发明名称
一种斜坡式图像获取装置及人脸识别系统

摘要
本发明提供一种斜坡式图像获取装置，所述装置包括斜坡装置和摄像头，所述斜坡装置具有与水平面成一定倾斜角度的界面，所述摄像头的轴向斜向上固定在所述界面上。此外，本发明还提供一种图像获取装置的人脸识别系统，包括斜坡式图像获取装置、人脸识别单元和输出装置。所述斜坡式图像获取装置包括斜坡装置和摄像头，所述斜坡装置和具有与水平面成一定倾斜角度的界面，所述摄像头的轴向斜向上固定在所述界面上。所述人脸识别单元通过电气连接与所述斜坡式图像获取装置相连，用于接收所述的图像并对所接收的图像进行人脸识别；所述输出装置用于输出人脸识别单元的识别结果。
1. 一种斜坡式图像获取装置，其特征在于，所述装置包括斜坡装置和摄像头，所述斜坡装置具有与水平面成一定斜坡角度的界面，所述摄像头的轴向斜向上固定在所述界面上；其中，所述摄像头的轴向垂直于所述界面，所述摄像头设置在所述界面的下部，在所述界面的上部设置用于显示的屏幕区，其中所述斜坡角度在 45° 至 60° 之间。

2. 根据权利要求 1 所述的图像获取装置，其特征在于，所述斜坡角度为 53°。

3. 一种人脸识别系统，其特征在于，所述系统包括斜坡式图像获取装置，人脸识别单元和输出装置，

所述斜坡式图像获取装置包括斜坡装置和摄像头，所述斜坡装置具有与水平面成一定斜坡角度的界面，所述摄像头的轴向斜向上固定在所述界面上，且所述摄像头的轴向垂直于所述界面，所述摄像头设置在所述界面的下部，在所述界面的上部设置用于显示的屏幕区，其中所述斜坡角度在 45° 至 60° 之间；

所述人脸识别单元通过电气连接与所述斜坡式图像获取装置相连，用于接收所获取的人脸图像并进行人脸识别；

所述输出装置用于输出人脸识别单元的识别结果。

4. 根据权利要求 3 所述的人脸识别系统，其特征在于，所述斜坡装置的斜坡角度为 53°。

5. 根据权利要求 3 所述的人脸识别系统，其特征在于，所述人脸识别系统基于 PC 平台。

6. 根据权利要求 3 所述的人脸识别系统，其特征在于，所述人脸识别系统基于嵌入式平台。
一种斜坡式图像获取装置及人脸识别系统

技术领域
[0001] 本发明涉及生物特征识别和图像获取技术领域，特别涉及一种人脸识别装置，尤其涉及一种斜坡式图像获取装置和使用该装置的人脸识别系统。

背景技术
[0002] 生物特征识别技术被列为 21 世纪对人类社会带来革命性影响的十大技术之一。生物特征识别技术在目前最为方便、安全的身份识别技术，生物特征识别技术识别的是人本身，不需要人身之外的标识物。生物特征识别技术利用人的生理特征和行为特征进行身份识别，主要有指纹识别、人脸识别、虹膜识别、步态识别等。其中，人脸识别是当前生物特征识别领域的一大热点。它与目前广泛应用的指纹识别技术相比，有着直观性、方便性、非接触性、友好性、用户接受度高等显著优点。
[0003] 考虑到采集的人脸图像质量的好环会直接影响到识别性能，因此用于人脸识别的摄像头一般要求镜头的畸变小，垂直视角在 30° 至 50° 之间。但在实际应用中，如果将人脸识别系统中的摄像头轴线固定在水平方向，一般只适合标准身高（身高差范围在 20~30 厘米左右）的用户，对于身高偏高或者偏矮的部分用户，采集的图像几乎无法进行人脸识别，如图 1 所示。因此，身高问题成为目前人脸识别系统的一个制约因素，严重影响人脸识别非接触性的良好用户感受。

