
(19) United States
US 200901.96504A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0196504 A1
Sullender (43) Pub. Date: Aug. 6, 2009

(54) MODIFIED PROPAGATED LAST LABELING
SYSTEMAND METHOD FOR CONNECTED
COMPONENTS

(76) Inventor: Craig Sullender, Austin, TX (US)

Correspondence Address:
Lee & Hayes, PLLC
Margaret Anderson
601 West Riverside, Suite 1400
Spokane, WA99201 (US)

(21) Appl. No.: 12/030,003

(22) Filed: Feb. 12, 2008

Related U.S. Application Data
(63) Continuation-in-part of application No. 12/025,738,

filed on Feb. 4, 2008, Continuation-in-part of applica
tion No. 12/028,146, filed on Feb. 8, 2008.

Curved object Feature extent,
low precision

2410 2420

Publication Classification

(51) Int. Cl.
G06K 9/34 (2006.01)

(52) U.S. Cl. .. 382/18O
(57) ABSTRACT

Embodiments disclosed include methods and systems for
assigning one or more labels to one or more segments of data
received in an incoming segment to a line buffer for propa
gated component labeling, including preventing repeated
labels in each line of the line buffer by assigning a different
label for each of the one or more segments of data received in
each line; labeling the incoming segment of the one or more
segments of data by adopting a label of an overlapping seg
ment on a prior received line when the overlapping segment
does not overlap any other segment of data; labeling the
incoming segment of the one or more segments of data by
adopting a label of an overlapping segment on a prior received
line when the overlapping segment overlaps more than one
segment on the incoming segment when the segment is a first
segment in the line buffer, and labeling the incoming segment
of the one or more segments of data by adopting a label of a
last overlapping segment when more than one segment over
laps the incoming segment.

Medium precision
Subextents

2430

High precision
subextents

2440

Patent Application Publication Aug. 6, 2009 Sheet 2 of 26 US 2009/O1965.04 A1

FIGURE 2A
("prior art")

Move line OOOOOO
in buffer up OOOOOO
"" OOOOOO

OOOOOO Data input -->

FIGURE 2B
("prior art")

OO - (G) () --GGE)-- a

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 3 of 26 Patent Application Publication

Patent Application Publication Aug. 6, 2009 Sheet 4 of 26 US 2009/01965.04 A1

FIGURE 3

- r r - r r - - - r -

Pointers

REGION
INFORMATION:
MEMORY

Labeled regions
340

Patent Application Publication Aug. 6, 2009 Sheet 5 of 26

FIGURE 4

Identify
region

metricS 420

Combine
region

information
430

Store region
information for
combined region

440

US 2009/O1965.04 A1

Patent Application Publication Aug. 6, 2009 Sheet 6 of 26 US 2009/O1965.04 A1

FIGURE 5

Assigning region labels independent of data labels 510

Assigning region labels in an order determines as a function of label demand 520

Assigning a region information index independent of region labels 530

Assigning a region information index in an order determined by region information index demand
540

Patent Application Publication Aug. 6, 2009 Sheet 7 of 26 US 2009/O1965.04 A1

FIGURE 6

Data
610

Region Labeling Region related memory space
620 630

Feature Labeling Feature related memory space
640 650

Output
66O

US 2009/O1965.04 A1 Patent Application Publication Aug. 6, 2009 Sheet 8 of 26

09/ ?SITI UOff3?!

0Z/. ?SITI [9që I

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @) @@@@@(C)(O)(O) (3)()()()()()()())

@ @ @ @ @ @ @ @
<!--__ @ @ @ @ @ @@@

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 9 of 26 Patent Application Publication

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 10 of 26 Patent Application Publication

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 11 of 26 Patent Application Publication

06 ERHOSO|–|

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 12 of 26 Patent Application Publication

800||

(JOSSBOO}}d

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 13 of 26 Patent Application Publication

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 14 of 26 Patent Application Publication

Patent Application Publication Aug. 6, 2009 Sheet 15 of 26 US 2009/O1965.04 A1

s s

O (2) O

s

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 16 of 26 Patent Application Publication

Patent Application Publication Aug. 6, 2009 Sheet 17 of 26 US 2009/O1965.04 A1

CN
O

O
w

.

