An infant support structure includes a frame and a receptacle configured to receive a power source. The frame includes a hub and an infant support portion coupled to the hub. The hub defines the receptacle. A cover is coupled to the hub and is pivotally movable between an open position for providing access to the receptacle and a closed position for restricting access to the receptacle. The cover defines a handle portion for moving the infant support structure.
POWER SOURCE COMPARTMENT FOR AN INFANT SUPPORT STRUCTURE

CROSS REFERENCE TO RELATED APPLICATION

FIELD OF THE INVENTION

[0002] The present invention relates to an infant support structure having a hub defining a receptacle, and a cover movably coupled to hub and defining a handle portion for moving the infant support structure.

BACKGROUND OF THE INVENTION

[0003] Conventional infant support structures provide support for a child or infant. Some examples of such infant support structures include, but are not limited to, bouncers, swings, infant seats, playards and high chairs. Some such support structures include an electronic system that has electronic features that are powered by a power source, such as batteries. Other support structures may include a motorized motion mechanism that moves or vibrates a portion of the support structures. For example, an infant swing typically includes a drive mechanism for moving the seat of the swing back and forth. Such support structures typically include a compartment within which one or more batteries are placed. The compartment typically includes contacts that engage the terminals of the batteries to draw power from the batteries to energize the electronic and/or motorized features.

[0004] There is a need for a power source compartment assembly for an infant support structure that provides additional functionality other than retaining batteries. There is also a need for a guard assembly for an infant support structure that minimizes the possibility of injury by moving components on the support structure.

SUMMARY OF THE INVENTION

[0005] The present invention relates to an infant support structure including a frame and a receptacle configured to receive a power source. The frame includes a hub and an infant support portion coupled to the hub. The hub defines the receptacle. A cover is coupled to the hub and is movable between an open position for providing access to the receptacle and a closed position for restricting access to the receptacle. The cover defines a handle portion for moving the infant support structure from one location to another.

[0006] In one embodiment, the hub is a first hub and the frame includes a front frame portion, a rear frame portion, and a second hub. Each of the first hub and the second hub couple the front frame portion to the rear frame portion, the infant support portion being movably supported from the first hub and the second hub.

[0007] In one embodiment, the infant support portion is movable relative to the hub in a first direction and an opposite second direction. The cover is movable in a third direction different than the first direction. In one implementation, the third direction is substantially perpendicular to the first direction.

[0008] In one embodiment, the cover is coupled to the hub via at least one fastener. The cover remains coupled to the hub upon the removal of the at least one fastener so that a user can move the infant support structure via the handle portion.

[0009] The present invention also relates to an infant support structure including a frame having an upper portion, a lower portion, and a support portion. The lower portion is engageable with a support surface. The upper portion includes a hub defining a receptacle configured to receive a power source. The support portion is coupled to the hub, and is configured to support an infant thereon. A cover is coupled to the hub and movable between an open position for providing access to the receptacle and a closed position for restricting access to the receptacle. The cover includes a handle portion, which is useable by a user to move the infant support structure.

[0010] In one embodiment, the hub is a first hub, and the upper portion of the frame includes a second hub. The support portion is movably supported from the first hub and the second hub. The handle portion is first handle portion, and the second hub includes a second handle portion. The first handle portion and the second handle portion are usurable by the user to move the infant support structure.

[0011] The present invention is also directed to an infant support structure having a battery compartment. The battery compartment includes a container defining a receptacle for a power supply and a cover having an outer surface and an inner surface opposite its outer surface. The container includes a first engagement portion adjacent the perimeter of the container. The cover includes a second engagement portion releasably couplable to the first engagement portion, so that the cover is movably coupled to the container and movable between an open position providing access to the receptacle and a closed position restricting access to the receptacle. The outer surface of the cover includes a handle for moving the infant support structure when the cover is coupled to the container.

[0012] In one embodiment, the first engagement portion includes a projection and the second engagement portion includes an opening. The projection is movably received in the opening so that the cover is pivotally coupled to the container. In one implementation, the projection is slidably removable from the opening so that the cover may be decoupled from the container.

