(19) DEUTSCHE DEMOKRATISCHE REPUBLIK

PATENTSCHRIFT

Ausschliessungspatent

Erteilt gemaeß § 5 Absatz 1 des Aenderungsgesetzes zum Patentgesetz

ISSN 0423-6461

200 979

Int.Cl.3

3(51) B 01 D 53/14

AMT FUER ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veroeffentlicht

AP B 01 D/ 2314 357 23241A/80

29.06.83

GAZZI, LUIGI; RESCALLI, CARLO; SCARAMUCCI, MARIA A.; GINNASI, ALESSANDRO; IT;

SNAMPROGETTI SPA, MILANO;IT; INTERNATIONALES PATENTBUERO BERLIN, 1020 BERLIN, WALLSTRASSE 23/24

VERFAHREN ZUR SELEKTIVEN ABTRENNUNG VON SCHWEFELWASSERSTOFF AUS GASGEMISCHEN (54)

(57) Die Erfindung betrifft ein Verfahren zur selektiven Abtrennung von Schwefelwasserstoff aus Gasgemischen, insbesondere aus Kohlendioxid enthaltenden Gasgemischen. Ziel der Erfindung ist, die bekannten Verfahren zu verbessern, zu vereinfachen und wirtschaftlich zu gestalten. Erfindungsgemäß erfolgt die selektive Abtrennung von Schwefelwasserstoff aus gegebenenfalls Kohlendioxid enthaltenden Gasgemischen durch selektive Absorption mit einem tertiären Amin, insbesondere in der Weise, daß das tertiäre Amin ein organisches Lösungsmittel enthält; allgemein wird mit einem Gemisch aus 10 bis 70 Gew.-% Amin und 30 bis 90 Gew.-% Lösungsmittel gearbeitet in einem Temperaturbereich von 10 bis 80°C. Gegebenenfalls enthält das Gemisch bis zu 10 Gew.-%, vorzugsweise nicht mehr als 2 Gew.-%, Wasser. Hierzu Fließschema auf der beiliegenden Zeichnung. Figur

231435 7

Berlin, den 9.11.1981 AP B 01 D/231 435/7 59 330/18

Verfahren zur selektiven Abtrennung von Schwefelwasserstoff aus Gasgemischen

Anwendungsgebiet der Erfindung

Die Erfindung bezieht sich auf ein Verfahren zur Entfernung von Schwefelwasserstoff aus Gasgemischen, insbesondere auf die selektive Entfernung von Schwefelwasserstoff aus Kohlendioxid enthaltenden Gasgemischen.

Charakteristik der bekannten technischen Lösungen

Die selektive Abscheidung von H₂S ist ein in der petrochemischen Industrie und Ölindustrie allgemein auftretendes Problem, für das bis jetzt noch keine wirksame und wirtschaftliche Lösung gefunden worden ist.

Es gibt zahlreiche mögliche Anwendungen der selektiven Abtrennung von H₂S. Als Beispiel sei auf die folgenden hauptsächlichen Anwendungsgebiete hingewiesen.

Aus Erdgas sollte eine sehr gründliche Abscheidung von $\rm H_2S$ erfolgen, damit der Verbraucher ein Gas geliefert bekommt, das frei von giftigen oder aggressiven Bestandteilen ist. $\rm CO_2$ hingegen stellt lediglich eine inerte Komponente dar und kann im Gas verbleiben innerhalb der Grenzen, die durch die vorgeschriebenen Werte für Heizwert und Wobbe-Zahl gegeben sind. Hierdurch wird der Aufwand für die Abtrennung von $\rm CO_2$ vermieden.

Aus Abgasen von Claus-Anlagen werden die Schwefelverbindungen zu $\rm H_2S$ reduziert und - wenn dies tatsächlich selektiv erfolgen könnte - würden erhebliche Einsparungen erreicht.

