
United States Patent to Patent Number: 4,496,944
Collmeyer et al. (45) Date of Patent: Jan. 29, 1985

54 GRAPHICS DISPLAY SYSTEM AND (56) References Cited
METHOD INCLUDING ASSOCIATIVE y v y U.S. PATENT DOCUMENTS
ADDRESSING

- 3.473.16() O/1969 Wahlstrom........................ 34U/75()
5 inventors: Arthur J. Collmeyer, Saratoga; 4,280, 86 7/1981 Hidai e a . 34)/747

Jeffrey H. Hoel, Sunnyvale: Paul F. 4,290,064 9/1981 Traster 340/73
King, LaJolla: Donald O. Stanley, 4,368,462 l/1983 Crawley 340/723
San Jose: Roger Sturgeon, Santa 4,371.872 2/1983 Rossman 340/723
Cruz, all of Calif. Primary Examiner-Marshall M. Curtis

3) Assignee: Calma Company, Sunnyvale. Calif. Attorney, Agent, or Firm-Fehr, Hohbach, Test,
Albritton & Herbert

(21) Appl. No.: 417,637 tton & Ferber
57 ABSTRACT

Filed: Sep. 13, 1982 (57) - - - A graphics display system is disclosed including a mem
Related U.S. Application Data ory circuit for storing vector data representing a graph

1. . . . " ics image, a raster memory circuit for rasterizing the
62) Division of Ser. No. 125,843. Feb. 29, 1980, aban- vector data into a second memory for storage, and a

doned. processor for controlling the operation of the vector
išll Int. Cl. ... G09G 1/00 memory and raster memory circuits. The raster data can
(5) U.S. Cl. 340/723: 340/727: be displayed on a suitable cathode ray tube monitor,

340/750, 340/747, 365/49 thereby displaying the graphics image on the monitor,
5S Field of Search 340/723, 727, 747, 721,

340/745. 750: 365/49, 50, 230 19 Claims, 47 Drawing Figures

- MB-GS- incom TeMS - MO:

"E.5a . rig: A TORN

3. ITEM IN ITEM UNMO FEC (6. Burger
42 : TEMS

MARK -1 $62
LOGC is' 57. at CLOCK MASKED

a M. is tems
FROM SYS Eg: SYs coMAND

- DoNE
CS 8a

(FROMWECTOR MEM) }: Nsert OR Jr. ry : MASK MEMORY NS MASK MOD Fed
Y S5 as: AND TMS

To RNG
- MASK -(a) i COMMAND MEM (6 Bigt

TYPE App G 47 MODIFIED"
57 : GEN TEMS S-154

140 138,132 is
cow ANS tes Tose

CMD MASK AND Nserted

MC-(e
6a : 67

Insert error --

E - Quary - PRECLIPER |cy : - count, AND into E-F TEM NTER Face TO
A-status logic X COORDINATE Prect PER

(FROM PRECLIPERS),
144 V is 66 68

ar
16 | RING BUFFER

ITEM IN PROCESS - ADDRESS
GenerATOR

6 -- To weCYOR
MEMORY

u- 6)-p-N out
MCFE

ITEMS RING Ring suffeR

contROL
ise

FAG

- &UAlf- SeeRATOR
logic

ise -

U.S. Patent Jan. 29, 1985 Sheet 1 of 26 4496,944

O/
O O

O

3. 2

CPU (r). O O. O.
CONSOLE

56
5 5

90
9

9 O

9 9 9 9 O

graphics - STATION STATION
STATION WDEO

MONTOR

(HH X-Y D SPLAY H
X = O36
Yi as 2O

2 22

TABLET 7 7

KEYBOARD |
OOO 7

OOOOOO

|HF 23 FIG.-

U.S. Patent Jan. 29, 1985 Sheet 3 of 26 4,496.944

SZE MARK FORMAT

DESCRIPTOR

X Y

FIG. - 6

SET VEW PARAMETERS (O4)

WORD CONTENTS

CDW o4 ZWZZ N
CPT PARAMETER FLAGS

SCALE (BITS O-5)

SCALE (BITS 16-3)

FIG.-8

CENSORNG VALUE

D

D

S. X.
S

S 8

S

III IW/Ales O || 2 3 4 5

F.G. - 9

U.S. Patent Jan. 29, 1985 Sheet 4 of 26 4,496.944

DRAWING SPACE SCREEN SPACE
(5ill)

SET CURSOR: (O5)

CPT | Dc is ZZZZZ
2

FG-12 3

MASKo
(6 words to be ANDed with
words 2 to 7 or entity
headers)

MASK
(6 words to be compared
with MASKo AND entity
headers)

F. G. - 3

U.S. Patent Jan. 29, 1985 Sheet 5 of 26 4,496.944

MODIFY IF EQUAL/NOT EQUAL (12/13) DELETE IF EQUAL/NOT EQUAL: (O/)

FORMAT: WORDS CONTENTS FORMAT: WORDS CONTENTS

CDW O 12/13 DMVZ CDw oio/ D M /
7-2

F. G. - 5

FIG. -4.
TRANSLATE IF EQUAL / NOT EQUAL: (4/5)

FORMAT: WORDS CONTENTS
CD W O

CPT - 6

7-2

FIG.-6
19-24

SET VIEW PARAMETERS IF EQUALA NOT EQUAL: (6/7)

FORMAT WORD

COW O

CPT -6

7-2

3.

4.

5

FIG.-7 7

U.S. Patent Jan. 29, 1985 Sheet 8 of 26 4,496.944

DENT FY POINT F EQUAL / NOT EQUAL (2O/2)

FORMAT: WORD CONTENTS

CDW 20/2 D M WZZ
CPT MASKO

MASK

FIG.-8

Y I

D

D

DENT FY WINDOW F EQUAL / NOT EQUAL: (24/25, 26/27)

FORMAT: WORD CONTENTS

CDW O 24 / 25 - 26/27 ow W.

3

14

FIG.- 19
6

5 2) (29 08 (27 Q4 23 O2)

cc oD MD SF
FIG.-2O

4496,944 Sheet 9 of 26 U.S. Patent Jan. 29, 1985

89||O 19 OTT

TIO?! ¡_NOO 10ETIES

Sheet 10 of 26 4,496,944 U.S. Patent Jan. 29, 1985

Sheet 11 of 26 4,496.944 U.S. Patent Jan. 29, 1985

— — — —) –) –)

SO – WOZ WO?y –
3) NÅS

U.S. Patent Jan. 29, 1985 Sheet 12 of 26 4496,944

WRITE DATA WRTE DATA B+D (16 BTS) A+C (6 BTS)

- - - - - - - - -- - - - - - - - -

(5)(3)(L)(975)(3)(1)(5)(3)(L)(3)(7) (5)(3)(1)
(a)(2)(0) (8)(6)(a)(2)(0)(4)(2)(0)(3)(6)(a)(2)(0)
BANK C BANK D
SDE 2O3 S DE 2 2O4.

ENAC DRIVERs 2IO REN B4D
F.G. - 24 READ DATA A+C (6 BTS)

22O

256 - BT REFRESHREccuANG REsh
AMP CCD REGISTER NOl

256 - BT REsh RERCULATING REFRESH P CCDREGISTER NO2 AMP

READ DATA
B+D (6 BTS)

64

22 23

PI-DATA output
BUFFER T

DATA INPUT

WRITE ENABLE

T/64
DECODER

ADDRESS
INPUT
BUFFERS

A2 ADDRESS
As INPUTS

REFRESH 256 - BT REFRESH
RECIRCULATING AMP

CCD REGISTER NO. 64

25

TMNG CE NPUT

GENERATORS CS INPUT

(2) Q2 23 (24 26
--
FOUR -PHASE CCD FG. us 25
CLOCK INPUTS

Sheet 14 of 26 4,496.944 U.S. Patent Jan. 29, 1985

Sheet 16 of 26 4,496.944 U.S. Patent Jan. 29, 1985

€ LSI LAJV7 LS 8 LSO

U.S. Patent Jan. 29, 1985 Sheet 17 of 26 4496,944

SYNC - l

- CK 4OM

25ns TIMING DIVISIONS DIT I IT I I ITT
- CK Q TR - - - - - -

|Oons TIMING DIVISIONS T TOTCTCT
PARENB - -

LOST B J - l

QSTRT - -

FETSTB

SLDSTB - -
DOEN - -

SYNC

- CK 4OM J U U J J
25ns TIMING OLTTTTTTTT

- - - -
PRCENB -

proLess

x set - l-l- l
Y SEL - L

SELXMT l - l
selyMT
CKMG Al Y -
CKTR -X - Y -
CKSX —x -
CKSY - Y -

TDs - l
LD MEM - L

-wise - -

U.S. Patent Jan. 29, 1985 Sheet 18 of 26 4496,944

COMP COMP

R R2
ALU REG REG

MEMORY

SPECIAL ADDRESSING
FOR Y MEMORY

(X DATA PATH ONLY)

SWAP SEL

TO PROCESS BIT REG (X DATA PATH ONLY) TO EDAT LINES BUFFER
TO WORD COUNTERS (Y DATA PATH ONLY) (Y DATA PATH ONLY)

OF 32

BS (8) NEXT ADDRESS
SELECTOR

NEXT ADDRESS (8)
(6) SPECIAL COMMAND P SELECT

REG (8) (6) MISC Bl
(8) GCLIPPER MEM.COMMAND

(32) GCLIPPER ALUCOMMAND
GalPPER ACC COMMAND
(5) MP SELEC

U.S. Patent Jan. 29, 1985 Sheet 20 of 26 4496,944

45 -a-p

SEAR ENDPOINT DELAY SSSI
S 83 - LATCH LATCH - 452 LATCH 453

SCWX 0-8

e. (9):
SCW PROCO- LINE LNE LINE PLC E2E ecoag SCW PROC2-5. LINE VLCO- 85. (4)

L OOR (4)

-SCW PNO Fiji

FWY (9)
V

File:Reuel | E3 in
(9) DVXO-8

I (9) OVY O-S
FNAL
VAV - CEL
LATCH -COLOR DCEL 5. ForMAT SELOR

-DCELO CHANGE

FXO-8.

84
SCW DAV L : 3

YDN
-CE
COLOR

-FV

LOAD
FROM
COMMAND
PROCESSOR

4ONL PND
--AR

RESET - NRST
-CENCY

FIG.-36A

U.S. Patent Jan. 29, 1985 Sheet 21 of 26 4,496.944

ABSOLUTE
VALVE

A64
FVX S(9)
IVX X AX EG)- (963
SUPP

FVIX
SSC9) Y
V 5-9 (95.
SUPP

DVX O-8 (9)
D OS (9)

FINAL VALVE
46OCOMPARATOR
O-8 X

(9) -: glo-Fi Y
CORD O-8 NV

LF
O- (4) O

G) 335 XU 5. YUP. w
-EEE i

-CEL HE
-COLOR |
-FW

o SABLEDSAB
LOAD FLOB CA

FG.-36B

U.S. Patent Jan. 29, 1985 Sheet 22 of 26 4,496.944

473

LD-5 (5) LOOK E-5 AHEAD (5) LA-5 O MUX no.465
LBO 3. c. LDO-3 X (4) AHEAD (5) AHEADDB,

ALU LCO-3 35 MUX NO-46 ille. , LC 9. MUX Nics ALU Ipsoso. GNO-8

in s:file II*. He
DB -

SN HII LOAD P
DO-8 (9)

ENT -->
64 BT 64BIT

MB 0-63 a HL O-63 CHP 64) CE O-63
9. MEMORY ENABLES

RESET LATCH

WX 3-8-6)
WY 3-8 E

(6) 6SX 3-8 48O

tCENC DDRESS-G ADDRESS (2 NAO sucN-(2) Rosco-3 ANEE
CER QUADRANTHG-4)

SELECT WRITE

MAR LATCH
MACK -

MACK
TRANSFER

DO-3 (4) (3) DO

A

DELAY

LCO-3 G)
FG.-36C

Sheet 23 of 26 4496,944 U.S. Patent Jan. 29, 1985

C] - OBOJIA

TTEO ÂMBOWIEW

MJOS MITTO GOGtzOG2O9109

Sheet 24 of 26 4,496.944 U.S. Patent Jan. 29, 1985

10ET ES

3000 3d Ål)\}} OWNE W | 19X{}JONALEN

4,496,944
1.

GRAPHICS DISPLAY SYSTEM AND METHOD
INCLUDING ASSOCATIVE ADDRESSING

This is a division of application Ser. No. 125,843 filed
Feb. 29, 1980, now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates to a graphics display
system and method.
Some prior art systems utilizing graphics displays

have used a direct view storage tube display, which
Stores a graphic image directly on the face of a cathode
ray tube, so that the image does not have to be continu
ously refreshed. This approach results in a high-resolu
tion, flicker-free image. In addition to the stored image,
a graphics cursor is continuously displayed in a write
through mode, so that it does not become a part of the
stored image. By using a graphics tablet or digitizer as
an input device, a user can point the cursor at objects on
a screen and issue editing commands to the system to
alter these objects or add new ones. This type of display
has proved adequate for the vast majority of applica
tions in such areas as integrated circuit and printed
circuit design, cartography and three-dimensional draft
ing designing and manufacturing.
A problem with direct view storage tube displays is

that an image cannot be selectively erased, since to alter
a graphics image requires the erasing of the entire old
image and redrawing an entire new one.
To overcome this problem, some prior art systems

have employed calligraphic, or vector-stroking, dis
plays continuously refreshed from a list of graphic vec
tors stored in a vector memory. In such a vector-strok
ing display, the display reads X-Y coordinate data and
intensity information from the memory and strokes the
indicated line segments onto the screen in connect-the
dot fashion. When vector data representing a graphic
image is altered in the memory from which the display
is refreshed, its image on the screen rapidly disappears
and the altered portion of the image simultaneously
appears, while the remainder of the image remains un
changed.
A problem with such a vector-stroking display is that

the complexity of the image which can be displayed
without perceptible flickering is fundamentally limited
by how far the display tube's electron beam has to
travel, how rapidly the beam can be deflected and mod
ulated, and how rapidly the image disappears from the
SCee

A display which refreshes the image from a raster
memory (also known as dot matrix) avoids such prob
lems of vector stroking. Flicker-free images can easily
be generated regardless of the complexity because the
electron beam always travels the same path, namely a
top to bottom sequence of closely spaced left to right
lines, as in a commercial television set. The raster men
ory is used only to modulate the intensity of the beam.
A problem with raster memories is that once data has

been rasterized, there is no good way to deal with the
resulting dots in the raster memory. If it is desired to
remove only the dots corresponding to a given vector,
one could rasterize the vector again and use the result
ing sets of dots to erase the raster memory selectively,
which would generally remove too many dots. It is
desirable to remove only those dots which a particular
vector was solely responsible for inserting, and to leave
alone those dots which were also inserted by intersect

5

O

5

20

25

30

35

40

45

50

55

60

65

2
ing vectors, which is difficult if not impossible, since in
a raster memory all dots look alike.
As a result, after a particular vector is removed, all

conceivable intersecting vectors are rewritten into the
memory. In a worst case this amounts to re-rasterizing
of the entire vector image, which runs the risk of nulli
fying the reason for going to a refreshed display in the
first place, namely the ability to alter the image rapidly.
In view of the above background, there is a need for an
improved graphics display system and method which
provides both vector memory and raster memory capa
bilities without the above-mentioned limitations.