[0013] The present invention also relates to an infant support structure including a frame and a power supply compartment. The frame includes a first side portion and an opposite second side portion, the frame defining an infant receiving region between the first side portion and the second side portion. The power supply compartment is disposed on one of the first or second side portions, and includes a container defining a receptacle configured to receive a power supply. The container includes a first engagement portion adjacent a perimeter of the container. A cover having a second engagement portion is releasably couplable to the first engagement portion, so that the cover is movably couplable to the container and movable between an open position and a closed position. The cover includes a handle portion that can be used to move the infant support structure when the cover is coupled to the container.

[0014] In one embodiment, the infant receiving region is movable in a first direction and an opposite second direction along a first arcuate path. The cover is movable in a third direction different than the first and second directions along a
second arcuate path. In one implementation, the third direction is substantially perpendicular to the first direction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 illustrates a front view schematic diagram of an infant support structure according to an embodiment of the present invention, showing a cover in an open position in phantom;

[0016] FIG. 2 illustrates a side view schematic diagram of the infant support structure of FIG. 1;

[0017] FIG. 3 illustrates a side view schematic diagram of an infant support structure according to another embodiment of the present invention;

[0018] FIG. 4 illustrates a front view schematic diagram of the infant support structure of FIG. 3, showing a cover in an open position in phantom;

[0019] FIG. 5 illustrates a perspective assembly view schematic diagram of a hub and cover of the infant support structure of FIG. 3;

[0020] FIG. 6 illustrates a perspective view of an infant support structure according to another embodiment of the present invention;

[0021] FIG. 7 illustrates a perspective fragmentary view of a portion of the infant support structure of FIG. 6 showing a cover coupled to a hub in a closed position;

[0022] FIG. 8 illustrates a perspective fragmentary view of the portion of the infant support structure of FIG. 7 showing the cover coupled to the hub in an open position;

[0023] FIG. 9 illustrates a perspective fragmentary view of the portion of the infant support structure of FIG. 7 showing the cover detached from the hub;

[0024] FIG. 9A illustrates a perspective fragmentary view of a portion of the infant support structure showing engagement portions for coupled the cover to the hub according to another embodiment;

[0025] FIG. 9B illustrates a perspective fragmentary bottom view of a portion of the hub showing the engagement portion of the hub according to the embodiment of FIG. 9A;

[0026] FIG. 10 illustrates a perspective fragmentary view of a portion of the infant support structure of FIG. 6 showing an attachment area and a hub according to an embodiment of the present invention;

[0027] FIG. 11 illustrates a perspective fragmentary view of components of the attachment area and the hub;

[0028] FIG. 12 illustrates another perspective fragmentary view of components of the attachment area and the hub;

[0029] FIG. 13 illustrates a perspective view of a keyed end of a frame member having a square configuration; and

[0030] FIG. 14 illustrates a perspective view of an opposite keyed end of the frame member of FIG. 13.

[0031] Like reference numerals have been used to identify like elements throughout this disclosure.

DETAILED DESCRIPTION OF THE INVENTION

[0032] It is to be understood that terms such as “left,” “right,” “top,” “bottom,” “front,” “rear,” “side,” “height,” “length,” “width,” “upper,” “lower,” “interior,” “exterior,” “inner,” “outer” and the like as may be used herein, merely describe points or portions of reference and do not limit the present invention to any particular orientation or configuration. Further, terms such as “first,” “second,” “third,” etc., merely identify one of a number of portions, components

and/or points of reference as disclosed herein, and do not limit the present invention to any particular configuration or orientation.

[0033] The terms “infant support structure” and “support structure” may be used interchangeably herein, and refer to a structure that can be used to support and/or retain a child or infant, such as for example a swing, a bouncer, an infant seat, and a high chair.

[0034] FIGS. 1 and 2 illustrate schematic diagrams of an infant support structure 10 according to an embodiment of the present invention. The support structure 10 includes a frame 12 having a side portion 14 and an opposite side portion 16. The frame 12 defines an infant receiving region 18 between side portion 14 and side portion 16. A seat 20 or other support member configured for retaining an infant therein is disposed within the infant receiving region 18. The seat 20 is coupled to the first side portion 14 and/or the second side portion 16.

