

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2008223058 B2

(54) Title
Negative grid for battery

(51) International Patent Classification(s)
H01M 4/72 (2006.01) **H01M 4/73** (2006.01)

(21) Application No: **2008223058** (22) Date of Filing: **2008.02.29**

(87) WIPO No: **WO08/109429**

(30) Priority Data

(31) Number
60/904,404 (32) Date
2007.03.02 (33) Country
US

(43) Publication Date: **2008.09.12**
(44) Accepted Journal Date: **2014.05.29**

(71) Applicant(s)
Johnson Controls Technology Company

(72) Inventor(s)
Troxel, Jeffrey L.;Andersen, Glenn W.;Schaeffer, Charles J.;Lacroix, Michael E.;Kao, Wen-Hong

(74) Agent / Attorney
Spruson & Ferguson, L 35 St Martins Tower 31 Market St, Sydney, NSW, 2000

(56) Related Art
US 5601953

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 September 2008 (12.09.2008)

PCT

(10) International Publication Number
WO 2008/109429 A3

(51) International Patent Classification:
H01M 4/72 (2006.01) *H01M 4/73* (2006.01)

(74) Agent: SHIPLEY, Howard, N.; Foley & Lardner LLP,
3000 K Street, NW, Washington, DC 20007 (US).

(21) International Application Number:
PCT/US2008/055481

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
29 February 2008 (29.02.2008)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

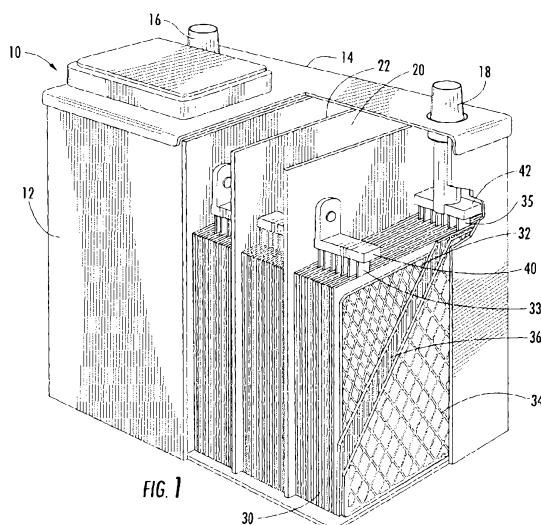
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/904,404 2 March 2007 (02.03.2007) US

(71) Applicant (for all designated States except US): JOHNSON CONTROLS TECHNOLOGY COMPANY [US/US]; 912 E 32nd Street, Holland, MI 49423 (US).

(72) Inventors; and


(75) Inventors/Applicants (for US only): TROXEL, Jeffrey, L. [US/US]; N67 W14722 Ash Dr., Menomonee Falls, WI 53051 (US). SCHAEFFER, Charles, J. [US/US]; 7717 W. Clarke St., Wauwatosa, WI 53213 (US). ANDERSEN, Glenn, W. [US/US]; 864 Harding Dr., Hartford, WI 53027 (US). LACROIX, Michael, E. [US/US]; 5023 W. Elmdale Road, Mequon, WI 53092 (US). KAO, Wen-Hong [US/US]; 5356 West Silverleaf, Brown Deer, WI 53223 (US).

Published:

— with international search report

[Continued on next page]

(54) Title: NEGATIVE GRID FOR BATTERY

(57) **Abstract:** A method for producing a negative grid for a battery which includes providing a strip of battery grid material and performing a punching operation on the battery grid material to remove material and form a grid. The punching operation produces a negative battery grid having a plurality of grid wires bounded by a frame. The battery grid includes a top frame member. A first side frame member is coupled to the top frame member at a first end thereof. A second side frame member is coupled to the top frame member at a second end thereof. A bottom frame member is spaced apart from the top frame member and coupled to the first side frame member and the second side frame member. The negative grid does not include exposed wire ends that may puncture a polymeric separator when the negative grid is provided within the separator.

WO 2008/109429 A3

- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

(88) Date of publication of the international search report:
23 July 2009

NEGATIVE GRID FOR BATTERY

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

[0001] This application claims priority to and benefit of U.S. Provisional Application No. 60/904,404, filed March 2, 2007, which is incorporated herein by reference in its entirety.

BACKGROUND

[0002] The present application relates generally to the field of batteries (e.g., lead-acid starting, lighting, and ignition batteries for vehicles such as automobiles). More particularly, the present application relates to negative grids for use in such batteries and methods for making such negative grids.

[0003] Lead-acid batteries typically include a number of cell elements which are provided in separate compartments of a container containing sulfuric acid electrolyte. Each cell element includes at least one positive plate or grid, at least one negative plate or grid, and a porous separator (e.g., a polymeric separator) positioned between each positive and negative plate. The positive and negative plates each comprise a lead or lead alloy grid that supports an electrochemically active material (referred to as a battery paste). The active material is a lead-based material (i.e., PbO, PbO₂, Pb or PbSO₄ at different charge/discharge stages of the battery) that is pasted onto the grid. The grids provide an electrical contact between the positive and negative active materials which serves to conduct current.

[0004] Conventionally, positive and negative grids are manufactured using different processes. For example, positive grids may be made using a number of different methods. One method involves the use of conventional gravity cast book mold operations. Another more recent method involves producing the grids in a continuous process in which a continuous strip of metal (e.g., a lead alloy) that has been previously cast is introduced into a die to remove material therefrom in a punching operation (e.g., using a progressive die) to form the structure of the grids. Individual

wires of the grids may be deformed or "coined" to improve battery paste adhesion using a specially-adapted die. Such a process is described in greater detail in the following U.S. patents which are incorporated by reference herein in their entirety: U.S. Patent No. 5,582,936; U.S. Patent No. 5,989,749; U.S. Patent No. 6,203,948; U.S. Patent No. 6,274,274; and U.S. Patent No. 6,953,641.

[0005] In contrast, negative grids are typically formed using an expanded metal process. A lead alloy strip is manufactured, either by casting (namely, cast strip) or by casting and rolling (namely, wrought strip), and the strip is subsequently slit and expanded to generate the desired grid pattern in a strip of interconnected battery grids.

[0006] It would be desirable to provide an improved method for producing negative grids for use in lead-acid batteries. It would also be desirable to provide negative grids that have features that improve their manufacturability and performance. It would be desirable to provide a grid and/or a method of producing a grid that includes any one or more of these or other advantageous features, as will be apparent to those reviewing the present disclosure.

Object

[0007] It is the object of the present invention to substantially overcome or at least ameliorate one or more of the foregoing disadvantages or to substantially address the above discussed need.