SUMMARY OF THE INVENTION

The present invention relates to a graphics display
system and method.
The System and method includes vector memory

means for managing or processing vector data repre
senting a graphics image to be displayed, transformation
means for transforming the vector data, raster memory
means for rasterizing and displaying the data, and pro
cessor means for controlling the operation of the sys
ten,

The vector memory means include means for storing
the vector data, memory update means (MUDS) for
performing appropriate insert, modify, delete, and se
lection operations on the data, and preclipper means for
performing geometric selection operations on the data.
The vector data from the vector memory means is

transformed by the transformation means, which in
clude a clipper means and a scaler means. The clipper
means determines which vectors and parts of vectors
are to be displayed and is further used to perform the
computations involved in identify functions. The scaler
means translates and scales the clipped vector data.
The raster memory means includes means for storing

raster data, write means for rasterizing the vector data
provided by the transformation means, and read means
for displaying the raster data on a suitable cathode ray
tube monitor.

In accordance with the above summary, the present
invention achieves the objective of providing an im
proved graphics display system incorporating the ad
vantages of both vector and raster memories.
Other objects and features of the present invention

will become apparent from the following description
when taken in conjunction with the drawings.

DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of a graphics data
system.
FIG. 2 depicts a block diagram of a graphics display

system, which forms a portion of FIG. i.
FIGS. 3-6 depict the word format of a polygon entity

which is one form of data utilized by the system.
FIGS. 7-9 depict various command formats utilized

by the system.
FIGS. 10 and 11 depict representation of a drawing

space and a screen space, respectively, which are uti
lized by the system.
FIGS. 12-20 depict further formats of command

functions utilized by the system.
FIG. 21 depicts a block diagram of a command pro

cessor, which forms a portion of FIG. 2.
FIGS. 21A and 21.B depict system timing diagrams.
FIG. 22 depicts a block diagram of a memory update

system which forms a portion of FIG. 2.

4,496,944
3

FIG. 23 depicts a timing diagram for the memory
update system of FIG. 22.
FIG. 24 depicts a block diagram of a vector memory,

which forms a portion of FIG. 2.
FIG. 25 depicts a block diagram of a memory chip of 5

the vector memory of FIG. 24.
FIG. 26 depicts a timing diagram for the memory of

FIG. 24.
FIG. 27 depicts a block diagram of a preclipper cir

cuit, which forms a portion of FIG. 2. O
FIG. 27A depicts a circumscribed polygon outside of

a window.
FIG. 28 depicts a timing diagram for the preclipper

circuit of FIG. 27.
FIG. 29 depicts a timing diagram for the preclipper 15

circuit of FIG. 27.
FIG. 30 depicts a block diagram of a clipper circuit,

which forms a portion of FIG. 2.
FIG. 31 depicts a timing diagram for the clipper

circuit of FIG. 30. 20
FIG. 32 depicts a portion of a data path for the clip

per circuit of FIG. 30.
FIG. 33 depicts a block diagram of a clipper proces

sor, which forms a portion of FIG. 30.
FIG. 34 depicts a block diagram of a scaler circuit, 25

which forms a portion of FIG. 2.
FIG. 35 depicts a timing diagram for the scaler circuit

of FIG. 34.
FIG. 36 depicts a block diagram of a write circuit,

which forms a portion of FIG. 2. 30
FIG. 37 depicts a block diagram of a read circuit,

which forms a portion of FIG. 2.
FIG.38 depicts a block diagram of a refresh memory,

which forms a portion of FIG. 2.
FIGS. 39-41 depict timing diagrams for the refresh 35

memory of FIG. 38.
DETAILED DESCRIPTION OF THE

INVENTION

In order to understand the basic operation of the 40
present invention, a system overview will be given in
conjunction with the block diagram of a graphics dis
play system depicted in FIGS. 1 and 2.

Referring to FIG. 1, a block diagram of a graphic
data system is depicted for use in interactive graphics 45
display systems needed in such areas as integrated cir
cuit and printed circuit design, cartography, and three
dimensional drafting, designing and manufacturing.

In FIG. 1, a central processing unit (CPU) 10 con
trols the operation of the system and is connected to 50
receive input information from console 13, disc unit 11,
and magnetic tape unit (MTU) 12 by well known tech
niques.
CPU 10 is also connected to one or more graphics

display systems (GDS) 15 via bus 56 and to one or more 55
graphics station 17 via bus 91. GDS 15 is connected to
one or more graphic stations 17 via bus 90 and provides
display data on bus 90 for video monitor 20 under con
trol of CPU 10. The subject matter of the present inven
tion is directed toward the GDS 15, which is shown in 60
more detail in FIG. 2.

In FIG. 1, graphics station 17 also includes X-Y dis
play circuit 21 for displaying particular X-Y coordi
nates. Keyboard 23 and tablet 22, which are units
known in the art, are connected to CPU 10 via bus 91, 65
and provide means for communicating with CPU 10.
The system treats all data as polygons. If the begin

ning point and ending point of a polygon are identical,

4
the polygon is considered closed; otherwise, it is open.
The system gives the user, as will be described, the
ability to define and manipulate both types.

Tablet 22 produces a pair of digital X-Y coordinate
values corresponding continuously to the position of a
writing stylus upon the surface of the tablet. The tablet
can be placed on a table in front of the display screen,
providing a natural writing position for the user.

In FIG. 2, a command processor (CP) 50 serves as a
command center during data transfers between the host
processor (CPU 10) of FIG. 1 via bus 56 and the re
mainder of the system, processes data blocks before
they are transferred to the remainder of the system, and
generates appropriate timing and handshake signals on
system bus 57.
The system also includes a vector memory subsystem

(VMS) 52, which includes a vector memory 61, mem
ory update system (MUDS) 60, and preclipper (PC) 62.
The vector memory 61 could be a random access mem
ory (RAM), magnetic bubble memory (MBM), or
charge coupled device (CCD).
The MUDS 60 inserts vector data via bus 57 from the

CP 50 into the vector memory 61 via bus 65, associa
tively searches and modifies items in memory 61 speci
fied by CP 50, and selectively passes data from memory
61 via bus 64 to the PC 62 for the set view and identify
functions, as to be described.
Memory 61 can be viewed as a 16x64K bit shift

register operating at a 300 ns rate. 16-bit words are input
to memory 61 on bus 65 and output on bus 64. Data
output from memory 61 are processed through ring
buffers in the MUDS 60 before they are re-input to
memory 61.

Data from the VMS 52 are in vector data format and
are sent via PC 62 to the transformation subsystem 53,
which includes a clipper (C) 70 and scaler (S) 71 cir
cuits. PC 62 accumulates data via bus 67 from MUDS
60 in relative coordinates and processes them to make
the data absolute, compares line segment deltas with the
censoring value received for the current set view to
determine whether the current point needs to be re
tained for the clipper 70. PC 62 also performs a prelimi
nary check on each polygon to determine whether it
might intersect the window and sends to the transfor
mation subsystem 53 only those polygons which pass
this test.
The clipper 70 receives data from PC 62, performs

clip functions, and delivers the processed data to the
scaler circuit 71. Other system functions include, as will
be described, identify point, identify segment, identify
window partial and identify window full. The clipper
70 also delivers data upon command to the CP 50 via
system bus 57. The scaler 71 circuit provides during a
set view operation the magnify, translate, scale and
buffer functions.
The processed data from the transformation system

53 is sent to the raster memory subsystem (RMS) 54.
which includes write (W) circuit 80, refresh memory
(RM) circuit 81 and read (R) circuit 82.

Write circuit 80 performs the function of rapidly
generating points in a 512X512 matrix field to approxi
mate the location of two-dimensional straight line vec
tors, which are subsequently transferred to 256K-bit
refresh memory 81, which is used to refresh a standard
raster-scan CRT monitor via bus 90 under control of
read circuit 82. Refresh memory 81 receives the appro
priate data from write circuit 80, and read circuit 82
generates the intensity and synchronization signals nec

4,496,944
5

essary to display a graphics image on a typical CRT
monitor such as CRT 20 in FIG. 1 via bus 90. Other
functions of the read circuit 82 are to erase refresh mem
ory 81, display the cursors, and display the grid.

In the present embodiment, the data representing a
graphical image is characterized in the form of poly
gons, as previously described.

Display Entities
Vector data representing one or more graphics im

ages to be displayed, for example, on a conventional
cathode ray tube (CRT) are stored in a vector memory
subsystem 52, as depicted in FIG. 2.
A graphics image to be displayed is represented by a

series of vectors, which form a pattern or figure repre
senting an image to be displayed by a series of straight
lines or vectors interconnected via their respective ver
tices. The vector data can be in the form of open or
closed figures, and for convenience purposes will be
described in terms of polygons.

In FIG. 3, the word format of a polygon is depicted
and includes, in one embodiment, between four and 126
16-bit words. Words 0-6 represent header information
which describe and identify a particular polygon to the
system.
Word 0 of FIG. 3 is depicted in FIG. 4, and includes

three pieces of information used by the system to recog
nize the boundaries and sub-boundaries of polygon enti
ties, and to initiate/terminate selected operations on the
entities.

In FIG. 4, bits 0-7 indicate the size N, where N is the
total number of words in the entity. One entity in gen
eral describes one polygon. The mark bit (bit 8) is set to
indicate the beginning of an operation on the entities, as
will be described within the command section. The
mark bit is reset on completion of such an operation. In
the format section of word 0 (bits 9-15), the descriptor
length is a 2-bit field indicating the number of descriptor
words in the header portion of FIG. 3. Bit 12 is a short
bit which is set to indicate that coordinate data are
given as 8-bit integers (short form), rather than 16-bit
integers (long form). Bits 13-15 are short form exponent
bits describing the exponent applied in the event of
short form coordinate data.
Word 1 of FIG. 3 is depicted in FIG. 5 and is a pro

cess word which describes the manner in which the
entity is to be presented or displayed. The process word
is a 16-bit field, formatted specifically for a given dis
play mechanism.
For a vector memory used to refresh the refresh

memory of a black and white raster monitor, a process
word might include the visible/invisible bit, drawing
space/screen space bit, and polygon type (2 bits).

For a color raster monitor, the process word could
include visible/invisible bit, drawing space/screen
space bit, polygon type (2 bits), and polygon color bits
(3 bits).
The X0 and Yo bits in words 2 and 3, respectively, of

the header of FIG. 3, describe the first coordinate point
in a polygon and each coordinate is represented by a
i6-bit entry.

In FIG. 3, descriptor words 4-6 are a field of zero to
three words in length incorporating the attributes of the
corresponding system entity. An example of a descrip
tor might include layer number (5 bits), line type/font (8
bits), ID1 (3 bits), ID2 (16 bits) and ID3 (16 bits). Bits in
the process field that are not interpreted directly by the
display hardware are available for use as additional

O

15

20

25

30

35

40

45

50

55

60

65

6
descriptor bits and hence in the case of black and white
raster monitor, the process word might be allocated to
include a visible/invisible bit, drawing space/screen
Space bit, steady/blink bit, polygon type (2 bits), layer
number (5 bits), line type (3 bits), and ID1 (3 bits).

In FIG. 3, the coordinate data includes zero or more
coordinate pairs-(X1, Y1), . . . (XN, YN)-defining
successive vertices of a polygon. X and Y are relative
coordinates and each is represented by a 16-bit entry
(long form) or an 8-bit entry (short form). In the short
form, the 8 bits represent the mantissa while the expo
nent is given by the short exponent bits, in word zero.
For illustration purposes as depicted in FIG. 6, if a

one word descriptor in the header is adequate, and the
drawing to be displayed comprises polygons only, and
assuming the average number of vectors per polygon is
five, and 90% of the vectors can be described in a short
form, then the average number of words/polygon is
about 10.5. Approximately 64K words equal 6K poly
gons or approximately 30K vectors. Schematics typi
cally contain from 10,000-40,000 vectors, the majority
of which could be described in the short form. Printed
circuit boards typically contain between 20,000 and
80,000 vectors, the majority of which could be de
scribed as short form. IC's typically contain from 40,000
to 320,000 vectors, the majority of which could be
described in short form.
A 2M-bit memory, with a capacity of 60K vectors,

could accommodate most schematics and many printed
circuits (PC's) in their entirety. In PC's, as in schemat
ics, a character generator can achieve significant data
compression and renders a 2Mbit vector memory suffi
cient for these applications.
A 2M-bit vector memory, with a capacity of 60K

vectors, could accommodate a quadrant or a complex
layer of many integrated circuits (IC's). A 4M-bit mem
ory is adequate in many IC design applications.

Commands

The system is controlled by the command processor
50 of FIG. 2 and the commands listed in Tables I and II
are received from the host processor 10 of FIG. 1 and
take the form of a 16-bit command designator word
(CDW) followed by a (possibly empty) command pa
rameter table (CPT). The CDW is depicted in FIG. 7
where the C-bits (bits 0-5) form the particular com
mand codes according to Tables I and II. The D-bits
(bits 6-7) are the minimum descriptor length for associa
tive addressing functions (to be described). The M-bits
(bits 8-11) of FIG. 7 form the memory bank selection
mask which will be described in conjunction with the
MUDS subsystem. The N bits (bits 12-15) represent the
number of the affected viewport, which in one embodi
ment are numbered from 1 to 6.
The present invention incorporates two basic types of

commands-general commands and associative ad
dressing commands. The general commands are illus
trated in Table I and the associative addressing com
mands are illustrated in Table II.
Commands are transmitted to the system by means of

a data channel operation. Commands are batched to
gether by placing them in contiguous memory locations
and placing the sum of their lengths in a word counter.
Each transmission consists of an integral number of
commands.

Following the completion of a batched set of com
mands, command processor 50 signals host processor 10
via a data channel interrupt, requesting to transmit sta

4,496,944
7

tus information and the data, if any, generated by Sys
tem 15 in response to the batched set of commands.
When host 10 directs a read operation to system 15,
command processor 50 transmits to host 10 a command
buffer completion status word, followed by data words, 5
if any.
The command buffer completion status word has the

following format of bits 0-7 being an error code bits
8-15 being an error index. If system 15 was able to
complete all commands in the batched set successfully, 10
the error code is zero; otherwise the error code indi
cates what kind of error occurred and the error index
indicates which command or data item within a com
mand caused the error.

TABLE I 15
GENERAL COMMANDS

INSERT
SET VIEW PARAMETERS
SET CURSOR
SET GRID 20
READBACK INSERT BUFFER
READBACKRASTER MEMORY
LOAD AND EXECUTE

TABLE II 25
ASSOCIATIVE ADDRESSING COMMANDS

DELETE IF EQUAL
DELETE IF NOT EQUAL
MODIFY IF EQUAL
MODIFY IF NOT EQUAL 30
TRANSLATE IF EQUAL
TRANSLATE IF NOT EQUAL
SET VIEW PARAMETERS IF EQUAL
SET VIEW PARAMETERS IF NOT EQUAL
IDENTIFY POINT IF EQUAL
IDENTIFY POINT IF NOT EQUAL 35
IDENTIFY VECTOR IF EQUAL
IDENTIFY VECTORIF NOT EQUAL
IdENTIFY POLYGON TOUCHING OR IN WINDOW. IF
EQUAL
IDENTIFY POLYGON TOUCHING OR IN WINDOW IF
NOT EQUAL
IDENTIFY POLYGON ENTRELY INSIDE WINDOWF 40
EQUAL
IDENTIFY POLYGON ENTIRELY INSIDE WINDOW. IF
NOT EQUAL

45 General Commands

Referring now to Table I, the insert command places
the specified graphic entities set forth in the CPT within
one or more of the selected memory modules of the
vector memory subsystem. An error status indicator is 50
set in the event the entities cannot be inserted due to
lack of available space. The last entity to be inserted
must have its mark bit (bit 8 of word zero) set to 1 and
all the preceding entities have their mark bits set to 0.
The set view parameters command is depicted in 55

FIG. 8, which updates the parameters that control the
data display in the system. Execution of this command
also causes a full or partial redraw of data on the sys
tem's CRT screen. This command affects only the
viewport specified by bits 12-15 in the CDW (word 0 in 60
FIG. 8). Use of this command will in fact result in an
associative set view command being issued to the sys
tem hardware by the command processor 50, as will be
described in conjunction with associative commands.
However, the associative addressing mechanism is used 65
only trivially, to select all entities for viewing.