[0035] A power supply compartment 22 is disposed on side portion 14. The power supply compartment 22 includes a container 24 defining a receptacle 26 configured to receive a power supply (e.g. one or more batteries). The container 24 includes an engagement portion 28 adjacent a perimeter 30 of the container 24. A cover 32 includes another engagement portion 34 releasably couples to the engagement portion 28 so that the cover 32 is pivotally coupled to the container 24 and movable between an open position P1 (shown in phantom in FIG. 1), and a closed position P2.

[0036] The cover 32 includes a handle portion 36 that can be used to move the infant support structure 10 when the cover 32 is coupled to the container 24. In some embodiments, another handle portion 38 is disposed on the other side portion 16. The handle portions 36, 38 are useable to move and/or reposition the infant support structure 10 relative to a support surface S on which it is disposed.

[0037] In one embodiment the seat 20 is movable in a first direction D1 and an opposite second direction D2 along a first arcuate path A1, as shown in FIG. 2. The cover 32 is movable from its closed position P2 to its open position P1 in a third direction D3 and from its open position P1 to its closed position P2 in a fourth direction D4, and along a second arcuate path A2. In some embodiments, the third and fourth directions D3, D4 are different than the first and second directions D1, D2. In one implementation, the third direction D3 (and/or the fourth direction D4) is substantially perpendicular to the first direction D1 (and/or the second direction D2). In other embodiments, the power supply compartment is configured so that the cover is moveable from its closed to its open position (and vice versa) in directions substantially parallel to the first direction D1 and the second direction D2.

[0038] FIGS. 3 and 4 illustrate schematic diagrams of an infant support structure 50 according to another embodiment. The support structure 50 includes a frame 52 having a front frame portion 54 and a rear frame portion 56. The front frame portion 54 includes upwardly extending frame member 58, 60, as shown in FIG. 4. Similarly, the rear frame portion 56 includes an upwardly extending frame member 62, and another opposite upwardly extending frame member (not shown). An upper end 64 of frame member 58 of the front frame portion 54 is coupled to an upper end 66 of frame member 62 of the rear frame portion 56 via a hub 68. Similarly, an upper end 70 of frame member 60 of the front frame portion 54 is coupled to an upper end of the corresponding upwardly extending frame member of the rear frame portion.
The frame 52 defines an infant receiving region 74 between hub 68 and hub 72. A support member 76 configured for retaining an infant therein is disposed within the infant receiving region 74. In one embodiment, support member 76 is movably supported from hub 68 and/or hub 72, and movable relative to the hub 68 in a first direction D1 and an opposite second direction D2 along an arcuate path A1.

Referring to FIG. 5, hub 68 defines a receptacle 78 configured to receive a power source (e.g. one or more batteries). An engagement portion 80 is defined by or coupled to the hub 68 adjacent an outer edge 82 of the receptacle 78. A cover 84 includes another engagement portion 86 that is releasably attachable to engagement portion 80, so that the cover 84 is coupleable to the hub 68 and pivotally movable between an open position P1 (shown in phantom in FIG. 4) for providing access to the receptacle 78 and a closed position P2 for restricting access to the receptacle 78. The engagement portion 86 may include an outwardly extending section 87 (shown in phantom) releasably received within a correspondingly configured recess provided in engagement portion 80 (e.g. similar to engagement portion 28 as shown in FIG. 1). In one embodiment, the cover is movable in a third direction D3 from the closed position P2 to the open position P1, and movable in a fourth direction D4 from the open position P1 to the closed position P2, as shown in FIG. 4. The third direction D3 is different than the first direction D1. In some implementations, the third direction D3 is substantially perpendicular to the first direction D1. In other implementations, the third direction D3 is substantially parallel to the first direction D1.

A handle portion 88 is coupled to or defined by an outer surface of the cover 84. In one embodiment, the other hub 72 also includes a handle portion 90. Handle portions 88, 90 are usable by the user for moving and/or reorienting the infant support structure 50 relative to the support surface S.

An infant support structure 100 according to another embodiment is illustrated in FIG. 6. The support structure 100 includes a frame 102 having an upper portion 104 and a lower portion 106. The lower portion 106 is configured to engage a support surface S so that the upper portion 104 is maintained in a stable orientation relative to the support surface S. The lower portion 106 may include rear foot members 109a and front foot members 109b coupled thereto, which enhance stabilization of the frame 102 on the support surface S.

