Title: VEHICLE INTERIOR COMPONENT

Abstract: A vehicle interior component providing a composite structure with a user interface for vehicle systems and other systems/devices and data/network connectivity is disclosed. The composite structure may comprise (a) a cover providing an exterior surface; (b) a sensor; (c) a display; (d) a functional layer. The sensor may be configured to detect input from the vehicle occupant at the cover; the display may be configured to provide illumination (such as a display element, menu, image, text, etc.) visible through the translucent cover. A method of operating the user interface may comprise the steps of (a) pressing the cover so input can be detected by the sensor; and (b) contacting the cover where input can be detected by the sensor. Pressing the cover may comprise compressing/deforming the composite structure to actuate the user interface; contacting the cover may operate and/or position a control provided at the user interface.

[Continued on next page]

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
The present invention relates to a vehicle interior component. The present invention also relates to a vehicle interior component providing a composite structure. The present invention further relates to a vehicle interior component providing a composite structure providing a user interface system.

CROSS-REFERENCE TO RELATED APPLICATION(S)

The present invention claims priority to and incorporates in reference in full the following application: U.S. Provisional Patent Application No. 62/360,960 titled "Vehicle Interior Component" filed on July 11, 2016.

BACKGROUND

Conventional automotive interiors may include numerous switches, buttons, dials, and other physical control elements for receiving inputs from an occupant. Control elements are coupled to corresponding features and systems including entertainment systems, information systems, climate controls, door locks, window regulator/controls, seat position adjusters, cruise control, mirror position adjusters, headlights, steering wheel adjusters, and etc.

It is well-known to provide a touch panel in a vehicle interior having buttons/icons that can be pressed to perform a function such as adjusting a seat or window position. It is known to provide such a panel with buttons/icons that are illuminated at all times, or only when selectively illuminated. It is known to provide such a panel with a hard surface that is separate from the soft (e.g. fabric/leather/etc.) surfaces of vehicle interior components.
[0005] It would be advantageous to provide an aesthetically pleasing and integrated composite structure including a cover/exterior surface and configured to provide a user interface with sensor and display for a vehicle interior component. It would also be advantageous to provide an integrated composite structure configured to provide a user interface in or on a vehicle interior component in a manner to provide an appearance and feel provided by the cover/exterior surface and compliant/resilient layers beneath the cover. It would further be advantageous to provide an improved system and method of operating the user interface for the composite structure of the vehicle interior component. It would further be advantageous to provide an improved composite structure including a cover/exterior surface and configured to provide a user interface in or on a vehicle interior component providing features suitable for a vehicle interior such as system integration, decorative appearance, color/texture, softness/firmness, feel/touch/haptic sensation, resistance to dirt/stains, repellence to water/fluids, convenient to maintain/clean, etc.
SUMMARY

[0006] The present invention relates to a vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. The component may comprise a composite structure configured to provide the user interface comprising (a) a cover providing an exterior surface; (b) a sensor; (c) a display; (d) a functional layer. The cover may comprise a translucent layer; the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover; the display may be configured to provide illumination at least partially visible through the exterior surface of the cover. Operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor. The cover may comprise at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials. The cover may comprise at least one of (a) film; (b) resin; (c) polycarbonate; (d) polyurethane; (e) polyvinyl material; (f) a composite of multiple plastic materials; (g) a composite of multiple materials. The functional layer may be configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging.
[0007] The functional layer may comprise a positioning layer configured to retain positioning within the composite structure for operation of the sensor from input from the vehicle occupant. The positioning layer may comprise at least one of (a) a spacer; (b) a flexible spacer; (c) a shield for electromagnetic interference; (d) a foam material; (e) a plastic material. The composite structure may comprise a foam layer under the cover. The functional layer may be at least partially integrated with at least one of (a) the cover; (b) the positioning layer; (c) a substrate of the composite structure. The user interface may be configured so that input from the vehicle occupant at the exterior surface of the cover is detected by the sensor. Input from the vehicle occupant may comprise contact with the exterior surface of the cover. The composite structure may be configured in a contoured shape. The composite structure may comprise a substrate; the composite structure may be coupled to at least one of (a) a trim component; (b) a panel; (c) a door; (d) a surface; (e) a console; (f) a base. A control system for the user interface may be configured to connect to vehicle systems. The control system may be configured to facilitate operation by the vehicle occupant for at least one of (a) sending a signal to a control module, (b) controlling a motor, (c) providing a signal to a vehicle component, (d) providing electrical power to a vehicle component, (e) providing at least one of (1) visible feedback, (2) audible feedback, (3) tactile feedback, (4) haptic feedback to the vehicle occupant. The user interface may comprise a control panel presented at the exterior surface of the cover. The controller for the composite structure may be connected to the user interface. The vehicle systems comprise at least one vehicle system; a vehicle system may comprise at least one of (a) an indicator, (b) a display, (c) a climate control system, (d) an entertainment system, (e) a security system, (f) an engine control unit, (g) a data storage system, (h) a database, (i) a motor, (j) a vehicle seat, (k) a window regulator/control; (l) a network; (m) a data storage system; (n) a database. The cover
may comprise at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials. The sensor may comprise at least one of (a) an array; (b) a grid; (c) a foil; (d) a panel; (e) a touch panel; (f) a flexible panel; (g) a detector; (h) a proximity detector; (i) a capacitive touch panel; (j) a pressure sensitive panel. The display may comprise at least one of (a) an array; (b) a grid; (c) a panel; (d) a display screen; (e) a flexible panel; (f) a lighting array; (g) a lighting device array; (h) a light-emitting device array; (i) a LED array; (j) a flexible LED array; (k) a flexible sheet.

[0008] The present invention further relates to a vehicle interior component configured for interaction with an occupant of a vehicle comprising vehicle systems comprising a composite structure configured to provide a user interface for interaction with the occupant. The composite structure may comprise a cover providing an exterior surface, a sensor, a display and a functional layer; the cover may comprise a translucent layer; the sensor may be configured to detect input from the occupant at or adjacent to the exterior surface of the cover; the display may be configured to provide illumination at least partially visible through the exterior surface of the cover; operation of the user interface for the occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor; the user interface may comprise a display element from illumination from the display that may be configured to be selectively positioned on the exterior surface of the cover. The display element of the user interface may comprise at least one of (a) an icon; (b) a symbol; (c) a button indicator; (d) a menu system; (e) a display panel image; (f) an information display image; (g) a graphics display
image; (h) a control panel; (i) an input panel; (j) a touch screen; (k) a repositionable image; (l) a projected image. The display element of the user interface may be configured to be positioned on the exterior surface of the cover by at least one of (a) when the display element is not displayed by contacting of the exterior surface of the cover at a position where the display element is to be displayed; (b) when the display element is displayed by contacting the exterior surface of the cover where the display element is displayed and dragging the display element along the exterior surface of the cover to a position where the display element is to be displayed.

[0009] The present invention further relates to a vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. The component may comprise a composite structure configured to provide the user interface with a cover providing an exterior surface, a sensor; a display; and a functional layer. The cover may comprise a translucent layer; the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover; the display may be configured to provide illumination at least partially visible through the exterior surface of the cover; operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor; the user interface may be configured (a) to be activated for operation by compressing the cover toward the sensor and (b) to be operated by contacting the exterior surface within a distance where input can be detected by the sensor. The user interface may be configured (c) to be operated by movement directed by the vehicle occupant above the exterior surface of the cover within a distance where input can be detected by the sensor. The user interface may be configured for interaction with a vehicle occupant by at least one of (a) touch at the exterior surface of the cover detected by the sensor or (b) gesture adjacent to the exterior surface of the cover detected by the sensor. The user interface
may be configured for (a) a sleep mode and awakening from the sleep mode by compressing the cover toward the sensor by a first threshold distance and (b) for an awake mode providing a control panel and operating the control panel by touching the exterior surface of the cover within a second threshold distance from the sensor. The user interface may comprise the display element on the exterior surface of the cover; a display element of the user interface may comprise at least one of (a) an icon; (b) a symbol; (c) a button indicator; (d) a menu system; (e) a display panel image; (f) an information display image; (g) a graphics display image; (h) a control panel; (i) an input panel; (j) a touch screen; (k) a repositionable image; (l) a projected image. The design element of the user interface may be configured to be selectively positionable on the exterior surface of the cover by interaction with the vehicle occupant.

[0010] The present invention further relates to a vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. The component may comprise a composite structure configured to provide the user interface with a cover providing an exterior surface, a sensor, a display and a functional layer. The cover may comprise a translucent layer; the cover may comprise at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials. The sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover; the display may be configured to provide illumination at least partially visible through the exterior surface of the cover. Operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor.
The present invention further relates to a vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. The component may comprise a composite structure configured to provide the user interface with a cover providing an exterior surface, a sensor, a display and a functional layer. The cover may comprise a translucent layer; the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover; the display may be configured to provide illumination at least partially visible through the exterior surface of the cover. The functional layer may be configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging. Operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor.

The present invention further relates to a method of operating a vehicle interior component comprising a composite structure to provide a cover with an exterior surface and a sensor and a display configured to provide a user interface for a vehicle occupant in a vehicle with vehicle systems. The method may comprise the steps of (a) pressing the cover toward the sensor to a distance where input can be detected by the sensor; and (b) contacting the exterior surface within a distance where input can be detected by the sensor. The cover may comprise a translucent layer; the sensor may be configured to detect input from the vehicle occupant at or
adjacent to the exterior surface of the cover from at least one of (a) touch; (b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning. The display may be configured to provide illumination at least partially visible through the exterior surface of the cover; operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor. The step of pressing the cover toward the sensor may comprise compressing the cover toward the sensor to a first threshold distance where input can be detected by the sensor to actuate the user interface. The step of contacting the exterior surface may comprise contact within a second threshold distance where input can be detected by the sensor to operate and/or to position the user interface. The step of pressing the cover toward the sensor may comprise deforming the composite structure at least partially. The method may further comprise the step of (c) movement at or adjacent the exterior surface detected as input by the sensor. The step of contacting the exterior surface within a second threshold distance may not require deformation of the composite structure.

[0013] The present invention further relates to a vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. The component may comprise a composite structure configured to provide the user interface with a cover providing an exterior surface and a sensor and a functional layer. The cover may comprise a translucent layer. The cover may comprise at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials. The sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover from at least one of (a) touch;
(b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning; operation of the user interface for the vehicle occupant may comprise input detected by the sensor.

[0014] The present invention further relates to a vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. The component may comprise a composite structure configured to provide the user interface with a cover providing an exterior surface and a display and a functional layer. The cover may comprise a translucent layer. The cover may comprise at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials. The display may be configured to provide illumination at least partially visible through the functional layer and through the exterior surface of the cover; interaction with the user interface for the vehicle occupant may comprise visible output from illumination from the display.

[0015] The present invention further relates to a user interface system for a vehicle interior. The system may comprise a cover with exterior/contact surface, a sensor such as a capacitive touch panel/foil covered by the cover/contact surface, a spacer coupled to the sensor and a display such as an LED/OLED display panel/foil covered by the spacer and configured to emit light. The spacer, the sensor and the cover/contact surface may be configured to be translucent to allow light emitted by the display to pass through the contact surface. The contact surface may comprise a textile; the spacer may comprise a foam material. The display may comprise at least one light emitting diode; the display may comprise a flexible material comprising an array of light emitting diodes (e.g. LED, OLED, etc.). The display may be configured to selectively emit
light in response to a signal from the capacitive touch panel; the capacitive touch panel may be configured to receive a touch input and transmit a signal; the sensor such as a capacitive touch panel may be configured for decreased electrical resistance as pressure is applied to the panel. The system may comprise a controller configured for operation by a vehicle occupant for at least one of (a) sending a signal to a control module, (b) controlling a motor, (c) providing a signal to a vehicle component, (d) providing electrical power to a vehicle component and (e) providing at least one of (1) visible feedback, (2) audible feedback, (3) tactile feedback, (4) haptic feedback to the vehicle occupant. The controller may be configured to send a control signal to at least one of (a) an indicator, (b) a display, (c) a climate control module, (d) an entertainment control module, (e) a security control module, (f) an engine control unit, (g) a data store, (h) a database, (i) a motor, (j) a vehicle seat, (k) a window regulator/control.
FIGURES

[0016] FIGURE 1A is a schematic perspective view of a vehicle according to an exemplary embodiment.

[0017] FIGURE 1B is a schematic perspective cut-away view of the vehicle showing a vehicle interior according to an exemplary embodiment.

[0018] FIGURE 2A is a schematic perspective cut-away view of the vehicle showing a vehicle interior according to an exemplary embodiment.

[0019] FIGURE 2B is a schematic perspective view of a vehicle interior component shown as a console with a composite structure of a layer construction in operation to present display elements at the user interface according to an exemplary embodiment.

[0020] FIGURES 2C is a schematic perspective view of a vehicle interior component shown as a door panel with a composite structure in operation to present design elements at the user interface according to an exemplary embodiment.

[0021] FIGURES 3A to 3T are schematic perspective views of a vehicle interior component shown as a console with a composite structure providing a user interface according to an exemplary embodiment.

[0022] FIGURES 4A and 4C are schematic perspective views of a vehicle interior component shown as a console with the composite structure presenting a user interface system configured as a control panel for a window of a vehicle door according to an exemplary embodiment.

[0023] FIGURES 4B and 4D are schematic side views of a door with window operated by the control panel of the user interface system according to an exemplary embodiment.

[0024] FIGURE 4E is a schematic perspective view of a vehicle interior component shown as a console with the composite structure presenting a user interface system configured as a control
panel for a heating, ventilating, and air conditioning system of the vehicle according to an exemplary embodiment.

[0025] FIGURE 4F is a schematic front view of a display element for the heating, ventilating, and air conditioning system of the vehicle according to an exemplary embodiment.

[0026] FIGURES 5A, 5C and 5E are schematic perspective views of a vehicle interior component shown as a console with the composite structure presenting a user interface system configured as a control panel to adjust a seat in the vehicle interior to various positions according to an exemplary embodiment.

[0027] FIGURES 5B, 5D and 5F are schematic side views of the seat of the vehicle interior in various positions according to an exemplary embodiment.

[0028] FIGURES 6A, 6C and 6E are schematic perspective views of a vehicle interior component shown as a console with the composite structure presenting a user interface system configured as a control panel for interaction with vehicle systems according to an exemplary embodiment.

[0029] FIGURES 6B, 6D and 6F are schematic front views of display elements for vehicle systems according to an exemplary embodiment.

[0030] FIGURES 7A to 7F are schematic perspective views of a vehicle interior component shown as a door panel with the composite structure presenting a user interface providing control/interaction and output of lighting effects/levels for the vehicle interior according to an exemplary embodiment.

[0031] FIGURES 8A to 8D are schematic perspective views of the vehicle interior component shown as a door panel with the composite structure presenting a user interface providing
control/interaction and output of lighting effects/levels and information display for the vehicle interior according to an exemplary embodiment.

[0032] FIGURE 8E is a schematic view of display elements providing information at the user interface of the composite structure of the vehicle interior component according to an exemplary embodiment.

[0033] FIGURES 9A to 9E are schematic perspective views of a vehicle interior component shown as a door panel with the composite structure presenting a user interface providing for activation and use and deactivation of a display element shown as a control menu for the vehicle interior according to an exemplary embodiment.

[0034] FIGURES 10A and 10C are schematic perspective views of a vehicle interior component shown as a door panel with the composite structure presenting a user interface system configured as a control panel for a window of a vehicle door according to an exemplary embodiment.

[0035] FIGURES 10B and 10D are schematic side views of a door with window operated by the control panel of the user interface system according to an exemplary embodiment.

[0036] FIGURE 10E is a schematic perspective view of a vehicle interior component shown as a door panel with the composite structure presenting a user interface system configured as a control panel for a side view mirror of a vehicle according to an exemplary embodiment.

[0037] FIGURE 10F is a schematic side view of the side view mirror of the vehicle according to an exemplary embodiment.

[0038] FIGURES 11A to 11H are schematic perspective views a vehicle interior component shown as a console with the composite structure presenting a user interface system configured to charge/interconnect with a mobile device shown as a smart phone according to an exemplary embodiment.
FIGURE 11F is a schematic front view of display elements providing information at the user interface of the composite structure of the vehicle interior component according to an exemplary embodiment.

FIGURE 12A is a schematic exploded cross-section view of the composite structure with cover according to an exemplary embodiment.

FIGURES 12B and 12C are schematic cross-section views of the composite structure with cover according to an exemplary embodiment.

FIGURE 12D is a schematic top view of a display shown as an LED array layer for the composite structure with cover according to an exemplary embodiment.

FIGURE 12E is a schematic top view of a sensor shown as a capacitive sensor array layer for the composite structure with cover according to an exemplary embodiment.

FIGURES 13A to 13D are schematic cross-section/partial views of a composite structure with cover according to an exemplary embodiment.

FIGURE 14A is a schematic view of a display element shown as a control menu for the user interface of the composite structure for a vehicle interior component according to an exemplary embodiment.

FIGURES 14B through 14E are schematic top plan views of the user interface of the composite structure according to an exemplary embodiment.

FIGURES 15A and 15B are schematic perspective views of a vehicle interior component shown as a door panel with the composite structure presenting a user interface system providing control/interaction and output of lighting levels/decorative effects for the vehicle interior according to an exemplary embodiment.
FIGURE 15C is a schematic detail perspective view of a vehicle interior component shown as a door panel with the composite structure presenting a user interface system configured as a control panel and information display for the vehicle interior according to an exemplary embodiment.

FIGURES 16A and 16E are schematic exploded cross-section views of a composite structure with cover according to an exemplary embodiment.

FIGURES 16B to 16D and 16F to 16T are schematic cross-section views of a composite structure with cover according to an exemplary embodiment.

FIGURE 17A is a schematic cross-section view of a composite structure with cover according to an exemplary embodiment.

FIGURES 17B to 170 are schematic cross-section views of interaction by a vehicle occupant with a composite structure with cover according to an exemplary embodiment.

FIGURES 18A to 18D are schematic cross-section views of a composite structure with cover according to an exemplary embodiment.