()
k

O

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 18 of 26 Patent Application Publication

Patent Application Publication Aug. 6, 2009 Sheet 19 of 26 US 2009/O1965.04 A1

s

s
ya

.9
9

AY

us

MN MN 1N1N
On CN er er

y CN e?

yr H CN CN

i

US 2009/O1965.04 A1

{{{

Aug. 6, 2009 Sheet 20 of 26 Patent Application Publication

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 21 of 26 Patent Application Publication

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 22 of 26 Patent Application Publication

Õ??Ž S?ueuuôes eu? jo sdnou6 go syu??xe e?) se seun?eeg 6u?ueseudeu

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 24 of 26 Patent Application Publication

0 || 92

I eJºueo

099, Jºhnduuoo s „uºsin e uo

Patent Application Publication Aug. 6, 2009 Sheet 25 of 26 US 2009/O1965.04 A1

:

S

US 2009/O1965.04 A1 Aug. 6, 2009 Sheet 26 of 26 Patent Application Publication

US 2009/O 1965.04 A1

MODIFIED PROPAGATED LAST LABELING
SYSTEMAND METHOD FOR CONNECTED

COMPONENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application is related to and claims the
benefit of the earliest available effective filing date(s) from
the following listed application(s) (the “Related Applica
tions”) (e.g., claims earliest available priority dates for other
than provisional patent applications or claims benefits under
35 USC S 119(e) for provisional patent applications, for any
and all parent, grandparent, great-grandparent, etc. applica
tions of the Related Application(s)).

RELATED APPLICATIONS

0002 For purposes of the USPTO extra-statutory require
ments, the present application constitutes a continuation-in
part of U.S. patent application Ser. No. 12/025,738, entitled
CONNECTED COMPONENT LABELING SYSTEMAND
METHOD, naming Craig Sullender as inventor, filed 4, Feb.
2007, which is currently co-pending, or is an application of
which a currently co-pending application is entitled to the
benefit of the filing date. For purposes of the USPTO extra
statutory requirements, the present application also consti
tutes a continuation-in-part of U.S. patent application Ser.
No. 12/028,146, entitled LABEL REUSE METHOD AND
SYSTEM FOR CONNECTED COMPONENT LABEL
ING, naming Craig Sullender as inventor, filed 8, Feb. 2007,
which is currently co-pending, or is an application of which a
currently co-pending application is entitled to the benefit of
the filing date.
0003. The United States Patent Office (USPTO) has pub
lished a notice to the effect that the USPTO's computer pro
grams require that patent applicants reference both a serial
number and indicate whether an application is a continuation
or continuation-in-part. Stephen G. Kunin, Benefit of Prior
Filed Application, USPTO Official Gazette Mar. 18, 2003,
available at http://www.uspto.gov/web/offices/com/sol/og/
2003/week1 1/patbene.htm. The present Applicant Entity
(hereinafter Applicant”) has provided above a specific ref
erence to the application(s) from which priority is being
claimed as recited by statute. Applicant understands that the
statute is unambiguous in its specific reference language and
does not require either a serial number or any characteriza
tion, Such as "continuation' or “continuation-in-part for
claiming priority to U.S. patent applications. Notwithstand
ing the foregoing, Applicant understands that the USPTO's
computer programs have certain data entry requirements, and
hence Applicant is designating the present application as a
continuation-in-part of its parent applications as set forth
above, but expressly points out that such designations are not
to be construed in any way as any type of commentary and/or
admission as to whether or not the present application con
tains any new matter in addition to the matter of its parent
application(s).
0004 All subject matter of the Related Applications and of
any and all parent, grandparent, great-grandparent, etc. appli
cations of the Related Applications is incorporated herein by
reference to the extent Such subject matter is not inconsistent
herewith.