The upper portion 104 includes a side portion 108 having a lower end 110 coupled to the lower portion 106 of the frame and an upper end 112. Another side portion 114 spaced from side portion 108 has a lower end (not shown in FIG. 6) coupled to the lower portion 106 and an upper end 116. An infant receiving region 118 is disposed between and partially defined by the spaced side portions 108, 114. A support portion 120 is disposed within the receiving region 118 and includes a seat or other retaining portion configured to receive and support an infant thereon.

A hub 122 is coupled to the upper end 112 of side portion 108, and another hub 124 is coupled to the upper end 116 of the other side portion 114. In one embodiment, the support portion 120 is movably coupled to and supported from the hub 122 and/or to the hub 124 via support arms 126, so that the support portion 120 may swing back and forth relative to the frame 102. In one embodiment, the support portion 120 is movable along an arcuate path in opposite directions (such as along arcuate path A1 in opposite directions D1, D2 as shown in FIGS. 2 and 3). In one implementation, a latch arm 128 is pivotally coupled to the lower portion 106 of the frame 102. The latch arm 128 includes an engagement portion 130 movable between a position releasably coupled to and engaging a correspondingly configured portion of the support portion 120, and another position de-coupled from the support portion 120. When engaging the support portion 120, the engagement portion 130 of the latch arm 128 restricts motion of the support portion 120 relative to the frame 102. Thus, motion of the support portion 120 may be selectively controlled. Other configurations of the latch arm and/or component may be employed for selectively arresting motion of the support portion 120. For example, in an alternative embodiment a latch mechanism includes a lower arm section pivotally coupled to the lower portion 106 of the frame 102, and an upper arm section pivotally coupled to the support portion 120. The lower and upper arm sections include distal end portions. The distal end portions of the arm sections are pivotally movable between a position releasably coupled to and engaging each other and restricting motion of the support portion 120, and another position de-coupled from each other and permitting motion of the support portion 120 relative to the frame. Note that both of the above-described embodiments are merely exemplary ways in which the motion of the support portion 120 may be selectively controlled.

An entertainment device such as a mobile 132 may be coupled to the hub 124, or to the hub 122 or another portion of the frame 102. In some embodiments, the mobile 132 is coupled to the hub 124 so that motion of the support portion 120 imparts motion to a hanging toy(s) 134 disposed on the mobile 132.

Referring to FIGS. 7, 8 and 9, the hub 122 (or alternatively hub 124) includes a compartment or container 136 defining a receptacle 138 configured to receive a power source (e.g. one or more batteries). The container 136 includes an engagement portion 140 adjacent a lower edge 142 of the container 136.

A cover 144 is movably coupled to the container 136. The cover 144 has an outer surface 146 and an inner surface 148 opposite its outer surface 146. The cover 144 includes another engagement portion 150 that is releasably couplable to the engagement portion 140 of the container 136, so that the cover 144 is pivotally couplable to the container 136. In particular, the cover 144 is pivotally movable between an open position P1 (shown in FIG. 8) for providing access to the receptacle 138, and a closed position P2 (shown in FIG. 7) for restricting access to the receptacle 138.

In one embodiment, the engagement portion 140 of the container 136 includes projections 152a, 152b extending outwardly from the hub 122 and toward the receiving region 118. The engagement portion 150 of the cover 144 includes openings 154a, 154b defined by an extension member 156 extending outwardly from a lower portion 158 of the cover 144. Projections 152a, 152b are alignable with and slidably receivable in openings 154a, 154b so that the cover 144 is releasably couplable to the container 136.

Referring to FIGS. 9A and 9B, in another embodiment the container 136 includes an engagement portion 141 having recesses 139A, 139B extending inwardly into the hub 122. The cover 144 includes an engagement portion 151 having projections 153A, 153B extending outwardly from the extension member 156. The projections 153A, 153B are...
alignable with and slidably receivable in the recesses 139A, 139B so that the cover 144 is releasably couplable to the container 136.