Summary

[0007a] An aspect of the present invention provides a method for producing a negative grid for a battery comprising:

providing a strip of battery grid material;

performing a punching operation on the battery grid material to remove material and form the negative battery grid;

whereby the negative battery grid has a plurality of grid wires formed by the punching operation into a uniform pattern of grid wires bounded by a frame comprising:

a top frame member;

a first side frame member coupled to the top frame member at a first end thereof;

a second side frame member coupled to the top frame member at a second end thereof;

2008223058 05 May 2014

2a

a bottom frame member spaced apart from the top frame member and coupled to the first side frame member and the second side frame member;

wherein each grid wire of the plurality of grid wires coupled to the top frame member is joined to the top frame member at an intersection point having a conductivity enhancing feature configured to aid conductivity between the plurality of grid wires and the frame;

wherein the conductivity enhancing feature is formed by a gradual widening of grid wire beginning from a node immediately adjacent to the top frame member toward the intersection point; and

wherein the negative grid is free of exposed wire ends for preventing puncturing of a polymeric separator when the negative grid is provided within the separator.

[0007b] Another aspect of the present invention provides a negative battery grid comprising: a frame comprising a top element, a bottom element, a first side element, and a second side element; a plurality of grid wires forming a uniform pattern of wires provided within the frame and defining a plurality of open areas, wherein each grid wire of the plurality of grid wires coupled to the top frame member is joined to the top frame member at an intersection point having a conductivity enhancing feature configured to aid conductivity between the plurality of grid wires and the frame, wherein the conductivity enhancing feature is formed by a gradual widening of grid wire beginning from a node immediately adjacent to the top frame member toward the intersection point; and a current collection lug extending from the top element in a first direction.

Brief Description of the Drawings

[0008] A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings, wherein:

[0008a] FIGURE 1 is a cutaway perspective view of a battery according to an exemplary embodiment

[0009] FIGURE 2 is a plan view of a prior art negative battery grid for use in lead-acid batteries that we produced using an expanded metal process.

[0010] FIGURE 3 is a plan view of a negative battery grid according to an exemplary embodiment.

[0011] FIGURES 4-8 are cross-sectional views of grid wires according to a number of exemplary embodiments.

[0012] FIGURE 9 is a plan view of a negative battery grid according to another exemplary embodiment.

[0013] FIGURES 10-11 are detail views of portions of the grid shown in FIGURE 9.

[0014] FIGURE 12 is a plan view of a negative grid according to another exemplary embodiment.

[0015] FIGURE 13 is a plan view of a negative grid according to another exemplary embodiment.

Detailed Description

[0016] FIGURE 1 is a cutaway perspective view of a battery 10 having a housing or container 12 and a cover or lid 14 coupled to the housing 12. Terminals or posts 16, 18 protrude from a top surface of the cover 14. According to an exemplary embodiment, terminal 16 is a positive terminal and terminal 18 is a negative terminal. According to other exemplary embodiments, terminals may be provided in other locations (e.g., positioned on a front surface of the container, as in a side-terminal battery).

[0017] The housing 12 is internally subdivided into separate spaces 20 by walls or partitions 22. Within each space 20 is provided a cell element 30 that is made up of alternating positive plates 32 (e.g., electrodes, grids) and negative plates 34 (e.g., electrodes, grids). The positive and negative plates are separated by porous polymeric separators 36 (e.g., the negative plates are provided in separator envelopes to separate them from adjacent positive plates, as shown and described in U.S. Patent 6,001,503). Lugs 33 extending from the positive plates 32 are coupled to a strap 40, and lugs 35 extending from the negative plates 34 are coupled to a strap 42. The positive straps are then coupled to the positive terminal 16 and the negative straps are electrically coupled to the negative terminal 18.

[0018] FIGURE 2 illustrates a plan view of a prior art negative grid or plate 100. The grid 100 includes a top frame member or element 110 having a member 120 in the form of a current collection lug extending therefrom. The grid 100 also includes a bottom frame member or element 112. Between the top frame member 110 and the bottom frame member 112 are a plurality of interconnected wires 130 that are arranged in a diamond pattern. Nodes 132 are provided at the intersections of the wires.

[0019] Conventionally, negative grids such as that shown in FIGURE 2 are manufactured in an expanded metal process in which a sheet of metal is slit at various points using knife blades and opposite ends of the sheet are pulled apart to expand the slit portion of the sheet into a plurality of grid wires. As shown in FIGURE 2, the top and bottom frame elements would be pulled apart in the expansion process to form the interconnected wires. After the expansion is completed, the sheet is cut into grids, which leaves exposed wire ends (e.g., wire end 134 in FIGURE 2) along the lateral sides of the grids. One difficulty with such an arrangement is that the grid wire ends along the sides of the negative grids may puncture the separator envelope such that they come into contact with a portion of an adjacent positive plate, which causes internal battery shorting and a potentially significant reduction in the useful life of the battery.

[0020] According to an exemplary embodiment, instead of forming a grid in an expanded metal process, the grid is formed in a progressive punching operation in which a sheet of metal (e.g., a lead alloy) is run through a progressive punching die, which removes material to form the grid shape shown in FIGURE 3. According to an exemplary embodiment, a conventional lead or lead alloy battery grid material (such as a lead-calcium-tin alloy) is melted and continuously cast to form a continuous strip of grid material. The continuous strip may then be rolled or wrought to modify the thickness or grain structure of the strip. A series of interconnected battery grids is then formed by punching grid material out of the continuous strip.

[0021] During the punching operation, the strip is maintained as a continuous strip and the interconnected grid shapes are formed in a progressive punching operation, (i.e., features are added to the battery grid through several punching operations). Each of the interconnected battery grids has a grid network bordered by a frame as shown in FIGURE 3 and described above.

[0022] After the punching operation or process forms a strip having interconnected grids, the battery grid wire sections of the strip may optionally be processed in a stamping or coining operation or process. The stamping operation or process is used to deform or coin the grid wires so that the grid wires have a modified cross-section between the nodes, as shown in FIGURES 4-7. For instance, the stamping operation or process may include a die that deforms the rectangular cross-section of the grid wires of the punched grid into an octagonal cross-section as shown in FIGURE 4. Alternatively, a stamping die may be used that rotates the intermediate portion of the grid wire elements about 20 degrees to about 70 degrees in relation to the cross-section of the opposed ends of the grid wire where the grid wire and node meet as depicted in FIGURE 5. Other modifications may also be performed, as shown in FIGURES 6-7.