Bei der Herstellung von Industriegasen für die Synthese, beispielsweise von Methanol, Ammoniak und synthetischem Kraftstoff, ist es sehr wichtig, H₂S selektiv zu entfernen, um in einigen Fällen das CO₂ weiter zu verwenden bzw. in die Claus-Anlage H₂S-reiches Gas einspeisen zu können. Die für die Synthesen verwendeten Katalysatoren sind im allgemeinen sehr empfindlich gegenüber Schwefelverbindungen; es werden daher Grenzwerte in der Größenordnung von 1 ppm verlangt, da sonst innerhalb kurzer Zeit der Katalysator vergiftet und desaktiviert wird.

Die bekannten Verfahren führen alle zu Problemen, da sie keine wirklich selektive Abtrennung ermöglichen.

In der Praxis lassen sich - zur einfacheren Erklärung - die bekannten Verfahren in drei Gruppen einteilen:

Zur ersten Gruppe gehören Verfahren der chemischen Absorption in wäßrigen Lösungen tertiärer Amine. Diese Verfahren verdanken ihre Selektivität der Tatsache, daß die Reaktion des CO_2 mit den Aminen sehr viel langsamer verläuft als die Reaktion des $\mathrm{H}_2\mathrm{S}$ aufgrund der Tatsache, daß die erstere Reaktion vermutlich über eine Zwischenstufe verläuft, bei der CO_2 hydratisiert bzw. an CO_2 Wasser angelagert wird. Diese Reaktion erweist sich als die begrenzende Stufe.

Aus dem Unterschied der Reaktionskinetiken läßt sich ein Vorteil ziehen, indem die Anlage derartig ausgelegt wird, daß zwar H₂S praktisch vollständig, CO₂ jedoch nur teil-weise aus den Gasen entfernt wird. Verfahren dieser Art, bei denen Methyldiäthanolamin in wäßriger Lösung oder ein Gemisch aus Diisopropylamin, Sulfolan und Wasser eingesetzt wird, sind technisch anwendbar. Jedoch ermöglichen derartige Prozesse keine zufriedenstellende Behandlung, und zwar aus folgenden Gründen:

Das behandelte Gas ist noch in beträchtlichem Maße verunreinigt; der Restgehalt an $\rm H_2S$ kann einige hundert ppm betragen; die Selektivität der Abtrennung nimmt mit dem Arbeitsdruck stark ab und wird außerdem durch die Arbeitsbedingungen beeinflußt, wie Zusammensetzung und Strömungsgeschwindigkeit des Gases, so daß eine solche Anlage nicht sehr geeignet ist für einen Betrieb beträchtlich variierender Last oder Leistung.

Andere ähnliche Verfahren beruhen auf der Verwendung von Absorptionsmitteln, die kein Amin sind. Beispielsweise zeigen Lösungen von alkalischen Carbonaten eine gewisse Selektivität der Abtrennung, ermöglichen aber keine gründlichen Reinigungen.

Zur zweiten Gruppe von bekannten Verfahren können solche gezählt werden, die auf der Absorption mit einem Lösungsmittel beruhen. Brauchbare technische Lösungsmittel sind Methanol und Dimethyläther von Polyäthylen-glykolen, N-Methylpyrrolidon, gegebenenfalls wasserhaltig.

Im allgemeinen wird die selektive Abtrennung nur erforderlich, wenn H₂S in begrenzten Mengen vorhanden ist, d, h,
wenn sein Partialdruck niedrig ist. Unter solchen Bedingungen ist die "Säure-Belastung" gering, und die mit einem
Lösungsmittel arbeitenden Verfahren sind nicht vorteilhaft,
wegen der thermodynamischen Bedingungen und können auch
nicht ihre Fähigkeiten voll entfalten, da hohe Lösungsmittel-Strömungsgeschwindigkeiten und umfangreiche Anlagen
benötigt werden, um eine gründliche Reinigung bzw. Abtrennung von H₂S zu erreichen.

Darüber hinaus haben diese Lösungsmittel den Nachteil, daß sie auch höhere Kohlenwasserstoffe lösen und – aufgrund der niedrigen Säure-Belastung mit erhöhtem Lösungsmittel-Kreislauf gearbeitet werden muß – in der Praxis die Kohlenwasserstoffe vollständig aufgenommen werden. Damit verbietet sich jedoch ein derartiges Verfahren für Erdgas mit einem beträchtlichen Gehalt an höheren Kohlenwasserstoffen.