FIGURES 19A to 19D are schematic cross-section views of a composite structure with cover according to an exemplary embodiment.

FIGURES 20A and 20B and 20H are schematic top plan views of a display shown as an LED array layer for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURES 20C and 20D and 20G are schematic side elevation views of a display shown as an LED array layer for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.
FIGURES 20E and 20F are schematic perspective views of a display shown as an LED array layer for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURES 21A and 21B are schematic top plan views of a sensor shown as a capacitive sensor array layer for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURES 21C and 21D are schematic side elevation views of a sensor shown as a capacitive sensor array layer for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURES 21E and 21F are schematic perspective views of a sensor shown as a capacitive sensor array layer for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURE 22A is a schematic top plan view of a sensor-display module for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURE 22B is a schematic exploded perspective view of a sensor-display module for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURES 22C and 22E are schematic perspective views of a sensor-display module for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.
FIGURE 22D is a schematic side elevation view of a sensor-display module for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURE 23A is a top plan view of a sensor shown as a capacitive sensor array layer for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURE 23B is a top plan view of a display shown as an LED array layer for a composite structure to provide a user interface on a vehicle interior component according to an exemplary embodiment.

FIGURE 24 is a schematic diagram of a controller/control system for a composite structure to provide a user interface to interoperate with vehicle systems and other systems/networks for a vehicle interior component according to an exemplary embodiment.

FIGURES 25A to 25D are schematic views of a display element shown as a control menu for the user interface of the composite structure for a vehicle interior component configured to interoperate with vehicle systems according to an exemplary embodiment.

FIGURES 26A to 26B are schematic flow diagrams of operation of a user interface of a composite structure for a vehicle interior component configured to interoperate with vehicle systems according to an exemplary embodiment.

FIGURE 27 is a schematic flow diagram of operation of a user interface of a composite structure for a vehicle interior component configured to interoperate with vehicle systems according to an exemplary embodiment.
FIGURES 28A to 28E are schematic flow diagrams of operation of a user interface of a composite structure for a vehicle interior component configured to interoperate with vehicle systems according to an exemplary embodiment.

FIGURES 29A to 29B are schematic flow diagrams of operation of a user interface of a composite structure for a vehicle interior component configured to interoperate with vehicle systems according to an exemplary embodiment.

DESCRIPTION

Introduction/Overview

Referring to FIGURES 1A-1B and 2A-2B, according to an exemplary embodiment a set of vehicle interior components shown as comprising a composite structure 10 (e.g. with cover/surface) are shown provided for a vehicle V with an interior I.

According to an exemplary embodiment as shown schematically in the FIGURES, a composite structure 10 (e.g. with cover/surface) may be provided on or in a vehicle interior component (shown as floor console FC in FIGURE 2B and door panel DP in FIGURE 2C) in a wide variety of forms with a composite of layers/components of a variety of types/materials and functions/performance attributes (see FIGURES 2C, 12A-12E, 16A-16T, 17A-170, 18A-18D, 19A-19D) connected to a controller/control system (see FIGURES 12B, 23A-23B and 24) and with a control program (see e.g. FIGURE 27) to present a user interface (see e.g. FIGURES 14A-14E and 15C) with an illuminated/display area 20 (e.g. shown as with a display element/image 20x in FIGURE 2B and control panel/menu in FIGURES 15C and 25A-25D) on a cover/exterior surface (e.g. surface of a type suitable for a vehicle interior component as shown generally in...
FIGURES 1B and 2A) accessible by a vehicle occupant. See also FIGURES 3A-3T (e.g. vehicle interior component 100 shown schematically with cover/surface of composite structure 110 providing user interface with menu/display element 120) and FIGURES 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E (e.g. showing schematically interaction by vehicle occupant with user interface at cover/surface of composite structure of vehicle interior component).

[0075] As indicated schematically in the FIGURES, according to an exemplary embodiment the composite structure may be comprised of any of a wide variety of forms and types of layers and subcomponents to provide the form and fit and function for integration with a vehicle interior component and/or interconnectivity through a user interface with vehicle systems and other systems and data/networks. See e.g. FIGURES 1B, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 25A-25D and 27 (showing interaction with vehicle occupant by contact/touch/feel and display/lighting/illumination). According to an exemplary embodiment, the composite structure with user interface for interaction may be provided on any of a wide variety of vehicle interior components such as trim, consoles, doors, panels, surfaces, structures, seats, systems, spaces, lighting, etc. See e.g. FIGURES 1B and 2A (showing example integration of the composite structure 10 with display on surface to provide a user interface/display on with seat backs, door panels, pillars, overhead/cockpit, instrument panel, consoles, doors, visors, backrests, walls, etc.). As indicated generally, the user interface for interaction provided by the composite structure for the vehicle interior may be configured to interconnect/integrate for data communication/interchange and control/monitoring with any of a wide variety of vehicle systems (including vehicle data from systems, cameras, data sources, on-board network, etc.) and other systems (e.g. data sources,
devices, objects, networks, internet, etc.) in the vehicle or external to the vehicle; according to an exemplary embodiment, the user interface may connect to devices (such as mobile phones, computing devices, etc.), systems (such as entertainment systems, gaming systems, etc.) and objects (e.g. detected/networked objects such as cargo, luggage, tags, etc.). According to an exemplary embodiment, the display of the user interface may be configured to present data/information (e.g. messages, text, images, status, reminders, directions, maps, alerts, etc.) and to present effects (e.g. display/visual effects for ambient lighting, color, tone, etc.) for decorative functions and/or user selected/preferred choice (e.g. for comfort, mood, purpose, convenience, etc.) at or on the vehicle interior component (e.g. individually or in coordination). See FIGURES IB, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F and 11A-11E. See also FIGURES 8D and 14D (e.g. example display of vehicle camera information on user interface on surface of composite structure of vehicle interior component).

[0076] According to an exemplary embodiment, the construction of the composite structure may designed/constructed and assembled to generally integrate with vehicle interior components in fit, form and function. See e.g. FIGURES IB and 2A-2C. For example, according to an exemplary embodiment as shown schematically in FIGURES 2B, the composite structure may comprise a cover layer T (e.g. translucent/semi-transparent in effect composite/surface layer such as textile/fabric layer providing a cover or a leather material, fiber material, etc. or a poly/plastic film cover material, etc.), a functional layer shown as layer E/F/N (e.g. which may provide one function or more of separation/positioning as a positioning layer E, cushioning/compliance such as by a foam material F, functionality from a functional layer N such as for heat exchanger/heating element/cooling, electrical interference protection/shielding, electronic connectivity, power interconnection for charging devices, etc.), a sensor/detector component C
shown as providing a system/array to detect input such as touch/proximity or movement/gesture from a user/vehicle occupant (e.g. a detection system, touch-sensitive array, capacitive touch surface as used with touch-screen devices or other touch-sensitive material, sensor array to detect proximity/motion above the surface, etc.), a functional layer E/F/N (such as to provide shielding, light direction/diffusion such as may alter the amplitude/magnitude or color of transmitted light), a display shown as light array/display layer L such as comprising a material substrate with an array of lighting devices (e.g. such as light-emitting device/diode elements), a bonding or backing/rigidifying/attachment layer for a base/structure or substrate S (such as a molded or formed plastic base/structure for a vehicle interior component). See also FIGURES 12A-12E, 16A-16T, 17A-170, 18A-18D, 19A-19D. As indicated in the FIGURES, according to an exemplary embodiment the layers/components of the composite structure will be selected and combined/assembled to facilitate the transmission of illumination/light from the display to and through the cover/exterior surface (e.g. to present the user interface such as with with display elements 20 and 20x). See e.g. FIGURES 2B-2C and 17J-170 and 19C.

[0077] According to an exemplary embodiment, including but not limited to as indicated in FIGURES 13A-13D, 16A-16T and 19A-19D, the composite structure (e.g. with cover/surface) may provide any of a wide variety of combinations of layers; for example, as indicated in FIGURE 13D, the surface may be provided as a composite material with a cover T and light array layer L which may be configured to be attachable to a base layer B or substrate layer S (e.g. for connection to a panel or component in a vehicle interior). According to an exemplary embodiment the composite structure (e.g. with cover/surface) may comprise a layered construction selected for a particular purpose for a vehicle interior component with each layer in a form configured for the purpose (e.g. in construction, thickness, positioning, etc.). See e.g.
FIGURES 2B, 13A-13D, 16A-16T and 17A-170. As indicated schematically, according to an exemplary embodiment the composite structure will be configured to provide intended functionality through the combination of layers arranged and constructed for the purpose (e.g. including translucence/semi-transparency to facilitate illumination from the display layer at the user interface presented on the surface of the composite structure) to present the user interface for vehicle/other systems. See FIGURES 12C, 17J-170, 24 and 27.

[0078] According to an exemplary embodiment as shown in the FIGURES, the composite structure 10 with a cover/exterior surface is configured to present user interface with sensor and display providing display elements 20 (e.g. icons, symbols, texts, images, panels, charging/connectivity for mobile devices, decorative effects, etc.) and connectivity to vehicle/other systems and networks; as indicated schematically, the composite structure 10 with display elements 20 at the user interface provides for integration (e.g. physically, visually, mechanically, electronically, etc.) with a wide variety of interior components and systems of the vehicle. See e.g. FIGURES IB, 2A-2C, 3A-3T and 8A-8D. As shown schematically in the FIGURES according to an exemplary embodiment, the composite structure with user interface may be integrated in or on a vehicle interior component in a manner to provide an appearance and feel provided by the cover/exterior surface and compliant/resilient layers beneath the cover. See e.g. FIGURES 3A-3T, 12C and 17A-170 (e.g. composite structure provides for compliant pressure/compression, touch/contact at surface and movement/detection at proximity of sensor). According to an exemplary embodiment, the cover/exterior surface of the composite structure may provide tactile feedback (e.g. shear/sliding feel) in response to contact/movement by the vehicle occupant detected by the sensor to facilitate accurate and convenient use/operation by touch/contact in interaction with the interface; according to an exemplary embodiment the sensor
may be configured to detect gestures/movement adjacent to the cover/exterior surface of the composite structure in interaction with the user interface. See e.g. FIGURES 3A-3T and 17A-170. See also FIGURE 27.

[0079] As shown schematically in FIGURES 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 25A-25D and 27 according to an exemplary embodiment, the composite structure may be configured to provide a system and method of operating the user interface with vehicle systems and other systems/networks from the vehicle interior component. See also FIGURES 25A-25D, 26A-26B, 28A-28E and 29A-29B (functional subsystem operation according to an exemplary embodiment). According to an exemplary embodiment, the composite structure for the vehicle interior component may be constructed to provide a cover/exterior surface to present a user interface and to provide features (e.g. by material design/selection, component design/selection, assembly/layering, etc.) suitable for a vehicle interior such as system integration (user/system compatibility and connectivity), decorative appearance (look, form and shape), color/texture, softness/firmness (including combination of soft/firm by thickness, placement, etc.), feel/touch/haptic sensation (by material/component selection, assembly, thickness, etc.), resistance to dirt/stains (by cover, treatment, etc.), repellence to water/fluids (by cover, treatment, etc.), convenient to maintain/clean (by form, cover, treatment, etc.), etc. See generally FIGURES 3A-3T and 9A-9E.

[0080] According to an exemplary embodiment as indicated schematically in the FIGURES, the composite structure may provide a user interface system for vehicle systems and other systems/devices and data/network connectivity. See e.g. FIGURES 1B, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 25A-25D and 27. As indicated schematically in FIGURES 12B, 19A-19D, 23A-23B, 24 and 27, the composite
structure may be provided with a control system (e.g. a computing or computer-based or microprocessor or data system such as with a computing device configured to monitor and control performance of functional subsystems of the structure/surface sensor C and display L) to provide the interconnectivity and the control/functional interface with vehicle systems and other systems/devices and data/networks (e.g. access to data sources on the vehicle/in the vehicle and external to the vehicle, on-vehicle network/networks, external networks including the internet, etc.). See also FIGURES 25A-25D, 26A-26B, 28A-28E and 29A-29B (functional subsystem operation according to an exemplary embodiment). According to an exemplary embodiment as indicated schematically in FIGURES 23A-23B, 24 and 27, the controller/control system for the user interface of the composite structure may comprise a control program and data connection (e.g. to networks including the internet, devices such as mobile devices, smart phones and tablets, data sources/storage, vehicle systems/subsystems, etc.); the controller/control system for the user interface of the composite structure may be configured with input/output interfaces to provide functionality for the vehicle occupant as indicated (for example) in FIGURES 23A-23B, 24 and 26A-26B, 27, 28A-28E and 29A-29B. See also FIGURES 1B, 2A-2C and 3A-3T.

[0081] As indicated schematically in FIGURES 3A to 3T, 24 and 27, according to an exemplary embodiment, the composite structure may be configured to provide a display element and/or control element appearing as a visual image/information content on the exterior/show surface of the cover; the display element/control element may be configured for interaction with an occupant of the vehicle; for example, an image may appear as a display element and present a control element such as a switch to actuate one or more vehicle systems and subsystems (e.g. by interface through or with the control system and vehicle systems/subsystems such as shown for example in FIGURES 4A-4F [HVAC/user comfort/ventilation/power window system, etc.].
FIGURES 5A-5F [seating system], FIGURES 6A-6F [seat heating/defrost control, speed control, door/window locks, etc.]). See also FIGURES 11A-1IF, 15C, 25A-25D, 26A-26B, 28A-28E and 29A-29B (functional subsystem operation through the user interface according to an exemplary embodiment).

[0082] As indicated schematically in FIGURES 2B and 7A-7F, the composite structure with cover/surface 10 may provide a variety of selective appearances (e.g. color/shading, lighting/intensity, decoration/decorative effect, etc.) of a display element 20 (e.g. menu, image, text, etc.); as indicated schematically in FIGURES 8A-8E and 15C, the composite structure may provide as display/control elements 20 a variety of visual images/effects including communications (e.g. indicators, functional displays, information display, data display, visual effect, messaging, notices/notifications, symbols, switches/controls, user interface, graphics, etc.). As indicated schematically in the FIGURES, communications/visual effects that may appear on the composite structure may be provided from any of a variety of systems/subsystems and data sources (e.g. including vehicle systems/subsystems, vehicle data, vehicle operation/instrumentation, network-data, mobile devices, etc.). For example, as indicated according to an exemplary embodiment in FIGURES 8A through 8D, the composite structure may provide data as to a vehicle system (e.g. "DOOR AJAR") or temperature (e.g. "20 C") or weather (e.g. by text and/or image) or a selected visual effect (e.g. two-tone panel) on a vehicle interior component.

[0083] As indicated schematically according to an exemplary embodiment in FIGURES 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E and 15A-15C, the occupant of the vehicle may through the user interface of the composite structure interact with and/or operate and control any of a variety of systems/subsystems on the vehicle and/or other
devices in or connected to the vehicle (e.g. mobile phone, tablet, data/computing devices, accessories, equipment, etc.). See also 24, 26A-26B, 27, 28A-28E and 29A-29B. For example, as indicated in FIGURES 9A-9E and 10A-10E, the composite structure may provide a control element (e.g. at a designated or selective location on an interior component) for window control or exterior mirror control; as indicated schematically according to an exemplary embodiment in FIGURES 11A-11E the composite structure may provide a control interface for a mobile device such as a mobile/ smart phone (e.g. providing telephony connection, data/internet connection, music/audio player connection, etc. by near-field communication (NFC), Bluetooth, Wi-Fi, or other data connectivity) for a vehicle occupant. See also FIGURES 3A-3T and 14A-14E.

[0084] As indicated schematically in the FIGURES, according to an exemplary embodiment the composite structure may be provided in any of a wide variety of forms to provide any of a wide variety of features and functions for a vehicle interior/component (e.g. with various combinations of layers of various types of materials/layers as indicated schematically). According to an exemplary embodiment the vehicle interior component with composite structure provides a user interface system to provide various functions and features for a vehicle/vehicle occupant as indicated schematically in the FIGURES; the composite structure/user interface system provides a visual display (through display light element array/grid layer L); the user interface/control (through a functional layer such as with the sensor providing a touch-sensitive layer C) so that information can be presented on the composite structure (such as surface 110/120) through a display of visual image/information for enhanced user interaction in a vehicle interior. See e.g. FIGURES 3A-3T, 4A-4F, 5A-5F, 6A-6F, 8A-8E, 9A-9E, 10A-10F, 11A-11F 14A-14E and 27.

[0085] According to an exemplary embodiment, a vehicle interior component may be configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems; the
component may comprise a composite structure 10 with display/control elements 20 configured to provide the user interface. See e.g. FIGURES 2A-2C, 14A-14E and 16A-16T. According to an exemplary embodiment shown schematically, the component may comprise (a) a cover providing an exterior surface; (b) a sensor; (c) a display; (d) a functional layer; the cover may comprise a translucent layer. See e.g. FIGURES 2B and 16A-16T. According to an exemplary embodiment as shown schematically in FIGURES 17A-170 and 27, the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover; the display may be configured to provide illumination at least partially visible through the exterior surface of the cover; operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor. See e.g. FIGURES 3A-3T, 14A-14E, 24 25A-25D and 27.

[0086] According to an exemplary embodiment, the cover may comprise at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials; the cover may comprise at least one of (a) film; (b) resin; (c) polycarbonate; (d) polyurethane; (e) polyvinyl material; (f) a composite of multiple plastic materials; (g) a composite of multiple materials. See e.g. FIGURES 13A-13D and 16A-16T.

[0087] According to an exemplary embodiment, the functional layer may be configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k)
interaction with a mobile device; (1) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging. See e.g. FIGURES IB, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 25A-25D and 27. According to an exemplary embodiment, the functional layer may comprise a positioning layer configured to retain positioning within the composite structure for operation of the sensor from input from the vehicle occupant; the positioning layer may comprise at least one of (a) a spacer; (b) a flexible spacer; (c) a shield for electromagnetic interference; (d) a foam material; (e) a plastic material. According to an exemplary embodiment, the functional layer may be at least partially integrated with at least one of (a) the cover; (b) the positioning layer; (c) a substrate of the composite structure. See e.g. FIGURES 2B-2C, 3A-3T, 16A-16T and 17A-170.