[0023] It should be appreciated that any number of modified grid wire shapes can be selected so as to provide improved paste adhesion characteristics for the negative grid that are superior to the rectangular cross-section produced by a stamping process. According to various exemplary embodiments, the modified grid wire substantially

has a diamond shape, a rhomboid shape, a hexagon shape, an octagon shape, or an oval shape. When deforming the grid wires in the stamping station, the area of deformation along the length of the grid wire between the opposed ends of each grid wire section may vary. For example, according to an exemplary embodiment, approximately 90% of the length of the grid wire between the opposed ends of the grid wire undergoes deformation at the stamping station (e.g., approximately 5% of the grid wire length near one end of the grid wire section would have a rectangular cross-section, the center 90% of the grid wire length would have a substantially octagonal cross-section, and approximately 5% of the grid wire length near the other end of the grid wire section would have a rectangular cross-section). According to other exemplary embodiments, a different percentage of the wires may be modified.

[0024] According to other exemplary embodiments, the grid wires may not be stamped or coined, and will have a cross-sectional shape as shown in FIGURE 8 (e.g., an unmodified rectangular cross-section).

[0025] While it is preferred that the nodes remained undeformed, in certain circumstances it may be advantageous to deform or coin the nodes in the stamping station. Since coining of the nodes as well as the grid wires will tend to make the grid strip non-planar, pasting operations which tend to apply paste more thickly to one side of the plate than the other can benefit from this effect. The grid strip can then be oriented so that paste can more readily flow to the surface which is thinly pasted, i.e., fed into the pasting machine so that the concave side faces the direction that otherwise would be thinly pasted, typically the bottom.

[0026] It should also be noted that all or a portion of the grid may be coated with a metal alloy (e.g., a lead alloy) to provide various advantages, including, for example, improved adhesion of battery paste. Examples of such coatings are described in U.S. Patent No. 6,953,641, the entire disclosure of which is incorporated by reference herein.

[0027] The interconnected grids are then processed to apply battery paste and the strip is cut to form a plurality of battery plates. Alternatively, the interconnected grids

may be cut into a plurality of grids before pasting and stored for later use. One advantageous feature of using a grid such as that described herein in place of expanded metal grids is that while expanded metal grids cannot be pasted with a fixed orifice paster (due to interference of the off-plane twisting wires), stamped grids are not so restricted.

[0028] According to an exemplary embodiment, the negative grid 200 has an unpasted thickness of between approximately 0.010 and 0.050 inches. Conventional negative grids produced in an expanded metal process have a strip thickness of between approximately 0.022 inches and 0.035 inches, and an expanded mesh thickness of between approximately 0.030 inches and 0.045 inches. One advantageous feature of providing a battery that uses thinner negative grids is that batteries using such grids may exhibit higher energy density, since less space will be taken up by each negative grid (e.g., additional grids may be added to the battery or the battery may be made smaller).

[0029] Referring to FIGURE 3, an improved negative grid 200 is shown according to an exemplary embodiment. The grid 200 includes a top frame member or element 210 (having a current collection lug 220 extending therefrom), a bottom frame member or element 212, a first side frame member or element 214, and a second side frame member or element 216. Side frame members 214, 216 are coupled to opposite ends of top frame member 210 and bottom frame member 212 to form an enclosed area in the approximate shape of a rectangle. A plurality of grid wires 230 are arranged in a diamond pattern that intersect at nodes 232.

[0030] Still referring to FIGURE 3, the grid wires 230 are coupled to the top frame member 210 at a plurality of intersection points (e.g., where the grid wires 230 intersect the top frame member 210). These intersection points may have features 250 to aid the conductivity interface between the grid wires 230 and the top frame member 210. The conductivity enhancing features allow the relatively thin grid wires 230 to be coupled to the top frame member 210 in a materially efficient manner (i.e. use as little material as possible) and still provide a strong connection between the grid wires 230 and the top frame member 210. As can be seen in FIGURE 3, the grid wires

become gradually wider as the grid wires 230 approach the top frame member 210. In addition to the gradually widening of the grid wires 230 as they approach the top frame member 210, the intersection points are curved on either side of the intersection point. The curves or radii are only possible through the use of a punching operation and cannot be obtained in an expanded metal process. The side and bottom frame members 212, 214, 216 may also have similar features at the intersection points where the grid wires 230 are coupled to the side and bottom frame members 212, 214, 216.

[0031] Still referring to FIGURE 3, the side, top and/or bottom frame members 210, 212, 214, 216 may include one or more features 260 (e.g., cutouts, notches, depressions, etc.) to aid in controlling and/or compensating for grid growth during use of the grid in a battery (see, e.g., FIGURE 3, illustrating cutouts formed in the side frame members 214, 216). The feature 260 provides a localized weakened area so that if grid 200 should grow during use, the feature 260 will break and limit and/or control grid growth. According to other exemplary embodiments, features to restrict or control grid growth such as those shown and described in U.S. Patent Application No. 11/984,666 (the entire disclosure of which is incorporated herein by reference) may be incorporated in the grids described herein.

[0032] One advantageous feature of the exemplary embodiment shown in FIGURE 3 is that because the frame elements 210, 212, 214, and 216 form a border or frame around the entire outer periphery of the grid 200, there are no exposed wire ends that may puncture a battery separator and cause internal battery shorting. This in turn may help to extend the life of the battery (e.g., preventing short circuits, etc.).

[0033] It should be noted that while FIGURE 3 illustrates a negative grid 200 according to an exemplary embodiment, other configurations are possible. FIGURES 9-13 illustrate other possible configurations according to other exemplary embodiments (reference numerals in FIGURES 9-13 are similar to those in FIGURE 3). Various features described above (e.g., features to aid in conductivity; cutouts or notches to aid in controlling and/or compensating for grid growth; stamping to deform wire cross-sections, coating all or a portion of the grid with an alloy such as a lead

alloy, etc.) may also optionally be used with the embodiments shown in FIGURES 9-13.

[0034] For example, in FIGURES 9-11, a grid 300 is illustrated in which the diamond pattern of the grid wires is more elongated than that shown in FIGURE 3 (e.g., the diamond pattern does not form substantially square openings between the intersecting wires). This type of elongated diamond pattern cannot be made using an expanded metal process. The top, sides and/or bottom frame elements or members may include features (e.g., gradually widening grid wires near the intersection points with the frame members, etc.) to aid the conductivity interface between the grid wires and the frame members (see, e.g., FIGURE 9, illustrating the features 350 formed between the grid wires 330 and the top frame member 310). Features 350 may occur at every intersection point between the grid wires and the frame members (see, e.g., FIGURE 9, illustrating the features 350), or only in certain intersection points (e.g., only on the left side of the intersection points that are to the left of lug 320 and only on the right side of the intersection points that are to the right of lug 320). In addition, the side, top and/or bottom frame elements or members may also include features (e.g., cutouts, growth limiting devices, etc.) to aid in controlling and/or compensating for grid growth during use of the grids (see, e.g., FIGURE 9, illustrating features 360 formed in the side frame elements 314, 316).