TECHNICAL FIELD

0005. The present application relates generally to the field
of connected component labeling.

BACKGROUND

0006. In general, connecting related data and maintaining
an accounting of related data connections is referred to as

Aug. 6, 2009

“connected component labeling herein referred to as
“CCL. CCL is typically used for image analysis for com
puter vision. For example, an algorithm can be applied to an
image. Such as a binary image to separate object pixels from
background pixels. Another use of CCL is to provide numeric
labels for components identified in an image, Such as a two
dimensional (2D) array. CCL is also used during the segmen
tation of other types of 1D, 2D, and 3D data such as financial
data and digital audio. CCL and segmentation extract the
needed information from data and images so that digital com
munications such as computer networks are not clogged with
unnecessary high-bandwidth data.
0007 Known methods to determine CCL include scan
ning an image to assign a provisional label and later deter
mine a final label for each pixel. Scanning can assign Such
labels by locating neighbors and determining an appropriate
label. Known methods include applying multi-pass labeling,
two-pass labeling, depending on the complexity required for
an application.
0008. A problem with CCL methods is that memory
requirements for many applications do not permit the
required use of space for known CCL techniques. For
example, the multi-pass labeling method requires repeated
scanning and saving data in memory prior to determining a
final label value for a single pixel in an image. What is needed
is a CCL system and method that does not require the memory
space of earlier known techniques and demands less band
width on networks.

SUMMARY

0009 Embodiments disclosed include methods for
assigning one or more labels to one or more segments of data
received in an incoming segment to a line buffer for propa
gated component labeling, including preventing repeated
labels in each line of the line buffer by assigning a different
label for each of the one or more segments of data received in
each line; labeling the incoming segment of the one or more
segments of data by adopting a label of an overlapping seg
ment on a prior received line when the overlapping segment
does not overlap any other segment of data; labeling the
incoming segment of the one or more segments of data by
adopting a label of an overlapping segment on a prior received
line when the overlapping segment overlaps more than one
segment on the incoming segment when the segment is a first
segment in the line buffer, and labeling the incoming segment
of the one or more segments of data by adopting a label of a
last overlapping segment when more than one segment over
laps the incoming segment.
0010. In one aspect, the method also includes identifying
one or more spatial details in the data according to a connect
edness identified by the labeling the one or more segments.
0011. In another aspect, the one or more segments are
received from raster-organized data arrays wherein the data is
image data arranged to display an image. The raster-orga
nized data arrays can also transfer the data as one or more of
text data, numerical data, medical image data, cryptographic
de-ciphering data, compressed data, and/or statistical data.
0012. In one embodiment, each of the one or more seg
ments is an unbroken sequence of one or more of a data value
organized horizontally on a raster line. In another embodi
ment, the data is one or more of run-length encoded data
and/or data encoded by a user-directed application.
0013 In another aspect, a computer program product
includes a computer readable medium configured to perform

US 2009/O 1965.04 A1

one or more acts for performing labeling of one or more labels
to one or more segments of data received in an incoming
segment to a line buffer for propagated component labeling
the one or more acts including one or more instructions for
preventing repeated labels in each line of the line buffer by
assigning a different label for each of the one or more seg
ments of data received in each line; one or more instructions
for labeling the incoming segment of the one or more seg
ments of data by adopting a label of an overlapping segment
on a prior received line when the overlapping segment does
not overlap any other segment of data; one or more instruc
tions for labeling the incoming segment of the one or more
segments of data by adopting a label of an overlapping seg
ment on a prior received line when the overlapping segment
overlaps more than one segment on the incoming segment
when the segment is a first segment in the line buffer; and one
or more instructions for labeling the incoming segment of the
one or more segments of data by adopting a label of a last
overlapping segment when more than one segment overlaps
the incoming segment. In addition to the foregoing, other
computer program product aspects are described in the
claims, drawings, and text forming a part of the present appli
cation.