Zur dritten Gruppe der bekannten Verfahren gehören die Oxydation des H₂S zu Schwefel, wie das Gianmarco-Verfahren oder das Stretford-Verfahren.

Die Selektivität dieser Verfahren ist ausgezeichnet. Aus ökologischen Gründen ist davon jedoch stark abzureten, da die Probleme in Verbindung mit großen Mengen an Arsen oder dem Anfall von kolloidalem Schwefel und deren Abscheidung und Rückgewinnung nicht vollständig gelöst sind.

- 5 -

9.11.1981 AP B 01 D/231 435/7 59 330/18

Ziel der Erfindung

Ziel der Erfindung ist die Bereitstellung eines einfachen, verbesserten und wirtschaftlichen Verfahrens zur selektiven Abtrennung von Schwefelwasserstoff aus Gasgemischen, mit dem die Nachteile der bekannten Verfahren überwunden werden.

Darlegung des Wesens der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, Schwefelwasserstoff in Gegenwart von Kohlendioxid mittels chemischer Absorption durch neuartige Lösungen selektiv abzutrennen.

Diese Lösungen sind im wesentlichen wasserfreie Lösungen von tertiären Aminen mit einem organischen Hilfslösungsmittel, wobei die beiden Komponenten zusammenwirken, die eine als Reaktionspartner und die andere als ein selektives Lösungsmittel.

Es wurde überraschenderweise festgestellt, daß auch bei Abwesenheit von Wasser H₂S ausreichend dissoziiert, um gründlich abgetrennt werden zu können, während CO₂ meistens unverändert bleibt. Zu den tertiären Aminen, die erfindungsgemäß allein oder im Gemisch miteinander Anwendung finden, gehören Methyl-diäthanolamin, Dimethyl-äthanolamin, Äthyl-diäthanolamin, Diäthyl-äthanolamin, Propyl-diäthanolamin, Dipropyl-äthanolamin, Isopropyl-diäthanolamin, Diisopropyl-äthanolamin, Methyl-diisopropanolamin, Äthyl-diisopropanolamin, Propyl-diisopropanolamin, Isopropyl-diisopropanolamin, Triäthanolamin und N-Methyl-morpholin.

Zu den Lösungsmitteln, die allein oder im Gemisch miteinander in der Absorptionslösung angewendet werden, gehören
Sulfolan, N-Methylpyrrolidon, N-Methyl-morpholin-3-on,
Mono- und Dialkyläther-monoäthylenglykole, Mono- und Dialkyläther-polyäthylenglykole (bei denen jede Alkylgruppe jeweils
1 bis 4 Kohlenstoffatome enthalten kann), Äthylenglykol,
Diäthylenglykol, Triäthylenglykol, N,N-Dimethylformamid,
N-Formylmorpholin, N,N-Dimethylimidazolidin-2-on und NMethylimidazol.

Das Verhältnis zwischen den beiden Komponenten in der erfindungsgemäßen Lösung soll so sein, daß das tertiäre Amin 10 bis 70 Gew.-%, vorzugsweise 20 bis 50 Gew.-%, ausmacht.

Bei der industriellen Anwendung des Verfahrens muß darauf geachtet werden, daß Wasser in den Kreislauf gelangen kann, und zwar entweder als Feuchtigkeit im eingespeisten Gas, die sich im Lösungsmittel ansammelt, oder als Verunreinigung der Komponenten der Lösung. Die Entfernung des möglicherweise in den Kreislauf eingeschlepten Wassers kann in einem kleinen Eindampfer erfolgen, der periodisch betrieben wird, und/oder mit einem kleineren Anteil an Lösungsmittel, so daß das Lösungsmittel bis zu dem gewünschten Grad entwässert wird. In der Industrie kann tatsächlich ohne große Betriebsänderungen ein begrenzter Wassergehalt in der Absorptionslösung zugelassen werden, so daß wegen dieses Wassergehaltes keine besonderen restriktiven Maßnahmen nötig sind.

