具有单枢轴闭合和双枢轴框架底的关节运动
轴的外科器械

一种特别适用于内窥镜使用的外科器械，包
括近侧部分，其在患者体外操作，将连接的细长轴
和端部执行器定位到患者体内需要进行手术的部
位。关节运动接头将端部执行器与细长轴枢转连
接，从而在以所需的角度到达组织方面提供进一
步的临床弹性。闭合管组件包括枢轴部分，其跨
过关节运动接头向远侧平移，使端部执行器闭合，
并通过使多个枢轴枢架底包围在其中来越过关节
运动轴，以适应闭合套管枢轴中的纵向变化。因
此，在定位端部执行器时可获得额外的临床弹
性，而不会失去由轴传递的单独闭合和发射运动的能力。
1. 一种外科器械，包括：
细长轴，它包括框架组件和围绕该框架组件而设置的关节运动闭合套管；
端部执行器，它包括下部钳夹和与下部钳夹枢转连接的上部钳夹；
关节运动接头，它包括近侧框架底部分、远侧框架底部分枢转连接并枢转连接的远侧框架底部分和与远侧框架底部分枢转连接并枢转连接的框架连接件；以及
手柄部分，其连接到细长轴的近端上，并被构造成能可操作地将闭合运动与关节运动闭合套管纵向联接；
其中，关节运动闭合套管包括关节运动部分，该关节运动部分被定位成横跨并包围至少部分框架连接件，并且在远侧与上部钳夹接合，以执行上部钳夹的枢转。

2. 如权利要求1所述的外科器械，其特征为，关节运动闭合套管还包括与上部钳夹接合的远侧闭合管部分和与手柄部分联接的近侧闭合管部分，该关节运动闭合套管的关节运动部分包括在远侧和近侧闭合管部分的每一个之中形成的上部和下部相对的并枢转连接的柄脚。

3. 如权利要求1所述的外科器械，其特征为，远侧和近侧框架底部分的每一个都具有U形夹，所述U形夹相对设置，所述框架连接件包括横向突出的圆柱形销和分别枢转地收纳于相对的U形夹中的远侧和近侧端部。

4. 如权利要求3所述的外科器械，其特征为，框架连接件包括与横向突出的圆柱形销横向相对的小刀槽开口。

5. 如权利要求1所述的外科器械，还包括在细长轴中受引导并由手柄部分使其纵向往复运动的发射杆以及收纳在响应于发射杆的向远侧的运动的端部执行器中的缝钉筒，其中，枢转连接的上部钳夹包括具有缝钉形成表面的砧座。

6. 如权利要求5所述的外科器械，其特征为，框架连接件包括定位成横向引导发射杆的小刀槽。

7. 如权利要求1所述的外科器械，其特征为，框架连接件包括狗骨形连接件，该狗骨形连接件包括变细的中间部分。

8. 如权利要求1所述的外科器械，其特征为，框架连接件包括弹性材料。

9. 如权利要求1所述的外科器械，其特征为，框架连接件包括刚性材料。

10. 如权利要求1所述的外科器械，其特征为，手柄部分还包括闭合触发器，该闭合触发器可操作地连接到关节运动闭合套管上，以执行关节运动闭合套管的闭合运动，并且手柄部分还包括一发射触发器，该发射触发器可操作地连接到发射杆上，以执行发射杆向远侧的发射运动。
具有单枢轴闭合和双枢轴框架底的关节运动轴的外科器械

【0001】相关申请的交叉参考
【0002】本发明要求 Kenneth Wales 和 Chad Boudreaux 于 2005 年 2 月 18 日申请的题为“SURGICAL INSTRUMENT INCORPORATING A FLUID TRANSFER CONTROLLED ARTICULATION MECHANISM”的共有美国专利申请的优先权，其内容在此全部引用作为参考。

技术领域
【0003】本发明总的通常涉及外科器械，其适用于并将端部执行器（例如，末端切割器、抓钳、切割器，缝合器、夹钳施放器、接触装置，药物/基因治疗传送装置，以及采用超声波、RF、激光等的能量装置）以内窥镜检查的方式插入到手术部位，具体地说，本发明涉及带有关节运动轴的这种外科器械。