In FIG. 8, the first word of the CPT (word 1) con
tains parameter presence flags, erase control field, and

8
an entity space selection mask in the format depicted in
FIG. 9.

In FIG. 9, bits 0-4, when set to 1, indicate the pres
ence in the CPT of a new value for the respective pa
rameter. When set to 0, the respective parameter entries
in the CPT are to be ignored and their previous values
retained.
The background field B (bit 11) is used to specify the

background for the currently defined viewport. When
bit 11 is set to zero, the vectors are shown as white lines
with a black background. If bit 11 is set to one, the
vectors are shown as black lines with a white back
ground.
The erase control field EC (bits 12-13) is used to

signal a total (bit 12 = 1) or a partial (bit 13 = 1) erase of
the screen (i.e., raster memory) that is to precede the
generation of new display data. A partial erase affects
only the current rectangular viewport as defined by
(XLLS, YLLS), (XURS, YURS) and as depicted in FIG. 11.
When the erase control field is zero, all erasing is inhib
ited and all display data generated are merged with the
existing display.
The entity space selection mask SS (bits 14-15) is

used to restrict the display of data to visible entities
within the designated spaces. If bit 14= 1, then the
graphic representations for drawing space entities are
generated. Similarly, if bit 15 = 1, then the graphic rep
resentations for screen space entities are generated. A
zero setting of either bit will cause inhibiting of the
display for the associated entity space.

In FIG. 8, following the parameter flags word, the
next two words (words 2 and 3) of the CPT are XCP and
YcD which specify the coordinates of the center in
drawing space of the rectangular viewport that appears
on the screen, as illustrated in FIG. 10. The next two
words (words 4-5) in FIG. 8 specify the scale factor to
be applied in mapping drawing space to screen space as
a 32-bit, standard format, normalized, floating-point
value.
The next two words of the CPT (words 6 and 7) are

XLLS and YLLS which specify the coordinates, in screen
space, of the lower left-hand vertex of the desired rect
angular viewport which are followed by XURS and
YUR'S which are the coordinates of the upper right hand
vertex of the viewport, all of which are depicted in
FIG 11.

Following the viewport specifications, the censoring
value in word 10 determines the minimum axial distance
that a polygon must transverse before a vector repre
senting one or more polygon sides is inked. Each poly
gon is represented by at least a single vector from the
first to the last vertex.

Referring to FIG. 12, the set cursor command con
trols the display of one of the system's cursors and in
cludes a CDW and a three word CPT. The CDW con
tains a 3-bit VP field which designates the viewport in
which the cursor is to appear. The first word of a CPT
includes a single bit D flag which determines the cur
rent display status, where zero represents cursor off and
one represents cursor on. If the D flag is set to zero,
then the display of the cursor is inhibited and the coor
dinates are ignored. When the D flag is set to one, the
cursor is displayed at the specified location in screen
space. A 2-bit C-field designates which of the unit's
cursors is to be affected. A single bit S-flag specifies in
which space the coordinates are contained. When the
S-flag is set to zero, the coordinates are given in terms

4,496,944
of drawing space and the cursor is appropriately dis
played within the designated viewport. When the S-flag
is set to one, the coordinates are contained within
Screen space.

Referring now to FIG. 13, the associative addressing
commands that associatively address the vector mem
ory subsystem include two 6-word masks within the
command parameter table (CPT). The two masks,
MASK0 and MASK1, occupy the first 12 words of the
CPT.

In FIG, 13, two masks are applied to an entity header
to compute a Boolean value termed "selection condi
tion'. The resulting value then determines whether the
command addresses (i.e., should operate on) a given
entity. The selection condition value is determined by
extending an entity's header as depicted in FIG. 3 to a
full seven words by appending zeroes are required;
ANDing the second through seventh word of the enti
ty's headers with the six words of MASK0; testing for
equality the six word result with MASK1 and setting
the zero the selection condition if the values are equal,
or to one if the values are unequal.
Two additional parameters, provided in the CDW of

each associative addressing command, further affect the
interpretation of the selection condition. The D field
specifies the minimum number of optional descriptor
words which must be present in the header of an entity
as a prerequisite for being addressed. If an entity has
fewer optional descriptors than the number specified in
the D field of the command, then the command does not
address the entity, regardless of the selection condition.
The M field specifies which memory modules within
vector memory subsystem 52 are to be affected by the
command. If an entity is stored in a memory module
which is specified in the M field not to be affected by
the command, then the command does not address the
entity.
MASK0 functions as a bit selection mask and

MASK1 functions as a qualification value. That is, an
entity's selection condition will be true (O) or false (1)
depending on whether it equals or does not equal the
qualification value in those bit positions specified in the
bit selection mask. Each associative addressing function
can operate on all entities whose selection condition is
either Zero or one. All commands that associatively
address memory require a command parameter table.
The format of each respective CPT is described below
in conjunction with the associative addressing con
mands.
FIG. 14 depicts the modify if equal/not equal com

mands of Table II, which change the contents of the
headers of those entities whose computed selection
condition matches that specified in the given command.
The second through seventh words of an entity headers
will be replaced by the corresponding word of the
quantity (HEADER AND MASK2) XOR MASK3.
Only the existing header words are modified and thus
the length of an entity's header remains unchanged.

FIG. 15 depicts a delete if equal/not equal command
of Table II, which removes all entities from the vector
memory whose computed selection condition matches
that specified in the given command.

FIG. 16 depicts a translate if equal/not equal com
mand of Table II, which changes the contents of the
headers of those entities whose computed selection
condition matches that specified in the given command.
The second through seventh words of an entity header
are replaced in the corresponding word of (HEADER

O

15

20

25

30

35

40

45

50

55

60

65

10
AND MASK2) PLUS MASK3. Only existing header
words are modified and thus the length of the entity's
header remains unchanged.
FIG. 17 depicts a set view parameters if equal/not

equal command of Table II, which causes those entities
whose computed selection condition matches that spec
ified in the given command to be displayed in accor
dance with the rest of the parameters in the CPT.
FIG. 18 depicts the identify point if equal/not equal

commands of Table II, whose first function is to qualify
those entities whose computed selection condition
matches that specified in the given command. Those
entities that qualify for identification are next checked
to insure that at least one point falls within the drawing
space viewport specified at the lower left and the upper
right corner specified in words 13 through 16 of the
CPT. For an entity meeting the above requirements, D
is calculated such that D=maximum (IX-XI or Y
-YI), where X and Y are contained within the poly
gon's coordinate list) is computed. On completion of
testing of all qualifying entities, the header of the entity
for which D assumes a minimum value is made available
to the host CPU.
The identify segment if equal/not equal command has

the same format as depicted in FIG. 18 except that X
and Y are computed to the point on any line segment of
the entity closest to (XI, YI) before D is computed.
FIG. 19 depicts the identify polygon touching or in

window if equal/not equal command, whose first func
tion is to qualify those entities whose computed selec
tion condition matches that specified in the given con
mand. Those entities that qualify for identification are
next checked against the drawing space window speci
fied in the command. The headers of the first several
entities found touching or totally within the window are
returned to the host computer. The identify polygon
entirely within window if equal/not equal command
has the same command format and functions similarly.
FIG. 20 depicts the contents of the system data bus 57

of FIG. 2 during the time that a command designator
word (CDW) is being output by the command proces
sor, in which the OD field (bits 8-9) is an optional de
scriptor field used by the MUDS system only when
processing associative commands, and the MD field
(bits 4-7) specifies which memory modules of VMS 52
are to be affected by the command. The SF field (bits
0-3) is a special flag field in which bit zero is set to one
during a set cursor command to designate cursor on.
Bits 6, 1 and 2 are also used during any associative
command to inform the memory update system of the
selection condition for items missing optional descrip
tors. The appropriate bit set to one indicates a not equal
condition. Bit 9 specifies the condition for one missing
descriptor, bit 1 for two missing descriptors and bit 2 for
three missing descriptors. The CC field (bits 10-15) will
be described subsequently.

Command Processor

The command processor (CP) 50 of FIG. 2 is de
picted in more detail in FIG. 21. The command proces
sor (CP) 50 serves as a command center during transfers
between the host CPU 10 of FIG. 1 via bus 57 of FIG.
2 and the remainder of the system, processing data
blocks, generating the clocking signals and proper
handshaking signals for data transfer sequences.
The command processor 50 includes a microproces

sor circuit 111 which includes typically a microproces
sor and memory subsection 112 having read only mem

4,496,944
11

ory (ROM), random access memory (RAM), and gen
eral purpose peripherals 113. The system program is
stored in a ROM of circuit 112.

Processor 111 may include, for example, an Intel
8085A microprocessor, together with associated pe
ripherals, the details of which are known in the art.

In FIG. 21, the direct memory access (DMA) I/O
controller 101 is connected to receive address signals on
bus 115 and data signals on bus 116 from the micro
processor 111. Also, controller 101 receives control
signals from the host CPU via bus 57-6 and 56-1.

Multiplexer (MUX) 103 receives address signals from
processor 111 and system I/O controller 102. MUX 104
receives data signals from processor 111 and from the
system via bus 58, ECL-TTL circuit 109, and bus 117.

Transceiver circuit (XCVR) 120 receives data signals
from multiplexer 123, as well as data signals from the
host CPU via bus 56-2. Clock generator 121 generates
the appropriate SYNC and 40 MHz signals for the sys
ten on bus 57-5.
When the host CPU has a block of data to be trans

ferred to the command processor, it activates the host
request line (HRNK) to controller 101, which responds
with an acknowledge signal (VTAK) when it is ready
to accept data. The host CPU 10 inserts two 8-bit bytes,
which constitutes a 16-bit word, into the insert buffer
105, a 1KX 16-bit buffer. Processor 111 waits until it has
a 256-word block available, which constitutes a maxi
mum length transfer, before responding to the request.
The program functions include setting a counter (not
shown) in controller 101 to the word count minus one,
sending to controller 101 a starting address in insert
buffer 105 into which it can begin loading the data from
host CPU. From that point, the transfer is effected
solely by the host CPU and controller 101. Data is
transferred in 2-byte (16-bits) burst mode until comple
tion of transfer. CP 50 examines newly transferred data
and determines how to process it.
Assuming that the first command in the data block is

the insert command illustrated in Table I previously, the
CP 50 programs system controller 102 to output the
insert command and all of the header and associated
coordinate data words with that command onto system
bus 57-4. Appropriate programming operation includes
sending to the system controller 102 the address of the
insert buffer 105 location that contains the insert com
mand, loading a controller counter (not shown) with
the number of words associated with the insert com
mand, and providing the controller 102 with an address
to output onto the address bus 122. The IBAC signal on
bus 122 is an address which points to the location in
buffer 105 where a command is stored. The EAD signal
on bus 57-4 is the system address which is distributed to
the system.
The first word that I/O controller outputs onto the

data bus 57-4 is the insert command. At that time, the
controller 102 outputs the CP-provided address (of zero
or 80, hexidecimal) onto address bus 122, which indi
cates that there is a CDW on the EDAT bus 57-6,
which is meant for some circuits in the system. Another
indication of the presence of a CDW is that it is the first
word of a set of words presented on the bus at 300 ns
intervals. Because the command is an insert command,
the address placed on the address bus 122 is recognized
only by the MUDS subsystem. Consequently, only the
MUDS Subsystem loads the command code into its
command decoder and upon decoding the command,
the MUDS replies that a number of words are about to

10

15

25

30

35

40

45

50

55

60

65

12
be output onto the data bus 57-4, which must be inserted
into the vector memory. These words define a number
of items which jointly comprise part of a drawing that
is to be displayed on the system's CRT. As the words
are placed onto the data bus 57-4 via the I/O controller
102, they are taken by the MUDS and inserted into the
vector memory. The six most significant bits of some of
the data words may be configured exactly like a com
mand code but such words will be interpreted as data
rather than command because there will be no valid
addresses on the address bus 122.
While the MUDS system is busy executing the insert

command, the busy line on bus 57-1 is enabled or as
serted (the busy line is enabled whenever any circuit is
executing a command). When system controller 102 has
outputted all the words it was programmed to output, it
places a start signal on bus 57-4 and the MUDS inter
prets this signal as the end of the item transferred. When
the MUDS has received the start signal from the I/O
controller 102, and has finished processing the last word
associated with an insert command, it frees the CP busy
line on bus 57-1. When the CP recognizes the busy
signal on 57-1 is free, it examines the next word in insert
buffer 105 and starts processing the next command.
The DMA controller 101 transfers 16-bit data words

from the host processor to the insert buffer 105, per
forms parity generation and checking overall transfers,
is capable of addressing any location in insert buffer 105,
and includes a word count register (not shown) capable
of handling a 256-word transfer. The word count regis
ter is capable of being loaded and read back by the
CPU.
The request signal, HRNK on bus 56-3, is activated

during a download operation when data is being placed
on the bus by host 10. It remains until DMA controller
101 activates system acknowledge, VTAK on bus 56-1,
signaling host 10 that it is ready for the download. If
DMA controller 101 detects a parity error in the trans
mission, it activates system negative acknowledge,
VRNK on bus 56-1, rather than VTAK, which aborts
the download. Error-free transmissions proceed with
HRNK/VTAK handshake exchanges, one for each
data byte transferred, until host 10 asserts host terminal
count, HTAK on bus 56-3, which terminates the down
load.
When system 15 has data to upload to host 10, it

begins by asserting system request, VRNK on bus 56-1.
After host 10 returns a host acknowledge, HTAK on
bus 56-3, system 15 begins the upload by placing data on
the bus and reasserting VRNK. Error-free transmis
sions proceed with VRNK/HTAK handshake ex
changes, one for each data byte transferred, until system
15 asserts system terminal count, VTAK on bus 56-1,
which terminates the upload. If host 10 detects a parity
error in the data received it asserts host negative ac
knowledge, NRNK on bus 56-3, rather than HTAK,
which aborts the upload.
The system controller 102 transfers 16-bit data words

between the buffer 105 and the system data bus EDAT
57-6. Controller 102 includes an address register IBAC
capable of addressing any location in the buffer 105.
The contents of another 8-bit counter/register within
controller 102 are placed on the system address bus
EAD 57-4 during certain I/O operations as commanded
by the CPU. A word count register capable of handling
a 256-word transfer is included. Controller 102 is pro
grammable by the CPU to output to the system an out
put strobe (OSTB) signal on bus 57-4 and data and

4,496,944
13

addresses on the system busses EDAT and EAD, re
spectively. When programmed to input data from the
system data bus, the controller 102 sends an input strobe
(ISTB) to the system. Sometime after ISTB has been
received, the input data should be placed on the system
data bus to be latched and written into insert buffer 105.
The clock generator 121 supplies the SYNC and 40

MHz signals to the system as depicted in FIGS. 21A
and 21B.

FIG. 21A depicts timing signals from the system to
CP50, and FIG. 21B depicts timing signals from CP 50
to the system.

Memory Update System
The memory update system (MUDS) 60 of FIG. 2 is

depicted in more detail in FIGS. 22A and 22B. The
primary functions of MUDS circuit 60 are to insert data
from the host CPU through command processor (CP)
into vector memory 61, associatively search and modify
items in memory 61 specified by the command proces
sor, and to selectively pass data from memory 61 to
preclipper circuit 62 for the set view and identify func
tions, to be described. Timing diagrams for illustrating
the operation of MUDS 60 and memory 61 are depicted
in FIG. 23.