[0088] According to an exemplary embodiment, the composite structure further may comprise a foam layer under the cover. See e.g. FIGURES 2B and 16A-16T. According to an exemplary embodiment, the composite structure may comprise a resilient layer/form. See e.g. FIGURES 12C and 17B-17C. According to an exemplary embodiment, the resilient layer may comprise the foam layer; the resilient layer may comprise or be integrated with the cover. See e.g. FIGURES 13A-13D and 16A-16T.

[0089] According to an exemplary embodiment, the user interface may be configured so that input from the vehicle occupant at the exterior surface of the cover may be detected by the sensor. According to an exemplary embodiment, input from the vehicle occupant may comprise contact with the exterior surface of the cover. See e.g. FIGURES 12A-12E, 17A-170 and 27. According to an exemplary embodiment, the user interface may be configured so that output
from the display may be presented at least partially through the exterior surface of the cover. See e.g. FIGURES 1B, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, and 17J-17K. According to an exemplary embodiment, the sensor may comprise a capacitive touch panel configured to receive a touch input. See e.g. FIGURES 17D-17E.

[0090] According to an exemplary embodiment, the composite structure may comprise one of (a) the cover; (b) a positioning layer such as a spacer; (c) the sensor; (d) a foam layer; (e) the display; (f) a substrate. See e.g. FIGURES 2C and 16A-16T. According to an exemplary embodiment, the composite structure may comprise one of (a) the cover; (b) the positioning layer; (c) the sensor; (d) a diffuser layer; (e) the display; (f) a substrate. See e.g. FIGURES 13A-13D and 16A-16T. According to an exemplary embodiment, the composite structure may comprise one of (a) the cover; (b) the functional layer; (c) the sensor; (d) a positioning layer; (e) the display; (f) a substrate. See e.g. FIGURES 2C and 16A-16T.

[0091] According to an exemplary embodiment, the composite structure may be configured in a contoured shape. See e.g. FIGURES 2A-2C, 3A-3T, 18A-18D and 19A-19D. According to an exemplary embodiment, the composite structure may comprise a substrate. See e.g. FIGURE 2C. According to an exemplary embodiment, the composite structure may be coupled to at least one of (a) a trim component; (b) a panel; (c) a door; (d) a surface; (e) a console; (f) a base; (g) a structure. See e.g. FIGURES 1B and 2A-2C. According to an exemplary embodiment, the composite structure may comprise one of (a) the cover; (b) a positioning layer; (c) the display; the composite structure may comprise a base or substrate. See e.g. FIGURES 2B and 16A-16T.

[0092] According to an exemplary embodiment shown schematically, the vehicle interior component with composite structure to provide a user interface with vehicle systems may
comprise a control system configured to connect to vehicle systems and other systems/networks. See e.g. FIGURES 12B, 19A-19D, 24 and 27. According to an exemplary embodiment, the control system may be configured to facilitate operation by the vehicle occupant for at least one of (a) sending a signal to a control module, (b) controlling a motor, (c) providing a signal to a vehicle component, (d) providing electrical power to a vehicle component, (e) providing at least one of (1) visible feedback, (2) audible feedback, (3) tactile feedback, (4) haptic feedback to the vehicle occupant. See FIGURES 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, and 11A-11E. The vehicle interior component may comprise a controller for the composite structure. See e.g. FIGURES 24 and 27. According to an exemplary embodiment, the user interface may comprise a control panel presented at the exterior surface of the cover. See e.g. FIGURES 3A-3T, 14A-14E and 15C. According to an exemplary embodiment, the controller for the composite structure may be connected to the user interface. See e.g. FIGURES 23A-23B, 24 and 27. According to an exemplary embodiment, the control system may comprise a controller configured to send a control signal to at least one vehicle system. See e.g. FIGURES 26A-26B, 27, 28A-28E and 29A-29B. According to an exemplary embodiment, the vehicle systems comprise at least one vehicle system; a vehicle system may comprise at least one of (a) an indicator, (b) a display, (c) a climate control system, (d) an entertainment system, (e) a security system, (f) an engine control unit, (g) a data storage system, (h) a database, (i) a motor, (j) a vehicle seat, (k) a window regulator/control; (l) a network; (m) a data storage system; (n) a database. See e.g. FIGURES 2A, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 23A-23B, 24 and 27.

[0093] According to an exemplary embodiment, the user interface may be configured for interaction with a vehicle occupant by at least one of (a) touch at the exterior surface of the cover
detected by the sensor or (b) gesture adjacent to the exterior surface of the cover detected by the sensor. See e.g. FIGURES 17A-170. According to an exemplary embodiment, the sensor may comprise at least one of (a) an array; (b) a grid; (c) a foil; (d) a panel; (e) a touch panel; (f) a flexible panel; (g) a detector; (h) a proximity detector; (i) a capacitive touch panel; (j) a pressure sensitive panel. See e.g. FIGURES 16A-16T and 21A-21E.

[0094] According to an exemplary embodiment, the display may comprise at least one of (a) an array; (b) a grid; (c) a panel; (d) a display screen; (e) a flexible panel; (f) a lighting array; (g) a lighting device array; (h) a light-emitting device array; (i) a LED array; (j) a flexible LED array; (k) a flexible sheet. See e.g. FIGURES 20A-20H and 22A-22E. According to an exemplary embodiment, the display may be configured to display at least one of (a) data; (b) information; (c) vehicle system information; (d) an input panel; (e) a menu system; (f) an output panel; (g) an image; (h) a control panel. See e.g. FIGURES 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 25A-25D and 27. According to an exemplary embodiment, the composite structure may comprise a composite surface. See FIGURES 2A-2C and 12A-12E, 16A-16T, 17A-170, 18A-18D and 19A-19D. According to an exemplary embodiment as shown schematically, the cover comprises an at least partially translucent cover; illumination from the display at the exterior surface of the composite structure comprises visible light at least transmitted through the sensor and through the functional layer and through the at least partially translucent cover (e.g. configured as an decorative layer/exterior surface). See e.g. FIGURES 2B, 3F and 17J-170.

[0095] According to an exemplary embodiment shown schematically, a vehicle interior component may be configured for interaction with an occupant of a vehicle comprising vehicle systems; the component may comprise a composite structure configured to provide a user
interface for interaction with the occupant. See FIGURES 12A-12E, 16A-16T, 17A-170, 18A-18D and 19A-19D. According to an exemplary embodiment the component may comprise a cover providing an exterior surface, a sensor, a display and a functional layer; the cover may comprise a translucent layer; the sensor may be configured to detect input from the occupant at or adjacent to the exterior surface of the cover. According to an exemplary embodiment as shown schematically in FIGURES 2B and 17J-170, the display may be configured to provide illumination at least partially visible through the exterior surface of the cover; operation of the user interface for the occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor. According to an exemplary embodiment as shown schematically, the user interface may comprise a display element from illumination from the display that may be configured to be selectively positioned on the exterior surface of the cover; the display element of the user interface may comprise at least one of (a) an icon; (b) a symbol; (c) a button indicator; (d) a menu system; (e) a display panel image; (f) an information display image; (g) a graphics display image; (h) a control panel; (i) an input panel; (j) a touch screen; (k) a repositionable image; (l) a projected image. See e.g. FIGURES 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 25A-25D and 27. According to an exemplary embodiment, the display element of the user interface may be configured to be positioned on the exterior surface of the cover by at least one of (a) contacting of the exterior surface of the cover at a position where the display element is to be displayed when the display element is not displayed; (b) contacting the exterior surface of the cover where the display element is displayed and dragging the display element along the exterior surface of the cover to a position where the display element is to be displayed. See e.g. FIGURES 3A-3E, 3G and 3H-3I. See also FIGURES 17A-170, 26A-26B, 27, 28A-28E and 29A-29B.
According to an exemplary embodiment, a vehicle interior component may be configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. See e.g. FIGURES 1B, 2A, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 25A-25D and 27. According to an exemplary embodiment shown schematically, the component may comprise a composite structure configured to provide the user interface; the cover may comprise a translucent layer; the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover; the display may be configured to provide illumination at least partially visible through the exterior surface of the cover; operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor. See FIGURES 3A-3T, 16A-16T and 17A-170 and 27.

According to an exemplary embodiment as shown schematically in FIGURES 17A-170, the user interface may be configured (a) to be activated for operation by compressing the cover toward the sensor (see distance HA in FIGURE 17H); (b) to be operated by contacting the exterior surface within a distance where input can be detected by the sensor (see distance HB in FIGURE 17I); (c) to be operated by movement directed by the vehicle occupant above the exterior surface of the cover within a distance where input can be detected by the sensor (see FIGURES 17F-17G). According to an exemplary embodiment, the user interface may be configured for interaction with a vehicle occupant by at least one of (a) touch at the exterior surface of the cover detected by the sensor or (b) movement/gesture adjacent to the exterior surface of the cover detected by the sensor. See e.g. FIGURES 17B-17G. According to an exemplary embodiment, the user interface may be configured for (a) a sleep mode (e.g. low power consumption, display off, etc.) and awakening from the sleep mode by compressing the
cover toward the sensor by a first threshold distance and (b) for an awake mode (e.g. ready for operation/interface with vehicle occupant) providing a control panel and operating the control panel by touching the exterior surface of the cover within a second threshold distance from the sensor. See e.g. FIGURES 17A and 17H-17I. See also FIGURES 26A-26B, 27, 28A-28E and 29A-29B (flow diagrams of operation according to an exemplary embodiment).

[0098] According to an exemplary embodiment, the user interface may comprise a display element on the exterior surface of the cover. According to an exemplary embodiment as shown schematically for example in FIGURES 2A-2C, 3A-3T, 8A-8E, 10A-10E, 11A-11F and MA-HE, the display element of the user interface may comprise at least one of (a) an icon; (b) a symbol; (c) a button indicator; (d) a menu system; (e) a display panel image; (f) an information display image; (g) a graphics display image; (h) a control panel; (i) an input panel; (j) a touch screen; (k) a repositionable image; (l) a projected image. According to an exemplary embodiment, the display/design element (e.g. icon, symbol, image, message, button, etc.) of the user interface may be configured to be selectively positionable on the exterior surface of the cover by interaction with the vehicle occupant. See e.g. FIGURES 2A-2B, 3A-3E, 3G, 3H-3I, 3K-3T and 27.

[0099] According to an exemplary embodiment, a vehicle interior component may be configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. See e.g. FIGURES IB, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, HA-14E, 15A-15C, 25A-25D and 27. According to an exemplary embodiment shown schematically, the component may comprise a composite structure configured to provide the user interface; the cover may comprise a translucent layer; the cover may comprise at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g)
natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials. See FIGURES 2B and 16A-16T. According to an exemplary embodiment as shown schematically in FIGURES 2A-2C, 3A-3T, 8A-8E, 17J-170 and 27, the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover; the display may be configured to provide illumination at least partially visible through the exterior surface of the cover; operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor. See also FIGURES 26A-26B, 28A-28E and 29A-29B.

[00100] According to an exemplary embodiment, a vehicle interior component may be configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems; the component may comprise a composite structure configured to provide the user interface. See FIGURES 2A-2B, 24 and 27. According to an exemplary embodiment as shown schematically, the cover may comprise a translucent layer; the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover; the display may be configured to provide illumination at least partially visible through the exterior surface of the cover. According to an exemplary embodiment as shown schematically, the functional layer may be configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p)
thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging. See e.g. FIGURES 1B, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 25A-25D and 27. According to an exemplary embodiment, operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor. See e.g. FIGURES 3A-3T and 17A-170 and 27.

[00101] According to an exemplary embodiment, a method of operating a vehicle interior component comprising a composite structure to provide a cover with an exterior surface and a sensor and a display configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems may comprise the steps of: (a) to activate the user interface for operation compressing the cover toward the sensor to a distance where input can be detected by the sensor; and (b) to operate and/or to position the user interface contacting the exterior surface within a distance where input can be detected by the sensor. According to an exemplary embodiment, the cover may comprise a translucent layer/material. See FIGURES 12C, 17A-170 and 27. See also FIGURES 26A-26B, 28A-28E and 29A-29B. According to an exemplary embodiment, the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover from at least one of (a) touch or (b) pressure or (c) proximity or (d) movement or (e) gesture. See FIGURE 17A-170 and 27. According to an exemplary embodiment, the display may be configured to provide illumination at least partially visible through the exterior surface of the cover. See FIGURES 2B and 17J-17K. According to an exemplary embodiment, the cover may comprise a translucent layer. See FIGURES 16A-16T and 17A-170. According to an exemplary embodiment, the sensor may be configured to detect
input from the vehicle occupant at or adjacent to the exterior surface of the cover; as shown schematically, the sensor C may comprise a mesh/grid of a commercially available configuration with elements shown as conductors WM configured into an array that can be connected to a controller/control system. See e.g. FIGURES 21A-21D, 23A, 24 and 27.

According to an exemplary embodiment, a method of operating a vehicle interior component comprising a composite structure to provide a cover with an exterior surface and a sensor and a display configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems may comprise the steps of: (a) pressing the cover toward the sensor to a distance where input can be detected by the sensor; and (b) contacting the exterior surface within a distance where input can be detected by the sensor. See FIGURES 17A-170 and 27. See also FIGURES 26A-26B, 28A-28E and 29A-29B. The cover may comprise a translucent layer; the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover from at least one of (a) touch; (b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning. The display may be configured to provide illumination at least partially visible through the exterior surface of the cover; operation of the user interface for the vehicle occupant may comprise at least one of (a) output from illumination from the display and (b) input detected by the sensor. See FIGURE 17A-170 and 27. The step of pressing the cover toward the sensor may comprise compressing the cover toward the sensor to a first threshold distance where input can be detected by the sensor to actuate the user interface. The step of contacting the exterior surface may comprise contact within a second threshold distance where input can be detected by the sensor to operate and/or to position the user interface. See FIGURES 17H and 171 (distance HA and distance HB). The step of pressing the cover toward the sensor may comprise deforming the composite structure at least partially. See e.g. FIGURE
The method may further comprise the step of movement at or adjacent the exterior surface detected as input by the sensor; the step of contacting the exterior surface within a second threshold distance may not require deformation of the composite structure. See FIGURES 17A-170 and 27.

According to an exemplary embodiment, a vehicle interior component may be configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. The component may comprise a composite structure configured to provide the user interface with a cover providing an exterior surface and a sensor and a functional layer. See e.g. FIGURES 2B and 16A-16T. The cover may comprise a translucent layer. The cover may comprise at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials. The sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover from at least one of (a) touch; (b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning; operation of the user interface for the vehicle occupant may comprise input detected by the sensor. See FIGURES 17A-170 and 27. See also FIGURES 26A-26B, 28A-28E and 29A-29B.

According to an exemplary embodiment, a vehicle interior component may be configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems. See e.g. FIGURES 3A-3T, 24 and 27. The component may comprise a composite structure configured to provide the user interface with a cover providing an exterior surface and a display and a functional layer. See FIGURES 2B, 13A-13D and 16A-16T. The display may be
configured to provide illumination at least partially visible through the functional layer and through the exterior surface of the cover; interaction with the user interface for the vehicle occupant may comprise visible output from illumination from the display. See e.g. FIGURES 3A-3T and 17J-170.

[00105] According to an exemplary embodiment, a vehicle interior component may comprise one of (a) a surface layer positioned on top of other layers at least partly translucent and at least partly accessible by hand for a user, (b) a layer with a capacitive touch panel, (c) a layer with a flexible spacer, and (d) a display covered by the surface. See FIGURES 2A-2C and 16A-16T. According to an exemplary embodiment, the surface layer/cover, sensor shown as capacitive touch panel, positioning/spacer layer and display may be combined (e.g. in a stack) to create a configuration for a user interface area characterized by a soft and at least partly translucent surface; as indicated, sufficient areas of the layers between the display and the surface are translucent for the light emitted from the display; the sensor such as a capacitive touch panel may be provided with a trigger position on or below the surface from the view of the user (e.g. to operate as a switch to activate the user interface); the area of the cover/surface of the composite structure presenting the user interface may be used as an integrated control/touch panel (e.g. for input) and display panel (e.g. for output). See e.g. FIGURES 3A-3T and 17J-170.

[00106] According to an exemplary embodiment as shown schematically in FIGURES 2A-2C, the composite structure may comprise a translucent exterior/cover surface (e.g. "A-surface" or "show surface" in the vehicle) and provide a contoured/formed surface or three-dimensional shape (e.g. holding a shape of regular geometrical bodies/structures for vehicle interior components). According to an exemplary embodiment as shown schematically in FIGURES 12A-12E, 13A-13D, 16A-16B, and 17A-170, the functional/foam/positioning layer
of the composite structure may comprise a flexible material/spacer configured to be deformed by
the vehicle occupant in use/operation of the user interface; according to an exemplary
embodiment shown schematically in FIGURES 12C and 17J-17K, deformation of the surface of
the composite structure at the user interface operates as a switch to activate the user interface for
operation (and deactivate according to an exemplary embodiment) (e.g. when the sensor detects
a "trigger"/threshold proximity the user interface is switched on/activated to be operational). See
also FIGURES 26A-26B, 27, 28A-28E and 29A-29B.

[00107] According to an exemplary embodiment as shown schematically in FIGURES
12A-12C and 16A-16T, the translucent surface may comprise a textile/fabric/sheet and/or a
fleece and/or a plastic (such as like polycarbonate PC, polyurethane PUR, polyvinyl chloride
PVC, etc. in a layer/cover or film) and/or leather and/or natural fiber; the surface material may be
perforated to improve the visibility of the illumination/light from the display. See e.g. FIGURE
20H. According to an exemplary embodiment as shown schematically, the
positioning/functional/foam layer that may provide the spacer E may comprise a fabric and/or a
foam material that is deformable and may be configured to perform electromagnetic (e.g. EMV)
shielding and may be configured to shield/direct light from the display/LED array for the user
interface (e.g. directing light from display/LED elements to the surface). See e.g. FIGURES 2B,
13A-13D, 16A-16T and 20G-20H.