背景技术
【0004】内窥镜外科器械通常比传统的开放手术装置更优越，是由于较小的切口减少了术后康复时间和并发症。因此，适于将远侧端部执行器经套管针插管精确放置到所需的手术部位的各种内窥镜外科器械得到了极大的发展。这些远侧端部执行器以多种方式与组织接合，实现诊断或治疗的效果（例如，末端切割器，夹钳，切割器，缝合器，夹钳施放器，接触装置，药物/基因治疗传送装置，以及采用超声波，RF，激光等的能量装置）。
【0005】端部执行器的定位受套管针的约束。通常，这些内窥镜外科器械包括位于端部执行器和由临床医生操纵的手柄部分之间的长杆。该长杆可插入到所需的深度并围绕杆的纵向轴线旋转，由此将端部执行器定位到某种程度。例如，通过另一个套管针将套管针并使用夹钳，这种定位的量常常就足够了。手术缝合以及切割器械（例如在美国专利 No. 5,465,895 中描述的器械）是一成功地通过插入和旋转来定位端部执行器的内窥镜外科器械的例子。
【0006】最近，Shelton IV 等于 2003 年 5 月 20 日申请的题为“SURGICAL STAMPLING INSTRUMENT INCORPORATING AN E-BEAM FIRING MECHANISM”的美国专利 No. 10/443,617 公开了一种用于切割组织并致动缝钉的改进的“E 形梁”发射杆，其全部内容在此引入作为参考。该装置的一些其它优点包括确保将端部执行器的钳夹间隔开，或者更具体地说，将缝钉施加组件间隔开，即使夹钳了比最佳缝合形成略多或略少的组织也是如此，而且，E 形梁发射杆与端部执行器和缝钉筒以能进行几种有益的锁定的方式接合。
【0007】这些手术缝合及切割器械包括具有引导进行发射的发射杆的框架的轴。一闭合管在框架和发射杆上面滑动，以缝钉施加组件的钳夹的闭合。因此，提供了单独的闭合和发射能力，增加了临床弹性。外科医生可反复闭合和重新定位组织，直到对其放置满意为止。
【0008】根据手术的性质，可能需要进一步调节内窥镜外科器械的端部执行器的定位。具体地说，通常需要将端部执行器在相对于器械的轴的纵向轴线为横向的轴线上定位。端部执行器相对于器械的轴的横向运动通常称为“关节运动”（articulation）。这通常可通过将枢轴（或关节）接头设置于与缝钉施加组件近侧伸出的轴中来实现。这使得外科医生可
在远处将缝针施加组件关节运到任一端，以更好的放置缝合线，并更容易进行组织操作和
定向。在一些情况下，例如在器官的后面这种关节运动定位使得临床医生能够更容易地接合
组织。另外，有利地，关节运动定位可使内窥镜定位于端部执行器的后面，而不受器械轴的
阻碍。

[0009] 通过将对关节运动的控制与对闭合端部执行器以夹钳组织和在内窥镜检查器械
的很小直径范围内发射端部执行器（即缝合及切除）的控制一体化，来使手术缝合及切割
器械进行关节运动的方法显得非常复杂。通常，当纵向平移时，这三种控制运动都通过轴来
传送。例如，在Frederick E. Shelton IV等的题为“SURGICAL INSTRUMENT INCORPORATING
AN ARTICULATION MECHANISM HAVING ROTATION ABOUT THE LONGITUDINAL AXIS”的共同未
决和共有美国专利申请No. 10/615,973中，作为纵向运动的替代，其采用旋转运动来传送
关节运动，其内容在此通过引入作为参考。

[0010] 因此，非常需要一种用于手术缝合和切割的器械，其具有一轴，该轴包括单独的闭
合管，该闭合管单独打开和闭合夹钳，而且能够进行关节运动。

发明内容

[0011] 本发明通过提供一种外科器械，其包括一具有框架底的轴，所述框架底经双轴
连接件与端部执行器枢轴连接，克服了现有技术的上述及其它缺点。端部执行器又包括一
枢转上部夹钳或砧座，它们枢转以响应于在框架上滑动的闭合管的纵向运动而闭合和夹钳
组织。为了纵向平移以引起关节接头的这种闭合，框架底本身具有双轴枢轴转头。

[0012] 在本发明的一个方面，一种外科器械，包括一近侧部分，其中其在患者的体外操纵，以
将相连的细长轴和端部执行器定位于患者体内需要手术的部位。一闭合管包括一枢轴接
头，其越过分隔关节运动轴头，以纵向平移来闭合端部执行器，并越过铰接轴。一关节运动接
头枢转地将端部执行器与细长轴连接，从而以所需的角度达到组织，并提供进一步的临床弹
性。为了容纳闭合管的纵向运动枢转接头，双枢轴枢轴底具有一连接件，其分别在其近侧和
远侧枢转地连接到与手柄部分相连的近侧框架部分上和与端部执行器相连的远侧框架部
分上。因此，在端部执行器定位方面获得了另外的临床弹性，而不会失去由轴来传递单独闭
合和发射运动的能力。

[0013] 在本发明的另个一个方面，外科器械包括一关节运动端部执行器，其对夹钳于闭合
砧座和细长通道或包含有缝钉的下部钳夹之间的组织进行切开和缝合。一枢轴枢轴底
包括一连接件，其有助于使在外科器械的细长轴中往复的发射杆关节运动。

[0014] （1）本发明涉及一种外科器械，包括；

[0015] 细长轴，它包括框架组件和围绕该框架组件而设置的关节运动闭合套管；

[0016] 端部执行器，它包括下部钳夹和枢转连接的上部钳夹；

[0017] 关节运动接头，它包括与端部执行器的下部钳夹连接的远侧框架底部分、近侧枢
轴底部分和与远侧框架底部分枢转连接并与近侧枢轴底部分枢转连接的框架连接件；以及

[0018] 手柄部分，其连接到细长轴的近端上，并被可操作地构造成为能将闭合运动与关节
运动闭合套管纵向联接；

[0019] 其中，关节运动闭合套管包括关节运动部分，该关节运动部分被定位成横跨并包
围至少部分框架连接件，并且与上部钳夹远侧地接合，以执行上部钳夹的枢转。
[0020] (2) 如项目 (1) 所述的外科器械，其中，关节运动闭合套管组件还包括与砧座接合的远侧闭合套管部分和与手柄部分联接的近侧闭合管部分，该关节运动闭合套管的关节运动部分包括在远侧和近侧闭合管部分的每一个之中形成的上部和下部相对的并枢转接合的柄脚。