[0052] The configuration of the engagement portion 150, along with the correspondingly configured portion of the hub 122 from which the projections 152a, 152b extend, permit the cover 144 to move from the closed position P2 to the open position P1 along an arcuate path (such as arcuate path A2 as shown in FIGS. 1 and 4) while remaining coupled to the container 136. The cover 144 may be detached from the container 136 by decoupling the projections 152a, 152b from the openings 154a, 154b (or decoupling the projections 153A, 153B from the recesses 139A, 139B). In one embodiment, the projections 152a, 152b are removed from the openings 154a, 154b by sliding the engagement portion 150 toward the receiving region 118 when the cover 144 is in the open position P1. Similarly, in another embodiment, the projections 153A, 153B are removed from the recesses 139A, 139B by sliding the engagement portion 151 toward the receiving region 118 when the cover 144 is in the open position P1.

[0053] The cover 144 may be secured to the container 136 and releasably maintained in its closed position P2 via one or more removable fasteners 160. For example, fasteners 160 may be configured as threaded screws or bolts, which extend through openings 162 in an upper portion 163 of the cover 144 and into correspondingly configured threaded bores 164 provided in the hub 122. Alternatively, the cover 144 may include snaps or clips that frictionally engage correspondingly configured portions of the hub 122. Therefore, a variety of Fastening mechanism may alternatively or additionally be provided to ensure that the cover 144 is maintained in the closed position P2 against the hub 122 when desired. However, the cover 144 preferably remains pivotally coupled to the hub 122 upon the removal of the fasteners 160 via the engagement portions 140, 150.

[0054] Referring again to FIG. 7, the outer surface 146 of the cover 144 includes or defines a handle portion 166, which is useable by a user U to move and/or reposition the infant support structure 100 relative to the support surface S when the cover 144 is coupled to the container 136. In one embodiment, the other hub 124 includes another handle portion (such as handle portion 90 shown in FIG. 4) extending outwardly therefrom. By decoupling the configuration of the handle portion 90 is similar to the configuration of handle portion 166. The handle portions 166, 90 are useable by the user U to move and/or reposition the infant support structure 100 relative to the support surface S.

[0055] Because the cover 144 remains coupled to the container 136 via engagement portions 140, 150, the handle portion 166 (along with handle portion 90) may be used to move and/or reorient the infant support structure 100 even if fasteners 160 have been removed. For example, it may be desirable to reposition the infant support structure 100 when inserting and/or replacing batteries in the receptacle 138. The fasteners 160 (or other fastening mechanism) may be removed or released so that the cover 144 is movable from its closed position P2 to its open position P1. So long as the cover 144 remains coupled to the container 136, the handle portion 166 remains usable to re-orient the infant support structure 100, such as during the battery replacement operation by the user U.

[0056] Further, even if the user U unintentionally forgets to replace the fasteners 160 and/or otherwise fails to properly install the fasteners 160 through the cover 144 and into the container 136, the handle portion 166 when coupled to the container 136 supports the weight of the infant support structure 100. In this way, the possibility of inadvertently dropping the infant support structure 100 is minimized even if the fasteners 160 are not properly installed. The coupling of the engagement portion 150 (and/or engagement portion 151) on the underside or extension member 156 of the cover 144 to the engagement portion 140 (or engagement portion 141) of the container 136 is designed to support the weight of the infant support structure 100 and an infant in the support portion 120 thereof regardless of the state of the fasteners 160.

[0057] The user U may grasp the handle portion 166 when the cover is in the open position P1, which pivots to the closed position P2 upon an upwardly lifting force exerted by the user U. Once the upward lifting force is no longer being applied (e.g., when the infant support structure has been re-positioned on the support surface S), the cover 144 again pivots from the closed position P2 to the open position P1.

[0058] Referring to FIGS. 6 and 10, the support arm 126 include an end portion 168 rotatably coupled to a corresponding attachment area 170a on an inner portion 172 of the hub 124, and an opposite (not shown) fixedly coupled to the support portion 120. Similarly, the end portion 168 of another support arm 126 is rotatably coupled to another attachment area 170b on a corresponding inner portion of the hub 122, and its opposite end fixedly coupled to the support portion 120. The support portion 120 is thereby rotatably coupled to the hubs 122, 124, and rotatable relative to the frame 102.