[00108] According to an exemplary embodiment as shown schematically in FIGURES
20A-20H and 22A-22E, the display may comprise at least one light emitting diode system; the
display system may comprise an array of light emitting diodes (e.g. such as surface mount LED
elements on a flexible material); according to an exemplary embodiment the display system may
comprise an light array such as a conventional flexible LED array/panel system or a high
resolution OLED array/panel system. See FIGURES 16A-16T (showing light array such as LED/OLED array). See also FIGURES 22A-22E (display/sensor module shown schematically with high resolution LED/OLED array). As indicated schematically in FIGURE 12D, the light array/display layer L may comprise an array of light-emitting diode (LED) elements operable as a display to present various images, text, messages, etc. See e.g. FIGURES 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E and 14A-14E. As shown schematically in FIGURES 20A-20H and 22A-22E, the array may be sized and configured with a resolution suitable for the application/use (e.g. with smaller LED elements, with closer-positioned LED elements, with surface-mount LED elements [e.g. sized 20 to 50 mm or other size] with varied brightness/color or optical performance, with power consumption/efficiency, etc.) as intended or selected for the purpose/need in the vehicle interior. See e.g. FIGURES 1B, 2A-2C, 3A-3T and 15A-15C. According to an exemplary embodiment, the display L of the composite structure 10 presenting the user interface with display elements 20 may comprise a commercially available configuration (e.g. panel, array, etc.) that can be connected to a controller/control system for operation/functionality and interaction with vehicle systems and other systems (e.g. data/network connectivity). See e.g. FIGURES 2A-2B, 20A-20H, 23B, 24 and 27.

[00109] According to an exemplary embodiment as shown schematically in FIGURES 3A-3T and 8A-8E, in operation of the user interface, the display may be configured to selectively emit light in response to a signal from the sensor; the sensor may be configured to receive an input and transmit a signal (e.g. the sensor such as a capacitive touch panel may be configured for decreased electrical resistance as pressure may be applied to the panel). See also FIGURES 23A-23B, 24 and 27. According to an exemplary embodiment as shown schematically in
FIGURES 2B, 12A-12E, 13A-13D, 16A-16T, 17A-170, 18A-18D and 21A-21F, the sensor (and other layers) of the composite structure may be flexible and may be formed into various different shapes. According to an exemplary embodiment, the composite structure may comprise a functional layer which has at least partly a pattern of electrical conductors which are heated by current; thermal textile (e.g. positive temperature coefficient yarn/PTC yarn) may be used to control the heating; the composite structure/system may comprise at least partly a layer with Peltier elements (e.g. textile Peltier elements) cooled by current; thermal management may be implemented according to an exemplary embodiment at a functional layer (shown schematically as layer N and/or layer N/HS); the functional layer for thermal management may comprise an electrically conductive textile/yarn; a controller may be used to control the heating/cooling at a layer such as shown by thermal management layer HS. See e.g. FIGURES 2A-2C, 13A-13D and 16A-16T. See also FIGURES 24, 26A-26B, 27, 28A-28E and 29A-29B.

[00110] According to an exemplary embodiment as shown schematically in FIGURES 2B and 12A-12C, the composite structure may comprise a stack of layers configured to be mounted on a structure/frame or body for a vehicle interior component where the user interface is to be provided for a vehicle occupant to interact with vehicle systems and other systems/networks. See also FIGURES 14A-14E, 24 and 27.

[00111] According to an exemplary embodiment, the composite structure may comprise a sensor C configured as a component/system to provide the user interface system; as indicated schematically, the sensor C may comprise a sensor/layer in the form of a capacitive touch panel, which may be calibrated to detect proximity and motion at or adjacent to the surface of the cover (e.g. to recognize contact/touch and movements/gestures of the user as input); the component/system may comprise a layer with a pattern (e.g. shown schematically as a
formed/printed conductive pattern WM on sensor array C in FIGURE 23A) configured to detect/sense and located pressure on the surface of the component/system. See e.g. FIGURES 17A-170, 21A-21F, 23A, 24 and 27. According to an exemplary embodiment, the component/system may comprise and integrate as a functional layer an actuator which vibrates the surface (e.g. providing haptic feedback for a vehicle occupant interacting with the surface). See e.g. FIGURES 13A-13D and 16A-16T. As shown schematically according to an exemplary embodiment, a controller may be further configured to send a control signal to at least one of (a) an indicator, (b) a display, (c) a climate control module, (d) an entertainment control module, (e) a security control module, (f) an engine control unit, (g) a data store, (h) a database, (i) a motor, (j) a vehicle seat, (k) a window regulator/control. See e.g. FIGURES 23A-23B and 24 (showing schematically a controller or a connection to a computer system to manage control of the user interface interactions such as display/lighting, etc. using a control program). According to an exemplary embodiment, a method of using a vehicle interior component may be characterized by the detection by the sensor of (a) a pattern of finger tips and/or hand movements on the surface; (b) and/or gestures of the user or a combination of movements and gestures and touches. See FIGURES 17A-170 and 27. See also FIGURES 26A-26B, 28A-28E and 29A-29B. According to an exemplary embodiment as shown schematically, the pattern, movements or gestures detected at the sensor may change the displayed control element or visual appearance (displayed features) and/or make the displayed features moveable by touch or wipe (repositionable) and/or move the sensitivity of the touch panel fixed to the displayed features. See e.g. FIGURES 3A-3T and 17A-170. According to an exemplary embodiment, a method of using a vehicle interior component may comprise a set of calibrated hand/finger movements by a vehicle occupant to operate the user interface at the composite structure (e.g. a double finger-tip of two fingers,
activates a set of functions, e.g. window-lift operation, and repeat of that double finger-tip of two fingers activates a next set of functions such as climate control). See FIGURES 26A-26B, 28A-28E and 29A-29B. See also FIGURES 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E and 27. According to an exemplary embodiment, a method of using a vehicle interior component presenting a user interface on the surface/cover of a composite structure may comprise a vehicle occupant having the capability to "paint" (e.g. by using parts/palm of the hand) with light on the surface/cover (e.g. an option to illuminate selectively the surface of the composite structure with illumination or displayed light from the display). See FIGURES 3G and 17L-17M. See also FIGURES 26A-26B and 29A-29B. According to an exemplary embodiment, a method of using a vehicle interior component may comprise that the user interface at the composite structure will vibrate (e.g. haptic feedback from an actuator in a functional layer N) to provide a feedback a vehicle occupant (e.g. feel/haptic sense at the fingers of the vehicle occupant to confirm the activation). See e.g. FIGURES 2B and 16A-16T. According to an exemplary embodiment, a method of using a vehicle interior component may comprise that a drag/drop (e.g. slide/throw) gesture of the hand of a vehicle occupant may reposition a display element (such as an image, icon, menu, feature, etc.) displayed on the cover/surface of the composite structure. See FIGURES 3H-3I and 17. According to an exemplary embodiment, a method of using a vehicle interior component may comprise that a gesture or movement (e.g. moving hand) activates the user interface to awake and display information/views on the cover/surface. See e.g. FIGURES 17D-17E and 26A-26B. See also FIGURES 3A-3T.

[00112] According to an exemplary embodiment, a method of using a vehicle interior component comprising a composite structure with a layer that may be heated and/or cooled may
characterized by (a) that the heating and/or cooling may be used to provide comfort to the vehicle occupant (including any passenger) and/or (b) that at least one cooled area of the surface provides feedback information to the passenger and/or (c) that at least one heated area of the surface provides feedback information to the passenger. See FIGURES 23A-23B, 24, 26A and 27.

[00113] According to an exemplary embodiment, a method of using a vehicle interior component may comprise that the composite structure with cover/surface in the area of the air conditioning outlet/symbol may be configured to provide feedback to confirm the activation of the air conditioning system; the composite structure in the area of the heating outlet/symbol may be configured to provide a feedback to confirm the activation of the heating system (e.g. a thermal management/functional layer may comprise and integrate a thermocouple, thermometer, etc. to monitor and control thermal response/status in the vehicle interior). See FIGURES 16A-16B and 24. See also FIGURE 26A.

[00114] According to an exemplary embodiment, a method of using a vehicle interior component may include a sensor such as pressure sensitive layer and/or an optical device which could detect the position of an object lying on a surface may be characterized by the steps of marking the position of the object with light from the display layer (e.g. outline or fill with color); marking proposed fixation points; display instructions near to the detected object; and display symbols near to the detected object; in a compartment/trunk at least one object may be marked for fixation and/or proposed fixation points are illuminated and/or instructions for fixation are given with regards to size and weight. See e.g. FIGURES 1B and 24.

[00115] According to an exemplary embodiment, a user interface system for a vehicle interior may comprise a contact surface at the cover layer T; a sensor shown as a capacitive
touch panel may be covered by the contact surface; a positioning layer shown as a spacer may be coupled to the touch panel; and a display may covered by the spacer and configured to emit light/illumination through the cover layer. See e.g. FIGURES 2A-2C and 14A-14E. According to an exemplary embodiment as shown schematically in FIGURES 17J-170, the spacer, the sensor (e.g. a projected capacitive touch panel or other component/technology) and the cover/contact surface are configured to be translucent to allow light emitted by the display to pass through the contact surface. See also FIGURES 13A-13D and 16A-16T. According to an exemplary embodiment as shown schematically, the cover/ exterior contact surface may comprise a textile; the positioning layer/spacer may comprise a foam material. See FIGURES 2B, 12A-12E, 13A-13D, 16A-16T, 17A-170 and 18A-18D. According to an exemplary embodiment, the display may comprise at least one light emitting diode; the display may comprise a flexible material comprising an array of light emitting diodes; the display may be configured to selectively emit light in response to a signal from the sensor. See FIGURES 20A-20H and 23B. See also FIGURES 17A-170 and 27. According to an exemplary embodiment, the composite structure of the vehicle interior component may comprise a controller configured for operation by a vehicle occupant for at least one of (a) sending a signal to a control module, (b) controlling a motor, (c) providing a signal to a vehicle component, (d) providing electrical power to a vehicle component, (e) providing at least one of (1) visible feedback, (2) audible feedback, (3) tactile feedback, (4) haptic feedback to the vehicle occupant; the controller may be further configured to send a control signal to at least one of (a) an indicator, (b) a display, (c) a climate control module, (d) an entertainment control module, (e) a security control module, (f) an engine control unit, (g) a data store, (h) a database, (i) a motor, (j) a vehicle seat, (k) a window regulator/control. See FIGURES 1B, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-
According to an exemplary embodiment, a user interface system for a vehicle interior may be provided by a composite structure with a cover or contact surface; a sensor such as a capacitive touch panel covered by the cover or contact surface; a positioning layer such as a spacer coupled to the touch panel; and a display covered by the spacer configured to emit light. See FIGURES 2B, 13A-13D, 16A-16T, 19A-19D, 20A-20H. According to an exemplary embodiment as shown schematically, the positioning layer (e.g. spacer), the sensor (e.g. capacitive touch panel) and the cover/contact surface are configured to be translucent to allow illumination from (light emitted by) the display to pass through the cover/contact surface; the contact surface may comprise a textile; the display may comprise a flexible material comprising an array of light emitting diodes. See 12A-12E, 16A-16T, 17A-170, 18A-18D, 19A-19D and 20A-20H. According to an exemplary embodiment as shown schematically in FIGURES 20A-20H, the display may be configured to selectively emit light in response to a signal from the capacitive touch panel. According to an exemplary embodiment as shown schematically in FIGURES 21A-21F, the sensor shown as capacitive touch panel may be configured to receive a touch input and transmit a signal at a user interface provided at the composite structure. See also FIGURE 23A. (According to an exemplary embodiment as shown schematically, a sensor such as a capacitive touch panel may be configured for calibration of detected signals corresponding to movement and location of the hand of a vehicle occupant and/or touch and the application of pressure, see FIGURES 17J-170, 21A-21F and 23A.)

According to an exemplary embodiment, the composite structure/system may comprise a controller provided through a user interface and configured for operation of vehicle
systems and interconnection with other systems/networks by a vehicle occupant. See FIGURES 12B, 23A-23B, 24 and 27.

[00118] According to an exemplary embodiment, the composite structure or component may be configured and comprised to provide a user interface to facilitate interactions by a vehicle occupant with vehicle systems and subsystems including but not limited to vehicle systems as shown in the FIGURES.

Construction of Composite Structure

[00119] According to an exemplary embodiment shown schematically in the FIGURES, a composite structure for the vehicle interior may comprise a combination of multiple layers of a form/material and with a type arranged and constructed to form various components providing form and fit and function according to design intent and/or requirements (e.g. for automotive use in a vehicle interior). See e.g. FIGURES IB, 2A-2C, 13A-13D and 16A-16T. According to an exemplary embodiment shown schematically, the composite structure comprises a set of layers of materials/components configured to present a user interface system for a vehicle occupant to interact with vehicle systems/other systems (e.g. cover layers such as layer T/TH/PC/PVC/PUR/TPO, integrated layers such as with layer E/F/N, functional layers such as layer N/HS/D, base/bond/substrate layers such as layer B/S, sensor layer S, display layer L, positioning layer E, foam layer F, etc.). See FIGURES IB, 2A-2C, 12A-12H, 13A-13D, 15A-15C, 16A-16T, 17A-170, and 18A-18D (configuration of component/layer construction of composite structure according to an exemplary embodiment). See also FIGURES 23A-23B, 24 and 27 (controller/control system and operation).
According to an exemplary embodiment, the composite structure for a vehicle interior component shown as multilayer structure 10 may be configured with a user interface comprising a sensor/detector C (e.g. for input) and a display/light system D (e.g. for output) to facilitate interaction by a vehicle occupant (e.g. at a display element such as a panel/area 20 for input and/or output) with vehicle systems and other systems/devices and networks/data. See generally FIGURES IB, 2A-2C, 3A-3T, 8A-8E, 11A-11F, 12A-12H, 13A-13D, 14A-14E, 15A-15C, 16A-16T, 17A-170, 18A-18D, 20A-20H, 21A-21F, 22A-22E, 24 and 27. According to an exemplary embodiment, the composite structure configured to provide a user interface to vehicle systems/other systems may comprise a display/light array with no sensor/sensor array. See FIGURES 19A-19D and 23B. According to an exemplary embodiment, the composite structure may comprise a sensor array with no light array. See e.g. FIGURES 17B-17F and 23A.

According to an exemplary embodiment, the composite structure with cover may comprise multiple physical/structural and/or functional layers in a variety of various combinations to provide a user interface for a vehicle occupant to facilitate interaction with vehicle systems and other systems/networks from the vehicle at the user interface. See e.g. FIGURES IB, 2A-2C, 3A-3T, 8A-8E, 23A-23B, 24 and 27. See also FIGURES 26A-26B, 28A-28E and 29A-29B.

According to an exemplary embodiment, the composite structure may comprise a substrate; the composite structure may be coupled to at least one or more components in a vehicle interior such as (a) a trim component; (b) a panel; (c) a door; (d) a surface; (e) a console; (f) a base. See e.g. FIGURES IB and 2A-2C. According to an exemplary embodiment as shown schematically and representationally in the FIGURES (and in other forms/arrangements), various layers and components may be combined and/or arranged and integrated and/or omitted.
in construction of the functional system of the composite structure to provide a user interface for a vehicle interior component with vehicle systems and other systems/networks. See e.g. FIGURES 12A-12E, 13A-13D, 16A-16T, 17A-170, 18A-18D, 19A-19D, 23A-23B, 24 and 27.

Cover/Exterior Surface Layer (T/TH/PC/PUR/PVC/TPO/film/etc.)

[00123] According to an exemplary embodiment, the surface of the exterior layer or cover may comprise or be constructed/formed/treated to provide any of a variety of effects to facilitate any of a wide variety of visual and/or physical and/or virtual interactions with and through the composite structure of the vehicle interior component.

[00124] According to an exemplary embodiment, the cover or exterior surface/layer of the composite structure may be provided and configured to provide certain properties or combinations of properties intended to fulfill design intent and/or requirements. According to an exemplary embodiment, the exterior layer may be configured to provide the visual/decorative appearance of the composite structure of the vehicle interior component (e.g. provided in a color/tone and etc.); the exterior layer may exhibit properties of texture/haptic sensation (e.g. proper softness of feel) for a vehicle occupant; the exterior layer may function as a barrier/membrane for the composite structure of the vehicle interior component and provide for water/liquid repellence and ease of cleaning (e.g. stain resistance, dirt repellence, impregnation with anti-stain compound, etc.); the exterior layer may be selected or constructed to transmit light (e.g. provide translucence for light from a light source such as a display shown as an LED array in the composite structure of the vehicle interior component); the exterior layer may be selected and constructed to present a display element or information panel for a user interface;
the exterior layer may be selected and constructed to function as a control panel for a user interface. See generally FIGURES 1B, 2A-2C, 3A-3T, 8A-8E, 11A-11F, 12A-12E, 13A-13D, 14A-14E, 15A-15C, 16A-16T, 17A-170, 18A-18D, 19A-19D. See also FIGURES 24 and 27.

[00125] According to an exemplary embodiment, the exterior layer may be configured for form and fit and function of the composite structure of the vehicle interior component. For example, the layer may comprise or be provided as a fabric/textile sheet. According to an exemplary embodiment, the fabric layer may be comprised of one or more materials in a range of thickness between 0.2 and 0.5 mm (or any other suitable thickness). According to an exemplary embodiment, the layer may comprise or be provided from a leather material (e.g. of a type which incorporates translucence of visible light or is selected and treated to provide for translucence of visible light) in a thickness of a range of 0.2 to 1.2 mm (or any other suitable thickness); the cover or outer surface/exterior surface may comprise any of a wide variety of materials provided in any of a wide variety of thickness suitable for the purpose. See e.g. FIGURES 13A-13D, 16A-16T and 17A-170. According to an exemplary embodiment, the layer may comprise or be provided as a plastic/poly material such as polycarbonate (e.g. in a film, layer, etc. with a thickness in a range or polyurethane/vinyl (e.g. in a film, layer, etc.). According to an exemplary embodiment, the exterior layer may comprise or be constructed from any of a variety of other woven or non-woven materials (e.g. fabric, textile, fiber, skin, film, etc.). According to an exemplary embodiment, the cover layer may comprise or be constructed of materials that facilitate heat transfer and/or other heating or cooling effects (e.g. conductivity, ventilation, Peltier effect, etc.).