[0021] (3) 如项目 (1) 所述的外科器械，其中，远侧和近侧框架底部分的每一个都具有 U 形夹，所述 U 形夹相对设置，所述框架连接件包括横向突出的圆柱形销和分别枢转地收纳于相对的 U 形夹中的远侧和近侧端部。

[0022] (4) 如项目 (3) 所述的外科器械，其中，框架连接件包括与横向突出的圆柱形销横向相对的小刀槽开口。

[0023] (5) 如项目 (1) 所述的外科器械，还包括在细长轴中受引导并由手柄部分使其纵向往复运动的发射杆以及收纳在响应于发射杆的向远侧的运动的端部执行器中的缝针筒，其中，枢转连接的上部鞘夹包括具有缝针形成表面的砧座。

[0024] (6) 如项目 (5) 所述的外科器械，其中，框架连接件包括定位成横向引导发射杆的小刀槽。

[0025] (7) 如项目 (1) 所述的外科器械，其中，框架连接件包括狗骨形连接件，该狗骨形连接件包括变细的中间部分。

[0026] (8) 如项目 (1) 所述的外科器械，其中，框架连接件包括弹性材料。

[0027] (9) 如项目 (1) 所述的外科器械，其中，框架连接件包括刚性材料。

[0028] (10) 如项目 (1) 所述的外科器械，其中，手柄部分还包括闭合触发器，其可操作地连接到关节运动闭合套管上，以执行其闭合运动，并且手柄部分还包括一发射触发器，其可操作地连接到发射杆上，以执行其向远侧的发射运动。

[0029] (11) 如项目 (1) 所述的外科器械，其中，细长轴和端部执行器的横截面大小设置成能穿过插管到达患者体内的手术部位。

[0030] (12) 本发明还有一种外科器械，包括；

[0031] 细长轴，包括框架组件和围绕并纵向滑动地收纳的关节运动闭合套管；

[0032] 缝针施加组件，包括细长通道，接纳于细长通道中的缝针筒，和枢转地连接到细长通道上并为缝针筒提供缝针形成表面的砧座；

[0033] 关节运动接头，它包括与端部执行器的细长通道连接的远侧框架底部分，近侧框架部分和与近侧框架底部分枢转连接并与近侧框架底部分枢转连接的框架连接件；以及

[0034] 手柄部分，其连接到细长轴的近端上，并被可操作地构造成为能将闭合运动与关节运动闭合套管纵向联接。

[0035] 其中，关节运动闭合套管包括关节运动部分，该关节运动部分被定位成横跨并包围至少部分框架连接件，并且与上部砧夹远侧地接合，以执行上部砧夹的枢转。

[0036] (13) 如项目 (12) 所述的外科器械，其中，远侧和近侧框架底部分具有相对的 U 形夹，包括横向突出的圆柱形销的框架连接件以及分别枢转地收纳于相对的 U 形夹中的远侧和近侧端部。