[0059] Referring to FIGS. 10, 11 and 12, the attachment area 170a includes a base portion 174 disposed on the inner surface 172 of the hub 124. The support arm 126 is rotatably coupled to the base portion 172. A guard plate 176 is received adjacent the base portion 174. The guard plate 176 includes an opening 178 through which the support arm 126 extends. A cover 180 defining a slot or opening 182 (shown in FIG. 11) is attached to the base portion 172 (as shown in FIG. 10) so that the guard plate 176 is sandwiched between the base portion 174 and the cover 180. The cover 180 may be attached to the base portion 172 via screws, pins, clips, or other fastener(s). The guard plate 176 is slidable against an inner surface 184 of the cover 180.

[0060] The diameter of the opening 178 in the guard plate 176 is slightly larger than the diameter of the support arm 126, as shown in FIG. 11. However, the opening 182 defined by the cover 180 has a sufficient length to permit the support arm 126 to move in opposing directions D1, D2 so that the support portion 120 is movable along its arcuate path A1. As the support arm 126 moves back and forth and toward and away from opposing ends of the opening 182, the guard plate 176 moves along with the support arm 126, sliding against the inner surface 184 of the cover 180. In one implementation, the guard plate 176 is maintained against the inner surface 184 of the cover 180 via guide ribs 186 provided on the base portion 174. Thus, the guard plate 176 is slidably disposed between the guide ribs 186 and the inner surface 184.

[0061] The length of the guard plate 176 is greater than the length of the opening 182 of the cover 180, so that the opening 182 is substantially blocked by the guard plate 176 (and the support arm 126) regardless of the position of the support arm 126 relative to the opening 182. In this way, any openings in which a child could otherwise place his or her fingers or other objects as the support portion 120 is swinging are eliminated.
The possibility of the child pinching or otherwise injuring himself or herself is substantially reduced, and overall safety is enhanced.

[0062] In one embodiment, the configuration of the attachment area 170a on the hub 122 is identical to the attachment area 170a as described above. In other embodiments, the specific configurations of the base portion, guard plate and or cover may differ depending on the specific configuration of the hubs 122, 124.

[0063] Referring again to FIG. 6, the frame 102 may be formed from a plurality of members such as tubular sections, that are coupled together to form the frame 102. For example, portions of the frame 102 may be disassembled for packaging and or storage of the infant support structure 100.

[0064] Referring to FIGS. 13 and 14, one or more tubular sections may include keyed end portions in order to minimize the possibility that the frame 102 is assembled incorrectly. For example, in some embodiments, an end 106a of the lower portion 106 has a generally square configuration in section, while an opposite end 106b of the lower portion 106 has a generally circular configuration in section. The square end 106a is received in a correspondingly configured recess in the foot member 109a, which also has a square configuration in section. The opposite circular end 106b is received in a correspondingly configured recess in foot member 109a, which accordingly has a circular configuration in section. In this way, the lower portion 106 is only attachable to the foot members 109a, 109b in a specific orientation, thereby ensuring proper assembly due to the keyed end configurations.

[0065] The keyed ends 106a, 106b may include lock tabs 206, such as spring biased members, which are received in correspondingly configured openings within the corresponding recesses in the foot members 109a, 109b. The lock tabs 206 may be pushed inwardly and within the lower portion 106 as the corresponding ends 106a, 106b are being inserted into the recesses. The lock tabs 206 then spring outwardly and into the corresponding openings within the recesses when the corresponding ends 106a, 106b of the lower portion 106 are properly assembled, thereby properly locking the frame 102 together.

[0066] Other components, such as other tubular components of the frame 102 may alternatively or additionally include keyed end portions as described above. Further, other configurations of the ends may be employed. The square and circular configurations shown in FIGS. 13 and 14 are thus exemplary only.

[0067] Although the disclosed inventions are illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the scope of the inventions and within the scope and range of equivalents of the claims. In addition, various features from one of the embodiments may be incorporated into another of the embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the disclosure as set forth in the following claims.

What is claimed is:

1. An infant support structure, comprising:
 a frame including a hub and an infant support portion coupled to the hub, the hub defining a receptacle configured to receive a power source; and
 a cover coupled to the hub and pivotally movable between an open position for providing access to the receptacle and a closed position for restricting access to the receptacle, the cover defining a handle portion for moving the infant support structure.

2. The infant support structure of claim 1, wherein the hub is a first hub and the frame includes a front frame portion, a rear frame portion, and a second hub, each of the first hub and the second hub coupling the front frame portion to the rear frame portion, the infant support portion being movably supported from the first hub and the second hub.

