定
阈值时，将所述运动矢量的预测精度的下降表示为预测精度指标。

[0023] 该结构也能够实现用于在所述预测精度指标指示出所述运动矢量的预测精度的
显著下降时提高所述小块的量化化的精度的控制。

[0024] 同样根据本发明，可以将上述视频编码装置构造成：所述量化化方法确定单元在
所述量化化中控制量化化参数。

[0025] 该结构可以改变小块的量化化的精度。

[0026] 在该情况下，所述结构也可以是：所述量化化方法确定单元在所述预测精度指标
指示出所述运动矢量的预测精度下降时，使所述量化化参数更小。

[0027] 该结构提高了在运动矢量的预测精度下降时小块的量化化的精度。

[0028] 在该情况下，所述结构也可以是：所述量化化方法确定单元进一步基于压缩编码
视频的信息量来控制相关量化化单元。由此改变在量化化之后图像信息中亮度分量的信息
量。在此，所述结构也可以是：所述量化化方法确定单元对所述量化化单元实施控制，用于
减少所述量化化之后的图像信息中亮度分量的信息量，由此将所述压缩编码视频的所述信
息量限制到预定阈值。

[0029] 该结构通过使所述量化化参数变小，来防止压缩编码视频的信息量变得过大。此
外，由于在亮度分量一致的情况下图像的主分量是色差分量而非亮度分量，因此亮度分量
的信息量的减少仅造成主观图像质量的最低限度的劣化。

[0030] 在该情况下，所述结构还可以是：使得所述量化化方法确定单元执行的控制是用
于使在所述量化化之后图像信息中的亮度分量的系数值中其绝对值小于预定值的亮度分
量的系数值为零（“0”）的控制。

[0031] 在该情况下，另选结构可以是使得所述量化化方法确定单元执行的控制是用于增
加所述量化化的死区（dead zone）宽度的控制。

[0032] 上述结构中的任何一个降低了所述量化化之后图像信息中的亮度分量的信息量。

[0033] 如上所述，本发明被设计成有助于在亮度分量一致并且仅采用所述亮度分量搜索
运动矢量的情况下降低主观图像质量的劣化。

附图说明

[0034] 参照附图通过以下的详细说明将更清楚地理解本发明。
[0035] 图 1 是说明常规技术的问题的图；
[0036] 图 2 是示出了实施本发明的编码装置的结构的图；
[0037] 图 3 是示出了由量化化参数控制单元执行的控制处理的详情的流程图。
具体实施方式

首先说明的是根据本发明的实施例的总体情况。

在画面内某小块中亮度分量一致并且仅在色差分量中存在纹理的情况中，运动矢量的预测精度下降。由于在该情况下亮度分量是一致的，因此运动矢量的预测精度下降产生小的亮度分量的预测误差累积分值。同时，与亮度分量的预测误差累积分值相比，色差分量的预测误差累积分值相对较大。

因此，将本发明的实施例构造为：计算亮度分量的预测误差累积分值相对于色差分量的预测误差累积分值的比值，作为运动矢量的预测精度的指标。当该指标指示出运动矢量的预测精度下降时，将本实施例构造为将其判断为主观图像质量可能下降且使量子化参数小于其他小块的小块。

如果其运动矢量的预测精度已下降的小块的数量相对于画面内小块的数量的比值较小，则该结构减小使量子化参数变小的影响，从而提高了其运动矢量的预测精度已下降的小块的主观图像质量，同时保持其他小块的主观图像质量。

除了上述结构以外，将本发明的实施例构造为：通过将亮度分量的量子化参数和亮度矢量圆去（round down）来减少亮度分量的信号量，以防止由于使运动矢量的预测精度已下降的小块内的量子化参数更小而导致信号量变得过大。这是因为通常其中包括一定量的预测误差，即，“仅亮度分量一致的”，因此在低级传输受限的情况下，不能忽略由于使量子化参数变小而增加的信号量。此外，这种舍去引起主观图像质量的最小程度的下降，因为在该情况下，图像的主分量是色差分量而非亮度分量。

注意，在此提供了用于如果量子化后数的绝对值小于阈值则将所有值减小到零（“0”）的第一方法和用于加宽量子化的死区的第二方法，作为舍去量子化参数数的的方法。

以下参照附图对本发明的实施例进行描述。

首先对于图2进行说明，图2示出了实施本发明的编码装置10的结构。

运动矢量检测/补偿单元11通过仅利用亮度分量，执行输入视频的处理帧和基准帧（由帧缓冲器17存储并且在过去已进行了本地解码）之间的运动矢量的预测，并针对图像的每个小块确定最佳运动矢量。此外，单元11基于上述基准帧和最佳运动矢量生成运动补偿帧，并将其输出到减法器12。还分别针对亮度分量和色差分量，将输入视频的处理帧与所生成的运动补偿帧之间的误差的累积分值（以下简称“误差累积分值”）通知给量子化参数控制单元18。