In FIG. 22A, a command decoder 140 receives the
OSTB and EAD signals and commands in the form of
EDAT signals from the system on bus 57. Decoder 140
is connected to command latch and signal generator 138
which generates on bus 132 the commands, command
type and busy signals.
The memory data in (MDI) bus 64 from memory 61

is connected to logic circuit 131 which waits for a com
mand to be started. When free space or an end of item
is detected, mark logic 131 sets a mark bit. The bit posi
tion in the first word of an item or free space is set and
is called the mark bit. Mark logic 131 is connected to
command latch 138 to inform latch 138 when a com
mand is completed.

Item parser 141 is a logic circuit which determines
the possible categories of a data word from vector
memory 61 on MDI bus 64. Item parser 141 generates
the FREE SPACE, IN ITEM, HEADER and END
OF ITEM signals on bus 133.
MDI bus 64 is also connected to latch circuit 142

which sends unmodified items to ring buffer circuit 155
of FIG. 22B, which is a 256X 16 bit buffer utilized for
modifying, translating and deleting functions.
Polygon vector data from the command processor

(CP) 50 is sent to the MUDS 60 circuit via bus 57 into
buffer/inverter circuit 145 which in turn is connected to
mask memory 148 (MM0) and mask memory 140
(MM1) which are 16X 16 bit memories and which are
addressed by mask memory address generator 139,
which generates the necessary 4-bit address signals in
response to a command type signal from command
latch 138.
The 16-bit MASK0 and MASK2 items from memory

148 are latched to mask and latch circuit 147, which also
receives unmodified items from the vector memory via
bus 64. MASK1 and MASK3 items from memory 149
are connected to ALU circuit 150. The mask and latch
circuit 147 is also connected to ALU 150, which pro
cesses the data under control of ALU control circuit
151, depending upon the type of command received
from command latch 138.
Masked items from ALU 150 are connected to quali

fication logic circuit 162, which provides appropriate

10

15

20

25

30

35

40

45

50

55

60

65

14
selection between the ring buffer circuits of FIG. 22B,
depending upon the results of MASKO and MASK1.

Modified items from ALU 150 are connected to mul
tiplexer (MUX) 154, which also receives items to be
inserted via bus 57 and connects the insert or modified
items to ring buffer 157 (RB2) of FIG. 22B under con
trol insert controller 160, which receives the INSERT
COMMAND, IN ITEM and END OF ITEM signals
from item parser 141 and command latch 138, respec
tively.

Referring now to FIG. 22B, ring buffer address gen
erator 161 receives the IN ITEM signal from item
parser 141 and provides 8-bit address signals to ring
buffer 155, ring buffer 157 and ring buffer 158.
The ring buffer circuits of FIG.22B are controlled by

ring buffer control 156, which receives appropriate
timing signals from clock generator circuit 130 of FIG.
22A.

Flag generation logic 166 receives the QUALIFY
signal from qualification logic circuit 162 and IN
ITEM, END OF ITEM and HEADER signals from
item parser 141 of FIG.22A and which effectively tells
the ring buffer circuitry when to set flags.
Ring buffers 155, 157 (RB1 and RB2) are 256x16 bit

ring buffers. Ring buffer 158 is a 256x4 bit ring buffer
and ring buffers 155, 157, 158 are used for updating
memory 61. Ring buffer 155 stores unmodified item(s),
ring buffer 157 157 stores modified item(s), and ring
buffer 158 is used to store ring buffer selection code
from logic circuit 166. The 2-bit selection code from
ring buffer 158 is connected to select control circuit 168.
One bit is an enable flag in order not to change or mod
ify an item in process. The other flag bit tells which ring
buffer 155, 157 should be selected.

Multiplexer (MUX) 167 selects the data from either
ring buffer 155 or 157 and sends the 16-bit data on bus
65 back to vector memory 61.

In FIG. 22B, the error detection, used word count
and status logic circuit 144 receives the data from mem
ory 61 together with the INSERT, DELETE, BUSY
and QUALIFY signals from FIG. 22A to provide the
appropriate control signals on bus 57.

Preclipper interface circuit 153 receives vector data
on bus 64 together with the QUALIFY, END OF
ITEM and X-COORDINATE signals. The X-COOR
DINATE signal on bus 66 from the preclipper circuit is
an instruction requesting either the X or Y coordinate
and in response thereto the MUDS circuit provides the
appropriate coordinate on PCD bus 67.

Preclipper interface 153 also provides to the preclip
per circuit the necessary data available signal on bus 66
together with the appropriate signals indicating end of
item, short form data, header, qualify and which word
of the item.

In FIG.22A, the clock generator circuit 130 receives
the 40M and SYNC signals from the system together
with the DS (read) signal on bus 64 from the vector
memory. The clock generator 130 generates the 100
NS, 300 NS signals and P clock signals depicted in FIG.
23, as well as the T clock signals (not shown).
The vector memory receives two clock inputs (differ

ential pairs) for its basic timing from one of the MUDS
60 systems. Every 300 ns, a 16-bit word is stable at
output bus 65 and the data can be latched by the read
clock signal (DS) of FIG. 23. At the trailing edge of the
DS signal, data on bus 65 to memory 61 must be stable
for writing. In one embodiment, a memory 61 cycle is
300 ns long which is the period of the DS (read clock)

4,496,944
15

signal. At the end of the 32 cycles, memory 61 will go
into a refresh or shift period which is 9.6 us long. Dur
ing this period, the internal clocks of the MUDS re
inhibited, which are designated P1, P2 and P3 of FIG.
23. All processing comes to a halt except that data from
CP 50 can still be inserted from that time under control
of the T clock signals (not shown).

In FIG.22A, the command decode logic 140 decodes
the different commands from the command processor
via bus 57. The commands (depicted in Tables I and II)
decoded are insert, delete if equal/not equal, modify if
equal/not equal, translate if equal/not equal, identify if
equal/not equal (including point, line and window iden
tify), and set view if equal/not equal. The desired com
mand is decoded upon the right combination of address
and data signals followed by the OSTB signal. After the
command is properly decoded, parameters accompany
ing the command are loaded by Subsequent OSTB sig
nals. The start signal initiates the processing of a com
mand.
The status and used word count report circuit 144

reports the busy status, error status and number of
words used in memory 61 to the command processor,
via bus 57. MUDS 60 is busy as long as a command is in
process. In the case of an insert command, the com
mand is not done until all of the insert data is written
into memory 61. If the word count of the items is less
than four, a header length error is reported. If in long
form, data length error is reported when the parity of
the length of the item differs from that of the descriptor
length. The used word counter is preset to zero during
a memory 61 reset and decrements by the number of
words deleted during a delete command and increments
by the number of words inserted during an insert com
mand. The count remains intact during all other opera
tions.

In the case of modify and translate commands, the
items with modified headers are written into ring buffer
157 while unmodified items are written into ring buffer
155. At corresponding locations in ring buffer 158,
where the first words are in ring buffers 155, 157 respec
tively, bit zero is set, and bit one is set so that ring buffer
157 will be chosen for writing into memory 61 if the
item satisfies the qualification test. Ring buffer 157 is
also used for data insertion into memory 61. Insert data
from command processor 50 is loded into ring buffer
157 and as soon as a word of free space or end of item
from memory 61 is detected, inserted data in ring buffer
157 is written into memory 61.
There are two read pointers (RP and IRP), two write

pointers (WP and IWP) and a header pointer (HP). RP
points to a location in a ring buffer where the next word
from memory 61 will be stored. WP points to the loca
tion in a ring buffer from which the next word written
into memory 61 is retrieved. RP and WP are used by
both ring buffers 155, 157. IRP and IWP are used only
during an insert command by ring buffer 157. HP is used
to keep track of the first word of the current item in ring
buffers 155, 157 and is selected to address ring buffer
158 for recording the first word and ring buffer selec
tion flags. WP is selected for reading the flags from ring
buffer 158.

In FIG. 22A, the mask memories 148, 149 are loaded
with the masks during command parameter load
(MASK LOAD IN PROGRESS-MLIP). The mask
memory and address assignments for the four are as
follows:

O

15

20

25

30

35

40

45

50

55

60

65

16

MASK MASK MEMORY ADDRESS

g g 0-5
l 1 0-5
2 g 8-D
3 8-D

MASK0 ad MASK2 are stored in memory 148 in
one's complement form so that an effective ANDing
function is performed on the latched area. The follow
ing functions are performed:

(1) (MASKg.DATAée MASK1
(2) Record above result and do qualification test.
(3) RB2-(MASK2)-DATAe (or PLUS) MASK3.
(4) Select RB2 output for memory input data if the

item passes qualification test. Otherwise RB1 is
selected. (RB1-DATA is done every cycle).

The preclipper interface circuit 153 provides the
input data for the preclipper along with various timing
and state signals. A 16-bit word is sent to the preclipper
circuit 62 if the word just received by the MUDS from
memory 61 is part of an item. For coordinate data, the
word can be sent in three ways, which are:

(1) Unmodified if data is in long form.
(2) Lower eight bits shifted left with sign extension by

the value in short exponent, if data is in short form
and XSEL is low,

(3) Upper eight bits shifted left with sign extension by
the value in short exponent, if data is in short form
and XSEL is high.

The fact that insert data is sent to the vector memory
61 when free space or the end of an item is detected
allows the MUDS circuit to handle its own "garbage
collection' without imposing an overhead penalty.
New data is inserted into the vector memory in place of
unused or free space or in between existing items. Thus,
new data can be inserted into the vector memory re
gardless of the distribution of items throughout the
memory as long as the total number of words inserted
does not exceed the capacity of the vector memory.
The significance of the read pointer and write pointer

is that it allows the ring buffers to act as FIFO (first in
first out) registers, with an important advantage. When
a FIFO register is filled, its internal address is incre
mented from a zero (empty) to some maximum count
(full). As data is read out, the internal address is decre
mented until zero is reached again. Therefore, a FIFO
requires special logic to keep from counting below zero
or above the maximum value. However, the ring buffers
overcome this problem by limiting the size of items
going into the ring buffer to less than the maximum ring
buffer size. The ring buffers are also arranged so that
the data will be read out of the ring buffers fast enough
so that they will never be completely filled. Conse
quently, MUDS 60 needs only to detect when the buff
ers are empty. Instead of using address Zero to indicate
"empty,' the ring buffer address is allowed to take any
value and two pointers are used.
When data is written into the ring buffers, the read

pointer is incremented by one to the address into which
the data will be written and as data is being read out of
the ring buffers, the write pointer is incremented by one
to the address from which data will be read. When the
two pointers are equal to each other, the ring buffer is
empty.

If both pointers are incremented enough, the ring
buffer address eventually will return to where it started,

4,496,944
17

hence the name ring buffer. Since the ring buffer logic
need only detect the case of the two pointers being
equal, the control logic is simplified over the FIFO type
of register.

In the MUDS circuit, the items in the vector memory
can be inserted, associatively modified, and/or passed
to the preclipper circuit regardless of their distribution
or relative position in the vector memory. As long as
the number of items inserted into the vector memory do
not exceed the capacity of the vector memory, the
MUDS circuit will find spaces to insert new items,
process existing items and perform the "garbage collec
tion' technique described above as the items serially
circulate through the MUDS circuit.

Vector Memory
In one embodiment, vector memory 61 is a 64K

word X 16-bit charge coupled device (CCD) memory.
The memory storage area includes 64 serial memory
devices arranged in four banks. The memory is ad
dressed sequentially and operates in an interleaved
mode, with a read operation performed in one bank
while a write operation is performed on another bank.
The sequencing of the operation thereby allows a read
modify-write operation to be performed at each mem
ory location in turn. The memory has a sequentially
interleaved average data rate of 300 nanoseconds (ns).
However, it is to be understood that other types of
known memories can be included within the scope of
the present invention. For example, magnetic bubble
memories (MBM) or random access memories (RAM)
could be utilized for vector memory 61.

In one embodiment the CCD memory devices in
clude 64 256-bit chip registers which are addressed
serially under control of a four-phase clock input. The
data in the chip register is shifted every 32 cycles (i.e.,
every 10 microseconds) to refresh data, and to bring
data into an access position. The memory has a 900 ns
data gap during a shift operation. Since the memory has
64K data locations, the maximum period required to
read and write the entire memory is 24 ms.
Memory 61 receives clock inputs from the MUDS

and from these inputs generates required control and
mode signals. All addrss bits are internally generated. In
FIG. 24, there are 16 write data lines forming bus 65
from the MUDS to latches 208, 209 to memory 61 and
16 read data lines from the memory 61 to MUDS 60 via
drivers 210, 211 and bus 64.
The memory storage area includes 64 16K-word by

1-bit charge-coupled (CCD) serial memory chips, such
as Intel's model 2416. The chips are arranged in four
banks 201-204, as depicted in FIG. 24, in which each
bank stores 16K 16-bit words.

In the interleaved mode, a read-modify-write opera
tion is performed at each memory location in turn. In
FIG. 24, a read operation is performed in one bank of
memory such as bank 201 (bank A) while a write opera
tion is performed at another bank such as bank 204
(bank D). A write operation is then performed in the
bank from which data has just been read out, at the same
address, to complete the read-modify-write operation at
that location. While this write operation is going on, a
read operation is being formed at another bank. A basic
cycle time for memory 61 is 300 ns, which in effect
allows a read-modify-write operation to be completed
every 300 ns.
For a first functional cycle, bank 201 is enabled by the

-CEA signal, for a read operation, while a write opera

10

15

20

25

30

35

40

45

50

55

60

65

18
tion is going on in bank 204 (enabled by -CED). At the
next cycle, bank 202 is enabled for a read operation by
-CEB. -CEA is still active and a write operation is per
formed in bank 201, at the same address as the read
Operation. 300 ns later, a read operation is initiated in
bank 203, when -CEC goes low, while a write operation
is then performed in bank 204, while a write operation
is going on in bank 203. The timing requirements for
these operations are depicted in FIG. 26.
These procedures are repeated until a read-modify

write operation has been performed in all 64K chip
locations. A 1.2 us refresh operation occurs at the end of
every 32nd cycle which provides a refresh cycle time of
9.6 us.

FIG. 25 depicts a block diagram of 64 recirculating
shift registers 220 of 256 bits each. Address bits for
banks 201 and 203 and for banks 202 and 204 are inter
nally decoded to select one of those 64 registers. The
chip registers 220 are grouped in blocks of 8 (0–7, 8-15,
16-23, 24-31, 32-39, 40–47, 48-55, and 56–63). Decode
signals A3 A5 into buffer 215 are decoded by decoder
221 to select one of these eight blocks and address sig
nals A0-A2 are decoded to select one individual regis
ter out of the eight in the block.
One bit out of 256 in the selected register is addressed

by shifting the data in register 220 to bring the required
bit into the access position in buffer 313. Data are input
to a selected register via buffer 214. Shifting is con
trolled by four phase clock inputs 1-4. Timing genera
tor 216 controls internal timing. With interleaving, one
bit is accessed in each of the 32 chips during each cycle,
thereby allowing one 16-bit word to be read out from
and one 16-bit word to be written into the desired loca
t1OnS.