发明内容
[0004] 针对上述问题，本发明提出了一种斜坡式图像获取装置及使用该装置的人脸识别系统，能够有效地增加适合的身高差范围。
[0005] 根据本发明的一个方面，提供一种斜坡式图像获取装置，所述装置包括斜坡装置和摄像头，所述斜坡装置具有与水平面成一定斜坡角度的界面，所述摄像头的轴向斜向上固定在所述界面上。所述斜坡角度在 45° 至 60° 之间，优选地为 53°。所述摄像头的轴向垂直于所述界面设置。
[0006] 根据本发明的另一个方面，提供一种人脸识别系统，所述系统包括斜坡式图像获取装置、人脸识别单元和输出单元，所述斜坡式图像获取装置包括斜坡装置和摄像头，所述斜坡装置具有与水平面成一定斜坡角度的界面，所述摄像头的轴向斜向上固定在所述界面上；所述人脸识别单元通过电气连接与所述斜坡式图像获取装置相连，用于接收所获取的人脸图像并对所接收的图像进行人脸识别；所述输出单元用于输出人脸识别单元的识别结果。

附图说明
[0007] 下面结合附图和实施方式对本发明进一步说明。
[0008] 图 1 是传统的、使用垂直式图像获取装置的人脸识别系统的身高差范围的示意图；
具体实施方式

图 1 为在传统的人脸识别系统中使用的垂直式图像获取装置的身高差范围的示意图。在该图像获取装置中，摄像头的轴向沿水平方向放置，设摄像头的垂直视角为 A，轴向距离为 L，人脸的高度为 30 厘米，那么该图像获取装置可以适用的身高差范围 H 可以表示为（厘米）：

\[H = H_1 - H_2 = 2 \times L \times \tan(A/2) - 30 \]

（1）

根据上述公式 (1) 可以知道，当垂直视角 A 为 40° 时，当轴向距离 L 等于 60、70 和 80 厘米时，图像获取装置可以适用的身高差范围 H 分别为 13、20 和 28 厘米。

<table>
<thead>
<tr>
<th>轴向距离 L（厘米）</th>
<th>身高差范围 H（厘米）</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>13</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>80</td>
<td>28</td>
</tr>
</tbody>
</table>

计算条件：垂直视角 A=40°

人脸高度=30 厘米

可以看出，即使是轴向距离为 80 厘米时，图像获取装置可以适用的身高差范围也要达到 28 厘米，很难适应更大的身高差范围的需要。增大轴向距离可以获得更大的身高差范围，但是轴向距离增大后，为了对更大身高差范围的对象进行识别，待识别对象就需要站在距离摄像头更远的位置上，这将严重影响人脸图像的采样质量。因此，一般来说轴向距离优选地为 50~80 厘米之间。

图 2 为根据本发明的实施例的斜坡式图像获取装置的身高差范围示意图。本实施例的图像获取装置包括斜坡装置和摄像头，所述斜坡装置具有与水平面成一定斜坡角度的界面，设斜坡装置的斜坡角度为 B 度，使摄像头的轴向斜向上固定在所述界面上，与水平面的角度为 90-B 度。仍然设摄像头的垂直视角为 A，轴向距离为 L，人脸的高度为 30 厘米，那么斜坡式图像获取装置可以适用的身高差范围 H 可以表示为（厘米）：

\[H = H_1 - H_2 = 2 \times L \times \tan(A/2) - 30 + \sin(B) \times [2 \times L \times \tan(A/2) - 30] \]

（2）

根据上述公式 (2) 可知，当垂直视角 A 为 40°，斜坡角度为 53°时，当轴向距离 L 等于 60、70 和 80 厘米时，斜坡式图像获取装置可以适用的身高差范围 H 分别为 23、36 和 50 厘米。
轴向距离 L（厘米）	身高差范围 H（厘米）
60 | 23
70 | 36
80 | 50

