
## E. B. THORNHILL

FURNACE .

Original Filed Jan. 21, 1921



## UNITED STATES PATENT OFFICE.

EDWIN B. THORNHILL, OF HURLEY, NEW MEXICO, ASSIGNOR TO THORNHILL-ANDER-SON COMPANY, OF MUSKOGEE, OKLAHOMA, A CORPORATION OF OKLAHOMA.

## FURNACE.

Original application filed January 21, 1921, Serial No. 438,957. Divided and this application filed September 11, 1922. Serial No. 587,314.

Hurley, in the county of Grant and State 5 of New Mexico, have invented a new and

the following is a specification.

This invention relates to furnaces and particularly to improved heating elements 10 for use therein, and the main object of the invention is to provide heating elements which are adapted to heat the interior of the furnace and the material therein by radiation, and which are of such construction as to provide for maximum efficiency in conduction and radiation of heat, while at the same time providing the requisite strength and durability.

This application is a division of my application Ser. No. 438,957, filed January 21, 1921, in which the heating means herein shown were disclosed in connection with a furnace for carrying out a process for production of sponge iron and other products. 25 My improved heating elements may, how-ever, be employed with advantage in any

furnace wherein heating by radiation is de-

The accompanying drawings illustrate apparatus embodying my invention, Fig. 1 being a horizontal section, on line 1-1 in Fig. 2, of a rotary hearth furnace provided with my improved heating elements; Fig. 2 a section on line 2—2 in Fig. 1; Fig. 3 a vertical section on line 3—3 in Fig. 1; and Fig. 4 a vertical section of a modification.

Referring to Figs. 1 to 3, the furnace therein shown comprises a rotary hearth 1, mounted to rotate on a vertical shaft 2, and 40 a furnace casing or enclosure 3, which extends over and around said hearth to form a heating chamber 4 above the hearth. Said furnace casing is shown as having an arched shaped roof 5, but it may be of any suitable 45 form and may be constructed of any suitable material, for example, ordinary brick lined with firebrick.

The shaft 2 for the rotary hearth may be mounted in suitable bearings 6 and 7 and may be driven by any suitable means, indicated at 8, so as to gradually rotate the hearth. Suitable feed means 9 for supply-

To all whom it may concern:

Be it known that I, Edwin B. Thornhill, the hearth, may be provided in the usual manner of rotary hearth furnaces, and rabthe hearth, may be provided in the usual 55 a citizen of the United States, residing at bling means, indicated at 11 may also be provided for turning over the material and gradually advancing it from the feed means useful Improvement in Furnaces, of which to the outlet. It will be understood, how- 60 ever, that any other desirable furnace construction may be used. For example, as shown in Fig. 4, the hearth may be stationary as indicated at 12 and the rabbling means, indicated at 13, may be rotated in 65 the usual manner of such furnaces. In fact, as regards the present invention, the construction of the hearth and the presence or absence of rabbling means is immaterial, my present invention relating to the construc- 70 tion of the heating means for the furnace chamber, irrespective of the manner in which the material to be treated is introduced into or withdrawn from the furnace, and also irrespective of the nature and 75 purpose of the heating operation performed on such material, provided the heating is by radiation in the manner hereinafter set forth.

Heating means 14 extend in the heating 80 chamber 4 and above hearth 1, so as to heat the material on the hearth by radiation, said heating means being out of contact with the material being treated. Said heating means consist of heating elements formed 85 preferably as straight horizontal tubes of suitable resistant material extending through the side walls of the furnace, said tubes being open at one end for reception of burners 15 and opening at the other end 90 into an outlet chamber 16 communicating with a stack 17. Said tubes 14 may consist of any suitable refractory material, preferably material of good thermal conductivity, for example, carborundum, or similar material, and are supported from the roof of the furnace chamber or casing in any suitable manner, for example, by passing through openings in blocks 18 which interlock with one another and extend across the 100 furnace chamber in the form of an arch, said blocks being of suitable refractory material. With the described construction, the heating elements, extending parallel to one another through the heating chamber and 105 over the hearth thereof, are so positioned ing the material to the hearth, and outlet as to provide for most effective radiation of means 10 for discharging the material from heat from said elements on to the material

tion and mounting of said elements are such as to provide the required strength and

durability of the construction.

In the operation of the furnace, the material to be heated is supplied to the hearth or floor of the furnace in any suitable manner, so as to be exposed to radiation from the heating elements. The heating devices 10 14 are brought to a high temperature by operation of the burners 15, the flames from which pass within and through the heating tubes 14 and heat the walls of such tubes so that they become incandescent: the heat 15 being conducted through the walls and radiated from the outer surfaces thereof, part of the heat so radiated passing directly to the material distributed or placed on the hearth and part of such heat being radiated to the top and sides of the heating chamber 4 and being radiated therefrom to the material on the hearth. By this means the temperature of the heating chamber is maintained at the point required for effective and economical 25 heating of the ore or other material; for example, in case the furnace is used for iron ore reduction, a temperature of from 950° to 1000° C. may be maintained.

The source of heat used for radiating heat so to the material being treated may be of any suitable character. Thus, in place of the heating elements above described, I may use electrical heating elements, such as indicated at 20 in Fig. 4, and comprising a conductor so of considerable resistance connected in an electrical circuit and enclosed in a tube of refractory material, preferably carborundum. As an illustration, this conductor is shown as consisting of fragments of coke, 40 or other form of carbon, indicated at 20 and contained within a tube 21 of refractory material such as carborundum; electrodes 22 and 23 extending into opposite ends of the tubes 21 and making contact with the high resistance material 20 therein, such electrodes being connected to an electrical circuit for supply of electric current thereto. It will be understood that any number of the heating elements may be provided and that the same may extend over the hearth so as to

supported on the hearth and the construct heat the entire area of the hearth, or the material thereon, to the proper temperature.

What I claim is:

1. In a furnace, a casing formed with a heating chamber provided with means for 55 supporting material to be heated, and heating elements extending through the said chamber and over the material supporting means, so as to heat the material by radiation, said heating elements comprising straight hori- 60 zontal tubes of refractory material and means for applying heat internally to said

2. In a furnace, a casing formed with a heating chamber provided with means for 65 supporting material to be treated, and heating means consisting of straight horizontal tubes of carborundum extending through said chamber and over the material supporting means, so as to heat the material by radi- 70 ation, and means for heating said tubes in-

ternally.

3. A furnace comprising a casing formed with a chamber adapted to contain the material to be heated and having a roof ex- 75 tending over said chamber, and heating means for said chamber comprising a plurality of straight horizontal carborundum tubes extending through the walls of said chamber, means connected to the roof of 80 the chamber for supporting said tubes, and means for heating said tubes internally.

4. In a furnace, a casing formed with a heating chamber and with an outlet chamber at one end of said heating chamber, a plu- 85 rality of straight horizontal heating tubes extending through said chamber and open at both ends, one end of each of said tubes communicating with the outer air and the other end communicating with the said out- 90 let chamber, burner means adapted to direct hot products of combustion into the respective tubes at the open ends thereof, and means for supporting material to be heated below said tubes so as to be heated by radi- 95 ation therefrom.

In testimony whereof I have hereunto subscribed my name this 28th day of August,

EDWIN B. THORNHILL.