[0037] (14) 如项目 (13) 所述的外科器械，其中，框架连接件包括与横向突出的圆柱形销横向相对的小刀槽开口。

[0038] (15) 如项目 (12) 所述的外科器械，还包括在细长轴中受引导并由手柄部分使其
纵向往复运动的发射杆以及收纳在响应于发射杆的向远侧的运动的端部执行器中的缝钉筒。
[0039] （16）如项目（15）所述的外科器械，其中，框架连接件包括定位成横向引导发射杆的小刀槽。
[0040] （17）如项目（12）所述的外科器械，其中，框架连接件包括狗骨形连接件，该狗骨形连接件包括变细的中间部分。
[0041] （18）如项目（12）所述的外科器械，其中，框架连接件包括弹性材料。
[0042] （19）如项目（12）所述的外科器械，其中，框架连接件包括刚性材料。
[0043] （20）如项目（12）所述的外科器械，其中，手柄部分还包括闭合触发器，其可操作地连接到关节运动闭合套管上，以执行其闭合运动，并且手柄部分还包括一发射触发器，其可操作地连接到发射杆上，以执行其向远侧的发射运动。
[0044] （21）如项目（12）所述的外科器械，其中，细长轴和端部执行器的横截面大小设置成能穿过插管到达患者体内的手术部位。
[0045] （22）本发明还有一种外科器械，包括；
[0046] 细长轴，它包括框架组件和关节运动套管；
[0047] 端部执行器，它包括致动构件；
[0048] 关节运动接头，它包括与端部执行器的下部铰接连接的远侧框架底部分，近侧框架部分和与远侧框架底部分枢转连接并与近侧框架底部分枢转连接的框架连接件；以及
[0049] 手柄部分，其连接到细长轴的近端上，并被可操作地构造成为将闭合运动与关节运动闭合套管纵向联接。
[0050] 其中，关节运动闭合套管包括关节运动部分，该关节运动部分被定位成横跨并包围至少部分框架连接件，并且与上部铰接远侧地接合，以执行上部铰接的枢转。
[0051] 通过附图及其描述，本发明的这些和其它目的和优点将更加明显。
[0052] 附图简述
[0053] 包含于井构成说明书的一部分的附图，与上面给出的本发明的总的描述以及下面给出的实施例的详细描述一起示出了本发明的实施例，用于解释本发明的原理，其中；
[0054] 图 1 是手术缝合及切割器械的前俯视透视图，其具有开口的端部执行器，或者缝钉施加组件，并且其中去除了缝钉筒。
[0055] 图 2 是图 1 中的手术缝合及切割器械的前俯视透视图，其中关节运动机构由流体致动控制器所致动。
[0056] 图 3 是图 1 的手术缝合及切割器械的细长轴和关节运动机构的分解透视图。
[0057] 图 4 是图 1 的手术缝合及切割器械的执行部分的远侧部分的分解透视图，包括缝钉施加组件和关节运动机构。
[0058] 图 5 是图 1 及图 4 的缝钉施加组件的俯视透视图，其中去除了缝钉筒的侧面半部，以暴露由发射运动所驱动的组成元件。
[0059] 图 6 是图 1 的外科器械的执行部分的前方透视图，其中去除了双枢轴闭合套管组件和端部执行器，以显示通过流控关节运动机构而进行关节运动的单枢轴框架底。
[0060] 图 7 是图 1 的外科器械的一种作为选择的关节接头的透视详示图，显示出具有单枢轴框架底的位于近侧位置处的双枢轴闭合套管。
[0061] 图8是图7的作为替代的关节接头的底部右侧分解透视图，包括双枢轴固定壁槽
骨形连接件和具有用于横向运动构件（T形杆）的导轨的框架底。
[0062] 图9是图1的外科器械的另一作为选择的关节接头的顶部左侧分解透视图，包括一
结合于下部双枢轴连接件中的作为替代的坚固壁支撑板机构，以支撑发射杆，并包括受
导轨引导的横向运动构件（T形杆）。
[0063] 图10是用于图1的外科器械的一种作为选择的关节运动锁定机构的顶部示意图，
其中去除了闭合的套管组件，以暴露用于自动的关节运动锁定接合和脱离接合的支撑负载
（backloading）的脱离接合T形杆。
[0064] 图11是用于图1的外科器械的另一种作为选择的关节运动锁定机构的顶部示意图，
T形杆具有由弹簧偏置的齿条，其具有由于端部执行器的支撑负载而接合的锁定结构。
[0065] 图12是用于图1的外科器械的一种作为选择的T形杆和带有横向导向件的框架
底。
[0066] 图13是用于图1的外科器械的另一种作为选择的T形杆和带有横向导向件的框
架底。
[0067] 图14是用于图1的外科器械的一种作为选择的关节运动机构的左侧顶部分解透
视图，包括一枢轴框架组件和一单枢轴闭合套管组件。
[0068] 图15是图14的作为选择的关节运动机构的左侧底部透视图。
[0069] 图16是一可选择的执行部分的前透视图，该执行部分具有多个用于图1的手术缝
合及切割器械的枢轴闭合套管组件。
[0070] 发明详述
[0071] 关节运动轴概述
[0072] 参照附图，其中在所有附图中，相同的附图标记表示相同的元件，图1描绘了一种
外科器械，在该示例性方案中具体为手术缝合和切割器械10，能够实现本发明的独特优点。
具体地说，手术缝合和切割装置10的大小设置为能够以如图1所示的非关节运动状态，通
过套管针插管通道插入到患者（未显示）体内的手术部位，以进行外科手术。一旦执行部
分12通过插管通道插入，如图2中所示，就可通过关节运动控制器18遥控执行部分12
的细长轴16的远侧部分中结合有的关节运动机构14进行关节运动。在示例性方案中描述
为缝钉施加组件20的端部执行器与铰接机构14远侧相连，因此，远程使关节运动机构14
关节运动使缝钉施加组件20从细长轴16的纵向轴线关节运动。这种或角度的定位可具有
根据切割和缝合所需的角度来接近组织的优点，避免了在接近组织时其它器官和组织所造
成的障碍，和／或使内窥镜能够定位于后面并与缝钉施加组件20对准，以确保其放置。
[0073] 手柄
[0074] 手术缝合及切割器械10包括一手柄部分22，其与执行部分12的近端连接，以对其
进行定位、关节运动、闭合和发射运动。手柄部分22包括一手枪式把手24，临床医生向着它
枢转且向近侧拉动闭合触发器26，引起缝钉施加组件20的夹钳或闭合。一发射触发器28
设置于闭合触发器26更远的外侧，并可由临床医生枢转地拉动，引起对在缝钉施加组件20
中夹钳的组织进行缝合及切割。此后，按下闭合释放按钮30，从释放夹钳的闭合触发器26，
并由此释放夹钳的组织的已切割和缝合的末端。手柄部分22还包括一用于与细长轴16的
运动偶联的旋转旋钮32，以使轴16和铰接的缝钉施加组件20围绕轴16的纵向轴线旋转。
手柄部分22还包括一发射回缩手柄34,以在发生束缚时帮助回缩发射机构（在图1-2中未显示）,从而使缝钉施加组件20此后可张开。

[0075] 应当理解,这里使用的术语“近侧”和“远侧”以临床医生握持器械的手柄为参照。因此,手术缝合组件20相对于更近侧的手柄部分20位于远侧端。还应理解,为了方便和清楚起见,这里使用的空间术语例如“垂直”和“水平”与是相对附图而言的。然而,外科器械可以在许多方向和位置使用,这些术语并不意图进行限制和绝对化。