3. The infant support structure of claim 1, wherein the infant support portion is movable relative to the hub in first direction and an opposite second direction, and the cover is movable in a third direction different than the first direction.

4. The infant support structure of claim 3, wherein the third direction is substantially perpendicular to the first direction.

5. The infant support structure of claim 1, further comprising:
 at least one removable fastener coupling the cover to the hub, the cover remaining coupled to the hub upon the removal of the at least one fastener so that a user can move the infant support structure via the handle portion.

6. An infant support structure, comprising:
 a frame having an upper portion and a lower portion, the lower portion being engageable with a support surface, the upper portion including a hub defining a receptacle configured to receive a power source, the frame including a support portion coupled to the hub, the support portion being configured to support an infant thereon; and
 a cover coupled to the hub and movable between an open position for providing access to the receptacle and a closed position for restricting access to the receptacle, the cover including a handle portion, the handle portion being useable by a user to move the infant support structure.

7. The infant support structure of claim 6, wherein the hub is a first hub, the upper portion of the frame including a second hub, the support portion being movably supported from the first hub and the second hub.

8. The infant support structure of claim 7, wherein the handle portion is a first handle portion, the second hub including a second handle portion, the first handle portion and the second handle portion being useable by the user to move the infant support structure.

9. The infant support structure of claim 6, wherein the support portion is movable in a first direction and an opposite second direction relative to the hub, and the cover is movable in a third direction different than the first and second directions.

10. The infant support structure of claim 6, further comprising:
 at least one fastener releasably coupling the cover to the hub, the cover remaining coupled to the hub upon the decoupling of the at least one fastener so that the user can move the infant support structure via the handle portion.

11. An infant support structure having a battery compartment, the battery compartment comprising:
 a container defining a receptacle for a power supply, the container including a first engagement portion adjacent the perimeter of the container, and
 a cover having an outer surface and an inner surface opposite its outer surface, the cover including a second
engagement portion releasably couplable to the first engagement portion so that the cover is pivotally coupled to the container and movable between an open position providing access to the receptacle and a closed position restricting access to the receptacle, the outer surface of the cover including a handle for moving the infant support structure when the cover is coupled to the container.

12. The infant support structure of claim 11, further comprising:

at least one fastener releasably coupling the cover to the container, the cover remaining coupled to the container upon the decoupling of the at least one fastener so that the user can move the infant support structure via the handle.

13. The infant support structure of claim 11, wherein the first engagement portion includes a projection and the second engagement portion includes an opening, the projection movably received in the opening so that the cover is pivotally coupled to the container.

14. The infant support structure of claim 13, wherein the projection is slidably removable from the opening so that the cover is de-coupled from the container.

15. An infant support structure, comprising:

a frame including a first side portion and an opposite second side portion, the frame defining an infant receiving region between the first side portion and the second side portion; and

a power supply compartment disposed on one of the first side portion and second side portion, the power supply compartment including:

a container defining a receptacle configured to receive a power supply, the container including a first engagement portion adjacent a perimeter of the container; and

a cover including a second engagement portion releasably couplable to the first engagement portion so that the cover is pivotally couplable to the container and movable between an open position and a closed position, the cover including a handle portion that can be used to move the infant support structure when the cover is coupled to the container.

16. The infant support structure of claim 15, wherein the infant receiving region is movable in a first direction and an opposite second direction along a first arcuate path, and the cover is movable in a third direction different than the first and second directions along a second arcuate path.

17. The infant support structure of claim 16, wherein the third direction is substantially perpendicular to the first direction.

18. The infant support structure of claim 15, further comprising:

at least one removable fastener coupling the cover to the container, the cover remaining coupled to the container upon the removal of the at least one fastener so that a user can move the infant support structure via the handle portion.

19. The infant support structure of claim 15, wherein the handle portion is a first handle portion, and the other of the first side portion and second side portion includes a second handle portion, the first handle portion and the second handle portion being useable to move the infant support structure.

20. The infant support structure of claim 15, wherein one of the first engagement portion and the second engagement portion includes a projection, and the other of the first engagement portion and the second engagement portion includes an opening, the projection movably received in the opening so that the cover is pivotally coupled to the container.