[00126] According to an exemplary embodiment, the cover may comprise or be constructed of a variety of other types of materials and in a variety of other thicknesses
configured to provide the form and fit and function for the composite structure of the vehicle interior component. According to an exemplary embodiment, the cover may comprise or be constructed separately or as a composite of multiple materials and/or of treated materials (e.g. coated, painted, backed, treated, multi-layer etc.) for use in a vehicle interior. According to an exemplary embodiment, the cover may comprise or be constructed/formed to incorporate one or more other functional layers of the composite (e.g. positioning/spacer layer, diffuser layer, heating layer, cooling layer, etc.).

[00127] According to an exemplary embodiment, the exterior layer/surface or cover provides the visual/tactile physical user interface (e.g. for the human machine interface (HMI)) and facilitates the interaction between the vehicle occupant and the vehicle through the composite structure of the vehicle interior component (e.g. as cover for other layers of the composite structure of the vehicle interior component). See e.g. FIGURES 3A-3T and 17A-170 and 27.

[00128] According to an exemplary embodiment, the exterior layer or cover may comprise or be constructed/formed/treated to provide one or more of a variety of features and/or properties such as decorative appearance, color (e.g. tone and shade), visual texture (e.g. gloss, matte, grain, uniformity, smoothness, gripping, adhesion, etc.), feel (tactile sensation, haptic sensation/functionality, firmness, softness, etc.), resilience (e.g. to wear, abrasion, touching, etc.), durability (e.g. to environmental conditions such as heat/cold and humidity, repellence (e.g. to spills/liquids, dirt, etc.), flexibility (e.g. stiffness, etc.), translucence, convenience (e.g. easy to maintain, ease to clean, etc.), recyclability (e.g. material selection for reuse at end of life), uniformity (e.g. visual/physical consistency with other interior components of the vehicle, etc.), thermodynamic performance (e.g. heating and/or cooling), interconnectivity (e.g. integrated with
electronic/electrical/data interfaces for other devices and components such as charging and data connection), etc. According to an exemplary embodiment, the exterior or cover layer may comprise or be constructed/formed in a generally uniform (e.g. monolithic) form or to provide multiple segments (e.g. with varying characteristics such as varying uniformity, translucence, inserts such as of other types/materials, etc.).

[00129] According to an exemplary embodiment, as shown schematically in FIGURES 2A-2C, the exterior layer may comprise a cover or skin of a form and material construction provides a haptic effect (e.g. including for interaction with the sensor array) and translucent effect (including for function/interaction with the light array/display) to facilitate operation of the user interface for the composite structure of the vehicle interior component (e.g. construction of cover in a manner to allow transmission of light, for example with construction of opaque materials with voids/perforations/mesh effect, construction from translucent/semi-transparent material, material that transmits light and absorbs relatively less light from the display, etc.). See also FIGURES 13A-13D and 16A-16T.

[00130] According to an exemplary embodiment, the exterior layer shows schematically in the FIGURES as a cover T (see e.g. FIGURE 2B) may comprise a fabric/textile/fiber material; according to an exemplary embodiment, the exterior layer may comprise a leather material shown as cover TH, synthetic material, plastic/poly material such as a film, etc. (e.g. polycarbonate PC, polyvinyl chloride PVC, polyurethane PUR, TPO/film, etc.). See e.g. FIGURES 13A-13D and 16A-16T. As shown schematically according to an exemplary embodiment, the material for the cover/exterior surface layer may facilitate touching/compression for interaction with the user interface (e.g. sensor detection of
touch/movement and display illumination of surface/visibility). See e.g. FIGURES 12C and 17A-170 and 27. See also FIGURES 26A-26B, 28A-28E and 29A-29B.

[00131] According to an exemplary embodiment as shown schematically and representationally in the FIGURES, the cover may comprise at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials; the cover may comprise at least one of (a) film; (b) resin; (c) polycarbonate; (d) polyurethane; (e) polyvinyl material; (f) a composite of multiple plastic materials; (g) a composite of multiple materials.

Positioning (Spacer) Layer (E)

[00132] According to an exemplary embodiment, the composite structure may comprise at least one positioning/spacer layer according to an exemplary embodiment as shown in FIGURES 2B, 12A-12E, 13A-13D and 16A-16T. According to an exemplary embodiment, a positioning/spacer layer E may be configured to provide certain properties or combinations of properties intended to fulfill design intent and/or requirements, including but not limited to touch/feel, translucence, softness/resilience, etc. See e.g. FIGURES 3A-3T, 12C and 17A-170 (showing interaction at cover/surface by contact, touch, press, hover).

[00133] According to an exemplary embodiment, the positioning/spacer layer may be configured to provide positioning/spacing for the layers or sub-layers of the composite structure; the positioning/spacer layer may function as a barrier/shield for the composite structure of the vehicle interior component (e.g. electromagnetic interference/EMI, EMV, etc.); the
positioning/spacer layer may also provide for uniform separation of other layers to facilitate the function/operation of the composite structure/component. According to an exemplary embodiment, the positioning/spacer layer may be selected or constructed to transmit light (e.g. provide translucence for light from a light source such as the display or lighting/LED array in the composite structure).

[00134] According to an exemplary embodiment, the positioning/spacer layer may be configured for form and fit and function of the composite structure of the vehicle interior component. For example, the positioning layer may comprise or be provided as a fabric material or foam or polyurethane material (e.g. providing softness) or from a fiber/yarn material (e.g. woven from single yarn/fiber). According to an exemplary embodiment, the positioning/spacer layer may comprise or be constructed/formed to incorporate one or more other functional layers of the composite structure; the positioning/spacer layer (or material) may comprise a functional layer; the positioning/spacer layer (or material) may perform a diffuser function and/or a shield function for interference (e.g. electrical, magnetic, etc.) or shield function for light from the display/LED array as well as to maintain uniformity in transmission of light/illumination from the display (e.g. LED array/panel). See FIGURES 2B, 12A-12E and 16A-16T. See also FIGURE 20H (diffuser layer for the display).

[00135] According to an exemplary embodiment, the positioning/spacer layer may be configured to provide separation between the cover/external surface and the sensor of the composite structure to facilitate the operation of the user interface (e.g. for the human machine interface (HMI)). As shown schematically in FIGURES 12C, 16A-16B, 17A-170, the positioning layer may comprise a material that is provided in a segment configured to compress under pressure (e.g. in a form with compliant elements that compress or buckle under a threshold
pressure and then return to form when pressure is removed); the positioning layer may be formed of a foam material or may provide the properties of a foam material. According to an exemplary embodiment, the positioning/spacer layer may provide uniform spacing and flexibility/softness for compression/touch effects at the user interface (e.g. to facilitate uniform operation of the user interface) and shear resistance between layers of the composite structure (e.g. at an interface with the cover, at an interface with the sensor array/foil, at other interfaces of the positioning/spacer layer) to facilitate proper performance of the composite structure in use. See e.g. FIGURES 12C, 13A-13D, 16A-16T, 17A-170 and 27. See also FIGURES 26A-26B, 28A-28E and 29A-29B. According to an exemplary embodiment, a positioning/spacer layer may be provided at multiple positions within the composite structure. See e.g. FIGURE 2B. At each position where the positioning/spacer layer is provided, positioning/spacing (e.g. for uniform operation) and other functions (e.g. diffusion of light, shielding of EMI, etc.) may be performed (or other layers may provide the function of the positioning layer). See generally FIGURES 13A-13D, 16A-16T and 17A-170.

[00136] According to an exemplary embodiment, the positioning layer may comprise at least one of (a) a spacer; (b) a flexible spacer; (c) a shield for electromagnetic interference; (c) a foam material; (e) a plastic material.

Diffuser Layer (D)

[00137] According to an exemplary embodiment, a diffuser layer may be provided according to an exemplary embodiment as shown schematically in FIGURES 16A-16F and 20G-20H. According to an exemplary embodiment, the diffuser layer may be configured to provide certain properties or combinations of properties intended to fulfill design intent and/or
requirements, including but not limited to providing for uniformity of the illumination from the display as presented at the exterior surface of the cover of the composite structure. According to an exemplary embodiment, the diffuser layer may be integrated with other layers of the composite structure (e.g. within the positioning/spacer layer).

[00138] According to an exemplary embodiment, the diffuser layer may comprise any materials/construction known to provide diffusion of illumination (e.g. arrangement of materials such as poly methyl methacrylate, Plexiglas, etc. with optical constituent components such as uniform spheres, etc.); the diffuser layer may be omitted and/or used with or according to the resolution of the display (e.g. used with a low resolution display, omitted with a high resolution display, etc.).

Base (Carrier)/Substrate Layer (B/S)

[00139] According to an exemplary embodiment, a base/substrate may be provided for the composite structure; the base/substrate may be provided as a layer arrangement for the composite structure (e.g. to mount or facilitate mounting on/assembly into a vehicle interior component). See e.g. FIGURES 1B and 2A-2C. According to an exemplary embodiment, base/substrate layer arrangement may be configured to provide certain properties or combinations of properties intended to fulfill design intent and/or requirements, including for and fit and function. According to an exemplary embodiment, the base/substrate layer arrangement may comprise materials used for vehicle interior component structures and/or construction such as plastics/resins, fiber/plastic/resin composites (e.g. polypropylene, etc.), hybrid materials (e.g. fiber/molded plastic/resin), metal, wood, etc.; the base/substrate layer arrangement may be
configured to provide a mechanical structure or frame for support and stiffness and integrity for the composite structure. See FIGURES IB, 2A-2C, 16A-16T and 17A-170.

[00140] According to an exemplary embodiment, the composite structure with base/frame may be mounted on or assembled into a component or structure in the vehicle interior (e.g. to form a vehicle interior component). See e.g. FIGURES IB and 2A-2C. According to an exemplary embodiment the composite structure may be provided as generally flexible composite surface (e.g. a soft/cushioned surface having a flexible form) for installation in a structure for a vehicle interior component or structure (e.g. to provide rigidity/rigidification generally for the soft/flexible composite surface/structure). See e.g. FIGURE 2B.

Adhesive Material/Bond/Glue (B/G) (securing of layers/components)

[00141] According to an exemplary embodiment, adhesive materials such as glue (e.g. silicon glue) may be used to secure or bond layers/components of the composite structure together in assembly (e.g. glue, bond, adhesive for the automotive industry or equivalent); the adhesive/glue may be selected from available commercial products that provide characteristics such as stability, uniformity, aging resistance, etc. According to an exemplary embodiment, alternative methods of securing layers of the composite structure may be employed (e.g. such as mechanical connections, bonding, adhesive, molding, etc. selected for the purpose/application to provide properties suitable for use). See e.g. FIGURES 13A-13D and 16A-16T.

Display/Light/illumination Panel/Array Layer (L)
According to an exemplary embodiment, the composite structure may comprise a display to provide illumination for the user interface (e.g. directed light through intermediate layers and made visible at the exterior surface of the cover of the composite structure). See e.g. FIGURES 2B-2C, 3A-3T, 8A-8E, 17J-170, 20A-20H and 23C. See also FIGURES 26A-26B, 27, 28A-28E and 29A-29B (operation of user interface).

According to an exemplary embodiment, the display may comprise a commercially available product such as an LED/OLED panel (e.g. flexible panel/array sheet with light emitting device/diode elements). According to an exemplary embodiment, the display may comprise a lighting/display layer for the composite structure configured to provide certain properties or combinations of properties intended to fulfill design intent and/or requirements (including intensity, durability, environmental conditions, flexibility, cost efficiency, flexibility, resolution, color, stability, etc.). See e.g. FIGURES 2A-2C and 20A-20H. According to an exemplary embodiment, a full-color display may be provided (e.g. red/green/blue array); other optical/illumination effects may be incorporated into the composite structure to facilitate intended performance of the display for the user interface (e.g. filter, alignment, diffusion, shielding, etc.).

According to an exemplary embodiment, the lighting/display layer may be configured to provide the visual/decorative appearance of the composite structure of the vehicle interior component (e.g. provided in a color/tone and etc.); the display may be selected and operated to provide illumination at a suitable level for operation of the user interface; the lighting/display layer may be selected or constructed to transmit light as required for useful operation of the composite structure (e.g. through interposed layers of material with various levels of translucence). See e.g. FIGURES 2A-2C, 17J-170 and 20A-20H.
According to an exemplary embodiment, the composite structure of the vehicle interior component with lighting/display may comprise multiple physical/structural and/or functional layers in a variety of various combinations. See FIGURES 12A-12E, 13A-13D, 16A-16T, 17J-170, 18A-18D, 19A-19D, 20A-20H and 22A-22E.

According to an exemplary embodiment, the surface of the lighting/display layer or lighting/display may comprise or be constructed/formed/treated to provide any of a variety of effects to facilitate any of a wide variety of visual and/or physical and/or virtual interactions with and through the composite structure of the vehicle interior component.

According to an exemplary embodiment, the display may comprise a commercially available product such as a display panel, lighting array, flexible display panel, flexible array, etc. of any suitable type or form available (e.g. specified for use in an automotive environment); according to an exemplary embodiment the display may be a flexible array or panel with light-emitting devices/diodes (LED) (such as surface mount LED elements of 1.3 to 1.9 mm or in other spacing/resolution) arranged in a suitable pattern and capable of providing sufficient illumination through intervening layers of the composite structure. See e.g. FIGURES 20A-20H.

According to an exemplary embodiment, the display L of the composite structure 10 presenting the user interface with display elements 20 may comprise a commercially available configuration (e.g. panel, array, etc.) that may be connected to a controller/control system for operation/functionality and interaction with vehicle systems and other systems (e.g. data/network connectivity). See e.g. FIGURES 2A-2B, 20A-20H, 23B, 24 and 27.
According to an exemplary embodiment shown schematically in FIGURES 16G-16H and 22A-22E, the display may be provided as a pre-assembled module with the sensor (and if required an intermediate/functional layer).

According to an exemplary embodiment, the display may comprise at least one of (a) an array; (b) a grid; (c) a panel; (d) a display screen; (e) a flexible panel; (f) a lighting array; (g) a lighting device array; (h) a light-emitting device array; (i) a LED/OLED array; (j) a flexible LED/OLED array; (k) a flexible sheet. See e.g. FIGURES 20A-20H.

Sensor/Detector Array/Panel Layer (C)

As shown schematically according to an exemplary embodiment in FIGURES 21A-21F, a sensor shown as a sensor/detector layer C may be provided according to an exemplary embodiment. See also FIGURES 2B, 16A-16T, 17A-170 and 22A-22E. According to an exemplary embodiment, the sensor/detector layer may be configured to provide certain properties or combinations of properties intended to fulfill design intent and/or requirements including to facilitate the user interface (e.g. with calibration and sensitivity adjustments at the controller/control system) for the composite structure. See FIGURES 21A-21F, 23A, 24 and 27.

According to an exemplary embodiment, the sensor shown as sensor/detector layer C will be configured for form and fit and function of the composite structure of the vehicle interior component. For example, the layer C may comprise or be provided as a flexible sheet or panel commercially available for use in a composite structure and/or specified for use in an automotive environment.

According to an exemplary embodiment, the sensor/detector may comprise or be constructed of a variety of other types of materials and in a variety of other thicknesses
configured to provide the form and fit and function (including sensitivity, etc.) for the composite structure of the vehicle interior component. According to an exemplary embodiment, the sensor/detector may comprise or be constructed separately or as a composite of multiple materials and/or of treated materials (e.g. coated, painted, backed, treated, multi-layer etc.) for use in a vehicle interior component. According to an exemplary embodiment, the sensor/detector may be constructed/formed to integrate functionally with other layers of the composite structure (e.g. with layers such as positioning/spacer layer, diffuser layer, heating layer, cooling layer, etc.).

[00154] The sensor/detector layer or sensor/detector provides the positional/tactile physical user interface (e.g. for the human machine interface (HMI)) and facilitates the interaction by input between the vehicle occupant and the vehicle through the composite structure of the vehicle interior component (e.g. as sensor/detector for other layers of the composite structure of the vehicle interior component). See FIGURES 17A-170 and 27. See also FIGURES 26A-26B, 28A-28E and 29A-29B.

[00155] According to an exemplary embodiment, the sensor/detector or sensor/detector layer may comprise or be constructed/formed in a generally uniform (e.g. monolithic) form or to provide multiple segments (e.g. with varying characteristics such as varying uniformity, translucence, inserts such as of other types/materials, etc.).

[00156] According to an exemplary embodiment, as shown schematically in FIGURES 16A-16T and 17A-170, the sensor/detector layer may comprise a sensor/detector or skin of a form and material construction that may facilitate/provide a haptic effect (e.g. including for interaction with the sensor array) and translucent effect (including for function/interaction with the light array) to facilitate operation of the user interface for the composite structure of the
vehicle interior component. According to an exemplary embodiment, the sensor (e.g. sensor/detector layer or sensor/detector component/system) may comprise or be constructed/formed/treated to provide any of a variety of effects to facilitate any of a wide variety of visual and/or physical and/or virtual interactions with and through the composite structure of the vehicle interior component. See FIGURES 17A-170 and 21A-21F. According to an exemplary embodiment, the sensor may be configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover; as shown schematically, the sensor C may comprise a mesh/grid of a commercially available configuration with elements shown as conductors CW configured into an array that can be connected to a controller/control system. See e.g. FIGURES 21A-21F, 23A, 24 and 27. According to an exemplary embodiment, the sensor C of the composite structure 10 presenting the user interface with display elements 20 may comprise a commercially available configuration (e.g. panel, array, etc.) that may be connected to a controller/control system for operation/functionality and interaction with vehicle systems and other systems (e.g. data/network connectivity). See e.g. FIGURES 2A-2B, 21A-21F, 23A, 24 and 27.