Bei der Regeneration der Lösung kann die Anwesenheit begrenzter Mengen Wasser im Lösungsmittel sogar von Vorteil sein, weil hierdurch in der Kolonne Dampf gebildet wird, - 7 -

9.11.1981 AP B 01 D/231 435/7 59 330/18

der das Abstreifen der absorbierten Gase begünstigt. In der Praxis wird in der Abstreifkolonne das Rücklaufwasser verdampft und die regenerierte Absorptionslösung vom Boden in praktisch wasserfreiem Zustand entnommen.

Das in der Regenerationsstufe vorhandene Wasser verbleibt in dem Abstreifer in einem geschlossenen Kreislauf und bildet am Boden Dampf und am Kopf den Rücklauf.

In der Industrie ist der Wassergehalt in der regenerierten Lösung, die in die Absorptionsstufe eingespeist wird, vorzugsweise auf einige Gew.-% begrenzt; die beste Selektivität wird jedoch mit praktisch wasserfreien Lösungen in der Absorptionsstufe erzielt.

Das erfindungsgemäße Verfahren wird an einer Ausführungsform erläutert, die in einem Fließdiagramm dargestellt ist.

In eine Absorptionskolonne 2 wird über eine Leitung 1 das zu reinigende Gas und über eine Leitung 3 die Absorptionslösung eingeführt. In der Kolonne 2, die eine Bodenkolonne oder eine Füllkörper-Kolonne üblicher Art sein kann, werden Gas und die Absorptionslösung im Gegenstrom geführt.

Aus dem Kopf der Kolonne 2 wird das gereinigte Gas über eine Leitung 4 abgezogen und im Kühler 5 gekühlt. Die dabei kondensierten Spuren von Lösungsmittel werden in einem Behälter 6 gesammelt, der mit einem Tröpfchenabscheider 7 ausgestattet ist. Das gereinigte Gas wird über eine Leitung 8 aus der Anlage abgeleitet und zur weiteren Verwendung geführt. Die zurückgewonnenen Spuren Lösungsmittel werden über eine Leitung 9 in eine Rückgewinnungskolonne 12 geführt.

Die "beladene" Absorptionslösung wird aus der Kolonne 2 über die Leitung 10 abgezogen, mittels Wärmeaustausch mit der erschöpften Kreislauf-Lösung im Wärmeaustauscher 11 erwärmt und dann in die Abstreifkolonne 12 geführt.

In der Kolonne 12 wird die "beladene" Absorptionslösung abgestreift, d. h., durch Wärme wird die in Kolonne 2 ablaufende Reaktion umgekehrt.

Wärmeenergie wird von einem Boiler 13 aufgebracht, und die sauren Gase, das ist das von der Lösung in der Kolonne 2 absorbierte H_2S , steigen in der Kolonne 12 nach oben; über eine Leitung 14 wird ein Teil der Lösung, der zum Abstreifen verdampft worden ist, in einem Kühler 15 kondensiert und in einem Behälter 16 mit einem Tröpfchenabscheider 17 gesammelt. Über eine Leitung 18 wird das aus den Gasen abgetrennte H_2S ausgetragen und in übliche Rückgewinnungsanlagen geführt.

Mit Hilfe einer Leitung 19, einer Pumpe 20 und einer Leitung 21 wird die im Behälter 16 zurückgewonnene Lösung, die mehr Wasser enthält als die Absorptionslösung, in die Abstreif-kolonne 12 zurückgeführt. Alternativ kann ein Teil davon über eine Leitung 22 nachträglichen Reinigungsbehandlungen zugeführt werden.

Vom Boden der Abstreifkolonne 12 wird über die Leitung 3 die regenerierte Lösung in Kolonne 2 zurückgeführt, und zwar nach Durchströmen eines Wärmeaustauschers 11 und Kühlers 23.