Preclipper
The preclipper circuit 62 of FIG. 2 is depicted in

more detail in FIG. 27, and includes a command decode
circuit 226 for receiving status and control signals from
the command processor via system bus 57. The preclip
per includes two coordinate control units 227, 228
(which are control units for the X and Y coordinates,
respectively) and two coordinate processor units 229,
230 (which are processor units for the X and Y coordi
nates, respectively).
Each control unit 227, 228 includes a next address

logic circuit 232, control storage (PROM) 233 and a
pipeline register 234. Each processor unit 229, 230 in
cludes a four to one (16-bit). MUX240, an 8X 16 register
file 241 and a 16-bit ALU 242. Each regiser file 241 has
one input port from MUX 240 and two output ports.
One of the two output ports of register file 241 is con
nected directly or indirectly (through MUX 240) to a
1KX32 bit output buffer (RAM) 243.
X-control signals on bus 235 and Y-control signals on

bus 236 from control units 227, 228, respectively, are
input to the respective processor units 229, 230. Data
from the MUDS circuit via 16-bit bus 67 are also input
through status latch 245 into intersect and censoring
value test circuit 246, which also has inputs from con
trol units 227, 228 and from processor units 229, 230.
Outputs from test circuit and clock generator 246 are
input to header pointer (HP) circuit 250, write pointer
(WP) circuit 251 and read pointer (RP) circuit 252.
The HP 250 output is input to ALU circuit 255 and

into WP circuit 251, MUX 257, and RP 252. The WP
251 output is input to ALU circuit 257 and also input to
HP 250, ALU 255 and MUX 257. The output of RP 252

4,496,944
19

is input to comparator (COMP) 258, ALU 256 and
MUX 257.
The output of ALU 255 is input to MUX 260 which

also receives 8-bits from register file 241. The output of
MUX 260 forms an input to RAM 243. The output of
MUX 257 forms an input to RAM 243 and an output of
test circuit 246 is input to RAM 243.
The preclipper 62 functions are to accumulate the

relative coordinates received from the MUDS 60 to
make them absolute, to compare line segment deltas
with the censoring value received for the current set
view to determine whether the current point needs to
be retained in output buffer 243, and to determine
whether a particular polygon intersects a viewport or
window. The intersection test in circuit 246 works in
the following manner:

Let the window be defined by (XL, YL) and (XH,
YH). Let the smallest rectangle that circumscribes the
polygon be defined by (XMIN, YMIN) and (XMAX,
YMAX).

If XMAX (XL
or XMINXH
or XMAX(YL
or YMIN <YH,

then the polygon is outside of the window.
FIG. 27A depicts an illustration of a circumscribed

polygon, in which polygon 270, formed by a series of
vectors, is circumscribed by a rectangle 271 defined by
(XMIN, YMIN) and (XMAX, YMAX). Window 272 is
defined by (XL, YL) and (XH, YH). Although it can be
seen that polygon 270 does not intersect window 272, its
circumscribed rectangle 271 does intersect window 272,
so polygon 270 is passed to clipper circuit 70. Clipper
circuit 70 subsequently determines that no segment of
polygon 270 is visible. Note that, while preclipper 62
may pass polygons to clipper 70 which do not intersect
the window, preclipper 62 never fails to pass a polygon
to clipper 70 which does intersect the window.

Preclipper 62 receives polygon data from MUDS 60
at a rate of either one or two words per 300 us cycle.
Specifically, two words per cycle are received if the
data represents an X-Y coordinate pair which was origi
nally encoded in short form within vector memory 61;
otherwise, one word per cycle is received. A central
processing section for the preclipper, as previously
mentioned, includes control units 227, 228 and proces
sor units 229, 230. Buffer 243 is addressed by the three
pointers HP 250, WP 251, RP 252 via MUX 257. The
header pointer (HP) points to the first word of the poly
gon under consideration being accumulated in the out
put buffer 243 and going through the intersection test
by test circuit 246. The read pointer (RP) points to the
location in output buffer 243 where the next word is to
be retrieved by the clipper circuit 70. The write pointer
(WP) points to the location in the output buffer 243
where the next 32-bit word is written by the preclipper
circuit 62.
The 300 ns between successive words from MUDS

circuit 60 is divided into three 100 ns periods called P1,
P2 and P3 as depicted in FIG. 28. Data is stable for the
preclipper 50 ns after the leading edge of P2. The three
pointers HP, WP, and RP are time multiplexed in MUX
257 for addressing the output buffer 243 by P3 for HP,
P1 for RP, and P2 for WP. When RP = HP, the data
available (DA) signal would be low, which indicates
that output buffer 243 is empty. Otherwise the DA
signal is high. When (RP-WP)s 32 a pause signal from

10

15

20

25

30

35

40

45

50

55

60

65

20
circuit 256 on bus 66 will be raised to initiate the CCD
pause cycle previously described.
The preclipper circuit 62 decodes two commad

classes, which are set view and identify. Data from
MUDS 60 is processed differently according to
whether the word received belongs to the header or is
a coordinate as described in conjunction with the poly
gon format.

In case of an identify function, the whole header is
sent to buffer 243. For a set view function, only the first
two words of the header are stored in output buffer 243
with the actual number of 32-bit words stored in the
word count field of the header.
The micro-instruction cycle is 50 ns. In FIG. 27, the

X-processing unit 229 runs for six cycles (300 ns) and
the y-processing unit 230 runs for six cycle. In the case
of short form data, the X and Y units 229, 230 run in
parallel with a skew of 50 ns. The pipeline registers in
units 227, 228 are used to allow overlap of the execution
and instruction fetch cycle, as depicted in FIG. 28, in
which E signifies execution of an instruction fetched
during the last fetch cycle and F signifies instruction
fetch. During the course of processing coordinate data
for a set view command, the arithmetic operations in
volved for X (and analogously for Y) are as follows:

(1) Ie-input from MUDS
(2) X-X-I
(3) AXP-X-XP
(4) Compare AXP with CN
(5) Compare X with XL
(6) Compare X with XH

Variable Names Description

I Input data from MUDS
X Current X coordinate
|AXP Absolute value of X-XP
XP Previous X coordinate
CN Censoring value
XL X low limit
XH X high limit
Y Current Y coordinate
AYP Absolute value of Y-YP
YP Previous Y coordinate
YL Y low limit
YH Y high limit

In addition to the operations described above, pre
clipper 62 loads the XP and YP registers with the con
tents of X and Y, respectively, on the last 50 us cycle
used to process a coordinate pair, if X differs from XP
or Y differs from YP by at least the censoring value CN.
The processing performed for identify commands is

similar to that for set view commands, except that all
operations pertaining to censoring value CN are omit
ted.

FIG. 29 depicts the timing considerations and se
quence of operation for the preclipper circuit according
to the arithmetic operations involved. During time P2,
the write ponter WP is selected for the address in output
buffer 243. If either AXP or AYP is greater than the
censoring value, the current pair of coordinates is writ
ten into the buffer. During time P3, the header pointer
is selected. If intersection is detected, then after the end
item (EI) signal or the pen up (PU) signal is received,
the word count in the header will be updated and the
header pointer will be set to the write pointer, thus
making the data pertaining to the currently processed
entity available to the transformation subsystem 53;

4,496,944
21

otherwise the write pointer will be set to the header
pointer, thus discarding this data.

In FIG. 27, data from the preclipper buffer 253 is
output on 32-bit bus 73 to the clipper circuit 70, and
includes 16 bits of X-coordinate data and 1.6 bits of
Y-coordinate data.

Clipper Circuit
The clipper circuit 70 of FIG. 2 is depicted in more

detail in FIG. 30, in which preclipper vector data via
bus 73 are input to data selector and accumulator 301.
Control signals are input on bus 57 into command pro
cessor interface 302 and into clocking, timing and reset
circuit 303, which provides appropriate timing signals
for the clipper circuit. Preclipper control signals via bus
72 are input to preclipper interface circuit 304. The
clipper 70 provides the clip and identify functions.

Clipper processor 310 contains a program register, a
256-word X48-bit PROM and other control logic for
supervising clipper activities during the processing of
data.

Data selector and accumulator 301 receives preclip
per data via bus 73 and from other sources to be de
scribed, and stores data in the accumulator portion.

Arithmetic unit 311 is used to manipulate and com
pare data words, and the results are passed to the pro
cessor 310 via bus 312. Memory 313 holds parameters
received from command processor 50 of FIG. 1, data
currently being processed, and other words used in
computations and all the header words to be sent to the
command processor.
FIG. 31 depicts the basic timing signals utilized in

FIG. 30. The SYNC, 40 MHz, and 25 ns timing designa
tions have been previously described. The CKOTR and
timing signals are utilized by some of the logic for tim
ing purposes. The remaining signals are not necessarily
periodic and are shown for explanatory purposes.
The PARENB signal is used to enable the loading of

command processor parameters in the clipper and
scaler circuits. The LOSTB signal is a 100 ns synchro
nous image of the OSTB signal. The QSTRT signal is a
100 ns synchronous image of the CP's start signal. The
FETSTB signal is a strobe sent to the preclipper to
fetch data. The SLDSTB signal is a scaler data strobe
enable signal. The DOEN signal is a strobe used to load
header words onto the EDAT data lines.

In FIG. 30, the command processor interface 302
receives and interprets commands on bus 57 from the
command processor 50, supervises the loading of com
mand processor parameters for both the clipper and
scaler. It turns the processor 310 on via bus 314 in re
sponse to an appropriate start pulse from CP and turns
processor 310 off in the case of a succeeding command
occurring while processor 310 is still processing data,
and specifies which of the five functions of processor
310 is to carry out.
The preclipper interface 304 monitors the data avail

able signals from a preclipper circuit via bus 72 and
selects one from which the clipper circuit will receive
data for a given system. When the processor in 310 is
about to finish processing a given entity, it sends the
search signal on bus 316 to interface 304, informing it to
select another preclipper.

Since the clipper circuit includes a path for X-coordi
nate data and for Y-coordinate data, FIG. 32 depicts
one half of the clipper circuit data path. Data is selected
from one of four sources in FIG. 32, which are the
command processor via bus 57 and buffer 327, the pre

10

15

20

25

30

35

40

45

50

55

60

65

22
clipper via bus 73 and buffer 328, the other accumulator
data path via bus 331 and buffer 329, and the ALU
circuit 326 and inverter circuit 325.
Command processor data from buffer 327 are se

lected from the interface 302 circuits of FIG. 30 before
the processor 310 is turned on. Preclipper data from
buffer 328 are selected whenever a fetch strobe to a
preclipper is issued. Data from the other accumulator
via buffer 329 or from the ALU 326 and inverter 325 are
selected by control signals from processor 310,

In FIG. 32, the ALU 326 and inverter 325 perform
the off (unselected), increment accumulator, add mem
ory to accumulator, subtract memory from accumula
tor, invert result if negative, select memory, and select
accumulator functions.

Selected data are fed to the accumulator 330. X
selected data are also fed to a process bits register (not
shown) which also holds the screen space bit. Y
selected data are also fed to word counters (not shown),
which monitor header and all words in an entity. The
contents of the process bits register form part of the
data sent to the scaler circuit 71. Accumulator 330, in
addition to holding data, can be right shifted one bit. A
right-shift immediately following an ALU summing
provides the SUM/2 function.

In FIG. 32, each comparator 335, 337 has an accom
panying one-word register 334, 336 loaded from mem
ory 333. Registers 334, 336 contents are compared to
the accumulator 330 contents and the results are sent to
logic in the arithmetic unit where they are analyzed and
compared with previous such results. Processor 310
circuit of FIG. 30 makes decisions on the results of such
testing.
The X-memory of a clipper data path has a capacity

of 16 words. The Y-memory, which is also used to store
header words, has a capacity of 256 words. In addition
to feeding the items already mentioned, the memory is
the source for coordinates sent to the scaler circuit. The
Y-memory, in addition, must feed the EDAT data lines
in order to flush the buffers. During the storing and
flushing of header words, the X-accumulator addresses
the Y-memory via bus 339, controlling where in the
Y-memory the headers are stored. Two address pointers
are maintained in the X-memory.
FIG. 33 depicts the processor 310 circuit of FIG. 30

in further detail. Processor 310 includes an 8-bit P-regis
ter 345 which feeds a 256-wordx 48-bit PROM. Five of
the PROM 346 bits select one of up to 32 signals, the
state of which will select between two possible next
addresses. Each processor state generates a series of
commands which are summarized below.

COMMAND # BITS COMMENTS
MEMORY 6 Provides four bits of Memory

addressing and separate enables
for writing the X and Y Memories.
Directs separately the loading
of the X and Y. Accumulators.
Provides for selecting the
other Accumulator for data
input. Supervises ALU opera
tion. Provides for shifting
the Accumulators.
Selects one of 32 mutually
exclusive special commands.
These among other duties operate
various Processor status flip-flops
load registers in the data path,
and terminate Processor operation.
Generates six signals, which

ACCUMULA- 8
TOR & ALU

SPECIAL 5
COMMANDS

MISC BITS 6

4,496,944
23

-continued
it BITS COMMENTS

among other duties, generate
the PRECLIPPER fetch strobe
and the SCALER data strobe
enable and load registers
in the data path.

COMMAND

Referring again to FIG. 30, the functions of the clip
per will be described in more detail. The clipper lies in
the data path between the preclipper circuit 62 and the
scaler circuit 71. The clipper performs five functions
which are set view (CLIP), identify point, identify seg
ment, identify window partial, and identify window
full.

During the CLIP function, the clipper receives data
preselected and modified by the preclipper circuit. For
each data entity delivered to the clipper, a special single
32-bit header word is received followed by a number of
32-bit coordinate-pair of words. The special header 20
contains the following items sensed by the clipper of
FIG. 30, which are:

10

15

TEM # BITS COMMENTS 25

SIZE 8 Specifies the number of 32 bit
words, including the header, to be
sent to the CLIPPER for that entity.

SCREEN Differentiates between Screen Space
SPACE and Drawing Space.
PROCESS 6 Auxiliary data passed to the WRITE 30
BITS BOARD via the SCALER

Prior to the execution of the CLIP or set view com
mand, the command processor 50 of FIG. 1 issues a
series of parameters of which the following are sensed 35
by the clipper:

PARAMETER COMMENTS

XL X coordinates defining left boundary of 40
CLIP window.

YL Y coordinates defining lower boundary of
CLIP window.

XH X coordinate defining right boundary
of CLIP window.

YH Y coordinates defining upper boundary 45
of CLIP window,

XMT, YMT, SCALER parameters. The CLIPPER detects
MULTIPLY & the issuance of these and via appropriate
SHIFT control signals directs the scaler

to strobe these into the appropriate
registers,

50

During the set view execution, for all entities with the
Screen space bit true, each coordinate-pair is passed on
to the scaler circuit unmodified. PEN is UP for the first
pair of each such entity and DOWN for the remaining.
For all entities with the screen space bit false, each

coordinate-pair is considered in relationship to the pre
vious coordinate-pair (if any) and to the window. A
series of coordinate-pairs and PEN commands is gener
ated and sent to the scaler so that that portion of the
entity line on or within the window can be reproduced
on the screen.

During the point-identify function, the clipper re
ceives data preselected and modified by the preclippers.
For each data entity delivered to the clipper circuit, the
unmodified group of header words are received, each
16-bit word one by one, on the Y portion of bus 73. A
size byte with the same format as in set view is received

55

60

65

24
via the X portion of bus 73 at the same time as the first
header word is received. Also, the XO coordinate is
received via the X portion of bus 73 at the same time as
the Yo coordinate is received. These are followed by the
coordinate pairs received as 32-bit words, as in the set
view function, beginning with the coordinate pair X,
Y1. This scheme applies to both short and long form
data.

Just prior to the execution of the point-identify com
mand, the command processor issues a series of parame
ters of which the following three are sensed and used by
the clipper:

PARAMETER COMMENT

XED X coordinate defining identify origin.
YID Y coordinate defining identify origin.
FFFFH First delta (= 216 - 1).

During point identify execution, the following ac
tions are taken by the clipper circuit:
1. The complete header of the entity being received is

stored in the Clipper memory.
2. For each coordinate-pair received,

a. AX(= X-XID and AY(= |Y-YID) are
formed.

b. The greater of AX and AY is compared with the
stored delta (initially, the First Delta, 26-1).

c. If it is less than the stored delta, it replaces the
stored delta, and the current entity is marked as a
HIT.