[00157] According to an exemplary embodiment, the sensor may comprise a sensor array/grid such as a projected capacitive touch sensor foil. See FIGURES 21A-21F. As indicated, the sensitivity of the sensor may be adjusted (e.g. detection of user input such as by finger touch/proximity in a range from 1 to 6 mm, for example). According to an exemplary embodiment, the sensor may comprise or be constructed from any suitable technology calibrated to function with the composite structure (including other layers/materials), such as capacitive touch sensor, projected capacitive touch foil/array, resistive grid/array, surface acoustic sensor, pressure transducer/sensor array, infrared grid, etc. See FIGURES 17A-170 and 27.
According to an exemplary embodiment shown schematically in FIGURES 16G-16H and 22A-22E, the sensor may be provided as a pre-assembled module with the display (and if required an intermediate/functional layer).

According to an exemplary embodiment as shown schematically in FIGURES 23A-23B, 24 and 27 (block/flow diagrams of operation of the controller/user interface), the vehicle occupant may interact and operate the user interface through the sensor (and display); suitable contact and movement from the vehicle occupant would be calibrated to correspond to commands through a control panel provided by the user interface (e.g. conventional movements, touching, tapping, whipping, hovering, etc.). According to an exemplary embodiment, a menu featuring system/controls may be provided at the user interface to facilitate and direct a vehicle occupant/user to activate and interact through the user interface system. See e.g. FIGURES 25A-25D.

As shown schematically, the sensor may be calibrated to detect touch and movement (e.g. from a hand/finger) of a vehicle occupant to general input. See also FIGURES 26A-26B, 27, 28A-28E and 29A-29B (flow diagrams of operation of the user interface).

According to an exemplary embodiment, the sensor may comprise at least one of (a) an array; (b) a grid; (c) a foil; (d) a panel; (e) a touch panel; (f) a flexible panel; (g) a detector; (h) a proximity detector; (i) a capacitive touch panel; (j) a pressure sensitive panel. See FIGURES 17A-170 and 21A-21F.

Functional Layer (N/HS)

A functional layer may be provided according to an exemplary embodiment as shown in FIGURES 2B and 16A-16T. According to an exemplary embodiment, the functional
layer N may be configured to provide certain properties or combinations of functions/properties intended to fulfill design intent and/or requirements including but not limited to thermal management, structural form, spacing/positioning, etc.

[00163] According to an exemplary embodiment, the functional layer may be configured for form and fit and function of the composite structure of the vehicle interior component. According to an exemplary embodiment, the functional layer may comprise a developed/designed or an integrated/purchased component (for example) or be constructed of a variety of other types of materials and in a variety of other thicknesses configured to provide the form and fit and function for the composite structure of the vehicle interior component. According to an exemplary embodiment, the functional layer may comprise or be constructed separately or as a composite of multiple materials and/or of treated materials (e.g. coated, painted, backed, treated, multi-layer etc.) for use in a vehicle interior. According to an exemplary embodiment, the functional layer may comprise or be constructed/formed to incorporate one or more other functional layers of the composite (e.g. positioning/spacer layer, diffuser layer, heating layer, cooling layer, etc.)

[00164] According to an exemplary embodiment, the functional layer or functional layers may provide the composite structure with functions to support the construction of a visual/tactile physical user interface (e.g. for the human machine interface (HMI)) and may facilitate the interaction between the vehicle occupant and the vehicle through the composite structure of the vehicle interior component (e.g. as functional layer for other layers of the composite structure of the vehicle interior component). See also FIGURES 12A-12H, 13A-13D, 16A-16T and 22A-22E.
According to an exemplary embodiment, the functional layer or functional layer may comprise or be constructed/formed/treated to provide one or more of a variety of features and/or properties such as feel (tactile sensation/feedback, haptic sensation/functionality, firmness, softness, etc.), resilience (e.g. to wear, abrasion, touching, etc.), durability (e.g. to environmental conditions such as heat/cold and humidity, repellence (e.g. to spills/liquids, dirt, etc.), flexibility (e.g. stiffness, etc.), translucence, convenience (e.g. easy to maintain, ease to clean, etc.), recyclability (e.g. material selection for reuse at end of life), uniformity (e.g. visual/physical consistency with other interior components of the vehicle, etc.), thermodynamic performance (e.g. heating and/or cooling), interconnectivity (e.g. integrated with electronic/electrical/data interfaces for other devices and components such as charging and data connection), etc. See e.g. FIGURES IB, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 25A-25D and 27. See also FIGURES 13A-13D, 16A-16T and 24.

According to an exemplary embodiment, as shown schematically in the FIGURES, the functional layer may comprise a functional structure/component, grid/array, skin/sheet, form, material construction, etc. to perform an intended function; the functional layer may be configured to provide a haptic effect (e.g. including for interaction with the sensor array) and translucent effect (including for function/interaction with the light array) to facilitate operation of the user interface for the composite structure of the vehicle interior component (e.g. integrating a system/mechanism such as an actuator, transducer, panel, speaker, audio component, electronics/electrical circuit/device, etc.). See FIGURES IB, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C, 24, 25A-25D and 27.
According to an exemplary embodiment, the functional layer may be configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging. The functional layer may be at least partially integrated with at least one of (a) the cover; (b) the positioning layer; (c) a substrate of the composite structure.

According to an exemplary embodiment the functional layer may comprise and/or perform any of a wide range of functions with any of a variety of selected materials/structures and/or integrated composition/structures.
Exemplary Embodiments

[00169] Referring to FIGURES 1A-1B and 2A, a vehicle V is shown including an interior I with a floor console, overhead systems/headliner, an instrument panel/cockpit, doors and seats. According to an exemplary embodiment, interior components/trim components of vehicle V such as consoles (e.g. floor, overhead, etc.), panels (e.g. instrument, door, overhead, side, wall, etc.), structures (frames, pillars, etc.), systems (cockpit, instrument, entertainment, display, overhead, visor, etc.), other surfaces/trim, seats, etc. may include composite structure 10 with display element 20 (e.g. shown as visible covers/surfaces or panels/sections in various configurations and locations for the vehicle interior). See FIGURES 1B and 2A.

[00170] As shown schematically according to an exemplary embodiment in FIGURES 2A-2C, a vehicle interior component with a composite structure with cover 10 with display element 20 (e.g. with exterior surface/cover) for an interior/trim component may provide a user interface that may comprise an input/output system (e.g. with sensor/detector of movement and/or touch sensitive layer to function as an input device in a layer arrangement/construction with a display for electronic visual data/information such as from vehicle/other information processing systems). As shown schematically in FIGURE 2B, according to an exemplary embodiment the composite structure 10 with display element 20 for a vehicle interior component such as a floor console FC may comprise a cover shown as translucent cover surface T (e.g. fabric, leather, etc.), a functional positioning/spacer layer E (e.g. a foam material), a foam layer F (e.g. a compliant/resilient foam material), a sensor C (e.g. shown as a sensor array/foil), a display L (e.g. shown as a lighting array/LED array); as shown according to an exemplary embodiment in FIGURE 2C, a door assembly/panel DP may comprise a composite structure 10 with display element 20 constructed to provide a user interface . See also FIGURES 3A-3T. According to an
exemplary embodiment, the composite structure for the vehicle interior component provides a user interface at which a user such as a vehicle occupant may interact by input such as control commands with the vehicle systems and other systems/networks (e.g. information processing system) through detected (e.g. simple touch or multi-touch or hover/movement or other) gestures including by touching the exterior surface of the composite structure (e.g. exterior surface/cover). See e.g. FIGURES 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E and 15A-15C. See also FIGURES 16A-16T, 17A-170, 24 and 27.

[00171] As shown schematically in FIGURES 3A-3T, a console shown as a center console 100 provides a composite structure with cover 110 (e.g. exterior surface on composite structure comprising layers) to provide a user interface with a display comprising display elements that may be positionable/repositionable and configured to interact with user input; according to an exemplary embodiment, the composite structure with cover 110 may comprise a sensor such as a touch sensitive layer (e.g. sensor grid/foil for composite structure). See also FIGURES 8A-8E, 9A-9F, 10A-10E and 15A-15C (implementation for a vehicle interior component such as a panel/door panel).

[00172] As shown schematically in FIGURES 3A-3T according to an exemplary embodiment, the vehicle occupant (e.g. the finger of hand H) engages the cover of the composite structure 110 to activate a user interface providing a display shown as an electronic visual display 120. See e.g. FIGURES 26A-26B, 27, 28A-28E and 29A-29B. According to an exemplary embodiment, user interface shown as comprising a display such as an electronic visual display 120 may display a menu or control panel providing various/multiple buttons for operating controlling various/multiple vehicle systems (e.g. features of a vehicle such as opening or closing a window, adjusting the setting of a heating, ventilating, and air conditioning system
(HVAC), adjusting the speed of cruise control, operating navigation system, etc.) or for interacting with other systems/networks (e.g. data sources, entertainment, mobile devices, etc.). See also FIGURES 14A-14E, 15C, 25A-25B and 27. As shown schematically in FIGURES 3D and 3E, the vehicle occupant (e.g. the finger of hand H) engages the surface of the cover of the composite structure 110 to deactivate electronic visual display 120. See e.g. FIGURES 26A-26B, 27, 28A-28E and 29A-29B.

[00173] As shown schematically according to an exemplary embodiment in FIGURES 3A-3T, a wide variety of visual effects may be presented by the composite structure by activation of the display and illumination through the composite structure to cover/exterior surface 110. As shown in FIGURES 3H through 3J, the user interface from the composite structure may present a display element 120 shown as icon (e.g. for mobile telephone) that may be repositioned (e.g. by drag/drop action) on the cover/exterior surface by a user; as shown in FIGURE 3J, data/information from the mobile device/system may be used to interact/interoperate the system within the vehicle (e.g. to conduct a telephone call, use network data communications, connect with data on a mobile device, etc.). As shown schematically in FIGURES 3K-30 and 3P-3T according to an exemplary embodiment, the user interface may be positioned (and repositioned) selectively by a vehicle occupant by contacting the exterior surface/cover of the composite structure at a position so that the user interface display (e.g. display elements such as a menu, icons, symbols, text, graphics, text/image display, etc.) appear at the position (e.g. toward the front of the structure as in FIGURES 3P-3T or toward the back of the structure as in FIGURES 3K-30); the user may activate the user interface (e.g. switch from sleep/inactive mode to active mode) as indicated in FIGURES 3K and 3P; the user may deactivate the user interface (e.g.
switch from active mode to sleep/inactive mode) as indicated in FIGURES 30 and 3T. See also FIGURES 17A-170, 26A-26B, 27, 28A-28E and 29A-29B.

[00174] As shown schematically in the FIGURES, the user interface provided by the composite structure may be configured for interaction with any of a wide variety of vehicle systems and other systems/networks and data (e.g. by presenting a control panel, menu system, buttons, icons, etc.). See e.g. FIGURES 24 and 27. As shown schematically in FIGURES 4A and 4B, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 120 to control a window W of a door 200 to move towards an open position. As shown schematically in FIGURES 4C and 4D, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 120 to control window W of door 200 to move towards a closed position. As shown schematically in FIGURES 4E and 4F, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 120 to control a heating, ventilating, and air conditioning system of the vehicle. As shown schematically in FIGURES 5A and 5B, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 120 to adjust the fore-and-aft position of a seat ST. As shown schematically in FIGURES 5C and 5D, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 120 to adjust the angle of the backrest of seat ST. As shown schematically in FIGURES 5E and 5F, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 120 to adjust the height of seat ST.

[00175] As shown schematically in FIGURES 6A and 6B, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 120 to turn on and off thermal management system such as a front window defroster for the vehicle. As shown schematically in FIGURES 6C and 6D, the vehicle occupant (e.g. the finger of hand H) may press a button on
display of user interface 120 to operate an automatic speed control system (e.g. cruise control system, etc.) for the vehicle. As shown schematically in FIGURES 6E and 6F, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 120 to lock and unlock doors of the vehicle.

[00176] As shown schematically in FIGURE 7A, door 200 may provide a composite structure with cover of component structure 210; cover of component structure 210 may present a user interface; the user interface may comprise a contact/touch sensitive interface according to an exemplary embodiment. As shown schematically in FIGURE 7B, vehicle occupant (e.g. using hand H) taps cover of component structure 210 to activate the display of user interface within cover of component structure 210. As shown schematically in FIGURE 7C, cover of component structure 210 is dimly lit; cover of component structure 210 may provide lighting for the vehicle interior according to an exemplary embodiment. As shown schematically in FIGURES 7D and 7E, vehicle occupant (e.g. using hand H) taps cover of component structure 210 to intensify the lighting for the vehicle interior. As shown schematically in FIGURE 7F, vehicle occupant (e.g. using hand H) taps cover of component structure 210 to switch off the lighting on door 200. As shown schematically in FIGURES 8A, 8C and 8D, the composite structure with cover on door 200 may be partially illuminated/lit; the cover of door 200 may be partially illuminated to display various messages (e.g. the temperature setting of the heating, ventilating, and air conditioning system (HVAC), the weather, etc.) See FIGURE 8E. As shown schematically in FIGURE 8A, the composite structure with cover on door 200 displays a text message. As shown schematically in FIGURE 8C, the composite structure with cover on door 200 displays the temperature setting of the heating, ventilating, and air conditioning system (HVAC). As shown schematically in FIGURE 8D, the composite structure with cover on door
200 displays the weather information. According to an exemplary embodiment, the display of user interface of door 200 may provide display corresponding to the display of a mobile device. As shown schematically in FIGURE 8B, the cover of the composite structure may be illuminated with various intensities according to an exemplary embodiment (e.g. according to purpose, function, ambient conditions, etc.).

[00177] As shown schematically in FIGURES 9A to 9E, door 200 may provide a composite structure with cover; composite structure 210 may comprise a sensor such as a touch sensitive layer/panel according to an exemplary embodiment. As shown schematically in FIGURES 9A to 9C, the vehicle occupant (e.g. by finger of hand H) may touch/tap/press on cover of component structure 210 to activate the display of the user interface shown as display of user interface 220 presented at cover of component structure 210. See also FIGURES 26A-26B, 27, 28A-28E and 29A-29B. According to an exemplary embodiment, display of user interface 220 may display multiple buttons/icons for controlling various features of the vehicle (e.g. opening or closing a window, adjusting the setting of a heating, ventilating, and air conditioning system (HVAC), adjusting the speed of cruise control, operating navigation system, etc.). As shown schematically in FIGURES 9D and 9E, the vehicle occupant (e.g. the finger of hand H) may tap cover of component structure 210 to deactivate display of user interface 220. See also FIGURES 26A-26B, 27, 28A-28E and 29A-29B.

[00178] As shown schematically in the FIGURES, the user interface of the composite structure may provide a control panel providing control elements such as buttons, icons, etc. for a vehicle occupant to interact with vehicle systems and other systems. See e.g. FIGURES 14A-14E, 15C, 26A-26B, 27, 28A-28E and 29A-29B. As shown schematically in FIGURES 10A and 10B, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user
interface 220 to control window W of door 200 to move towards the open position. As shown schematically in FIGURES 10C and 10D, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 220 to control window W of door 200 to move towards the closed position. As shown schematically in FIGURES 10E and 10F, the vehicle occupant (e.g. the finger of hand H) may press a button on display of user interface 220 to adjust the position of a side view mirror. According to an exemplary embodiment, the visual display may be configured to appear at the location where the finger taps the cover. See e.g. FIGURES 3A-3T and 14A-14E.

According to an exemplary embodiment as shown in the FIGURES, the user interface may be configured to facilitate use and operation of vehicle systems and other devices/system within a vehicle (e.g. smart phone, tablet, etc.). See e.g. FIGURES 3A-3T, 11A-11F, 24, 26A-26B, 27, 28A-28E and 29A-29B. As shown schematically in FIGURES 11A and 11B, a vehicle occupant/user may place a mobile device (e.g. smart phone, tablet, etc.) shown as a phone PH on center console 100 providing the user interface from the composite structure with cover 110. As shown schematically in FIGURE 11C, a vehicle occupant at composite structure for cover 110 (e.g. surface for composite structure) activates user interface 120 to illuminate around phone PH. As shown schematically in FIGURE 11D, display of user interface 120 may be configured to display the music interface of phone PH. As indicated schematically in FIGURE 11E, vehicle occupant (e.g. using hand H) may slide on cover of composite structure 110 to adjust the volume setting for the music interface; operation may be facilitated by presentation of a control panel/information as indicated in FIGURE 11F. See also FIGURES 14A-14E, 15C, 24, 26A-26B, 27, 28A-28E and 29A-29B (menu/flow diagrams of operation of systems at user interface).
As shown schematically in FIGURES 12A and 12B, the composite structure with
cover may comprise an arrangement of layers/construction to facilitate implementation of a user
interface for the vehicle interior component; for example, a composite structure may comprise a
cover/layer T, a layer HS, a layer E, a layer C, a layer F, a layer D, a layer L, an layer B, and a
layer S arranged to provide a combined function and fit and form for an application (e.g. vehicle
interior). See also FIGURES 2B, 16A-16T and 18A-18E (other arrangements of
layers/components of composite structure). According to an exemplary embodiment, layer F is a
foam layer; the foam layer may provide comfort for vehicle occupants according to an exemplary
embodiment. According to an exemplary embodiment, layer L is a display such as an electronic
visual display/lighting element shown as a LED display; layer D may be configured to diffuse
the light from the LED display; according to an exemplary embodiment, the size and/or quantity
of the LED element may be adapted for various applications. According to an exemplary
embodiment, layer S is a substrate or carrier for the cover; according to an exemplary
embodiment, a layer B may be configured to bond the LED display to the carrier or substrate
(e.g. a glue or bond layer). See generally FIGURES 12A-12E and 16A-16T.