将与输入视频的处理帧和所生成的运动补偿帧相关的亮度分量的误差累积分值SAD_Y和色差分量的误差累积分值SAD_C计算如下：

$$SAD_Y = \sum_{i=0}^{N-1} |\text{org}_Y[i] - \text{pred}_Y[i]|$$

$$SAD_C = \sum_{i=0}^{N-1} |\text{org}_C[i] - \text{pred}_C[i]| + \sum_{i=0}^{M-1} |\text{org}_C[i] - \text{pred}_C[i]|$$

在上述表达式中，$\text{org}_Y[i]$、$\text{org}_C[i]$ 和 $\text{org}_C[i]$ 分别是包括在输入视频的处理帧的小块中的亮度（Y）分量、色差（Cb）分量和色差（Cr）分量。$\text{pred}_Y[i]$、$\text{pred}_C[i]$ 和
pred_Cr[] 分别是基于所检测的运动矢量的预测小块的亮度 (Y) 分量、色差 (Cb) 分量和色差 (Cr) 分量。同时，N 和 M 是包括在小块中的亮度 (Y) 分量和色差 (Cb 和 Cr) 分量的各自的样本的数量。

[0052] 减法器 12 执行输入视频的处理帧与运动补偿帧（从运动矢量检测 / 补偿单元 11 中输出）之间的减法处理。

[0053] DCT 单元 13 通过对从减法器 12 中输出的预测差值像素应用离散余弦变换 (DCT) 运算，进行频率转换。

[0054] 量子化单元 14 根据从量子化参数控制单元 18 传送的量子化参数和亮度分量信息量较少的指令，执行频率转换预测误差像素的量子化处理。

[0055] IDCT / 逆量子化单元 15 利用从量子化参数控制单元 18 传送的量子化参数，对量子化单元 14 的输出应用逆量子化处理和逆离散余弦变换 (IDCT) 运算。

[0056] 加法器 16 通过将 IDCT / 逆量子化单元 15 的输出和运动矢量检测 / 补偿单元 11 的输出相加，生成本地解码帧。

[0057] 帧缓冲器 17 是临时保留从加法器 16 中输出的本地解码帧的存储器。

[0058] 量子化参数控制单元 18 确定量子化参数，而且向量子化单元 14 发出指令，如果需要的话将亮度分量信息量减少上述预定值。

[0059] 可变长度编码单元 19 对经频率转换的、量子化的运动预测误差像素值应用可变长度编码。

[0060] 下面针对图 3 进行说明，图 3 表示了由量子化参数控制单元 18 执行的控制处理的详细流程图。

[0061] 参照图 3，首先，S101 执行在可变长度编码单元 19 处获得生成信息量的处理，并且随后 S102 执行基于所获得的生成信息量，计算图像的各小块的形成基础的量子化参数的处理。可通过对各种已知方法作为如严格遵守导元传输率限制的比率管理方法来计算量子化参数 QP。例如，可采用在日本专利公报《特开平 7-107481 号》、《特开 2001-522174 号》和《特开 2002-64829 号》中所公开的方法。

[0062] 类似地，针对图像的各小块执行 S103 及随后的处理。

[0063] 之后 S104 执行获取从运动矢量检测 / 补偿单元 11 通知的亮度分量的误差累积值 SAD_Y 和色差分量的误差累积值 SAD_C 的处理，并且随后的 S104 执行计算上述运动矢量预测精度指标（即，所获取的亮度分量的误差累积值 SAD_Y 相对于色差分量的误差累积值 SAD_C 的比例）的处理。之后，随后的 S105 执行判断上述指标是否指示出运动矢量的预测精度下降的处理。

[0064] 注意，可根据以下表达式是否成立来进行是否要使量子化参数 QP 更小的判断：

[0065] \[(SAD_Y \times TH) < SAD_C \]

[0066] 其中 TH 为外部提供的参数。也就是，在上述表达式成立的情况中，色差分量的误差累积值 SAD_C 相对于亮度分量的误差累积值 SAD_Y 的比例（即 \((SAD_C) / (SAD_Y) \)）大于预定阈值。因此，这是根据发明将运动矢量的预测精度判断为下降的情况。顺便提一下，上述 4：2：0 形式的色图像是以“3”作为 TH 值的示例。

[0067] 如果在 S105，在判断处理中将运动矢量的预测精度判断为下降（即，判断结果为“是”），则 S106 在可变长度编码单元 19 处将由以下表达式表示的减处理应用于基于生成信
息量所计算的量化参数 \(QP \):
\[QP' = QP - \text{偏移量} \]

[0069] 注意，上述表达式中偏移量的值采用“6”（例如，在 AVC/H.264 的情况下）。之后，随 S107 执行将由上述表达式获得的量化参数 \(QP' \) 通知给量化单元 14 和 IDCT/逆量化单元 15 的处理。