[0076] 在Swayze和Shelton IV的题为“SURGICAL STAPLING INSTRUMENT INCORPORATING A MULTISTROKE FIRING POSITION INDICATOR AND RETRACTION MECHANISM”的共同未决的共有美国专利申请No.10/674,026中详细描述了一种用于图1-2中的手术缝合及切割器械10的示例性多冲程手柄部分22,其内容在此全部引入作为参考,此处描述另外的特征和变化。尽管多冲程手柄部分22有利地支持能以较大发射力远距离应用,与本发明一致的应用可包括单发射冲程,例如在Frederick E. Shelton IV, Michael E. Setser, and Brian J. Hemmelgarn题为“SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS”的共同未决的共有美国专利申请No.10/441,632中所描述的,其内容在此全部引入作为参考。

[0077] 执行部分（使细长轴和缝钉施加组件关节运动）

[0078] 在图3-5中,执行部分12有利地包括在适用于内窥镜和腹腔镜手术的较小直径内的纵向旋转、关节运动,闭合和发射的多种致动运动。缝钉施加组件20（“端部执行器”）具有一对枢轴相对的夹钳,描述为一具有枢轴连接的砧座（anvil）42的细长通道40（图1-2,4-5）。砧座42对细长通道40的闭合和夹钳通过用可旋转地连接于手柄部分22的框架组件44（图3）纵向支撑细长通道40来实现,双枢轴闭合套管组件46在所述手柄部分22的上方沿纵向运动,以分别闭合和打开向砧座42的远离和靠近运动,即使其中如图2所示缝钉施加组件20关节运动也是如此。

[0079] 特别参照图3,框架组件44包括一单枢轴框架底48,如图3所示,其近端与旋转旋钮32接合,右侧半壳位于其上方。应当理解,闭合套管组件46的近端,具体为闭合直管52,包围框架底48的近端,所述近端进一步穿过其内部到达手柄部分22,以与使闭合套管组件46纵向平移的闭合元件（未显示）接合。位于闭合直管52近端的圆形唇缘54提供了与所述元件的旋转接合。旋转旋钮32的接合元件穿过直的闭合管52的近侧部分上的纵向狭槽56与在框架底48上近侧地定位的开孔58接合。纵向狭槽56具有足够的长度,以允许闭合套管组件46由旋转旋钮32设定的旋转角度相对于闭合套管组件46和框架底48闭合纵向平移。

[0080] 细长轴16通过收纳与手柄部分22的发射元件（未显示）旋转接合的发射杆60来支持发射运动。发射杆60沿着框架底48的纵向中心线进入近侧开口62。框架底48的远侧部分沿着其底部包括一与近侧开口62相连通的发射杆狭槽64。发射杆66在发射杆狭槽64中纵向平移,并包括一向上突出的近侧销68,其与发射杆60的远端70接合。

[0081] 细长轴16通过具有矩形容器腔72（在旋转旋钮32的远侧部分中描绘为横向部分）来支持关节运动。一矩形容器腔72中的底部隔室74具有横向间隔开的左右挡板76,78。一关节运动致动器80在底部分隔室74的上方横向滑动,其位于挡板76,78外侧的横向向下隔开的左右凸缘82,84每个与从旋转旋钮32的相应半壳向外伸出的左右按
钮开关 86.88 横向相通。关节运动致动器 80 的横向运动使左右凸缘 82.84 分别更靠近或更远离左右挡板 76.78，这与该调节关节运动系统 94 的左右储存囊 90.92 的运转相反，每个囊 90.92 分别与左右流体导管或通道 96.98 远侧连通，该流体导管或通道又分别与左右致动囊 100.102 连通。后者相对并使致动机构 14 的 T 形杆 104 横向枢转。

[0082] 框架组件 44 通过包括一框架底 48 的顶部和远端带凹槽的台面 106 来限制这些流控的致动，在所述框架底的上面有流体通路 96.98 和致动囊 100.102。T 形杆 104 滑动地位于带凹槽的台面 106 的上，致动囊 100.102 之间。靠近 T 形杆 104 处，一突出的屏障助 108 与其对准，用于防止流体通路 96.98 向内扩张。框架组件 44 具有一圆形的顶部框架盖（隔离物）110，其在框架底 48 的上方滑动，防止流体通路 96.98 和致动囊 100.102 的垂直膨胀，同时限制 T 形杆 104 的任何垂直运动。特别地，框架盖 110 包括能使其提供关节运动锁定构件 111 的结构，下面将作为关节运动锁定机构 113 的一部分详细描述。

[0083] T 形杆 104 的远端 (“齿条”) 112 搭接，以使关节运动机构 14 的铰接的远侧框架构件 114 的指向近侧的扇形齿轮 115 枢转。一铰接的闭合管 116 包围铰接的框架构件 114，并具有与砧座 42 接合的马蹄形开孔 118。在闭合管 52 和关节运动的闭合环 116 之间，关节运动机构 14 的上方形成一垂直轴连接件，从而可允许纵向闭合运动，即使当关节运动机构 14 关节运动时也是如此。特别地，闭合管 52 上的带有销孔 122.124 的顶部和底部远侧突出的枢轴翼片 118.120 分别与关节运动闭合环 116 上具有销孔 130.132 的相应的顶部和底部近侧突出的枢轴翼片 126.128 纵向间隔开。上部双枢轴连接件 134 具有分别与销孔 122.130 接合的纵向间隔的向上定向的远侧和后部销 136.138，下部双枢轴连接件 140 具有分别与销孔 124.132 接合的纵向间隔的向下突出的远侧和后部销 142.144。