According to an exemplary embodiment, the composite structure with cover may
provide a functional layer configured to provide haptic or other user feedback (e.g. audible,
tactile, etc.). See FIGURES 16A-16C (showing a functional layer N/HS). According to an
exemplary embodiment, the functional layer may comprise other functional systems/components
or layers operated by a control system. See also FIGURES 12B and 16A-16E (composite
structure with layers including sensor C and display L and functional layer N/HS and control
system). According to an exemplary embodiment, sensor C is shown as a touch sensitive layer
in the form of a capacitive touch panel (i.e. an input device for an information processing
According to an exemplary embodiment, the composite structure may also provide a layer for heating the surface of the composite structure (e.g. layer HS shown in FIGURES 12A-12C). According to an exemplary embodiment, layer HS may provide a functional/composite layer with heating coils/resistors configured to heat the cover and/or the vicinity of the cover; layer HS is optional according to an exemplary embodiment. See FIGURE 12A. According to an exemplary embodiment, the composite structure may also provide a soft layer (e.g. a foam layer F) for providing comfort for the user. See FIGURES 12A to 12C and 16A to 16C. According to an exemplary embodiment, the exterior/cover surface layer may comprise a cover/textile layer T (e.g. fabric, fiber, etc. or leather/other similar material construction) configured to be transparent or translucent (e.g. a material/sheet or film that is partially transparent/partially opaque, translucent to visible light, etc. to facilitate transmission of visible light from the display). See e.g. FIGURES 3A-3T, 17A-170 and 23C. As indicated schematically in FIGURES 12A-12C and 16A-16C, the composite structure may be configured to provide a user interface from display L and sensor C at the exterior surface of cover T. As shown schematically in FIGURES 12D and 16D, the user interface may comprise an electronic visual display shown as a LED display panel; as shown schematically in FIGURE 16E, the user interface may comprise a sensor shown as sensor array/grid C. According to an exemplary embodiment, layer E a positioning/spacer layer and may be configured to reduce or shield electrical interference (e.g. reduce interference between electronic systems/networks if necessary or useful); layer E may be optional according to an exemplary embodiment.

[00182] As shown schematically according to an exemplary embodiment in FIGURES 12B and 16B, the composite structure with user interface system includes a control system; the control system (i.e. an information processing system) is connected to the LED display (layer L),
the capacitive touch panel (layer C), and composite layer with heating coils/resistors (layer HS).
See FIGURES 16A-16T (composite structure with layers including for sensor C and for display L and with functional layer N/HS and control system).

[00183] As indicated schematically according to an exemplary embodiment in FIGURES IB and 2A-2C, the composite structure providing the user interface may be formed/conformed to fit on and over any of a wide variety of vehicle interior components having any of a wide variety of forms and shapes/contour. See also FIGURES 18A-18D (showing schematically a flexible construction of the composite structure to be contoured/conformed to the form of a base or interior component).

Operation of the User Interface/Composite Structure

[00184] According to an exemplary embodiment, operation of vehicle interior component providing a composite structure with a user interface for vehicle systems and other systems/devices and data/network connectivity is shown schematically in FIGURES 24, 26A-26B, 27, 28A-28E and 29A-29B (block and flow diagrams outlining the function and operation at the user interface according to an exemplary embodiment). According to an exemplary embodiment the composite structure may comprise (a) a cover providing an exterior surface; (b) a sensor; (c) a display; the sensor may be configured to detect input from the vehicle occupant at the cover; the display may be configured to provide illumination (such as a display element, menu, image, text, etc.) visible through the translucent cover. See FIGURES 12A-12E, 13A-13D, 16A-16T, 17A-170 and 18A-18D (e.g. showing various composite structure/layer arrangements according to an exemplary embodiment).
According to an exemplary embodiment, a system/method of operating the user interface may comprise the steps of (a) pressing the cover so input can be detected by the sensor; and (b) contacting the cover where input can be detected by the sensor. See FIGURES 17A-170. See also FIGURES 26A-26B, 27, 28A-28E and 29A-29B. According to an exemplary embodiment as indicated schematically in FIGURES 24 and 27, activation/deactivation and use/operation of the user interface presented by the composite structure of the vehicle interior component for interaction with vehicle systems may be performed by a vehicle occupant according to a system/method with detection of pressure, contact, movement, etc. (see generally FIGURES 3A-3T, 14A-14E, 15C and 25A-25D); according to an exemplary embodiment, pressing the cover/surface may comprise compressing/deforming the composite structure to actuate the user interface (see FIGURES 17J-17K with activation/positioning of illumination at surface of user interface); contacting the cover may operate and/or position a control provided at the user interface (see FIGURES 17L-17M with positioning and dragging/repositioning of illumination at surface of user interface); hovering/movement at the cover surface may operate or position a control provided at user interface (see FIGURES 17N-170 with relocation of illumination at surface of user interface). See generally FIGURES 17A-170.

Operation of the user interface presented by the composite structure according to an exemplary embodiment is shown in FIGURES IB, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 14A-14E, 15A-15C. See also FIGURES 24 and 27. As indicated schematically according to an exemplary embodiment, the user interface may be configured for a variety of types of interaction with vehicle systems/other systems including visual display of information/images, audio information/recording, video information/recording, touch/feel/haptic interaction, mobile device connectivity, vehicle system connectivity/control,
network/data connectivity (including to external networks such as the internet), ambient/vehicle environment modification and control (e.g. lighting/color, decorative effects, thermal management, etc.), etc. See e.g. FIGURES IB, 2A-2C, 3A-3T, 4A-4F, 5A-5F, 6A-6F, 7A-7F, 8A-8E, 9A-9E, 10A-10F, 11A-11E, 12C, 14A-14E, 15A-15C, 16A-16T, 17A-170, 25A-25D and 27. See also FIGURES 23A-23B, 24, 26A-26B, 28A-28E and 29A-29B.

[00187] Operation of the user interface presented by the composite structure according to an exemplary embodiment with a menu system as shown in FIGURES 25A-25D is outlined in flow diagrams incorporated into the specification. See FIGURES 26A-26B, 27, 28A-28E and 29A-29B. As indicated schematically according to an exemplary embodiment in FIGURES 26A-26B and 29A-29B, the user interface may comprise a set of interaction options/functions presented at a display element shown as menu system such as interaction heating (e.g. heating/cooling/ventilation system operation and indicators/monitoring for the vehicle interior), interaction lighting (e.g. decorative/ambient and functional/other lighting for the interior), interaction audio (e.g. entertainment system connectivity to present music, etc.), interaction visible environment (e.g. video/display system to present information regarding the environment of the vehicle operation such as camera images/video recorded in real-time, data images/video from storage/streaming from network, map and road/street information such as for navigation or reference, landscape/other ambient imagery, etc.). See also FIGURES 24, 27 and 28A-28E (interaction with menu system).

[00188] As indicated generally and schematically in FIGURES IB, 2A, 24 and 27, according to an exemplary embodiment the user interface presented by display/control elements 20 of the composite structure 10 of the vehicle interior component may constructed (e.g. from layers/materials and components) and may be adapted to facilitate a wide variety of types of
interaction with any of a wide variety of vehicle systems and other systems and networks/data. See also FIGURES 2B, 12A-12E, 13A-13D, 16A-16T, 17A-170, 18A-18D and 19A-19D.

* * *

[00189] It is important to note that the construction and arrangement of the elements of the inventive concepts and inventions as described in this application and as shown in the figures above is illustrative only. Although some embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible without materially departing from the novel teachings and advantages of the subject matter recited. Accordingly, all such modifications are intended to be included within the scope of the present inventions. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the present inventions.

[00190] It is important to note that the apparatus of the present inventions can comprise conventional technology (e.g. as implemented in present configuration) or any other applicable technology (present or future) that has the capability to perform the functions and processes/operations indicated in the FIGURES. All such technology is considered to be within the scope of the present inventions and application.
CLAIMS

1. A vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems comprising:

 a composite structure configured to provide the user interface comprising:

 (a) a cover providing an exterior surface;
 (b) a sensor;
 (c) a display; and
 (d) a functional layer; and

 wherein the cover comprises a translucent layer;

 wherein the sensor is configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover;

 wherein the display is configured to provide illumination at least partially visible through the exterior surface of the cover;

 so that operation of the user interface for the vehicle occupant comprises at least one of (a) output from illumination from the display and (b) input detected by the sensor.

2. The vehicle interior component of Claim 1 wherein the cover comprises at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials.

3. The vehicle interior component of Claim 1 wherein the cover comprises at least one of (a) film; (b) resin; (c) polycarbonate; (d) polyurethane; (e) polyvinyl material; (f) a composite of multiple plastic materials; (g) a composite of multiple materials.
4. The vehicle interior component of Claim 1 wherein the functional layer is configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging.

5. The vehicle interior component of Claim 1 wherein the functional layer comprises a positioning layer configured to retain positioning within the composite structure for operation of the sensor from input from the vehicle occupant.

6. The vehicle interior component of Claim 5 wherein the positioning layer comprises at least one of (a) a spacer; (b) a flexible spacer; (c) a shield for electromagnetic interference; (d) a foam material; (e) a plastic material.

7. The vehicle interior component of Claim 5 wherein the functional layer is at least partially integrated with at least one of (a) the cover; (b) the positioning layer; (c) a substrate of the composite structure.

8. The vehicle interior component of Claim 1 wherein the composite structure further comprises a foam layer under the cover.

9. The vehicle interior component of Claim 1 further comprising a resilient layer.

10. The vehicle interior component of Claim 9 wherein the resilient layer comprises a foam layer.

11. The vehicle interior component of Claim 9 wherein the resilient layer comprises the cover.

12. The vehicle interior component of Claim 1 wherein the user interface is configured so that input from the vehicle occupant at the exterior surface of the cover is detected by the sensor.
13. The vehicle interior component of Claim 1 wherein input from the vehicle occupant comprises contact with the exterior surface of the cover.

14. The vehicle interior component of Claim 1 wherein the user interface is configured so that output from the display is presented at least partially through the exterior surface of the cover.

15. The vehicle interior component of Claim 1 wherein the composite structure comprises: (a) the cover; (b) a positioning layer; (c) the sensor; (d) a foam layer; (e) the display; (f) a substrate.

16. The vehicle interior component of Claim 1 wherein the composite structure comprises: (a) the cover; (b) a positioning layer; (c) the sensor; (d) a diffuser layer; (e) the display; (f) a substrate.

17. The vehicle interior component of Claim 1 wherein the composite structure comprises: (a) the cover; (b) the functional layer; (c) the sensor; (d) a positioning layer; (e) the display; (f) a substrate.

18. The vehicle interior component of Claim 1 wherein the composite structure is configured in a contoured shape.

19. The vehicle interior component of Claim 1 wherein the composite structure comprises a substrate.

20. The vehicle interior component of Claim 1 wherein the composite structure is coupled to at least one of (a) a trim component; (b) a panel; (c) a door; (d) a surface; (e) a console; (f) a base.

21. The vehicle interior component of Claim 1 wherein the sensor comprises a capacitive touch panel configured to receive a touch input.

22. The vehicle interior component of Claim 1 further comprising a control system configured to connect to vehicle systems.
23. The vehicle interior component of Claim 22 wherein the control system is configured to facilitate operation by the vehicle occupant for at least one of (a) sending a signal to a control module, (b) controlling a motor, (c) providing a signal to a vehicle component, (d) providing electrical power to a vehicle component, (e) providing at least one of (1) visible feedback, (2) audible feedback, (3) tactile feedback, (4) haptic feedback to the vehicle occupant.

24. The vehicle interior component of Claim 22 wherein the control system comprises a controller configured to send a control signal to at least one vehicle system.

25. The vehicle interior component of Claim 1 further comprising a controller for the composite structure.

26. The vehicle interior component of Claim 25 wherein the controller for the composite structure is connected to the user interface.

27. The vehicle interior component of Claim 1 wherein the user interface comprises a control panel presented at the exterior surface of the cover.

28. The vehicle interior component of Claim 1 wherein the vehicle systems comprise at least one vehicle system; wherein a vehicle system comprises at least one of (a) an indicator, (b) a display, (c) a climate control system, (d) an entertainment system, (e) a security system, (f) an engine control unit, (g) a data storage system, (h) a database, (i) a motor, (j) a vehicle seat, (k) a window regulator; (l) a network; (m) a data storage system; (n) a database.

29. The vehicle interior component of Claim 1 wherein the user interface is configured for interaction with a vehicle occupant by at least one of (a) touch at the exterior surface of the cover detected by the sensor or (b) gesture adjacent to the exterior surface of the cover detected by the sensor.

30. The vehicle interior component of Claim 1 wherein the sensor comprises at least one of (a) an array; (b) a grid; (c) a foil; (d) a panel; (e) a touch panel; (f) a flexible panel; (g) a detector; (h) a proximity detector; (i) a capacitive touch panel; (j) a pressure sensitive panel.
31. The vehicle interior component of Claim 1 wherein the display comprises at least one of (a) an array; (b) a grid; (c) a panel; (d) a display screen; (e) a flexible panel; (f) a lighting array; (g) a lighting device array; (h) a light-emitting device array; (i) an LED array; (j) a flexible LED array; (k) an OLED array; (l) a flexible LED array; (m) a flexible sheet.

32. The vehicle interior component of Claim 1 wherein the display is configured to display at least one of (a) data; (b) information; (c) vehicle system information; (d) an input panel; (e) a menu system; (f) an output panel; (g) an image.

33. The vehicle interior component of Claim 1 wherein the composite structure comprises a composite surface; and wherein the cover comprises an at least partially translucent cover; wherein illumination from the display at the exterior surface of the composite structure comprises visible light transmitted through the sensor and through the functional layer and through the at least partially translucent cover.
34. A vehicle interior component configured for interaction with an occupant of a vehicle comprising vehicle systems comprising:
 a composite structure configured to provide a user interface for interaction with the occupant comprising:
 (a) a cover providing an exterior surface;
 (b) a sensor; and
 (c) a display;
 wherein the cover comprises a translucent layer;
 wherein the sensor is configured to detect input from the occupant at or adjacent to the exterior surface of the cover;
 wherein the display is configured to provide illumination at least partially visible through the exterior surface of the cover;
 wherein operation of the user interface for the occupant comprises at least one of (a) output from illumination from the display and (b) input detected by the sensor;
 wherein the user interface comprises a display element from illumination from the display that is configured to be selectively positioned on the exterior surface of the cover.

35. The vehicle interior component of Claim 34 wherein the display element of the user interface comprises at least one of (a) an icon; (b) a symbol; (c) a button indicator; (d) a menu system; (e) a display panel image; (f) an information display image; (g) a graphics display image; (h) a control panel; (i) an input panel; (j) a touch screen; (k) a repositionable image; (l) a projected image.

36. The vehicle interior component of Claim 34 wherein the display element of the user interface is configured to be positioned on the exterior surface of the cover (a) contacting of the exterior surface of the cover at a position where the display element is to be displayed when the display element is not displayed; (b) contacting the exterior surface of the cover where the display element is displayed and dragging the display element along the exterior surface of the cover to a position where the display element is to be displayed.
37. The vehicle interior component of Claim 34 further comprising a functional layer configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging.
38. A vehicle interior component configured for interaction with a vehicle occupant
in a vehicle comprising vehicle systems comprising:
 a composite structure configured to provide a user interface comprising:
 (a) a cover providing an exterior surface;
 (b) a sensor;
 (c) a display; and
 (d) a functional layer;
 wherein the cover comprises a translucent layer;
 wherein the sensor is configured to detect input from the vehicle occupant at or adjacent
to the exterior surface of the cover;
 wherein the display is configured to provide illumination at least partially visible through
the exterior surface of the cover;
 wherein operation of the user interface for the vehicle occupant comprises at least one of
(a) output from illumination from the display and (b) input detected by the sensor;
 wherein operation of the user interface comprises compressing the cover toward the
sensor and contacting the exterior surface within a distance where input can be detected by the
sensor.

39. The vehicle interior component of Claim 38 wherein the user interface is
configured (a) to be activated for operation by compressing the cover toward the sensor and (b)
to be operated by contacting the exterior surface within a distance where input can be detected by
the sensor and (c) to be operated by movement directed by the vehicle occupant above the
exterior surface of the cover within a distance where input can be detected by the sensor.

40. The vehicle interior component of Claim 38 wherein the user interface is
configured for interaction with a vehicle occupant by at least one of (a) touch at the exterior
surface of the cover detected by the sensor or (b) gesture adjacent to the exterior surface of the
cover detected by the sensor.
41. The vehicle interior component of Claim 38 wherein the user interface is configured for (a) a sleep mode and awakening from the sleep mode by compressing the cover toward the sensor by a first threshold distance and (b) an awake mode providing a control panel and operating the control panel by touching the exterior surface of the cover within a second threshold distance from the sensor.

42. The vehicle interior component of Claim 38 wherein the user interface comprises a display element on the exterior surface of the cover; wherein the display element of the user interface comprises at least one of (a) an icon; (b) a symbol; (c) a button indicator; (d) a menu system; (e) a display panel image; (f) an information display image; (g) a graphics display image; (h) a control panel; (i) an input panel; (j) a touch screen; (k) a repositionable image; (l) a projected image.

43. The vehicle interior component of Claim 42 wherein the display element of the user interface is configured to be selectively positionable on the exterior surface of the cover by interaction with the vehicle occupant.

44. The vehicle interior component of Claim 38 wherein the functional layer is configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging.

45. The vehicle interior component of Claim 38 wherein the cover comprises at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials.
46. The vehicle interior component of Claim 38 wherein the cover comprises at least one of (a) film; (b) resin; (c) polycarbonate; (d) polyurethane; (e) polyvinyl material.
47. A vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems comprising:

a composite structure configured to provide the user interface comprising:

(a) a cover providing an exterior surface;
(b) a sensor;
(c) a display;

wherein the cover comprises a translucent layer;

wherein the cover comprises at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials;

wherein the sensor is configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover;

wherein the display is configured to provide illumination at least partially visible through the exterior surface of the cover;

so that operation of the user interface for the vehicle occupant comprises at least one of (a) output from illumination from the display and (b) input detected by the sensor.

48. The vehicle interior component of Claim 47 further comprising a functional layer configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging.
49. A vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems comprising:

a composite structure configured to provide the user interface comprising:

(a) a cover providing an exterior surface;
(b) a sensor;
(c) a display;
(d) a functional layer; and

wherein the cover comprises a translucent layer;

wherein the sensor is configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover;

wherein the display is configured to provide illumination at least partially visible through the exterior surface of the cover;

wherein the functional layer is configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical charging for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging;

so that operation of the user interface for the vehicle occupant comprises at least one of (a) output from illumination from the display and (b) input detected by the sensor.
50. A method of operating a vehicle interior component comprising a composite structure to provide a cover with an exterior surface and a sensor and a display configured to provide a user interface for a vehicle occupant in a vehicle with vehicle systems comprising the steps of:
 (a) pressing the cover toward the sensor to a distance where input can be detected by the sensor; and
 (b) contacting the exterior surface within a distance where input can be detected by the sensor;

 wherein the cover comprises a translucent layer;
 wherein the sensor is configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover from at least one of (a) touch; (b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning;

 wherein the display is configured to provide illumination at least partially visible through the exterior surface of the cover;

 wherein operation of the user interface for the vehicle occupant comprises at least one of (a) output from illumination from the display and (b) input detected by the sensor.