Über eine Leitung 24 kann ein Teil des Lösungsmittels - falls die Lösung verdünnt worden ist - zur EindampfaKolonne 25

_ a _

9.11.1981 AP B O1 D/231 435/7 59 330/18

geführt werden, die mit einem Kühler 26, einem RückflußSammler 27, einem Vakuumsystem 28 und einer Rückführ- und
Austragpumpe 29 verbunden ist. Der Rückfluß erfolgt über
Leitung 30 und der Austrag über 31. Die benötigte Wärmeenergie wird von einem Boiler 32 geliefert.

Das Lösungsmittel wird - über Leitung 33, Pumpe 34, nach
vorangegangener Abtrennung von möglicherweise vorhandenen
Feststoffen im Absetzgefäß 35 - und über Abzugsleitung 36
zurückgeführt. Leitung 37 dient zur Einspeisung in den
Kreislauf des beladenen oder integrierenden Lösungsmittels.
Pumpe 38 stellt den Rücklauf vom Abstreifer 12 zur Absorgtionskolonne 2 sicher. Wenn in der Kolonne 2 die Reaktionstemperatur genau eingestellt werden muß, werden zusätzliche
Kühler 39 in der Absorptionskolonne vorgesehen.

<u>Ausführungsbeispiel</u>

Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung.

Beispiel 1

In einer Kolonne mit Innendurchmesser 50 mm und Höhe $2.5\,\mathrm{m}$, ausgestattet mit Böden und Blasenkammer, wurde bei einem Druck von 30 bar und bei 40 $^{\mathrm{O}}\mathrm{C}$ gearbeitet.

Das zu reinigende Gas enthielt 95.6 Vol.-% $\mathrm{CH_4}$, 4 Vol.-% $\mathrm{CO_2}$ und 0.4 Vol.-% $\mathrm{H_2S_*}$

Die Absorptionslösung bestand aus 35 Gew.-% Diäthanolamin und 65 Gew.-% Sulfolan.

- 10 -

9.11.1981 AP B O1 D/231 435/7 59 330/18

Strömungsgeschwindigkeit des Gases: 3,45 Nm³/h; Strömungsgeschwindigkeit der Flüssigkeit: 6 kg/h.

Am Kopf der Kolonne wurde ein Gasstrom enthaltend 5 ppm ${\rm H_2S}$ abgeblasen.

Die über Leitung 10 abgezogene Absorptionslösung wurde in eine Abstreifkolonne – Durchmesser 80 mm, Höhe 1,5 m, mit Blasen-Platten – bei einem Absolutdruck von 133 mbar (100 mmHg) geführt. Der am Kopf abgezogene Gasstrom enthielt 42,5 Vol.-% H $_2$ S und 57,5 Vol.-% CO $_2$.

Die Abscheidung von $\rm H_2S$ betrug 99,9 % und von $\rm CO_2$ 13,5 %; die Selektivität für die $\rm H_2S$ -Abscheidung war somit das 7,4fache gegenüber der von $\rm CO_2$.

Beispiel 2

Unter den gleichen Bedingungen wie in Beispiel 1 wurde eine Absorptionslösung aus 26 Gew.-% Dimethyl-äthanolamin und 74 Gew.-% N-Methylpyrrolidon angewendet.

Die Selektivität für die Abscheidung von H_2S war das 7fache gegenüber der von CO_2 ; das gereinigte Gas enthielt \checkmark 10 ppm H_2S .

Beispiel 3

Unter den gleichen Bedingungen wie im vorangegangenen Beispiel wurde mit einer Absorptionslösung aus 35 Gew.-% Diäthyl-äthanolamin und 65 Gew.-% Formylmorpholin gearbeitet. 31435 7

_ 11 _

9.11.1981 AP B 01 D/231 435/7 59 330/18

Die Selektivität für die Abscheidung von $\rm H_2S$ war das 7,2fache gegenüber der von $\rm CO_2$.

Beispiel 4

Es wurde mit einem Lösungsmittelgemisch aus 35 Gew.-% N-Methylmorpholin und 65 Gew.-% N-Methyl-3-morpholon gearbeitet. Die Strömungsgeschwindigkeit des Gases betrug 4,065 Nm 3 /h; die Regenerierung wurde bei Atmosphärendruck vorgenommen. Die übrigen Bedingungen waren die gleichen wie in Beispiel 1. Die Selektivität für die Abscheidung von H $_2$ S war das 7,1fache gegenüber der von CO_2 .