[0035] FIGURE 12 illustrates an exemplary embodiment of a grid 400 in which the wires are arranged to form generally hexagon-shaped openings between the wires (e.g., a “honeycomb” configuration is obtained). The top, sides and/or bottom frame elements or members may include features (e.g., gradually widening grid wires near the intersection points with the frame members, etc.) to aid the conductivity interface between the grid wires and the frame members (see, e.g., FIGURE 12, illustrating the features 450 formed between the grid wires 430 and the top frame member 410). Features 450 may occur at every intersection point between the grid wires and the frame members, or only in certain intersection points. In addition, the side, top and/or bottom frame elements or members may also include features (e.g., cutouts, growth limiting devices, etc.) to aid in controlling and/or compensating for grid growth

during use of the grids (see, e.g., FIGURE 12, illustrating features 460 formed in the side frame elements 414, 416). One advantageous feature of the design shown in FIGURE 12 is that each of the nodes 432 have three wires coming into the node, as opposed to, for example, the design shown in FIGURE 9, in which each of the nodes 332 have four wires coming into it. One benefit of such a configuration is that less material is used at the node.

[0036] FIGURE 13 illustrates an exemplary embodiment of a grid 500 in which the wires are arranged to form generally rectangular-shaped openings between the wires. Vertical wires run continuously between a top or upper frame element 510 and a bottom or lower frame element 512, while the horizontal wires extend between adjacent vertical wires such that they do not run continuously from left to right across the grid between side frame elements 514 and 516. According to the exemplary embodiment shown in FIGURE 13, each of the complete rectangular openings is substantially the same size (the partial rectangular openings have different sizes, depending on where they are located in the grid). According to other exemplary embodiments, the complete rectangular openings may have different sizes. The top, sides and/or bottom frame elements or members may include features (e.g., gradually widening grid wires near the intersection points with the frame members, etc.) to aid the conductivity interface between the grid wires and the frame members (see, e.g., FIGURE 13, illustrating the features 550 formed between the grid wires 530 and the top frame member 510). Features 550 may occur at every intersection point between the grid wires 530 and the frame members, or only in certain intersection points. The side, top and/or bottom frame elements may include features (not shown) to aid in controlling and/or compensating for grid growth during use of the grids.

[0037] According to an exemplary embodiment, a battery may be produced using both positive and negative plates or grids that are formed in a stamping and/or coining process.

[0038] According to an exemplary embodiment, the negative grid according to any of the exemplary embodiments described herein is made from a lead alloy that includes the composition shown in Table 1.

Table 1

Element	Range of Percentages
Calcium	0.05 to 0.50 %
Antimony	0.001 to 2.5 %
Tin	0.01 to 2.0 %
Copper	0.001 to 0.1 %
Arsenic	0.001 to 0.25 %
Bismuth	0.01 to 0.05 %
Silver	0.003 to 0.01 %
Lead	balance

[0039] According to another exemplary embodiment, the negative grid according to any of the exemplary embodiments described herein is made from a lead alloy that includes the composition shown in Table 2.

Table 2

Element	Range of Percentages
Calcium	0.05 to 0.15 %
Antimony	< 0.002 %
Tin	> 0.5 %
Copper	< 0.005 %
Arsenic	< 0.002 %
Bismuth	< 0.02 %
Silver	< 0.005 %
Lead	balance

[0040] One advantageous feature of forming negative grids in the manner described above is that such grids require less material than grids manufactured in an expanded metal process. As a result, weight and material cost savings may be realized in using grids such as those described above.

[0041] It is important to note that the construction and arrangement of the battery grid as shown in the various exemplary embodiments is illustrative only. Although

only a few embodiments of the present invention have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter disclosed herein. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.

CLAIMS

1. A method for producing a negative grid for a battery comprising:
 - providing a strip of battery grid material;
 - performing a punching operation on the battery grid material to remove material and form the negative battery grid;
 - whereby the negative battery grid has a plurality of grid wires formed by the punching operation into a uniform pattern of grid wires bounded by a frame comprising:
 - a top frame member;
 - a first side frame member coupled to the top frame member at a first end thereof;
 - a second side frame member coupled to the top frame member at a second end thereof;
 - a bottom frame member spaced apart from the top frame member and coupled to the first side frame member and the second side frame member;
 - wherein each grid wire of the plurality of grid wires coupled to the top frame member is joined to the top frame member at an intersection point having a conductivity enhancing feature configured to aid conductivity between the plurality of grid wires and the frame;
 - wherein the conductivity enhancing feature is formed by a gradual widening of grid wire beginning from a node immediately adjacent to the top frame member toward the intersection point; and
 - wherein the negative grid is free of exposed wire ends for preventing puncturing of a polymeric separator when the negative grid is provided within the separator.
2. The method of Claim 1 wherein the punching operation is a progressive punching operation.
3. The method of Claim 1 wherein the battery grid material is a continuously cast lead alloy strip that is processed to modify at least one of the thickness and grain structure of the continuously cast lead alloy strip.
4. The method of Claim 3 wherein the negative battery grid has a thickness in the range of about 0.010 to 0.050 inches.

5. The method of Claim 3 wherein a series of interconnected battery grids are formed by punching the grid material out of the continuously cast lead alloy strip.
6. The method of Claim 1 wherein the plurality of grid wires are arranged in a pattern selected from the group consisting of a diamond shape, a honeycomb shape, and a rectangle shape.
7. The method of Claim 6 wherein the plurality of grid wires form an elongated diamond pattern in which the plurality of grid wires intersect at angles other than right angles.
8. The method of Claim 1 wherein at least one of the top frame element, first side frame element, second side frame element, and bottom frame element is provided with a feature which compensates for grid growth during use of the grid.
9. The method of Claim 1 wherein the intersection point is provided with a radius between the top frame member and the grid wire to enhance the electrical conductivity between the top frame member and the plurality of grid wires.
10. The method of Claim 9 wherein the battery grid is subjected to a coining step to deform at least one of the plurality of grid wires and the plurality of nodes.
11. The method of Claim 10 wherein a grid wire from the plurality of grid wires is deformed to produce a cross-section that has a shape selected from a group consisting of an octagon shape, a diamond shape, a rhomboid shape, a hexagon shape, and an oval shape.
12. The method of Claim 1 wherein the negative battery grid is coated with a lead alloy.
13. The method of Claim 1 wherein the negative battery grid is formed into a battery plate further comprising using a fixed orifice paster to coat the negative battery grid with an active material.
14. The method of claim 1 wherein the battery grid material has a composition of 0.05 to 0.50 percent calcium, 0.001 to 2.5 percent antimony, 0.01 to 2.0 percent tin, 0.001 to 0.1 percent