0014. Other embodiments disclosed include methods for
propagated last labeling including receiving one or more data
files holding segmented data; setting a maximum number of
available labels as a function of a number of label locations on
a current line of memory; identifying one or more spaces
between at least two segments in the segmented data, the one
or more spaces sharing a same region; and labeling the one or
more spaces as a feature of the same region, each feature
representing a predetermined property of the same region. In
one embodiment, the receiving one or more data files holding
segmented data includes receiving the one or more data files
as run-length encoded data and/or data encoded by a user
directed application. Further, in an embodiment, the setting a
maximum number of available labels as a function of a num
ber of label locations on a current line of memory includes
determining the number of label locations on the current line
of memory in accordance with a user-directed application
and/or in accordance with a predetermined feature in the data
file.

0015. In another embodiment, the setting a maximum
number of available labels as a function of a number of label
locations on a current line of memory includes determining
the number of label locations on the current line of memory so
that the maximum number of available labels is equal to a
required number features.
0016. In another embodiment, the identifying one or more
spaces between at least two segments in the segmented data,
the one or more spaces sharing a same region includes iden
tifying the one or more spaces according to one or more
region properties, the one or more region properties including
a color and/or a texture.

0017. In another embodiment, labeling the one or more
spaces as a feature of the same region, each feature represent
ing a predetermined property of the same region includes:
labeling the one or more spaces as a feature using a label from
a dedicated label queue, the maximum number of labels in use
being equal to a number of possible label locations on the
current memory line.
0018. In another embodiment, labeling includes determin
ing a maximum number of unique segments on the current
memory line; setting a number of possible label locations as

Aug. 6, 2009

the maximum number; for each segment that does not connect
to a segment on the line below, closing that segment to enable
reuse of an associated feature label and feature memory loca
tion; for each segment that connects to a segment on a line
below, and the segment on the line below only connects to one
segment, propagating the label resulting in no net alteration in
a number in use labels; and for each segment that connects to
more than one segment on a line below, propagating a label
for connected segments in the current line of memory.
0019. In another aspect, a computer program product
includes a computer readable medium configured to perform
one or more acts for performing to perform one or more acts
for performing propagated last labeling, the one or more acts
including one or more instructions for receiving one or more
data files holding segmented data; one or more instructions
for setting a maximum number of available labels as a func
tion of a number of label locations on a current line of
memory; one or more instructions for identifying one or more
spaces between at least two segments in the segmented data,
the one or more spaces sharing a same region; and one or more
instructions for labeling the one or more spaces as a feature of
the same region, each feature representing a predetermined
property of the same region.
0020. In one or more various aspects, related systems
include but are not limited to circuitry and/or programming
for effecting the herein-referenced method aspects; the cir
cuitry and/or programming can be virtually any combination
of hardware, software, and/or firmware configured to effect
the herein-referenced method aspects depending upon the
design choices of the system designer.
0021. The foregoing is a Summary and thus contains, by
necessity, simplifications, generalizations and omissions of
detail; consequently, those skilled in the art will appreciate
that the summary is illustrative only and is NOT intended to
be in any way limiting. Other aspects, features, and advan
tages of the devices and/or processes and/or other subject
described herein will become apparent in the text set forth
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. A better understanding of the subject matter of the
present application can be obtained when the following
detailed description of the disclosed embodiments is consid
ered in conjunction with the following drawings, in which:
0023 FIG. 1 is a block diagram of an exemplary computer
architecture that Supports the claimed Subject matter,
(0024 FIGS. 2A and 2B, both labeled “prior art” illustrate
a label buffer and a prior art label buffer process, respectively.
0025 FIG. 2C is a flow diagram in accordance with an
embodiment of the present invention.
0026 FIG. 3 is a schematic diagram illustrating an
embodiment of region information memory in accordance
with an embodiment of the present invention.
0027 FIG. 4 is a flow diagram in accordance with an
embodiment of the present invention.
0028 FIG. 5 is a flow diagram in accordance with an
embodiment of the present invention.
0029 FIG. 6 is a flow diagram in accordance with an
embodiment of the present invention.
0030 FIG. 7 is a schematic diagram illustrating label
buffer, label list and region list storage in accordance with an
embodiment of the present invention.
0031 FIG. 8 is a flow diagram in accordance with an
embodiment of the present invention.