计算条件：垂直视角 A=40°
斜坡角度 B=53°
人脸高度=30 厘米

在本实施例中，选取斜坡角度为 53°，然而应该知道在适于采集人脸正面图像的范围内，可以选取任意的斜坡角度。一般来说，斜坡角度可以在 45° 至 60° 之间，但在本发明中通过结合人体工学、红外技术、摄像成像原理与人脸识别技术，经过反复实验，最终确定斜坡角度优选地为 53°，这既符合人体自然低头的姿态角度又最大程度地增大了图像获取范围。

在本实施例中，垂直视角选取的为 40°，然而应该知道在 0-40° 之间的垂直视角均可以实现本发明。

此外，所述斜坡装置的制作材料可以选为塑料、金属等不同材质。

图 3 为使用斜坡式图像获取装置的人脸识别系统的原理图。本发明的人脸识别系统可以基于 PC 平台也可以嵌入式平台，例如 DSP、Strong-Arm、ASP 等。该人脸识别系统包括斜坡式图像获取装置 301、人脸识别单元 303 和输出装置 305。所述斜坡式图像获取装置 301 包括斜坡装置和摄像头，所述斜坡装置具有与水平面成一定斜坡角度，例如 53° 的界面，所述摄像头的轴向斜向上固定在所述界面上。人脸识别单元 303 通过电气连接与所述斜坡式图像获取装置 301 相连，用于将由图像获取装置 301 所获取的人脸图像传给人脸识别单元 303。人脸识别单元 303 对所接收的图像进行人脸识别，并将识别结果返回给出装置 305，例如显示屏，由输出装置 305 显示识别结果。

图 4 为根据本发明的实施例的墙体嵌入型斜坡式人脸识别装置的示意图。

如图所示，本发明的斜坡式人脸识别装置可以以嵌入墙体的方式来实施。所述斜坡式图像获取装置 401 的斜坡装置可以设置在墙体外，具有与水平面成一定斜坡角度的界面，摄像头的轴向斜向上固定在所述界面上，以便使摄像头的获取范围不受到墙体的阻挡。并且所述人脸识别单元 403 可以设置在墙体中。所述斜坡式图像获取装置 401 通过电气连接与人脸识别单元 403 相连，以将所获取的图像传给人脸识别单元 403，并接收由人脸识别单元 403 发送的识别结果。

图 5 为根据本发明的实施例的柜机型斜坡式人脸识别装置的示意图。

如图所示，本发明的斜坡式人脸识别装置以柜机的形式来实施。所述柜机 500 包括斜坡式图像获取装置 501 和人脸识别单元 503，所述斜坡式图像获取装置 501 的斜坡装置具有与水平面成一定斜坡角度的界面，摄像头的轴向斜向上固定在所述界面上。所述斜坡式图像获取装置 501 通过电气连接与人脸识别单元 503 相连，以将所获取的图像传给人脸识别单元 503，并接收由人脸识别单元 503 发送的识别结果。
【0031】图6是根据本发明的斜坡式人脸识别装置的正面外观示意图。所述装置包括斜坡式的图像获取装置、屏幕区、键盘区、刷卡区等，其中，摄像头设置在斜坡装置的下部，以使所述识别装置安装的高度更高一些。

【0032】本发明采用一种斜坡式的人脸识别装置，大大增加了身高差范围，解决了人脸识别的身高问题，可以使用普通摄像头将适合人脸识别的身高差范围增加到50厘米，满足1.45米到1.95米的绝大多数用户。此外，根据装置安装的不同高度，不仅可以满足正常身高的人群，即使是身材特别矮小的人群，比如1.2米到1.5米的人群，以及身材特别高大的人群，比如1.85米到2.20米的人群，也可以根据本装置正常使用。因此，本发明几乎可以满足所有用户的需要，并且具有极高的方便性，很好的用户感受。
图 4

图 5
图 6