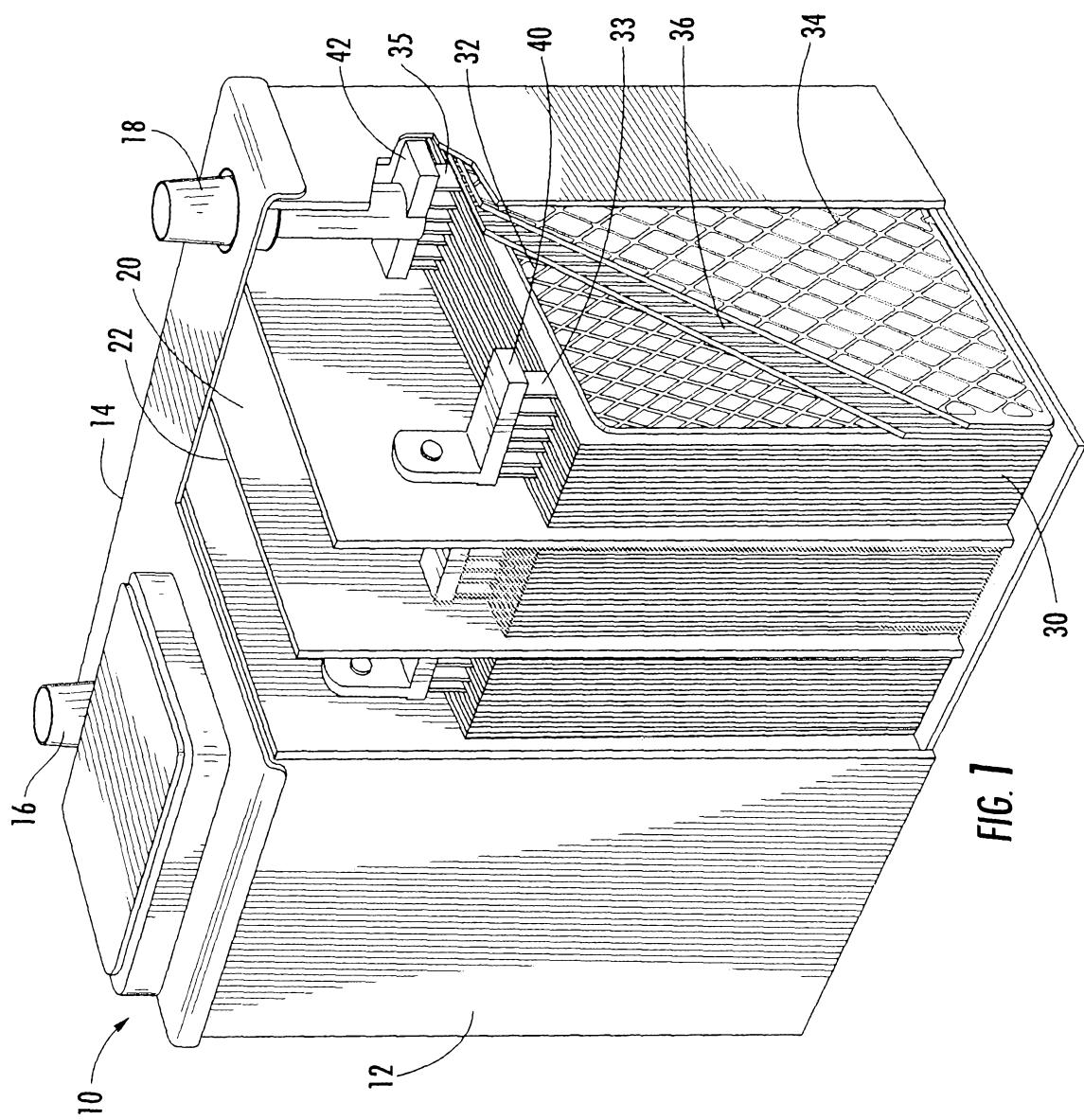
copper, 0.001 to 0.25 percent arsenic, 0.01 to 0.05 percent bismuth, 0.003 to 0.01 percent silver, and a balance of lead.

15. The method of Claim 1 wherein the battery grid material has a composition that comprises 0.05 to 0.15 percent calcium, less than 0.002 percent antimony, greater than 0.5 percent tin, less than 0.005 percent copper, less than 0.002 percent arsenic, less than 0.02 percent bismuth, less than 0.005 percent silver, and a balance of lead.