US 2009/O 1965.04 A1

0032 FIG.9A is a schematic diagram illustrating an alter
nate embodiment of the present invention.
0033 FIGS. 9B and 9C are flow diagrams illustrating a
method in accordance with an embodiment of the present
invention.
0034 FIG. 10A is a system diagram illustrating a system
in accordance with an embodiment of the present invention.
0035 FIG. 10B is a flow diagram illustrating a method in
accordance with an embodiment of the present invention.
0036 FIG. 11 is a flow diagram in accordance with an
embodiment of the present invention.
0037 FIG. 12 is a schematic diagram of a label buffer in
accordance with an embodiment illustrating how regions are
combined and propagated in accordance with an embodiment
of the present invention.
0038 FIG. 13 is a flow diagram illustrating a method in
accordance with an embodiment of the present invention.
0039 FIG. 14 is a schematic diagram of a label buffer
current line and previous line in accordance with an embodi
ment illustrating in accordance with an embodiment of the
present invention.
0040 FIG. 15 is a flow diagram illustrating a method in
accordance with an embodiment of the present invention.
0041 FIG. 16 is a flow diagram illustrating a method in
accordance with an embodiment of the present invention.
0042 FIG.17A labeled “prior art” is a prior art diagram of
a connected component labeling scheme illustrating how data
can be combined to a single region.
0043 FIG. 17B is a diagram illustrating connected com
ponent labeling that identifies features in accordance with an
embodiment of the present invention.
0044 FIG. 18A illustrates data as input data written into a
label buffer in accordance with an embodiment of the present
invention.
0045 FIG. 18B is a diagram illustrating input data written

to a label buffer and labeled segments in accordance with an
embodiment of the present invention.
0046 FIG. 18C is a diagram illustrating input data written
to a label bufferas compared to input data in accordance with
an embodiment of the present invention.
0047 FIG. 19 is a flow diagram illustrating a method in
accordance with an embodiment of the present invention.
0048 FIG. 20 is a flow diagram illustrating a method in
accordance with an embodiment of the present invention.
0049 FIG. 21 illustrates exemplary data structures in
accordance with an embodiment of the present invention.
0050 FIG.22 is a schematic data flow diagram illustrating
a method in accordance with an embodiment of the present
invention.
0051 FIG.23 is a schematic data flow diagram illustrating
a networked application method in accordance with an
embodiment of the present invention.
0052 FIG. 24 is a sample precision based connected com
ponent example of a method in accordance with an embodi
ment of the present invention.
0053 FIG. 25 is a flow diagram illustrating a method in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

0054 Those with skill in the computing arts will recognize
that the disclosed embodiments have relevance to a wide
variety of applications and architectures in addition to those
described below. In addition, the functionality of the subject
matter of the present application can be implemented in Soft

Aug. 6, 2009

ware, hardware, or a combination of Software and hardware.
The hardware portion can be implemented using specialized
logic; the software portion can be stored in a memory or
recording medium and executed by a suitable instruction
execution system such as a microprocessor.
0055 With reference to FIG. 1, an exemplary computing
system for implementing the embodiments and includes a
general purpose computing device in the form of a computer
10. Components of the computer 10 may include, but are not
limited to, a processing unit 20, a system memory 30, and a
system bus 21 that couples various system components
including the system memory to the processing unit 20. The
system bus 21 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architectures.
By way of example, and not limitation, Such architectures
include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus,
Video Electronics Standards Association (VESA) local bus,
and Peripheral Component Interconnect (PCI) bus also
known as Mezzanine bus.