[0084] 特别参照图 4，为了增强可制造性，关节运动闭合环 116 显示为包括短管 146，其与具有近侧突出的枢轴翼片 126.128 的连接卡圈 148 相连。同样地，闭合管 52 由与后部连接卡圈 152 相连的长闭合管 150 组装而成，所述连接卡圈 152 包括向远侧突出的枢轴翼片 118.120。短闭合管 146 中的马蹄形开孔 118 与在横向枢轴销 156 附近的向上突出的砧座结构 154 接合，所述枢轴销 156 与细长通道 40 中的枢轴凹槽 158 接合。

[0085] 图 4 的示例性方案包括如图 3 所示的关节运动连接件 160。其近侧销 157 与框架孔 161 中的框架底 48 枢转连接，并且其近侧销 159 与关节运动框架构件 114 的近侧下表面 162 刚性连接，从而在其中提供枢轴支撑。枢轴连接件 160 中的底部纵向刀槽 163 引导发射杆 66 的关节运动部分。关节运动框架构件 114 还包括一结构纵向槽 164，以引导发射杆 66 的远侧部分。

[0086] 缝钉施加装置（端部执行器）

[0087] 参照图 4-5，发射杆 66 远端终止于 E- 形梁 165 中，所述 E- 形梁 165 包括上部导向销 166，其插入砧座 42 中的砧座狭槽 168 中，以在缝钉形成和切割期间核实并帮助将砧座 42 保持为闭合状态。细长通道 40 和砧座 42 之间的间隔还可通过 E- 形梁 164 使中间销 170 按照细长通道 40 的顶面滑动来保持，同时底应 172 按照细长通道 40 的下表面相邻地滑动，由细长通道 40 中的纵向开口 174 导向。E 形梁 164 的位于上部导向销 166 和中间销 170 之间的远侧切割表面 176 对夹钳的组织进行切割，同时 E 形梁通过向远侧移动楔形滑板 (sled) 180 致动可替换的缝钉筒 178，使缝钉驱动器 182 向上突出，使缝钉从砧座 42 的缝钉形成下表面形成的缝钉筒主体 188 中的向上打开的缝钉孔 186 中弹出。缝钉筒托架 192
从底部包围缝钉筒 178 的其它元件，将它们保持在适当的位置。缝钉筒托架 192 包括一向后打开的狭槽 194。其覆盖在细长通道 40 中的纵向开口 174 上，从而使中间销 170 穿过缝钉筒托架 192 的内部。

[0088] 缝钉施加组件 20 在 Frederick E. Shelton IV 等于 2004 年 9 月 30 日提交的“ARTICULATING SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM FIRING MECHANISM” 的共同未决的共有美国专利申请 No. 10/955,042 中有详细描述，其内容在此全部引作参考。

[0089] 关节运动锁定机构

[0090] 在图 3-4 和 6-8 中，有利地，包含有一关节运动锁定机构 200，以保持缝钉施加组件 20 处于所需的关节运动角度。关节运动锁定机构 200 减小了左右致动囊 100、102 上的负载。特别地，压缩弹簧 202（图 3）近侧地定位在关节运动锁定构件 111 的近端 204 和手柄部分 22 之间，从而向远侧偏压关节运动锁定构件 111。特别参照图 4，关节运动锁定构件 111 远端 210 处的两个平行的狭槽 206、208 分别收纳框架底 48 上向上突出的导向肋 212、214。导向肋 212、214 的纵向长度比平行的狭槽 206、208 短，使其具有相对纵向冲程范围。因此，特别参照图 8，示为从连接锁定元件 111 向远侧突出的带齿的凹槽 216 的远侧摩擦表面的选择性抵接接合与收纳在关节运动锁定框架 114 的顶部近侧凹槽 220 中的制动板 218 中的相应锁定扇形齿轮 217 接合。制动板 218 中的远端和近侧孔 221、222 收纳从顶部近侧凹槽 220 向上突出的远侧和近侧销 223、224。

[0091] 特别参照图 6，细长轴 16 插接为处于铰接位置，其中闭合套管组件 46 从框架组件 44 周围被去除，从而没有细长通道 40 和砧座 42。关节运动致动器 80 显示为横向运动到左侧以压缩右侧近侧储存囊 90 和膨胀的远侧致动囊 100，使 T 形杆 104 运动到所示的位置。因此，图示所示，关节运动致动器 80 的横向运动使远侧框架 114 围绕单枢轴框架底 48 顺时针关节运动。有利地，关节运动致动器 80 还自动与关节运动锁定机构 200 接合和脱离接合。特别地，沿着关节运动致动器 80 的近端上表面的齿棘表面 225 收纳从铰接闭合元件 111 的远端 204 向上突出的锁定销 226。锁定销 226 在齿棘表面 225 根部中的接合提供了足够的关节运动锁定构件 111 向远侧的运动，用于将锁定扇形齿轮 217 在制动板 218 中锁定接合。操作人员使压缩构件 272 进行的横向运动，向近侧推动锁定销 226，由此使关节运动锁定构件 111 与制动板 218 脱离接合。当操作人员释放关节运动致动器 80 时，锁定销 226 被压缩弹簧 202 推动到棘表面 225 中的相接棘中，使锁定机构 111 锁定，并由此缝钉施加组件 20，通过将近侧左右储存囊 90、92 限制膨胀的形状，将关节运动机构 14 限制在所需的关节运动位置。