3. After all coordinate-pairs for a given entity have been
analyzed, if the entity has not been marked as a HIT,
its header will be discarded. If the entity has been
marked as a HIT, the header group for the previous
HIT entity will be discarded.

4. When the CLIPPER detects the condition in which
no more data is forthcoming, it interrupts the com
mand processor, which then fetches from the CLIP
PER a size word, indicating the total number of
words to be sent, and the complete header of the
entity last marked as a HIT.
The segment identify function is a refinement of the

point identify function and the same parameters are
used in the treatment and disposition of headers. Action
taken on received coordinate pairs is as follows:
1. A point identify routine (equivalent to that described
above) is applied to the first coordinate of each entity.

2. For each succeeding point (let P represent the previ
ous coordinate pair, C the current, and PC the line
connecting them):
a. If PC crosses neither X=XID or Y=YID, a point

identify is applied to C.
b. If PC crosses one of the axes and is orthogonal, a

delta is formed equal to the magnitude of the dis
tance between the axis intercept and the identify
origin. If this delta is less than the stored delta, it
replaces the stored delta, and the current entity is
marked as a HIT.

c. If PC is a diagonal and, crosses X = XID only, with
a slope > 1, or crosses Y=YID only, with a slope
s 1, then a point identify is applied to C.

d. If PC is a diagonal and crosses X = XID with a
slopes 1, the intercept on X=XID is computed. If
PC is a diagonal and crosses Y = YID with a slope
is 1, the intercept on Y=YID is computed. In ei
ther case a delta is formed equal to the magnitude
of the distance between the axis intercept and the

4,496,944
25

identify origin. If this delta is less than the stored
delta, it replaces the stored delta, and the current
entity is marked as a HIT. Then a point identify is
applied to C.

During the identify window partial function, the
clipper receives data preselected and modified by the
preclippers and the format is the same as for the point
and segment identify functions. The above described
parameters XL, YL, XH and YH are received and
stored prior the execution of the command. During the
partial window identify function, the following actions
are taken by the clipper:
1. The complete header of the entity being received is

stored in the CLIPPER memory.
2. If the first coordinate-pair lies on or within the win
dow, the entity is marked as a HIT.

3. If any successive coordinate-pair lies on or within the
window or if the line connecting any point, other
than the first, with the previous point intersects the
window, the entity is marked as a HIT.

4. After all coordinate-pairs for a given entity have been
analyzed, if the entity has not been marked as a HIT,
its header will be discarded. Otherwise, it will be
retained along with the headers for any previous HIT
entities.

5. Whenever the CLIPPER memory contains 224 or
more header words or the CLIPPER detects the
condition in which no more data is forthcoming, it
interrupts the COMMAND PROCESSOR, which
then fetches from the CLIPPER a size word, indicat
ing the total number of words to be sent, and then all
the header words stored.
The identify window full function differs from partial

window identify in that an entity is considered within a
window only if all coordinate pairs lie on or within the
window.

Scaler Circuit

Referring now to FIG. 34, the scaler circuit 71 of
FIG. 2 is shown in more detail. The 40 MHz, SYNC
and reset signals on bus 57 are input to clocking, timing
and reset circuit 405, which provides appropriate timing
pulses for the scaler circuit.

Clipper control interface circuit 401 receives data
strobe enable and parameter strobe enable signals from
the clipper on bus 77. Buffer 402 receives 16-bit system
data signals on bus 57 for connection to magnifier pa
rameter register 407, translation parameter register 410,
and/or scale parameter register 413. Clipper data on bus
76 from the clipper circuit 70 are input to clipper data
buffers 403.

During the set view operation, the scaler provides the
functions of magnify, translate, scale and buffer. Param
eters from the command processor 50 of FIG. 1 are
loaded through buffer 402 into the registers 407, 410,
413 via bus 430. Data on bus 76 from the clipper are
received and stored in the clipper data buffers 403.
Assuming a drawing space mode, the X and Y coordi

nates are sent in pipeline fashion (Y-coordinate follow
ing X-coordinate) through the magnifier 408, translator
411 and scaler 414 circuits, via bus 421-423, respec
tively.

In screen mode, the X and Y coordinates are loaded
directly into scaler and buffer circuit 414 via bus 421
without processing. From buffer 414, in either mode,
the scaler coordinates on bus 425, together with the
process and pen up bits on bus 426, are loaded into
buffer memory 417. From memory 417, data are sent via

10

15

20

25

35

40

45

50

55

60

65

26
bus 427 to output buffer 418, a one-word or 25-bit out
put buffer, and to the write circuit 80 in FIG. 1 on bus
83.
The scaler circuit basic timing is depicted in FIG. 35.
The LDCRD signal loads clipper data into clipper

data buffers 403 and raises PRCENB, which in turn
enables the PROCESS signal, which will lead to the
processed coordinates being written into buffer mem
ory 417.
XISEL and YISEL signals enable the loading of

respective input coordinates onto a common bus 421
which feeds magnifier circuit 408 and also the buffers in
the scaler circuit 414.
The SELXMT and SELYMT signals select the ap

propriate translation parameter to be fed to the transla
tor circuit 411.
The CKMG signal clocks the magnifier buffer 408.

The X and Y notations on the timing diagram in FIG. 35
indicate the coordinate clocked.
The CKTR signal clocks translator buffer 411. The

X-coordinate will be clocked into translator buffer 411
at the same time the X-coordinate in the magnifier
buffer 408 is being overwritten by the Y-coordinate.
The scaler buffer 414 has separate buffers for both X

and Y coordinates, which are clocked by CKSX and
CKSY signals, respectively. At the occurrence of these
respective clocks, XISEL and YISEL in FIG. 35 are
off. However, in screen space mode, XISEL and
YISEL will be active as required at the times in order to
load the input coordinates into the scaler buffer 414.
The FETDIS signal prevents data from being read

from the buffer memory 417. The LDMEM signal se
lects the write pointer (as opposed to the read pointer)
for memory 417. WRMEM is the strobe that actually
writes memory 417.

In FIG. 34, the magnifier buffer 408 takes 16-bit input
coordinate data on bus 421 and left-shifts the data 0 to
15 bits ignoring overflow, and filling with zeros. The
result is truncated to 12 bits and stored in magnifier
buffer 408. The extent of the left-shift is determined by
the magnifier parameter from register 407, which has
been loaded via bus 430 from buffer 402.

Translator buffer 411 takes the 12-bit coordinate data
from magnifier buffer 408 via bus 422 and subtracts
from it the appropriate 12-bit (X or Y) translation pa
rameter, the most significant borrow being ignored, and
the result is stored in the buffer 411.
The scaler buffer 414 takes the 12-bit coordinate from

translator buffer 411 vis bus 423 and multiplies it by the
8-bit scale parameter from register 413. The most signif
icant bit (MSB) of the 20-bit result is discarded (it
should be a zero) and the remainder is rounded back to
9 bits. The result is stored in one 9-bit buffer for X and
another for the Y coordinate.
The contents (18 bits) of the scaler buffer 414 along

with six process bits and the pen up bit on bus 426 are
written into 1K buffer memory 417. Process bits and
pen up bit are loaded into an input register (not shown)
simultaneously with the reception of the coordinates
from the clipper. They are loaded by the CKSK and
CKSY signals into an intermediate register (not shown)
which feeds the memory.
Output buffer 418 holds one full data word (coordi

nates, process bits and pen up bit) in transit from the
buffer memory 417 to the write circuit 80 of FIG. 1.
Buffer 418 is loaded whenever it is empty and buffer
memory 417 contains data and is not being written.
When it is being loaded or already contains a word, a

4,496,944
27

data available signal is sent to a write circuit data 80 via
process control circuit 404 and bus 84. The write circuit
80 responds with a data acknowledge (ACKN) which
permits refilling of output buffer 418.
The data transfer rate between the scaler circuit 71

and write circuit 80 can be six words per 300 ns if buffer
memory 417 is not being written or four words per 300
ns if it is being written. The write circuit 80 can send a
HOLD signal via bus 84 which will cause the scaler
circuit 71 to suspend processing data and writing the
buffer memory whenever the buffer memory is more
than half full.

Prior to the execution of the set view operation, the
scaler circuit receives four parameters, in three words,
from command processor via bus 57. The parameters
re: al

Name Symbol Range

SCALE (MULTIPLY) f 0 is f s 28 - 1
MAGNIFY (SHIFT) e 0 is e s 2 - 1
XTRANSLATION XMT Os XMT s 212 - 1
Y TRANSLATION YMT 0 is YMT is 212 - 1

During execution of the set view operation, the scaler
circuit receives from the clipper via bus 76 data contain
ing the following:

NAME

DRAWING SPACE

COMMENTS

Bit differentiating between screen space
and drawing space.
Six bits stored and passed on to the
WRITE CIRCUIT without modification.
Bit specifying Pen Up. Stored and
passed on to the WRITE CIRCUIT
without modification.
Coordinate-pair to be operated upon.
Symbols X and Y. Range 0 to 26 - 1.

PROCESS BITS

PEN UP

COORDINATE-PAIR

In the drawing space mode, the scaler circuit applies
all four functions (magnify, translate, scale, and buffer)
to the input coordinate pair. In screen space it applies
only the buffer function.
For a magnify (shift) function, the two input coordi

nates are left-shifted a number of places specified by the
parameter, with overflow discarded, and with zeros
shifted in. The result is then truncated to 12 bits. Conse
quently the magnify coordinate for X (and analogously
for Y) is:

XM st truncated, modulo 22.

For the translate function, from the 12-bit magnified
(shifted) coordinates, XM and YM, are subtracted the
corresponding translation parameters stored in register
410, also each 12 bits. The subtraction is carried out
modulo 22 in that borrow-outs are ignored. For the
X-coordinate (and analogously for Y)
XT =XM-XMT, modulo 212.
For the scale (multiply) function, the 12-bit translated

coordinates on bus 423 are each multiplied by the 8-bit
parameter f from register 413. The MSB of the 20-bit
result, which should be a zero, is discarded. The remain
ing 19 bits are then truncated to 9 bits. Hence for the X
coordinate (and analogously for Y) on bus 425, the X
value is

5

10

20

25

30

35

40

45

50

55

60

65

28

XS = aff. , truncated, modulo 2°.

For the buffer function, the 9-bit scaled coordinates
on bus 425 (in the case of drawing space) or of the 16-bit
inputted coordinates truncated to 9-bits (in the case of
screen space) are stored in 1K word buffer memory 417
along with the six process bits and the pen up bit on bus
426. A one-word output register 418 holds the data
words in transit from the buffer memory to the write
board.
The scaler circuit flags the clipper via bus 77 and

control circuit 404 to suspend sending data when buffer
memory 417 is full or if the write circuit acknowledges
a hold signal on bus 84, when the buffer memory 417 is
more than half full.
The scaler parameters loaded into registers 407,410,

and 413 are received from the command processor via
bus 57 and buffer 402. Strobing of these parameters into
the appropriate scaler registers 407, 410, 413 is under
control of the clipper circuit via bus 77, control inter
face 401 and bus 420.

Write Circuit

Referring now to FIG. 36, (FIGS. 36A, 36B, and
36C), the write circuit 80 of FIG. 2 is depicted in further
detail.
The write circuit 80 performs the function of rapidly

generating points in a matrix field to approximate the
location of two-dimensional straight line vectors. The
matrix field can be any rectangular matrix such as
512X512, 768X 1024, 1024x1024 etc. A 512X512 ma
trix is assumed in the following description of the Write
circuit. The points are subsequently transferred to re
fresh memory 81 which is used to refresh a standard
television monitor scope. The refresh memory must
have a storage capacity of at least equal to the number
of points in the matrix field for a black and white display
or some multiple of this size for a color display. The
refresh memory referred to in this circuit description
has a storage capacity of 262, 14.4 bits to accommodate
the 512X512 matrix field for a black and white display.
Vector data stored in refresh memory 81 is derived

from vector end points stored in a data base having
considerably more resolution than the refresh memory
which implies that vectors stored in the refresh memory
are in general approximations of the vectors stored in
the data base. The mapping of arbitrary vector end
points from the data base to the refresh memory can be
considered to be exact only for a relatively small num
ber of vectors and magnification values. In a majority of
cases, where arbitrary magnification and translation
values are applied to a given vector, the end points
being rounded to lesser precision will produce some
distortion of geometrical figures, the effect being more
noticeable as the number of points comprising the figure
is reduced. The rounded vector end points are input to
the write circuit from scaler circuit 71 along with the
line format information (e.g., pen state, line type, and/or
color). The write circuit then fills in the remaining
points on the vectors and transfers them to refresh
memory 71.
Data from scaler circuit 71 are transferred via bus 83

into an input register comprising an end point latch 451,
delay latch 452 and start point latch 453.

4,496,944
29

Status information from the scaler circuit are input on
bus 84 into data strobe control circuit 455. Data from
command processor 50 of FIG. 1 are input via bus 57
providing the 40 MHz and reset signals previously de
scribed.
Vector data are transferred from the scaler circuit 71

to the write circuit 80 when the data available line
(SCWDAV) on bus 84 is high, signifying that data are
available on the data lines 83. Data are latched into the
end point latch 451 by input register clock (IRCK) from
data strobe control circuit 455. Data in the end point
latch 451 are transferred to delay latch 452 during the
next clock period.
The first vector data following a set view command

will be a pen up vector and the coordinates of this vec
tor are loaded from the delay latch 452 into X- and
Y-axis chase counters 456, 457, as well as into final value
latch 461 by the LOAD pulse. As soon as possible,
another vector is transferred from the scaler circuit to
end point latch 451 and the vector previously stored in
this latch is transferred to start point latch 453. As soon
as the previous vector has been processed by the chase
counters, the next vector will be transferred from delay
latch 452 to final value latch 461, in the case of a pen
down vector, or to both final value latch 461 and the X
and Y chase counters 456, 457, in the case of a pen up
vector. Final value latch 461 can be loaded at the same
time that the next vector is transferred to end point
latch 451 provided that the input register already con
tains an unused vector and that the chase counters are
not processing a vector. Subsequent scale circuit to
write circuit transfers can occur simultaneously with a
LOAD pulse or any time after the LOAD pulse has
taken the previous vector. Subsequent LOAD pulses
can occur whenever valid data exists in the input regis
ter provided that no other vector is being processed.

Final value latch 461 contains the end point coordi
nates of the vector being processed as well as the line
type, line color, chase counter direction control lines
along with signals that specify whether this vector has
changed cell (to be explained), color, or both.

Final value comparator 460 separately monitors
whether the state of the X and Y axis chase counters
456, 457 agree with the coordinates stored in the final
value latch 461 so that the chase counters can be
stopped when the end point is reached. Alternately, a
counter could be loaded with the longer component of
the vector being processed and this counter could then
be counted down as the chase counters operate, ulti
mately reaching zero when the end point is reached. By
monitoring the state of this counter, one could antici
pate ahead of time when the last point in the vector will
be reached. Write circuit 80 includes a diagonal genera
tor which operates only on pen down lines. If an input
vector has a pen down flag, then the coordinates in start
point latch 453 and end point latch 451 are compared by
the direction comparators 462 to determine whether the
chase counters 456, 457 are to count up or down. After
the proper direction has been determined, the absolute
value of the vector component lengths along the X and
Y axes are computed by ALU circuit 464. Slope com
parator 465 determines whether the X or Y component
is larger and controls multiplexer (MUX) 466, which
selects the smaller (A) and larger (B) components. Sub
tractor 467 computes the value C= A-B and
D = A-B/2. The D value is used to preset the count
latch 471 during a load cycle. The values of A, B, C and
D are also loaded into latch 471 during a load cycle

5

10

15

20

25

35

40

45

50

55

60

65

30
since they are needed later in the diagonalization pro
cess. The diagonal generator is not required when writ
ing horizontal or vertical lines and can be bypassed if
desired in order to eliminate the time required to calcu
late the A, B, C and D values.