0056. The computer 10 typically includes a variety of
computer readable media. Computer readable media can be
any available media that can be accessed by the computer 10
and includes both volatile and nonvolatile media, and remov
able and non-removable media. By way of example, and not
limitation, computer readable media may comprise computer
storage media and communication media. Computer storage
media includes volatile and nonvolatile, removable and non
removable media implemented in any method or technology
for storage of information Such as computer readable instruc
tions, data structures, program modules or other data. Com
puter storage media includes, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by the computer 10. Communica
tion media typically embodies computer readable instruc
tions, data structures, program modules or other data in a
modulated data signal Such as a carrier wave or other transport
mechanism and includes any information delivery media. The
term "modulated data signal” means a signal that has one or
more of its characteristics set or changed in Such a manner as
to encode information in the signal. By way of example, and
not limitation, communication media includes wired media
Such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other wire
less media. Combinations of the any of the above should also
be included within the scope of computer readable media.
0057 The system memory 30 includes computer storage
media in the form of volatile and/or nonvolatile memory such
as read only memory (ROM).31 and random access memory
(RAM)32. A basic input/output system 33 (BIOS), contain
ing the basic routines that help to transfer information
between elements within computer 10, Such as during start
up, is typically stored in ROM31. RAM32 typically contains
data and/or program modules that are immediately accessible
to and/or presently being operated on by processing unit 20.
RAM 32 is shown with operating system 34, application
programs 35, program module 36, and program data 37. By
way of example, and not limitation, FIG. 1 illustrates non
removable non-volatile memory interface 40 connected to

US 2009/O 1965.04 A1

hard disk drive 41 configured to hold operating system 44.
application programs 45, and program module 46 and pro
gram data 47 in accordance with an embodiment as described
herein.

0058. The computer 10 may also include other removable/
non-removable, Volatile/nonvolatile computer storage media.
By way of example only, FIG. 1 illustrates a magnetic disk
drive 51 that reads from or writes to a removable, nonvolatile
magnetic disk 52, and an optical disk drive 55that reads from
or writes to a removable, nonvolatile optical disk 56 such as a
CD ROM or other optical media. Other removable/non-re
movable, Volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment include,
but are not limited to, magnetic tape cassettes, flash memory
cards, digital versatile disks, digital video tape, Solid state
RAM, solid state ROM, and the like. The hard disk drive 41 is
typically connected to the system bus 21 through a non
removable memory interface Such as interface 40, and mag
netic disk drive 51 and optical disk drive 55 are typically
connected to the system bus 21 by a removable memory
interface, such as interface 50. An interface for purposes of
this disclosure can mean a location on a device for inserting a
drive such as hard disk drive 41 in a secured fashion, or a in a
more unsecured fashion, such as interface 50. In either case,
an interface includes a location for electronically attaching
additional parts to the computer 10.
0059. The drives and their associated computer storage
media, discussed above and illustrated in FIG. 1, provide
storage of computer readable instructions, data structures,
program modules and other data for the computer 10. In FIG.
1, for example, hard disk drive 30 is illustrated as including
program module 36 and program data 37. Program module 46
could be in non-volatile memory in some embodiments
wherein Such a program module that runs automatically in an
environment. In other embodiments, program modules could
part of an embedded system.
0060 A user may enter commands and information into
the computer 10 through input devices such as a microphone
63, a keyboard 62 and pointing device 61, commonly referred
to as a mouse, trackball or touchpad. Other input devices (not
shown) may include a joystick, game pad, satellite dish, Scan
ner, or the like. These and other input devices are often con
nected to the processing unit 20 through a user input interface
60 that is coupled to the system bus, but may be connected by
other interface and bus structures, such as a parallel port,
game port or a universal serial bus (USB). A monitor 91 or
other type of display device is also connected to the system
bus 21 via an interface. Such as an output peripheral interface
94. The monitor 91 may also be integrated with a touch
screen panel or the like. Note that the monitor and/or touch
screen panel can be physically coupled to a housing in which
the computing device 10 is incorporated. Such as in a tablet
type personal computer. In addition, computers such as the
computing device 10 may also include other peripheral output
devices such as speakers 97 and printer 96, which may be
connected through an output peripheral interface 94 or the
like.
0061 The computer 10 may operate in a networked envi
ronment 108 using logical connections to one or more remote
computers, which could be other cellphones with a processor
or other computers. As shown, network 108 is a wired or
wireless network or internet, connecting sensors 102(1-3), a
user computer 104, a user cell phone 106 or other mobile
device, and/or an application input, output or other or further