[0093] 作为选择或者其他，可在平行的流体囊 236、238 中设置一孔口，以控制近端致动囊 100、102 和远端储存囊 90、92 之间的流速。在图 16、18 中，流体流路 258、264 的尺寸可设置为提供改变关节运动的角度的阻力，起孔的作用，或者它们可包括流体流速限制结构。

[0095] 在图 11 中，显示了另一种用于外科器械 2102 的关节运动锁定机构 2100，其通常由与端部执行器 2106 的齿轮齿 2104 和 T 形杆 2110 的齿条齿 2108 成 20 度压力角的近侧力向量来解锁和致动。当端部执行器 2106 支撑负载时（如垂直箭头 2112 表示）压力角的纵向向量（以箭头 2114 表示）使 T 形杆 2110 向近侧运动。该纵向力向量施加到位于 T 形杆 2110 的齿条 2120 后面的刚性弹簧 2118 上。当弹簧 2118 随着 T 形杆 2110 向近侧移动而偏转时，从齿条 2120 向近侧突出的锁定齿 2126 开始接合，同时在底部框架 2124 上近侧横向对准的锁定元件 2122 与从齿条 2120 向近侧突出的锁定齿 2126 接合。当通过除去端部执行器 2106 的支撑负载并通过弹簧 2118 的推动使 T 形杆 2110 向远侧运动，使近侧力向量减小或消除时，锁定齿 2126 和锁定元件 2122 脱离接合。

[0096] 双枢轴闭合套管和单枢轴框架底的结合

[0097] 参照图 3-4 和 7，有利地，执行部分 12 包括纵向平移的双枢轴闭合套管组件 46，其包围一单枢轴框架底 48。下面将进一步详细描述这些机构和其它操作。特别参照图 7，关节运动机构 14 显示为处于铰接状态，其中闭合套管组件 46 向近侧回缩到砧座打开状态。随着砧座 42 的打开，关节运动控制器 18 的致动引起铰接的闭合环 116 分别围绕上部和下部双枢轴轴连接件 134、140 的向上指向的近侧销 136 和向下指向的远侧销 142 枢转。框架底 48 围绕单销（图 4 为将框架底 48 与近侧框架构件 114 连接的近侧销 157）枢转。当砧座 42 打开时，框架底 48 的近侧销 147 与闭合套管组件 46 的上部和下部枢轴轴连接件 134、140 的最远侧位置对准。当砧座 42 打开时，该定位很容易使缝钉施加组件 20 进行枢转及旋转。当闭合套管组件 46 向远侧运动以便闭合的砧座 42 枢转时，随着枢轴轴连接件 134、140 的推动，闭合枢轴 52 围绕框架底 48 向远侧运动，并且铰接的闭合环 116 沿着铰接的远侧框架构件 114 的轴线向远侧运动。当装置被铰接时（未显示），连接件 134、140 上的双枢轴销 136、138 以及 142、144 在它们被推向远离环 116 的接合。当有效运行时，在远侧闭合位置，框架底枢轴销（“近侧销”）147 与近侧枢轴销 138、144 在完全关节运动时垂直对准，或者落在远端销 136、142 和远端销 138、144 之间的任一点上。

[0098] 实心发射杆支撑件

[0099] 在图 8 中，图 7 中的关节运动机构 14 被部分分解并从底部看去，显示实心壁发射杆支撑设计（狗骨状连接件 160），其提供了常规挠性支撑板不具备的优点。支撑板用于填平间隙，并通过单枢轴底枢轴关节运动接头 1801，引导和支持发射杆 66。挠性发射杆是公知的，但结合实心壁发射杆，例如图 4、8、9 中显示的那些发射杆，提供了独特的优点。下面参照图 8，框架底 48 包括沿着框架底 48 的底部延伸的框架小刀槽 1802，沿着关节运动的远端枢轴元件 114 的底部延伸的远侧小刀槽 164，用于将发射杆 66 (未显示) 滑动地收
纳于其中。框架底 48 如上所述，并包括带有限远侧框架件 114 的导向单枢轴连接件 157。可旋转地连接在近侧销两端 157 上并可移动地连接在远侧销端 159 上的固定壁骨形连接件 160 包括左右纵向导向件 1818, 1820, 在其间限定了一导向狭槽 1822, 用于滑动地通过发射杆 66（图 4）。