Multiplexer (MUX) 473 selects either A or C= A-B
and the selected value is added to the data output of
count latch 471 on the next accumulation cycle. If the
count output of count latch 471 is low, then A is added
to the data output of count latch 417 on the next cycle
whereas if count is high then A-B is added on the next
cycle.

Because count latch 471 is required to accumulate at
a fast clock rate, 40 MHz in the circuit being described,
insufficient time is available to use the carry output
from the LSB adder of adder 470 to provide the carry
input to the MSB adder of adder 470. Hence a look
ahead circuit consisting of two 4-bit adders 470 (SIN,
DBL) and two multiplexers (MUX) 473 calculate the
results of four possible combinations of two successive
operations and the results are stored in count latch 471
and the appropriate one is selected by the count output
on the next cycle and routed to the carry input of the
MSB adder. The count output of the count latch will be
high if the adder had a carry out (GDC) on the previous
clock cycle. A high level on the count output will even
tually be used to enable one of the chase counters 456,
457 and since count will generally be low for some
fraction of the active clock cycles, one of the chase
counters 456, 457 will count less frequently than the
other. Since B represents the length of the longer com
ponent of the vector and A the length of the shorter
component, one of the chase counters 456, 457 will
count B times and the other will count A times. The
result of any operation will be greater than or equal to
A-B and less than A which leads to the inequality

A-B.SBA-A-B-ICA

where I is the initial value in the count latch. This equa
tion can be rewritten as

which makes it clear that there are in general a number
of choices for I that will lead to the corrent vector end
point. However, the path taken to reach this end point
is influenced by the choice of I. The path which most
closely approximates the desired line will result when I
is chosen to be approximately the arithmetic average of
A and A- B, so that I = A-B/2 is a good choice. Since
D has been previously defined as D = A-B/2, then
I=D.

Counters 456, 457 initially contain the beginning
point of a vector as a result of either being preset to this
state by a pen up operation or by being counted to this
state as a result of processing a previous pen down
vector. When the next pen down vector is loaded into
final value latch 461, one or both of the counters 456,
457 will operate until the state of the counters match
that stored in final value latch 460. The counter whose
vector component is larger will be programmed by the
slope comparator 465 to count continuously except
when restrained from doing so by refresh memory cycle
time limitations. The other counter is also subject to this
cycle time restriction and in addition can only operate
when count is high.

4,496,944
31

The three least significant bits of both counters 456,
457 are decoded by one out of 64 decoder 475 to deter
mine the location of the appropriate point in an 8X8
matrix (the matrix defining a cell) and this data point is
stored in 64-bit memory 476, which is a one's latching
memory so that data points can be accumulated without
regard to previous data.
Decoder 475 is enabled by signal INHIB, from inhibit

flip flop. 477, going low when a vector is loaded into
final value latch 461. Decoder 475 is disabled by signal
INHIB going high after the end point is reached. This
prevents extraneous data from being written into mem
ory 476 after the contents of this memory have been
transferred to chip enable latch 478.
Memory 476 will accumulate a new data point every

clock cycle as successive vectors are processed until it
becomes imminent that one or both of counters 456, 457
crosses a cell boundary on the next clock cycle or a
color change occurs or until the input register empties.
If any of these possibilities occurs the contents of mem
ory 476 are transferred to chip enable latch 478, the cell
address, which is derived from the high order bits of the
counters 456, 457, is transferred from an address delay
latch 479 to memory address latch 480 and the color bits
are also transferred from address delay latch 479 to
color select latch 480. These three latches constitute an
output latch and the data must be maintained valid in
these latches until the cycle time of refresh memory
circuit 81 has been satisfied. The transfer of data to the
output latches is therefore subject to the condition that
the previous memory cycle has timed out. More than
eight points can be transferred at one time if one or
more corners of the polygon are contained in a cell.
However, the statistical probability of this occurring
diminishes rapidly as the number of points increases
above eight.

Simultaneously with data transfer to the output latch,
a WRITE pulse is output to refresh memory circuit 81
which initiates a new refresh memory cycle and a reset
pulse is generated which causes memory 476 to be
erased during the next clock interval. If chase counter
decoder 475 is enabled when the reset pulse occurs,
then the selected bit will remain set if it was previously
set or it will be set during the next clock interval if it
was not previously set since decoder 475 overrides the
reset command.
The memory organization of this system 15 is based

upon, but not limited to, an 8x8 matrix format which
permits horizontal, vertical and diagonal lines to be
transferred to refresh memory circuit 81 at the rate of 8
points every 200 ns when using a 40 MHz clock. The
system utilizes a refresh memory having 4096 words of
data storage, each word containing 64 bits to accommo
date the 8x8 cell. Except for the first and last cells, a
refresh memory that will cycle in 200 ns or less will
suffice, however, the first and last cell may contain
fewer than 8 points which means that even a 50 ns re
fresh memory might be slower than desired for this
situation. The first and last cells will be processed more
rapidly on the average as faster refresh memories are
made available. A fast memory becomes more impor
tant as the proportion of short vectors or pen up vectors
increases.

In order to generate the intermediate points of a diag
onal vector, given the end points, previous techniques
have used binary rate multipliers or differential digital
analyzers, which tend to waste clock cycles and gener
ate dense lines, consuming time.

10

15

20

25

30

35

40

45

50

55

60

65

32
The present system utilizes a technique which per

mits diagonal lines to be generated at the rate of one
point each clock cycle provided that the previous mem
ory cycle times out before a cell boundary is crossed,
thereby generating a minimal density line which allows
diagonal lines to be written as rapidly as the longer
component could be written if it were written by itself
(assuming of course that no time was lost waiting for the
refresh memory cycle to time out) and thereby no
wasted clock cycles.
A fast memory is quite desirable when writing diago

nal lines since a large fraction of the intersected cells
can contain fewer than eight points. For instance, it is
possible to construct situations where slightly more
than half of the intersected cells contain only a single
point. To facilitate the utilization of faster refresh mem
ory devices, as they become available, the present write
circuit is designed with a memory cycle time controller
that is automatically programmed by refresh memory
circuit 81 to accommodate cycle times between 50 and
200 ns, in increments of 25 ns.

In summary, then, the write circuit can generate a
new point on any vector every clock cycle, subject to
refresh memory cycle time limitations and can accom
modate refresh memories having cycle times between
50 and 200 ns.

Read Circuit

FIG. 37 depicts in more detail the read circuit 82 of
FIG. 2. Read circuit 82 performs the function of gener
ating the intensity and synchronization signals neces
sary to display a graphic image on a raster-scan CRT
monitor such as monitor 20 of FIG. 1. The image in
cludes a primary image, obtained from the refresh mem
ory circuit 81 of FIG. 2, upon which are superimposed
a grid and two cursors. Other functions of the read
circuit 82 include selectively erasing the refresh mem
ory 81, transmitting the contents of the refresh memory
81 to the command processor 50, controlling the activ
ity of the write circuit 80, and interpreting the com
mands issued by the command processor 50 via bus 57.

Referring now to FIG. 37, the read circuit 82 in
cludes a control processor 501, which receives control
and data signals via bus 57 from the command processor
50 of FIG. 2, interprets these signals as commands and
timing information, and generates various control sig
nals (not shown) necessary to execute the commands
intended for read circuit 82. Read circuit 82 responds to
the commands set forth in Table III issued by command
processor 50:

TABLE III
SET CURSOR LOAD PROGRAM
SET GRID EXAMINE PROGRAM
SET ERASE LOAD CURSORTABLE
READ REFRESH MEMORY
QUERY REFRESH MEMORY
READ STOP
READ GO

LOAD VIDEO TABLE
LOAD REGISTER
EXAMINE STATUS

In one embodiment, control processor 501 is a micro
programmed processor having a 40-bit microword and
a cycle time of 50 ns. The microprogram is PROM-resi
dent. Following a general system reset, execution of the
microprogram begins at address zero.
Read circuit 82 also includes a display processor 502,

which generates various control signals (not shown)
under the supervision of the control processor 501.
These signals control the operation of the memory cell

33
field generator 508, write circuit control interface 509,
refresh memory control interface 510, memory cell bit
latch 511, memory cell address latch 512, and refresh
memory data latch 513. Display processor 502 is used
by control processor 501 to cooperate in executing
certain commands as they are being received. The dis
play processor may also function independently, as it
does, for example, in controlling the generation of the
video image on CRT monitor 20.

Display processor 502 also generates signals XS and
YS, which designate the x-y coordinates of a pixel of the
graphics image.

In one embodiment, display processor 501 is a micro
programmed processor having a 60-bit microword and
a cycle time of 25 ns. The microprogram is RAM-resi
dent. Command processor 50 issues a LOAD PRO
GRAM command to load the display processor micro
program memory and, optionally, to initiate execution
of the microprogram at a specified address. An EXAM
INE PROGRAM command may be issued to read back
the contents of a specified word of the microprogram
memory, for diagnostic purposes. Display processor
502 also includes counter registers for generating the
XS and YS signals and three additional counter regis
ters, included for timing and iteration control purposes.

Display processor operation may be halted by issuing
the READ STOP command and may be resumed by
issuing the READ GO command.

Read circuit 82 also includes control multiplexer 503,
which allows control processor 501 to generate certain
control signals normally generated by the display pro
CeSSO.

Cursor generators 504 output pixel data pertaining to
the two cursors generated by read circuit 82, For each
pixel of a given cursor, two bits are output which corre
spond to its column location XS and two bits are output
which correspond to its row location YS. Cursor pixel
information is stored in cursor generator 504 in the form
of two 512X2-bit edge arrays, one indexed by XS and
one indexed by YS. These edge arrays are loaded via
bus 57 by command processor 50, using the SET CUR
SOR command.

Similarly, grid generator 506 outputs pixel data per
taining to the grid generated by read circuit 82. For
each pixel of the grid, two bits are output which corre
spond to its column location XS and two bits are output
which correspond to its row location YS. Grid pixel
information is stored in grid generator 506 in the form
of two 512X2-bit edge arrays. These edge arrays are
loaded via bus 57 by command processor 50, using the
SET GRID command.
Cursor output generator 505 combines the pixel data

pertaining to the two cursors into a three-bit value,
according to an arbitrary Boolean function imple
mented as a 256-word look-up table. This look-up table
is loaded via bus 57 by command processor 50, using the
LOAD CURSORTABLE command.

Similarly, video output generator 507 combines the
pixel data pertaining to the grid with pixel data from the
refresh memory 81 and cursor summary data from cur
sor output generator 505. An eight-bit result is gener
ated internally, according to an arbitrary Boolean func
tion implemented as a 256-word look-up table. This
look-up table is loaded via bus 57 by command proces
sor 50, using LOAD VIDEO TABLE command. The
four-bit result represents the brightness of the pixel to
be produced in the graphics image. A digital-to-analog
converter circuit within video output generator 507

4,496,944

O

15

20

25

30

35

40

45

50

55

60

65

34
converts the four-bit digital result to the electrical volt
age required to produce the desired pixel brightness on
CRT monitor 20 via bus 90. The digital-to-analog con
verter also generates the electrical voltages required to
effect synchronization of CRT monitor's X and Y raster
sweep function with the presented video image.
Memory cell field generator 508, refresh memory

control interface 510, memory cell bit latch 511, mem
ory cell address latch 512, refresh memory data latch
513, and bus 87 constitute the interface of read circuit 82
with refresh memory 81.
Memory cell field generator 508 specifies which rows

and columns within an 8x8 memory cell participate in
the current memory read or write operation. Any single
column, pairs of columns on a two-column boundary,
the left or right four columns, or all eight columns may
be specified, and similarly for rows. For a read opera
tion it is typical to specify a single row and all eight
columns.
Memory cell field generator 508 may be used to spec

ify which rows and column of an 8x8 cell to erase to a
specified background condition. Information is stored
in memory cell field generator 508 specifying which
rows and columns of the graphics image are to be
erased. Erase information is stored in two 512 X 1-bit
edge arrays, similar in concept to the edge arrays in
cursor generator 504 and grid generator 506. Memory
cell field generator 508 may optionally output the Bool
ean conjunction of the erase information for a memory
cell's rows/columns and the directly specified rows/-
columns. For an erase write operation it is typical to
specify a single row and all eight columns directly, and
to specify the Boolean conjunction with erase edge
array data in both X and Y directions. The erase edge
arrays are loaded via bus 57 by command processor 50,
using the SET ERASE command.
Memory cell bit latch 511 generates signals specifying

which individual bits of an 8x8 memory cell participate
in the current refresh memory read or write operation,
from the specification by rows and columns generated
by memory cell field generator 508. A latching function
is also performed.
Memory cell address latch 512 latches the upper six

bits of the XS and YS signals, which constitute a specifi
cation of the particular 8x8 memory cell affected by
the current refresh memory operation.

Refresh memory data latch 513 receives data corre
sponding to the columns of an 8x8 memory cell during
a read operation. It outputs this data serially to video
output generator 507 during the process of generating a
graphics image on CRT monitor 20. Alternatively,
during the READ RASTER MEMORY command,
received data is transferred in parallel on an internal bus
(not shown) to control processor 501, which in turn
transmits the data via bus 57 to command processor 50.
Data obtained in this way can be used for diagnostic
purposes and can also be processed further for output to
a dot matrix hard copy peripheral. Data received during
the QUERY RASTER MEMORY command is treated
in the same way. However, the data itself, generated in
the refresh memory circuit 81 without regard to the
other signals whenever QUERY signal is asserted, is a
code specifying the minimum cycle time of refresh
memory 81. The data obtained in this way can be used
to select a display algorithm that optimizes use of re
fresh memory.

Refresh memory control interface 510 determines
what kind of refresh memory operation is being per

4,496,944
35

formed. The QUERY signal is asserted during a query
raster memory operation. The STROBE signal is as
serted during a read operation. The WRITE signal is
asserted during a write operation, in which case the
DBIN signal determines the data value written to se
lected bits of the selected 8x8 memory cell. The
QUERY, STROBE, and WRITE signals are driven
directly from display processor 502, while the DBIN
signal is latched separately and can be set and reset by
display processor 502.

Write circuit control interface 509 generates the
WRTINH signal, which when asserted prevents write
circuit 80 from accessing refresh memory 81. The state
of the WRTINH signal can be set and reset by display
processor 502. Whenever the WRTINH signal is unas
serted, read circuit 82 must unassert the CE, MA,
QUERY, WRITE, and STROBE signals, to avoid con
flicts with their use by write circuit 80, and must pro
vide the correct DBIN signal, namely the complement
of the background value.
The LOAD REGISTER and EXAMINE STATUS

commands are included in read circuit 82 for diagnostic
and test purposes. Various internal registers may be set
to known values and/or examined using these com
mands.

Proper operation of read circuit 82 requires the ini
tialization of its internal state. When command proces
sor 50 asserts the RESET signal of bus 57, control pro
cessor 501 suspends execution of its microprogram.
When the reset signal is unasserted, control processor
501 resumes execution at address zero, placing it in a
correct microprogram sequence for receiving and inter
preting commands, while suspending execution of the
display processor 502 microprogram.