Beispiel 5

In die Vorrichtung gemäß Beispiel 1 wurde ein Gas aus 8 Vol.-% $\rm CO_2$, 0,8 Vol.-% $\rm H_2S$ und Rest $\rm CH_4$ bei 60 $\rm ^OC$ und etwa 15 bar bei einer Strömungsgeschwindigkeit von 1,3 Nm³/h Gas im Gegenstrom mit 6 kg/h Absorptionslösung aus 15 Gew.-% Methyl-diäthanolamin, 20 Gew.-% Diäthyl-äthanolamin, 50 Gew.-% Sulfolan und 15 Gew.-% N-Methyl-pyrrolidon gereinigt.

Der $\rm H_2S$ -Gehalt des Reingases betrug 8 ppm; die Selektivität für die Abscheidung von $\rm H_2S$ betrug das 7,6fache gegenüber der von $\rm CO_2$.

Beispiel 6

Ein synthetisches Gemisch aus 25,1 Vol.-% CO, 69,9 Vol.-% H_2 , 4,9 Vol.-% CO_2 und 0,1 Vol.-% H_2 S wurde unter den in Beispiel 1 beschriebenen Bedingungen gereinigt.

Das Reingas enthielt nur noch 2 ppm H_2S , während der Restgehalt an CO₂ 3,68 Vol.-% betrug. Der Selektivitätsfaktor war 4,8.

Zum Vergleich wurden folgende Beispiele mit einer Absorptionslösung durchgeführt, die etwas Wasser enthielt.

Beispiel 7

In der Vorrichtung nach Beispiel 1 wurde unter den dort beschriebenen Bedingungen gearbeitet, d. h. mit der gleichen Absorptionslösung, die jedoch noch 3 Gew.-% Wasser enthielt.

Aus der Abstreifkolonne, die bei Atmosphärendruck mit einer Bodentemperatur von 145 °C betrieben wurde, erhielt man als Kopfprodukt ein Gas aus 35,3 Vol.-% $\rm H_2S$ und 64,7 Vol.-% CO_2 . Die Abtrennung von $\mathrm{H}_2\mathrm{S}$ betrug 99,9 % und von CO_2 18,4 %, d. h., die Selektivität für H₂S war das 5,4fache.

Beispiel 8

In der Vorrichtung des Beispiels 1 wurde unter den gleichen Bedingungen und der gleichen Absorptionslösung gearbeitet mit der Abwandlung, daß diese 8 Gew.-% Wasser enthielt.

Aus der Abstreifkolonne (Atmosphärendruck, Bodentemperatur 135 $^{\rm O}$ C) wurde über Kopf ein Gas aus 32 Vol.-% ${\rm H_2S}$ und 68 Vol.-% CO, abgezogen.