[0072] S109 执行以下处理：判断上述第一或第二方法是否是针对编码装置 10 预设用于减少量化之后的亮度分量的生成信息量的方法。在该情况下，如果预设了第一方法，则 S110 执行以下处理：向量化单元 14 通知用于通过将绝对值小于阈值（例如，“1”）的所有量化化之后数改变为零（“0”）来减少亮度分量的信息量的指令。相比而言，如果预设了第二方法，则 S111 执行以下处理：向量化单元 14 通知用于通过加大量化化的死区宽度来减少亮度分量的信息量的指令。

[0073] 以下对第二方法作进一步说明，所述第二方法用于通过加大量化化的死区宽度来减少亮度分量的信息量。量化单元 14 执行的量化化处理可由以下表达式表示：
\[c' = (c + (dz << (QP-1))) >> (QP) \]

[0074] 在该表达式中，“<<”代表向左的位移，而 “>>”代表向右的位移。\(c' \) 是量化化前系数，并且 \(c' \) 是量化化后系数。\(QP \) 是量化化参数并且上述表达式表示利用 \(2QP \) 值对系数 \(c \) 进行量化化。顺便提一下，“dz”是用于确定量化化的死区宽度的参数。在此，使 \(dz \) 值更小加大了死区宽度，并且量化化后系数变得更小。

[0075] 在上述表达式中，假设 \(c = 6 \)（其采用二进制数为“110”），\(QP = 3 \) 和 \(dz = 0.5 \) 的情况。在此情况下，\(dz << (QP-1) = 2 \)（其采用二进制数为“10”），并且因此 \((c + (dz << (QP-1))) = 8 \)（其采用二进制数为“1000”）。因此，\(c' = 1 \)（其采用二进制数还是“1”）。

[0076] 同时，还假设通过加大上述情况中的死区宽度而令 \(dz = 0.25 \) 的情况。由于在该情况中，\(dz << (QP-1) = 1 \)（其采用二进制数还是“1”），因此，\((c + (dz << (QP-1))) = 7 \)（其采用二进制数则为“111”）。因此，\(c' = 0 \)。这是用于因使量化化参数变小来控制亮度分量的量化化后信息量的方法。

[0077] 当上述 S110 或 S111 的处理完成时，处理返回到 S101，以重复上述处理。

[0078] 在执行上述处理中，量化化参数控制单元 18 确定量化化参数并且指示量化化单元 14 在需要的情况下将亮度分量信息量减少上述确定值。

[0079] 如图 2 所示配置的编码装置 10 如上述地操作，因此由于电路尺寸或功耗的限制等，降低了由于仅使用一致的亮度分量（即使仅使用亮度分量）用于检测运动矢量而导致的在运动矢量的预测精度降低的部分中的主观图像质量的劣化。
[0081] 注意，由图 2 所示的编码装置 10 执行的视频编码可由具有标准配置的计算机执行。也就是说，由计算机 30 执行，如图 4 所示，该计算机 30 包括：CPU（中央处理器）31，用于管理计算机 30 整体的操作控制；RAM 32（随机存取存储器），用于 CPU 31 在执行各种处理时进行工作所使用；ROM 33（只读存储器），预存储由 CPU 31 执行的基本控制程序以及执行该程序时基于需要所使用的各种数据；磁盘存储装置 34，存储由 CPU 31 执行的各种控制程序和执行该程序时基于需要所使用的各种数据；数据读取装置 35，用于读取诸如 CD（光盘）、MO（磁光）盘和 DVD（数字通用盘）等便携式记录介质 40 内记录的各种数据；输入单元 36，包括定位设备（例如鼠标装置）和键盘装置等，用于获得对应于其上的操作内容的用户指令；显示单元 37，用于根据 CPU 指令显示指定图像以及 I/F（接口）单元 38，用于和其他设备交换各种数据。

[0082] 为了由如此配置的计算机 30 实施本发明，仅需要生成控制程序并将其存储到上述便携式记录介质 40 中，使计算机 30 的 CPU 31 执行图 3 中所示的控制处理。根据上述实施例，这些处理由量子化参数控制单元 18 执行，随后使计算机 30 读取控制程序并且 CPU 31 执行该程序。

[0083] 顺便提一下，可存在另选配置，在该配置中用于存储上述控制程序的存储介质使用由用作程序服务器 60 的计算机系统所包括的存储装置 61。该计算机系统（程序服务器 60）替代便携式存储介质 40，与电信线路 50（例如，互联网）连接。该情况中的配置可以是：经由电信线路 50（其作为传输介质）从程序服务器 60 向计算机 30 发送传输信号，该信号是由表示上述控制程序的数据信号调制电磁波而获得的。在计算机 30 端，传输信号的接收以及原始控制程序通过解调的再现使 CPU 31 能够执行该控制程序。

[0084] 尽管以上说明了本发明的实施例，但本发明并不由此受到限制。
图 1 现有技术
图 2
图 3
图4