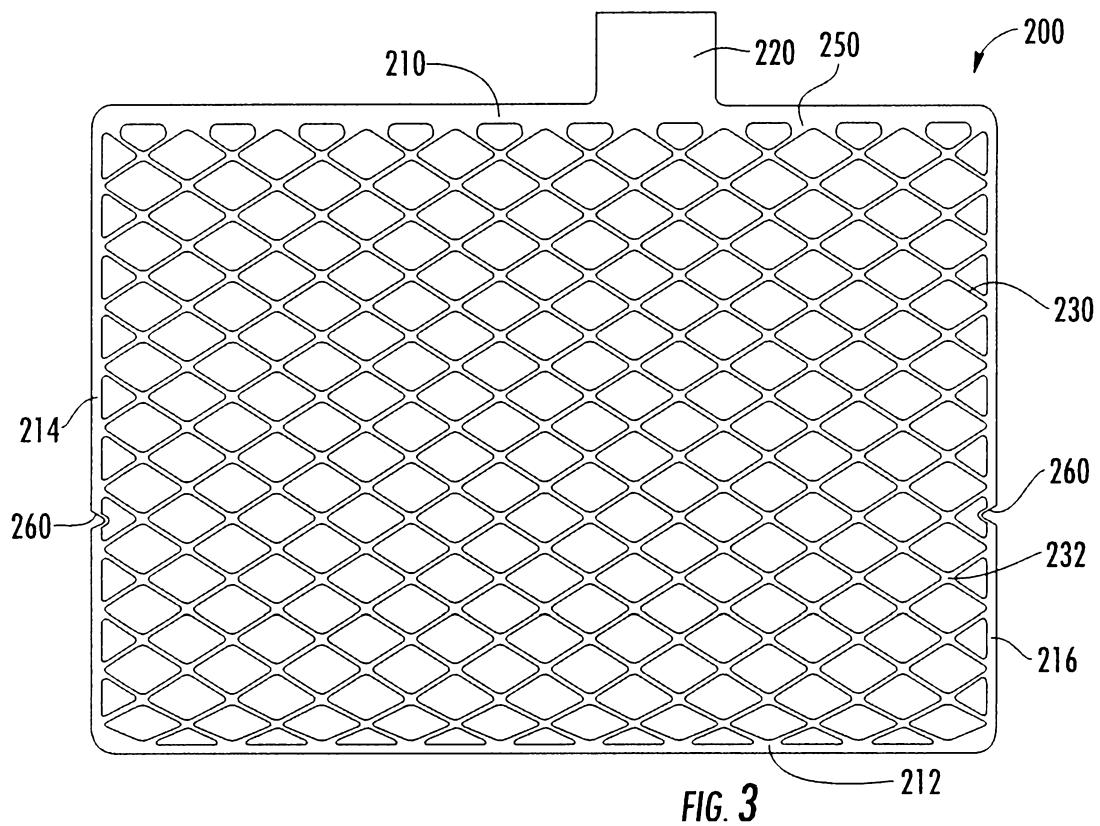
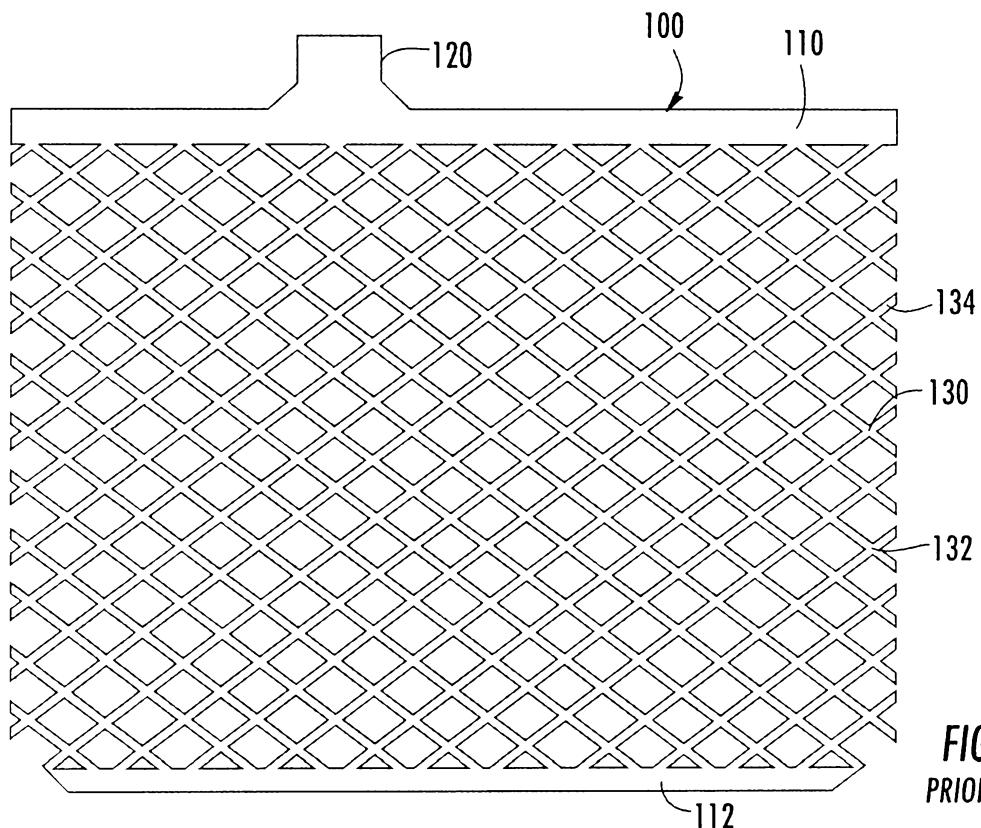
16. A negative battery grid comprising: a frame comprising a top element, a bottom element, a first side element, and a second side element; a plurality of grid wires forming a uniform pattern of wires provided within the frame and defining a plurality of open areas, wherein each grid wire of the plurality of grid wires coupled to the top frame member is joined to the top frame member at an intersection point having a conductivity enhancing feature configured to aid conductivity between the plurality of grid wires and the frame, wherein the conductivity enhancing feature is formed by a gradual widening of grid wire beginning from a node immediately adjacent to the top frame member toward the intersection point; and a current collection lug extending from the top element in a first direction.

17. The negative battery grid of Claim 16, wherein the intersection point has a radius between the frame element and the grid wire to enhance the electrical conductivity between the frame element and the plurality of grid wires.

18. The negative battery grid of Claim 16, wherein all of the grid wires coupled to the frame at the top element are coupled to the frame at the intersection points with a conductivity enhancing feature.


19. The negative battery grid of Claim 16, further comprising at least one growth reduction feature provided in the battery grid that is configured to compensate for grid growth during use.

20. The negative battery grid of Claim 16, wherein the negative battery grid has an unpasted thickness ranging from 0.010 to 0.021 inches.



21. The negative battery grid of Claim 16 wherein the plurality of grid wires are arranged in a pattern selected from the group consisting of a diamond shape, a honeycomb shape, and a rectangle shape.
22. The negative battery grid of Claim 16 wherein at least one of the top frame element, first side frame element, second side frame element, and bottom frame element is provided with a feature which compensates for grid growth during use of the grid.
23. The negative battery grid of Claim 16 wherein the negative battery grid is coated with a lead alloy.
24. The negative battery grid of Claim 16 wherein the battery grid material has a composition of 0.05 to 0.50 percent calcium, 0.001 to 2.5 percent antimony, 0.01 to 2.0 percent tin, 0.001 to 0.1 percent copper, 0.001 to 0.25 percent arsenic, 0.01 to 0.05 percent bismuth, 0.003 to 0.01 percent silver, and a balance of lead.
25. The negative battery grid of Claim 16 wherein the battery grid material has a composition that comprises 0.05 to 0.15 percent calcium, less than 0.002 percent antimony, greater than 0.5 percent tin, less than 0.005 percent copper, less than 0.002 percent arsenic, less than 0.02 percent bismuth, less than 0.005 percent silver, and a balance of lead.