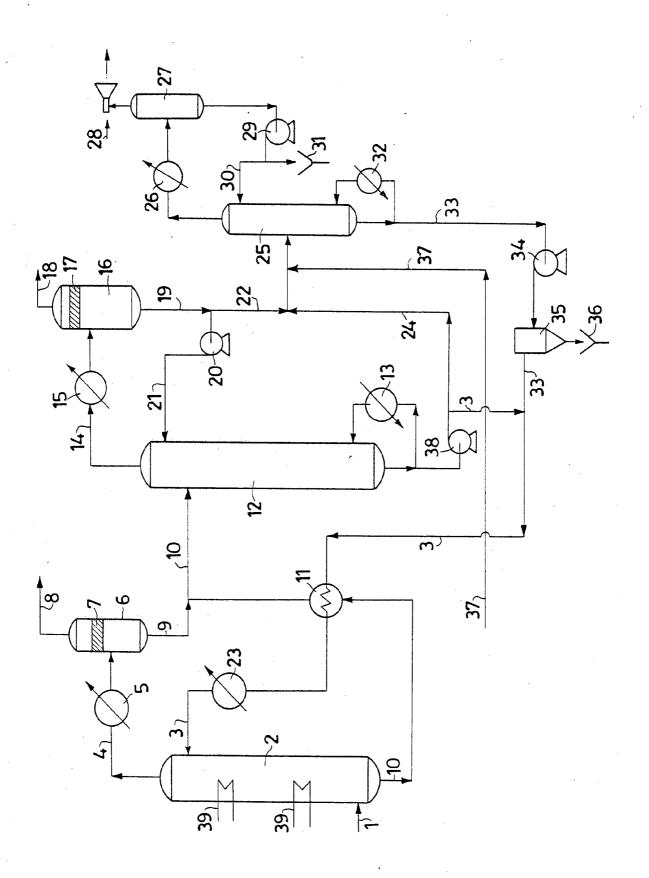
Die Abscheidung von $\mathrm{H}_2\mathrm{S}$ machte 99,9 % aus, während sie für ${\rm CO_2}$ nur 20,3 % war. Dies entsprach einer ${\rm H_2S-Selektivit\ddot{a}t}$ um den Faktor 4,9.

- 13 -

9.11.1981 AP B O1 D/231 435/7 59 330/18

Erfindungsanspruch

- 1. Verfahren zur selektiven Abtrennung von Schwefelwasserstoff aus Gasgemischen durch selektive Absorption mit einem Absorptionsmittel, gekennzeichnet dadurch, daß das Absorptionsmittel ein im wesentlichen wasserfreies Gemisch aus einem tertiären Amin und einem organischen Lösungsmittel ist.
- 2. Verfahren zur selektiven Abtrennung von Schwefelwasserstoff aus Gasgemischen, die ebenfalls Kohlendioxid enthalten, gekennzeichnet dadurch, daß das Absorptionsmittel ein im wesentlichen wasserfreies Gemisch aus einem tertiären Amin und einem organischen Lösungsmittel ist.
- 3. Verfahren nach Punkt 1 oder 2, gekennzeichnet dadurch, daß die tertiären Amine ausgewählt wurden aus der Gruppe: Methyl-diäthanolamin, Dimethyl-äthanolamin, Äthyl-diäthanolamin, Diäthyl-äthanolamin, Propyl-diäthanolamin, Dipropyl-äthanolamin, Isopropyl-diäthanolamin, Diisopropyl-äthanolamin, Methyl-diisopropanolamin, Äthyldiisopropanolamin, Triäthanolamin und/oder N-Methylmorpholin, allein oder im Gemisch miteinander in einer Menge von 10 bis 70 Gew.-%, vorzugsweise von 20 bis 50 Gew.-%, des Gesamtgemisches.
- 4. Verfahren nach einem der vorangegangenen Punkte, gekennzeichnet dadurch, daß das organische Lösungsmittel ausgewählt ist aus der Gruppe: Sulfolan, N-Methylpyrrolidon, N-Methylpmorpholin-3-on, Mono- und Dialkyläther-poly-


231435 7

9.11.1981 AP B 01 D/231 435/7 59 330/18

äthylenglykol (wobei die Alkylgruppen jeweils 1 bis 4 Kohlenstoffatome enthalten). Äthylenglykol, Diäthylenglykol, Triäthylenglykol, N.N-Dimethylformamid, N-Formylmorpholin, N.N-Dimethylimidazolidin-2-on, N-Methylmidazol, allein oder im Gemisch miteinander.

- 5. Verfahren nach einem der vorangegangenen Punkte, gekennzeichnet dadurch, daß die Absorptionstemperatur 10 bis 80 °C, vorzugsweise 40 bis 60 °C, beträgt.
- 6. Verfahren nach einem der vorangegangenen Punkte, gekennzeichnet dadurch, daß die Absorption mit Absorptionslösungen ausgeführt wird, deren Wassergehalt nicht mehr als 10 Gew.-% und insbesondere nicht mehr als 2 Gew.-% beträgt.

Hierzu 1 Blatt Zeichnungen