[0101] 在图 9 中，外科器械 1900 包括双闭合枢轴。单枢轴枢轴关节运动接头 1902 显示了一种作为替代的双闭合枢轴机构 1904，其可替代下部双枢轴连接件 140 和枢轴连接件 1812。左右发射杆支架 1906, 1908 从闭合套管组件 1912 的下部双枢轴连接件 1904 向上伸出。在框架底 1916 中提供间隙 1914, 从当闭合套管组件向远侧运动闭合瓣座 42（在图 9 中未显示）以及向近侧运动打开瓣座 42 时，使发射杆 1906, 1908 能够运动。如上所述的枢轴骨形连接件 1812，作为替代的下部双枢轴连接件 1910 还可弯曲并支撑发射杆 66（在图 9 中未显示），形成两个间隔开的弯曲角，其中的每个达到缝线施加组件 20 的弯曲角的一半。

[0102] 横向构件导向机构

[0104] 双枢轴枢轴架底和单枢轴闭合机构的结合

[0105] 在图 14–15 中，一种替代的枢轴底和闭合机构 2200 包括具有双枢轴枢轴组件 2204 的外科器械 2202。特别地，枢轴底 2206 通过双枢轴枢轴狗骨形件 2210 与远端枢架组件 2208 连接，所述双枢轴枢轴狗骨形件 2210 具有一与枢轴底 2206 中的近侧腔 2214 枢轴连接的近侧枢轴销 2212 和一与远侧枢轴件 2208 的远侧腔 2218 接合的远侧枢轴销 2216。
一导向狭槽 2220 设置于狗骨件 2210 的下侧，以在其中引导发射杆 66（在图 14-15 中未显示）。小刀槽 2222 设置在远侧框架构件 2208 中。如图所示，闭合环 2230 以 45 度角的关节运动使远侧框架构件 2208 以 45 度角关节运动，并使框架狗骨件 2210 以该角度的一半关节运动。因此，发射杆 66 受到间隔的两个浅的半弯曲，并达到上述列举的优点。

【0106】最外侧闭合套管组件 2224 的不同点在于，框架组件 2204 的双枢轴设计中仅一个枢轴提供其纵向闭合运动。如图所示，一闭合管轴 2226 远端具有一 U 形夹 (clevis) 2228。U 形夹 2228 与闭合环 2230 枢转接合。闭合环 2230 具有一在远端形成的近侧齿轮 2232，并且销 2234 与 U 形夹 2228 的上横脚 2236 枢转接合，下 2238 与 U 形夹 2228 的下横脚 2240 接合。U 形夹 2228 中的孔 2242 收纳横向导向销 2243，并且 T 形杆 2244 可滑动地连接于其中，以接合闭合环 2230 近侧齿轮 2232。因此，这种替代结构 2200 使用与前面描述结构相反的单 / 双枢轴的替代构想。也就是说，这种替代的闭合机构具有单枢轴，而替代的框架底具有双枢轴，这与前面描述的具有单枢轴框架底的双枢轴闭合机构不同。

【0107】应理解，根据本发明的内容，位于近侧和远侧框架部分之间的双枢轴框架连接件具有许多优点。虽然不能全部列举，这些优点包括通过以更宽的弯曲半径关节运动而方便引导发射构件，从而减小了发射所需的力，降低了束缚和失败的可能性，和 / 或可更加强烈地用它来使用双枢轴。应理解，此发明的方面一致的应用包括闭合管组件，其同样具有多个枢转接头，或者位于关节运动接头处的挠性圆柱部分。此外，多个关节运动接头可一接一地顺序连接，从而没有一个关节运动接头需要提供较大的偏转角度。作为选择，关节运动闭合套管可纵向固定，用作盖，其中发射杆执行闭合、切割及缝合。双枢轴框架连接件用于方便发射杆的运动。

【0108】还应理解，尽管如上所述引导发射杆具有某些优点，双枢轴连接件还可由一个或多个从关节运动发射杆的路径偏移的框架连接件形成。还应理解，一个或多个发射连接件可沿着其长度包括至少一部分弹性材料，以进一步有利于关节运动。

【0109】还应理解，所包含的定位近侧框架底部分、远侧框架底部分和它们之间的双枢轴框架连接件的关节运动致动器，可致动闭合套管，从而允许框架底组件响应于闭合套管组件的关节运动而被动地进行关节运动。

【0110】横向运动关节运动机构

【0111】在图 16 中，用于外科器械 2402 的执行部分 2412 包括多个枢轴闭合组件 2204。最外侧闭合套管组件 2424 通过一包围单枢轴框架关节运动接头（在图 16 中未显示）的挠性闭合接头 2425 与闭合管轴 2426 连接。作为选择，可包括一挠性型框架关节运动接头。多个枢轴闭合组件 2446 通过具有在弹性材料（例如，聚合物、硅树脂）中形成的左右垂直切口 2427、2429 而具有横向弹性。材料的顶部和底部带 2451 保持挠性闭合接头 2425 的纵向长度并传送发射运动。

【0112】尽管通过对多个实施例的描述对本发明进行了示例，尽管这些示例性的实施例描述得非常详细，但申请人并不是想将所附的权利要求书的范围限制或以任何方式限定到这些细节。其它优点和变化对本领域技术人员来说是显而易见的。

【0113】例如，尽管这里公开了液压关节运动方法，还应理解，与本发明的一些方面一致的应用还可以使用机械动力或电力动力。

【0114】作为另一个例子，外科器械的端部执行器可包括多种类型的致动构件，其可连接
来收纳套管组件在关节运动轴上的选择性往复纵向运动。
图 4
图 5
图 6
图 7
图 8
图 9
图 12
图13