Next, command processor 50 issues LOAD CUR
SORTABLE commands, to initialize the look-up table
within cursor output generator 505, and LOAD
VIDEO TABLE commands, to initialize the look-up
table within video output generator 507. These tables
define the rules whereby edge array specifications of
the grid and cursors are merged with primary image
data to form the video output signal on bus 90 to CRT
monitor 20.
This look-up table mechanism allows the brightness

of the cursors, grid, primary image, and their combina
tions to be specified arbitrarily. It also affords consider
able flexibility in specifying how row and column edge
array data is combined to form shapes. For example, the
grid may be displayed either as a rectangular matrix of
points or as lines that pass through those points.
Command processor 50 also issues LOAD PRO

GRAM commands, to download the microprogram
memory of display processor 502. Then, command pro
cessor 50 issues SET ERASE commands, to establish
erase edge array data for clearing refresh memory; SET
CURSOR commands, to clear the cursor edge arrays;
and a SET GRID command, to clear the grid edge
arrays. Finally, command processor 50 initiates execu
tion of the display processor microprogram, causing
display processor 502, to erase refresh memory 81 and
display a blank graphics image on CRT monitor 20.
The initialization sequence described above is nor

mally performed only when graphics display system 15
is issued a reset command by CPU 50.
During normal execution of the microprogram for

generating a graphics image, display processor 502 as
serts the CURSUP signal of bus 57 at the end of each
video frame. This signal interrupts command processor

10

15

20

25

30

35

40

45

50

55

60

65

36
50 and allows it to issue certain commands, such as SET
CURSOR, SET GRID, and SET ERASE, during the
time between video frames, thus avoiding a disruption
in the presentation of video frames. Also during normal
execution of this microprogram, display processor as
serts the WRTINH signal of bus 86 continuously, so
that read circuit 82 has unlimited access to refresh mem
ory 81 and write circuit 80 is denied access.
Command processor 50 issues a SET CURSOR com

mand between video frames as described above. Com
mand processor 50 is responsible for generating the
edge array data transmitted within the SET CURSOR
command via bus 57 to read circuit 82, given the para
metric specification in the corresponding SET CUR
SOR command transmitted from host CPU 10 via bus
56 to command processor 50, as shown in FIG. 12.

Similarly, command processor 50 issues a SET GRID
command between video frames. Command processor
50 is responsible for generating the edge array data
transmitted within the SET GRID command via bus 57
to read circuit 82. The edge array representation allows
grids to be specified with considerable flexibility. For
example, the spacing in X and can be different and even
non-uniform.
Read circuit 82 does not respond to a SET VIEW

command as such, but does respond to a SET ERASE
command issued by command processor 50 between
video frames during a set view operation. Command
processor first issues a SET VIEW command and at a
later time, but before the completion of the set view
operation, issues a SET ERASE command. Command
processor 50 is responsible for generating the edge array
data transmitted within the SET ERASE command via
bus 57 to read circuit 82, given the viewport specifica
tions in the corresponding SET VIEW command re
ceived by command processor 50 from host CPU 10 via
bus 56. In addition to loading the erase edge array data,
read circuit 82 sets an internal flag, indicating that dur
ing the presentation of the next video frame the speci
fied viewport is to be erased.

During the same inter-frame interval that command
processor 50 issues a SET ERASE command, it also
issues a LOAD PROGRAM command, which causes
display processor 502 to set the DBIN signal to the
proper background state, as specified by the SET
VIEW command received from host CPU 0.

During the subsequent video frame, read circuit 82
erases the specified viewport to the specified back
ground state. At the end of the frame, read circuit 82
clears the internal flag that caused the erase to occur,
complements the DBIN signal, relinquishes the rest of
bus 87, and unasserts the WRTINH signal on bus 86,
thus permitting write circuit 80 to write new data to
refresh memory 81. Then read circuit 82 monitors the
BUSY signal of bus 57 and thereby waits for the set
view operation to complete. If the inter-frame interval
expires before the set view operation completes, read
circuit 82 generates one or more blank video frames
while waiting, rather than interrupt write circuit 80 or
alter the timing of video frame presentation. When set
view operation completes, read circuit 82 reasserts the
WRTINH signal and resumes its task of generating a
graphics image on CRT monitor 20.

Refresh Memory
FIG. 38 depicts in more detail the refresh memory

circuit 81 of FIG. 2. Refresh memory circuit 81 is used
by system 15 to store raster data generated by write

4,496,944
37

circuit 80 and to make this raster data available to read
circuit 82 for display and other purposes. Data can also
be stored into refresh memory circuit 81 by read circuit
82, typically for the purpose of erasing refresh memory
circuit 81. Refresh memory circuit 81 can also be re
quested by write circuit 80 or read circuit 82 to output
a code describing the speed of refresh memory circuit
81, so that write circuit 80 and read circuit 82 can access
refresh memory circuit 81 as rapidly as possible.

Referring now to FIG. 28, refresh memory circuit 81
includes a memory 607 into which raster data is stored.
In one embodiment, memory 607 comprises sixty-four
4096-bit memory integrated circuits. Memory 607 in
cludes logic circuits (not shown) to interface the signals
of bus 87. The logic circuits are incidental to the con
ceptual operation of refresh memory circuit 81 and need
not be described in detail.
Each memory integrated circuit within memory 607

has twelve address signals, one chip-enable signal, one
write signal, one data-in signal and one data-out signal.
The memory circuits are interconnected so that the
address signals, data-in signals and write signals of the
circuits are connected to logically equivalent copies of
the MA, DBIN and WRITE signals of bus 87, respec
tively. However, the chip enable signal of each circuit is
connected logically to its own unique CE signal on bus
87.
Memory 607 is thus organized as 4096 64-bit words,

with the MA signals of bus 87 specifying which word is
accessed. Moreover, since all memory integrated cir
cuits within memory 607 are logically connected to a
common WRITE signal on bus 87, a given word as a
whole may be accessed for reading or accessed for
writing, but may not be accessed so that part of the
word is accessed for reading and another part of the
word is simultaneously accessed for writing. Further
more, since all memory integrated circuits within mem
ory 607 are logically connected to a common data-in
signal, DBIN on bus 87, a given word as a whole may
be accessed for writing ones or accessed for writing
zeroes, but may not be accessed for writing ones into
part of the word and zeroes into another part of the
word simultaneously.
However, since each memory integrated circuit

within memory 607 is logically connected to its own
unique chip enable signal within the CE portion of bus
87, the effect of a memory access on the accessed word
may be controlled for each bit within the word indepen
dently. Specifically, for a write access, the CE signals
specify which bits within the accessed word (i.e., cir
cuits within memory 607) are to be loaded with the
value specified by the DBIN signal and which bits are
to remain unchanged. Similarly, for a read access, the
CE signals specify which circuits within memory 607
are to output data on their respective data-out signal
lines and which circuits are to force their respective
data-out signal lines to a high-impedance, inactive state.

Refresh memory circuit 81 further includes OR net
work 608 for reducing the size of the data-out bus 627 of
memory 607. Each signal of bus 628 is generated as the
inclusive OR function of eight signals of bus 627. By
appropriately asserting the CE signals in groups of
eight, it is possible to read out the 64 bits of a given
word within memory 607, eight bits at a time, in eight
sequential read operations. Given the interpretation that
the 64 bits within a word represent an 8x8 array of
picture elements, the OR network 608 is so structured
that each output of bus 628 represents the inclusive-OR

10

5

20

25

30

35

40

45

50

55

60

65

38
of signals corresponding to a column of picture ele
ments within the 8x8 array. It is therefore possible to
read out the picture elements of a row within the 8x8
array simultaneously.

Refresh memory circuit 81 further includes data out
put latch 610 for synchronizing data output. The
STROBE signal of bus 87, when asserted, causes the
internal state of output data latch 610 to follow continu
ously the contents of bus 28, and, when unasserted,
causes output data latch 610 to store the contents of bus
628 internally.
The SELECT signal of bus 87, when unasserted,

causes output data latch 610 to unassert bus 630, so that
no data can be output. It also causes memory 607 to
ignore the WRITE signal of bus 87, so that no data can
be input. However, when SELECT is asserted, output
data latch 610 asserts its internal state on bus 630 and
memory 607 responds normally to the WRITE signal.

Refresh memory circuit 81 further includes memory
type code circuit 611 for encoding a description of the
performance characteristics of refresh memory circuit
81 and multiplexer 612 to allow this information to be
accessed internally. Memory type code circuit outputs
on bus 631 a three-bit integer, between 1 and 7, which is
one fewer than the number of 25 us clock periods re
quired by the memory to complete a read or write cy
cle. If the QUERY signal of bus 87 is asserted, multi
plexer 612 routes the code on bus 61 to the three low
order signals of the DO portion of bus 87, but if
QUERY is unasserted, multiplexer 612 routes the con
tents of bus 630 to the DO portion of bus 87.

Refresh memory circuit 81 has four features which
particularly suit it for use in graphics display system 15.
The first feature is that write circuit 80 can write multi
ple raster points into refresh memory circuit 81 within
each memory write cycle. This feature is of value be
cause, typically, write circuit 80 is able to generate
raster points much faster than refresh memory circuit 81
can perform a memory write operation. For example, in
one embodiment, write circuit generates raster points at
a rate of one point every 25 ns, but a memory write
operation is performed in 175 ns. By writing multiple
raster points per memory cycle, it is possible in many
cases for write circuit 80 to generate raster points at the
maximum rate, without having to wait for refresh mem
ory circuit 81.
The second feature is that the organization of refresh

memory circuit 81, into 64-bit words in one embodi
ment, is compatible with the interpretation imposed by
write circuit 80 and read circuit 82 that the bits within
a word represent picture elements within a rectangular
portion, or cell, of the rasterized graphics image. In the
case of a 64-bit word, the following interpretations
regarding cell shape are possible: 64x1, 32X2, 16X4,
8X8, 4X 16, 2X32, and 1X 64. In one embodiment, an
8x8 cell shape is used to facilitate equally the rasteriz
ing of both horizontal and vertical lines.
The third feature is that the width of the data path out

of refresh memory circuit 81, the DO portion of bus 87,
can be designed to be any divisor of the word size, by
utilizing the technique of ORing (or wire-ORing) the
data outputs of multiple memory devices. The geomet
ric interpretation of the bits which are accessed on the
data out bus at one time, as is the case for the memory
cell as a whole, is provided by read circuit 82 and write
circuit 80. In one embodiment, the DO portion of bus 87
is eight bits in width and outputs one row of an 8x8 cell
at a time. This provides a good match between the cycle

4,496,944
39

time of refresh memory circuit 81, typically 175 ns, and
the raster output scan rate, typically 25 ns per picture
element.
The fourth feature is that, as write circuit 80 performs

successive write operations to a given cell, using the 5
same DBIN value in all cases to represent a raster point,
refresh memory circuit 81 inherently accumulates these
raster points. This is a consequence of the fact that on
any given memory write cycle, the memory devices
that are selected are written to the raster point value, 10
while the memory devices that are not selected retain
their previously established contents. Thus refresh
memory circuit 81 functions as a ones-latching memory
or zeroes-latching memory, depending on the state of
the DBIN signal on bus 87. As a result, refresh memory 15
circuit 81 can be updated by write circuit 80 using nor
mal write cycles, rather than read-modify-write cycles,
which minimizes the time required to update the mem
ory.
Timing diagrams depicted in FIGS. 39-41 illustrate 20

timing for read, write, and read/write operations, re
spectively, assuming that the memory integrated cir
cuits used are 2141-3 static RAMs. Typically, read/-
write operations are not performed by system 15, be
cause of the ones-latching feature of the normal write 25
operation, but the timing for such an operation is never
theless illustrated, as an indication of the value of the
ones-latching feature.
What is claimed is:
1. In a graphics display system having vector mem- 30

ory means for storing vector data representing one or
more graphics images to be displayed, a memory update
circuit comprising means for inserting said vector data
into said vector memory means wherein said vector
data represents one or more polygons and the represen- 35
tation of each polygon includes header information
specifying the format of said representation and the
properties of said polygons, means for modifying said
vector data within said vector memory means, means
for retrieving said vector data from said vector memory 40
means, and control means for associatively addressing
Specified ones of Said polygons according to a specified
set of said properties.

2. A circuit as in claim 1 wherein said control means
includes means for sequentially accessing said vector 45
data within said vector memory means.

3. A circuit as in claim 2 wherein said control means
includes means for inserting additional vector data into
Sequential address locations within said vector memory
means, beginning at the first encountered location hav- 50
ing no data.

4. A circuit as in claim 1 or 2 wherein said control
means includes means for inserting additional vector
data into sequential address locations within said vector
memory means at locations immediately following the 55
last data word of said polygon representations and fur
ther including means for relocating existing vector data
within said vector memory means to make room for
Said additional vector data.

5. A circuit as in claim 1 wherein said polygon repre- 60
sentation represents the first point of said polygon in
absolute coordinates and represents subsequent points
in relative coordinates and wherein said system includes
preclipper means for converting said relative coordi
nates into absolute coordinates. 65

6. A circuit as in claim 1 wherein said control means
includes ring buffer means for modifying said vector
data.

40
7. A circuit as in claim 6 wherein said ring buffer

means includes a first ring buffer for storing unmodified
data, a second ring buffer for storing modified polygon
data and means for determining whether said polygon
data should be returned to said vector memory means in
modified or unmodified form.

8. In a graphics display system having first and sec
ond memory means, the method comprising the steps of
storing vector data representing one or more graphics
images to be displayed in said first memory means
wherein said vector data representing one or more
polygons and wherein the representation of each poly
gon includes header information specifying the format
of said representation and the properties of said poly
gons, rasterizing said vector data into said second men
ory means thereby forming rasterized data, reading said
rasterized data from said second memory means and
displaying said rasterized data, inserting said vector
data into said first memory means, modifying said vec
tor data within said first memory means and retrieving
said vector data from said first memory means, and
associatively addressing specified ones of said polygons
according to a specified set of said properties.

9. A method as in claim 8 including the steps of se
quentially accessing said vector data within said vector
memory means.

10. A method as in claim 9 including the steps of
inserting additional vector data into sequential address
locations within said vector memory means, beginning
at the first-encountered location having no data.

11. A method as in claim 9 including the steps of
inserting additional vector data into sequential address
locations within said vector memory means at locations
immediately following the last data word of one of said
polygon representations and relocating existing vector
data within said vector memory means to make room
for said additional vector data.

12. A method as in claim 8 wherein said polygon
representation represents the first point of said polygon
in absolute coordinates and represents subsequent
points in relative coordinates, and including the step of
converting said relative coordinates into absolute coor
dinates.

13. A method as in claim 8 including the steps of
storing unmodified data, storing modified polygon data
and determining whether said polygon data should be
returned to said first memory means in modified or
unmodified form.

14. In a graphics display system having vector mem
ory means for storing vector data representing one or
more graphics images to be displayed wherein said
vector data represents one or more polygons and the
representation of each polygon includes header infor
mation specifying the format of said representation and
the properties of said polygons, the method comprising
the steps of inserting said vector data into said vector
data memory means, modifying said vector data within
said vector memory means, retrieving said vector data
from said vector memory means, and associatively ad
dressing Specified ones of said polygons according to a
specified set of said properties.

15. A method as in claim 14 including the step of
Sequentially accessing said vector data within said vec
tor memory means.

16. A method as in claim 15 including the step of
inserting additional vector data into sequential address
locations within said vector memory means, beginning
at the first encountered location having no data.

4,496,944
41

17. A method as in claim 14 or 15 including the steps
of inserting additional vector data into sequential ad
dress locations within said vector memory means at
locations immediately following the last data word of
said polygon representations and relocating existing 5
vector data within said vector memory means to make
room for said additional vector data.

18. A method as in claim 14 wherein said polygon
representation represents the first point of said polygon
in absolute coordinates and represents subsequent 10

5

20

25

30

35

40

45

50

55

60

65

42
points in relative coordinates and including the step of
converting said relative coordinates into absolute coor
dinates.

19. A method as in claim 14 including the steps of
storing unmodified data, storing modified polygon data
and determining whether said polygon data should be
returned to said vector memory means in modified or
unmodified form.

k :k k k ak