51. The method of Claim 50 wherein the step of pressing the cover toward the sensor comprises compressing the cover toward the sensor to a first threshold distance where input can be detected by the sensor to actuate the user interface.

52. The method of Claim 50 wherein the step of contacting the exterior surface comprises contact within a second threshold distance where input can be detected by the sensor to operate and/or to position the user interface.

53. The method of Claim 51 wherein the step of pressing the cover toward the sensor comprises deforming the composite structure at least partially.

54. The method of Claim 50 further comprising the step of (c) movement at or adjacent the exterior surface detected as input by the sensor.

55. The method of Claim 52 wherein the step of contacting the exterior surface within the second threshold distance does not require deformation of the composite structure.
56. A vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems comprising:

- a composite structure configured to provide the user interface comprising:
 - (a) a cover providing an exterior surface;
 - (b) a sensor;
 - (c) a functional layer; and

wherein the cover comprises a translucent layer;

wherein the cover comprises at least one (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials;

wherein the sensor is configured to detect input from the vehicle occupant at or adjacent to the exterior surface of the cover from at least one of (a) touch; (b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning;

so that operation of the user interface for the vehicle occupant comprises input detected by the sensor.
57. A vehicle interior component configured to provide a user interface for a vehicle occupant in a vehicle comprising vehicle systems comprising:
 a composite structure configured to provide the user interface comprising:
 (a) a cover providing an exterior surface;
 (b) a display;
 (c) a functional layer;
 wherein the cover comprises a translucent layer;
 wherein the cover comprises at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials;
 wherein the display is configured to provide illumination at least partially visible through the functional layer and through the exterior surface of the cover;
 so that interaction with the user interface for the vehicle occupant comprises visible output from illumination from the display.
START

MAIN MENU APPEARS

INTERACTION HEATING

HEATING MENU OPENS AND THE WHOLE SURFACE ILLUMINATES IN AN SUITABLE COLOR.

MOVING UP AND DOWN WITH 1 TO 5 FINGERS TOUCHING THE SURFACE ADJUSTS THE HEAT INTENSITY. HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION.

HOLDING THE HAND ONTO THE SOFT SURFACE WITHOUT MOVING FOR 2 TO 3 SECONDS OPENS THE DRAWING MODE. IN THAT MODE A SPECIFIC AREA CAN BE DRAWN IN WITH 1-5 FINGERS OR FULL HAND. SIMILAR HAND GESTURE: SWIPE CONDENSED WATER OFF THE GLASS IN SHOWER WITH HAND. (NO ICON IS VISIBLE). HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION.

TWO TAPS TO GO BACK TO MAIN MENU OR ...

WAIT FOR 5 SEC: INTERACTION ICONS DISAPPEAR AND SURFACE IS NO LONGER ILLUMINATED.

INTERACTION LIGHT

LIGHTING MENU OPENS AND THE WHOLE SURFACE ILLUMINATES IN THE SELECTED COLOR. (OR AFTER REBOOT IN NEUTRAL WHITE IN MID INTENSITY)

MOVING UP AND DOWN WITH 1 TO 5 FINGERS TOUCHING THE SURFACE ADJUSTS THE LIGHT INTENSITY. (NO ICON IS VISIBLE). HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION.

MOVING LEFT AND RIGHT WITH FINGERS TOUCHING THE SURFACE ADJUSTS THE LIGHT COLOR. NO ICON IS VISIBLE. HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION.

HOLDING THE HAND ONTO THE SOFT SURFACE WITHOUT MOVING FOR 2 TO 3 SECONDS OPENS THE DRAWING MODE. IN THAT MODE A SPECIFIC AREA CAN BE DRAWN IN WITH 1 TO 5 FINGERS OR FULL HAND.

TWO TAPS TO GO BACK TO MAIN MENU OR ...

WAIT FOR 5 SEC: INTERACTION ICONS DISAPPEAR

SURFACE REMAINS ILLUMINATED IN SELECTED COLOR

STOP

MAIN MENU DISAPPEARS

FIG. 26A
START

MAIN MENU APPEARS

INTERACTION AUDIO

AUDIO MENU OPENS. MUSICAL SYMBOL APPEARS ON SURFACE IN LARGER SCALE. FOR MOVEMENT OR GESTURES (SYMBOL IS THE ANCHORPOINT)

INTERACTION VISIBLE ENVIRONMENT

DISPLAY THE OUTER ENVIRONMENT FROM PERSPECTIVE OF PASSENGER (E.G. CAMERA IMAGE, MAP, STREETS, LANDSCAPE ETC.) THE EFFECT OF A TRANSPARENT CAR IS SET.

MOVING UP AND DOWN WITH 1 TO 5 FINGERS TOUCHING THE SURFACE ADJUSTS THE SOUND VOLUME. (HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION)

MOVING LEFT AND RIGHT WITH 1 TO 5 FINGERS TOUCHING THE SURFACE SELECT NEXT OR PREVIOUS TRACK (LEFT FOR PREVIOUS /RIGHT FOR NEXT). (HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION)

OPTIONAL: MOVING LEFT AND RIGHT WITH 1 TO 5 FINGERS TOUCHING THE SURFACE CHOOSES ONE OF A SET OF ANIMATIONS (I.E. MOVIES, MOVING IMAGES, AMBIENT IMAGES ETC.) NO ICON IS VISIBLE. (HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION)

HOLDING THE HAND ONTO THE SOFT SURFACE WITHOUT MOVING FOR 2 TO 3 SECONDS OPENS THE DRAWING MODE. IN THAT MODE A SPECIFIC AREA CAN BE DRAWN IN WITH 1 TO 5 FINGERS OR FULL HAND. THIS AREA IS SHOWING ONE OF THE OPTIONS JUST IN THE DRAWN AREA.

STOP — MAIN MENU DISAPPEARS

TWO TAPS TO GO BACK TO MAIN MENU OR ...

WAIT FOR 5 SEC; INTERACTION ICONS DISAPPEAR

SURFACE REMAINS ILLUMINATED IN SELECTED COLOR

TWO TAPS TO GO BACK TO MAIN MENU OR ...

WAIT FOR 5 SEC; INTERACTION ICONS DISAPPEAR

SURFACE REMAINS ILLUMINATED IN SELECTED COLOR

FIG. 26B
START

MAIN MENU APPEARS

INTERACTION
HEATING

HEATING CONTROL OPENS UP. THE WHOLE SURFACE LIGHTS UP IN AN INDICATED COLOR (E.G. ORANGE).

MOVING UP AND DOWN WITH 1 TO 5 FINGERS TOUCHING THE SURFACE ADJUSTS THE HEAT INTENSITY. (NO ICON IS VISIBLE). HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION

HOLDING THE HAND ONTO THE SURFACE WITHOUT MOVING FOR 2 TO 3 SECONDS OPENS THE DRAWING MODE. IN THAT MODE A SPECIFIC AREA CAN BE DRAWN IN WITH 1 TO 5 FINGERS OR FULL HAND. SIMILAR HAND GESTURE: SWIPE CONDENSED WATER OFF THE GLASS IN SHOWER WITH HAND. (NO ICON IS VISIBLE). HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION

TWO TAPS TO GO BACK TO MAIN MENU OR ...

WAIT FOR 5 SEC. INTERACTION ICONS DISAPPEAR AND SURFACE IS NO LONGER ILLUMINATED.

STOP

MAIN MENU DISAPPEARS

INTERACTION
LIGHT

LIGHTING CONTROL OPENS UP. THE WHOLE SURFACE LIGHTS UP IN THE SELECTED COLOR. (OR AFTER REBOOT IN NEUTRAL WHITE IN MEDIUM INTENSITY)

MOVING UP AND DOWN WITH 1 TO 5 FINGERS TOUCHING THE SURFACE ADJUSTS THE LIGHT INTENSITY. (NO ICON IS VISIBLE). HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION

MOVING LEFT AND RIGHT WITH FINGERS TOUCHING THE SURFACE ADJUSTS THE LIGHT COLOR. (NO ICON IS VISIBLE). HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION

HOLDING THE HAND ONTO THE SURFACE WITHOUT MOVING FOR 2 TO 3 SECONDS OPENS THE DRAWING MODE. IN THAT MODE A SPECIFIC AREA CAN BE DRAWN IN WITH 1 TO 5 FINGERS OR FULL HAND

TWO TAPS TO GO BACK TO MAIN MENU OR ...

WAIT FOR 5 SEC. INTERACTION ICONS DISAPPEAR

SURFACE REMAINS IN SELECTED COLOR

FIG. 29A
START

MAIN MENU APPEARS

INTERACTION AUDIO

AUDIO OPENS Up. NOTES SYMBOL APPEAR ON SURFACE IN LARGER SCALE (ca 15cm). FOR THE GESTURES THE SYMBOL IS THE ANCHORPOINT

MOVING UP AND DOWN WITH 1-5 FINGERS TOUCHING THE SURFACE ADJUSTS THE SOUND VOLUME. HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION.

MOVING LEFT AND RIGHT WITH 1-5 FINGERS TOUCHING THE SURFACE SELECT NEXT OR PREVIOUS TRACK (LEFT FOR PREVIOUS / RIGHT FOR NEXT). HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION

TWO TAPS TO GO BACK TO MAIN MENU OR ...

WAIT FOR 5 SEC; INTERACTION ICONS DISAPPEAR

SURFACE REMAINS ILLUMINATED IN SELECTED COLOR

INTERACTION VISIBLE ENVIRONMENT

SURFACE DISPLAYS THE OUTER ENVIRONMENT BEHIND THE DOOR FROM PERSPECTIVE OF PASSENGER (E.G. CAMERA IMAGE, MAP, STREETS, LANDSCAPE ETC.) THE EFFECT OF A TRANSPARENT CAR IS SET.

MOVING UP AND DOWN WITH 1-5 FINGERS TOUCHING THE SURFACE ADJUSTS THE INTENSITY OF TRANSPARENCY EFFECT. NO ICON IS VISIBLE. HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION.

OPTIONAL: MOVING LEFT AND RIGHT WITH 1-5 FINGERS TOUCHING THE SURFACE CHOOSES ONE OF A SET OF ANIMATIONS (I.E. MOVIES, MOVING IMAGES, AMBIENT IMAGES ETC.) NO ICON IS VISIBLE. HAND MOVEMENT IS WITH SWIPE GESTURE IN EITHER DIRECTION

HOLDING THE HAND ONTO THE SOFT SURFACE WITHOUT MOVING FOR 2-3 SECONDS OPENS THE DRAWING MODE. IN THAT MODE A SPECIFIC AREA CAN BE DRAWN IN WITH 1-5 FINGERS OR FULL HAND. THIS AREA IS SHOWING ONE OF THE ABOVE OPTIONS JUST IN THE DRAWN AREA.

TWO TAPS TO GO BACK TO MAIN MENU OR ...

WAIT FOR 5 SEC; INTERACTION ICONS DISAPPEAR

SURFACE REMAINS ILLUMINATED IN SELECTED COLOR

STOP

MAIN MENU DISAPPEARS

FIG. 29B
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.:
 - because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claims Nos.:
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.:
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

- ***-Please See Within the Next Supplemental Box-***

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [x] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos.:
 - claims 1-33, 38-46, 50-55

Remark on Protest

- [] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- [] The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- [] No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>CPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>G06F 3/04 H03K 17/96 (2017.01)</td>
<td>G06F 3/01, 3/044; H03K 17/96, 17/962</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

See Search History document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2015/01496 A1 (SMR PATENTS S.A.R.L.) January 8, 2015; figures 1a-1c, 2, 5; paragraphs [0005], [0046]-[0048], [0066], [0061]</td>
<td>1-7, 9, 11-14, 16-33, 38-46, 50-55</td>
</tr>
<tr>
<td>Y</td>
<td>US 201 1/0096025 A1 (SLOBODIN D. E. et al.) April 28, 201 1; figure 2C; paragraphs [0027], [0028]</td>
<td>8-10, 15</td>
</tr>
<tr>
<td>A</td>
<td>US 201 6/01 9982 A1 (TPK TOUCH SOLUTIONS INC) April 21, 201 6; entire document</td>
<td>1-33, 38-46, 50-55</td>
</tr>
<tr>
<td>A</td>
<td>US 201 0/0226539 A1 (ISHII K.) September 9, 201 0; entire document</td>
<td>1-33, 38-46, 50-55</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent that published on or after the international filing date
- **L** document which may raise doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

- **“X”** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **“X’”** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **“X”** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **“&”** document member of the same patent family

Date of the actual completion of the international search: 27 September 2017 (27.09.2017)

Date of mailing of the international search report: 08 December 2017 (08.12.2017)

Name and mailing address of the ISA:

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Authorized officer: Shane Thomas

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)
This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I: Claims 1-33, 38-46, 50-55 are directed toward a vehicle interior component and a method comprising: a composite structure configured to provide a user interface for a vehicle occupant in a vehicle with vehicle systems comprising the steps of: (a) pressing the cover toward the sensor to a distance where input can be detected by the sensor; and (b) contacting the exterior surface within a distance where input can be detected by the sensor.

Group II: Claims 34-37 are directed toward a vehicle interior component comprising: wherein the user interface comprises a display element from illumination from the display that is configured to be selectively positioned on the exterior surface of the cover.

Group III: Claims 47, 48, 56, 57 are directed toward a vehicle interior component comprising: wherein the cover comprises at least one of (a) textile; (b) fabric; (c) fiber mesh.

Group IV: Claim 49 is directed toward a vehicle interior component comprising: wherein the functional layer is configured for at least one of (a) positioning; (b) spacing; (c) tactile feedback; (d) haptic feedback.

The inventions listed as Groups I-IV do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons.

The special technical features of Group I include a user interface for a vehicle occupant in a vehicle with vehicle systems comprising the steps of: (a) pressing the cover toward the sensor to a distance where input can be detected by the sensor; and (b) contacting the exterior surface within a distance where input can be detected by the sensor (which is not present in Groups II-IV); a functional layer (which is not present in Group II) wherein the sensor is configured to detect input from at least one of (a) touch; (b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning (which is not present in Groups II or IV).

The special technical features of Group II include wherein the user interface comprises a display element from illumination from the display that is configured to be selectively positioned on the exterior surface of the cover (which is not present in Groups I, III, IV).

The special technical features of Group III include a functional layer (which is not present in Group II) wherein the cover comprises at least one of (a) textile; (b) fabric; (c) fiber mesh; (d) leather; (e) grain surface; (f) synthetic fibers; (g) natural fibers; (h) artificial leather; (i) polyester; (j) synthetic fibers; (k) fabric sheet; (l) upholstered material; (m) a fleece material; (n) a woven material; (o) a non-woven material; (p) a sheet material; (q) a perforated material; (r) a composite of multiple fiber materials (which is not present in Groups I, II, IV); wherein the sensor is configured to detect input from at least one of (a) touch; (b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning (which is not present in Groups I or IV).

The special technical features of Group IV include (d) a functional layer (which is not present in Group II) wherein the functional layer is configured for at least one of (a) positioning; (b) spacing; (c) haptic feedback; (d) tactile feedback such as vibration; (e) audible feedback such as sound; (f) optical enhancement; (g) light shielding; (h) electrical shielding; (i) interference shielding; (j) optical electrical changing for a device; (k) interaction with a mobile device; (l) interaction with a vehicle system; (m) cushioning; (n) adhesion or bonding; (o) tactile shear/feel performance; (p) thermal management; (q) heating; (r) cooling; (s) Peltier effect; (t) diffusion of illumination from the display; (u) monitoring; (v) recording; (w) alerting; (x) messaging (which is not present in Groups I-III).

The common technical features of Groups I-IV include a composite structure configured to provide a user interface for interaction with the occupant comprising: a cover providing an exterior surface; a sensor; a display; and a functional layer; wherein the cover comprises a translucent layer; wherein the sensor is configured to detect input from at least one of (a) touch; (b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning from the occupant or adjacent to the exterior surface of the cover; wherein the display is configured to provide illumination at least partially visible through the exterior surface of the cover; wherein operation of the user interface for the occupant comprises at least one of (a) output from illumination from the display and (b) input detected by the sensor.

These common technical features are disclosed by US 2016/0109982 A1 (TPK Touch Solutions): a composite structure (abstract) configured to provide a user interface (as shown; figure 7A) for interaction with the occupant (for the user to operate; paragraph [0062]) comprising: a cover (1000; figures 7A, 7B) providing an exterior surface (bottom as shown; figure 7B); a sensor (1160); a display (1100; paragraph [0058]); and a functional layer (binding layer 1126); wherein the cover comprises a translucent layer (transparent substrates 1122, 1124; figure 7A); wherein the sensor (1160) is configured to detect input from at least one of (a) touch; (b) pressure; (c) proximity; (d) movement; (e) gesture; (f) positioning from the occupant (1160 is a touch sensing device; paragraphs [0059], [0062]) at or adjacent to the exterior surface of the cover (as shown; figure 7B); wherein the display (1100) is configured to provide illumination at least partially visible through the exterior surface of the cover (touch region 1100 is a display area of providing illumination through the transparent layers of the cover) of the touch panel 1000; paragraph [0058]); wherein operation of the user interface for the occupant comprises at least one of (a) output from illumination from the display and (b) input detected by the sensor (user uses touch panel to operate programs by touching (user input) the substrate (containing the sensor); paragraph [0062]).

Because the common technical features are disclosed by TPK Touch Solutions, the inventions are not so linked as to form a single general inventive concept. Therefore, Groups I-IV lack unity.