Johnson Controls Technology Company
Patent Attorneys for the Applicant/Nominated Person
SPRUSON & FERGUSON

1/5

2/5

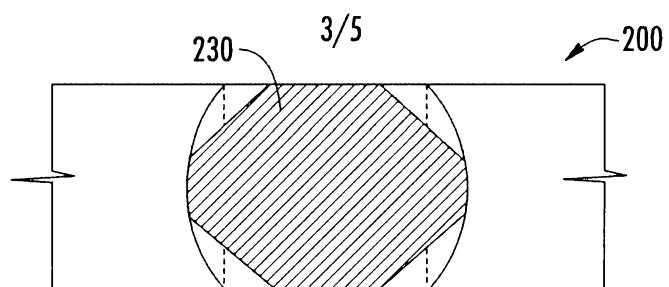


FIG. 4

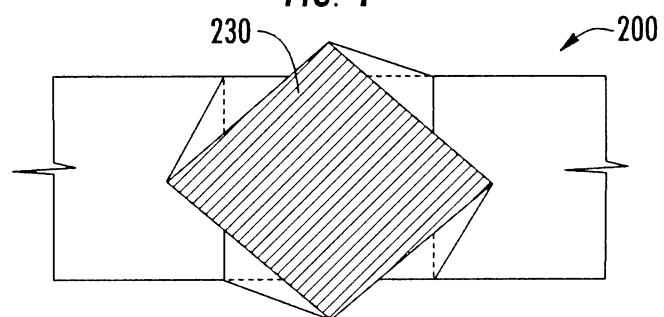


FIG. 5

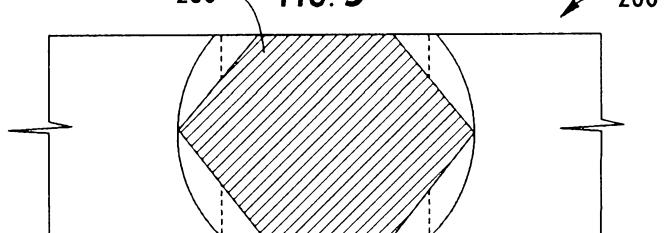


FIG. 6

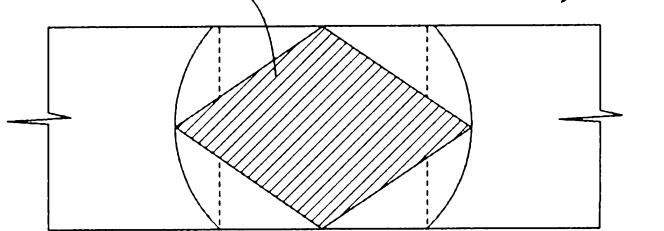


FIG. 7

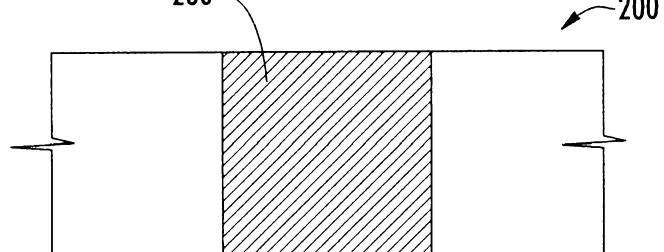
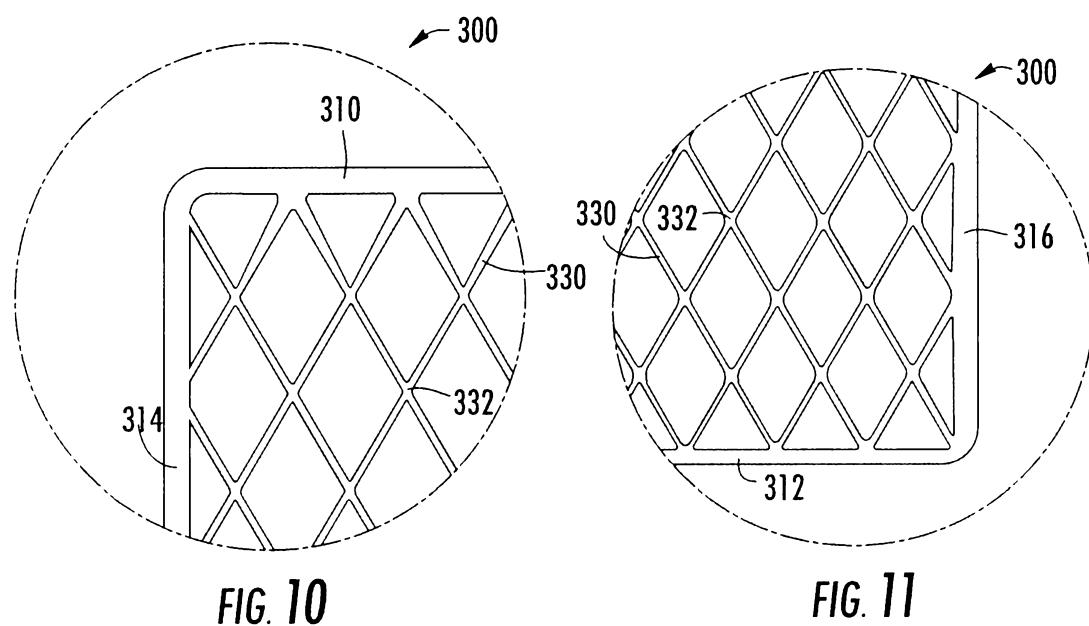
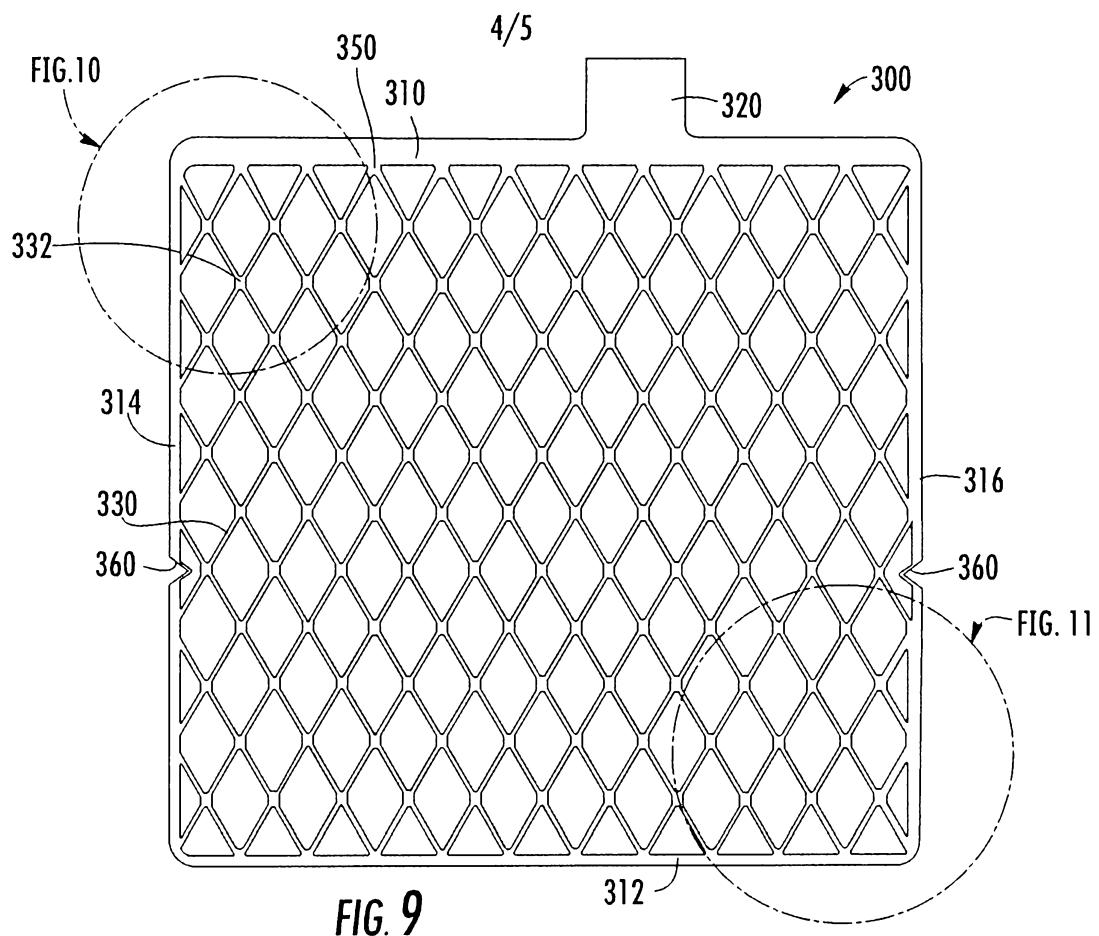
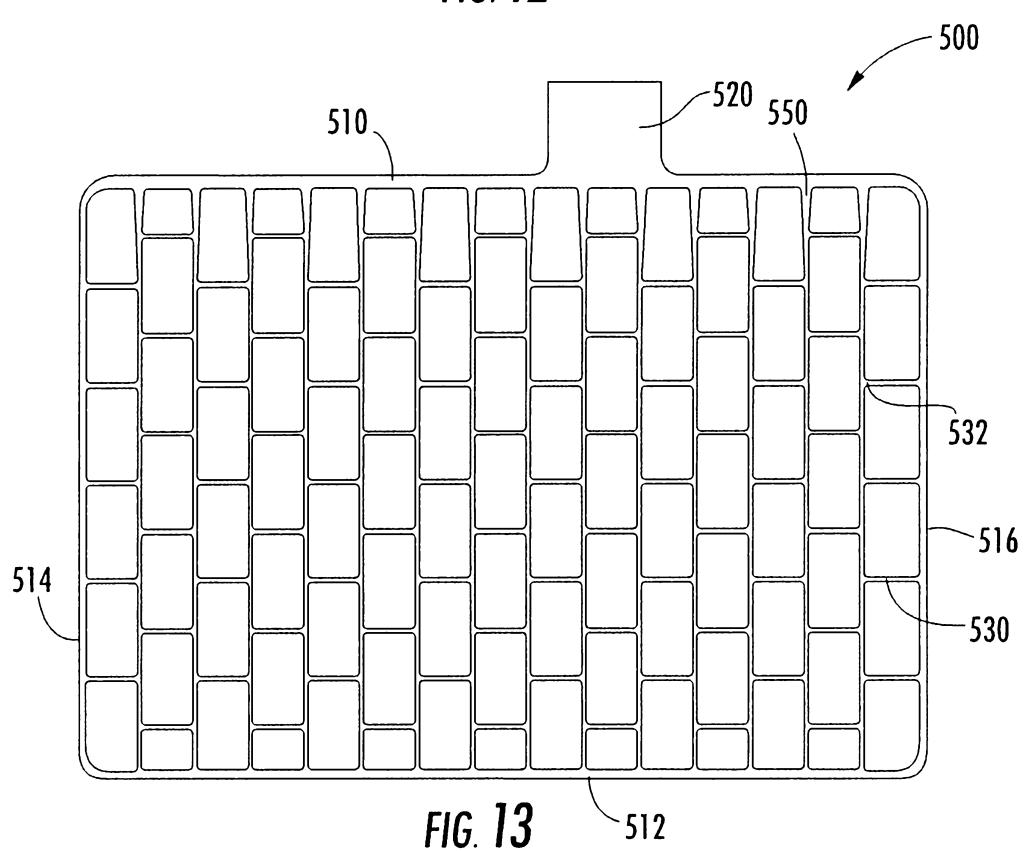
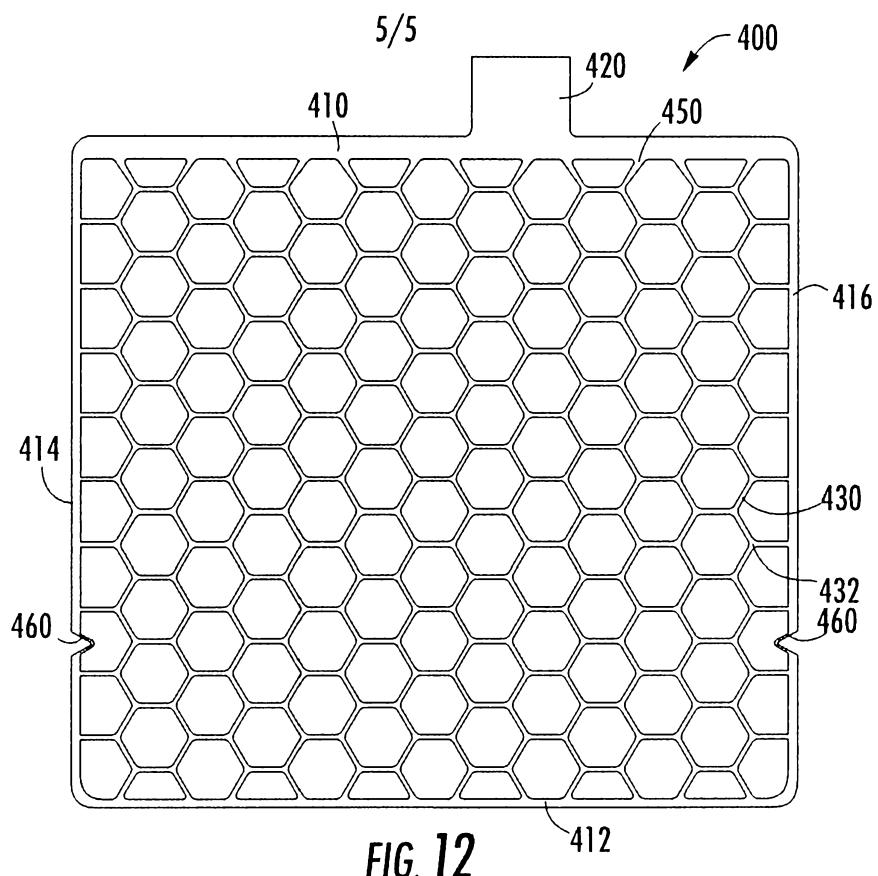






FIG. 8