Aug. 6, 2009

processing 107. The user computer 104 may be a personal
computer, a server, a router, a network PC, PDA, cell phone
computer, a peer device or other common network node, and
typically includes many or all of the elements described
above relative to the computer 10, although only a memory
storage device 81 has been illustrated in FIG. 1. The logical
connections depicted in FIG. 1 include a local area network
(LAN) 71 which can be a wide area network (WAN) 78, but
may also include other networks. Such networking environ
ments are commonplace in offices, enterprise-wide computer
networks, intranets and the Internet. For example, in the Sub
ject matter of the present application, the computer system 10
may comprise the Source machine from which data is being
migrated, and the remote computer may comprise the desti
nation machine. Note however that source and destination
machines need not be connected by a network or any other
means, but instead, data may be migrated via any media
capable of being written by the source platform and read by
the destination platform or platforms.
0062 Computer 10 can be connected to hardware config
ured in accordance with embodiments disclosed herein to
accomplish connected component labeling. Computer 10 can
be output device to collect data or can be included in the
processing required for implementing disclosures herein.
Thus, computer 10 can be agnostic to one or more disclosures
and/or be incorporated as a necessary part of an embodiment
as will be appreciated by one of skill in the art.

Connected Component Labeling for Segmentation
0063 Embodiments herein relate to computer and/or pro
cessor directed actions for connected components labeling
(CCL) Connected Component Labeling (CCL) for designat
ing or labeling of groups or regions of related data. CCL
commonly provides the labeling function for segmentation.
0064. In general, the data being considered can include
data arranged in “raster' order, typically rows of width w
stacked from top to bottom with a height of h rows. For
example a specific element of image data is referenced by
location, the pixel value at X width and y height is p(x, y).
Referring to FIG. 2A, a raster ordered buffer example is
illustrated 200 which illustrates how data input is input and
how lines in the buffer move up.
0065. Segmentation applies relationship rules to arrays of
data. The input to the segmentation function is individual data
values. The output of segmentation is the result of iteratively
applying the relationship rules to pairs of adjacent data values
or groups until the whole array is processed. For example, if
the rule is “segment pixels of the same color, then the seg
mentation function will indicate any groups or regions of
matching pixels. Likewise, embodiments can be directed to
segmentation based on shape or other characteristics.
0.066 Prior art techniques for connected component label
ing begin with data locations that are “Labeled' or marked
with unique designations. A label buffer can match the data
buffer in size, so that each data location has a corresponding
label location.
0067 Prior art labeling provides that labels are associated
in a linked list (label list) so that linked labels indicate related
data. All of the different labels for different areas of a region
point to one label, the “root’ or “region” label. A common
convention is to choose the lowest valued label. For example
the related data elements labeled 73 and 74 will be entered
into the labellist as 74->73, and 73->73, or 74 points to 73and
73 points to itself. The region label is therefore 73. FIG. 2B

US 2009/O 1965.04 A1

“prior art” illustrates how labels are combined to provide
label 73 202 A function called “Union-Find' containing the
function “Find-Root' is commonly used to perform the root
search and connection of label pairs. The data values for
locations 73 and 74 are combined so that the label 73 repre
sents the collection of data at locations corresponding to
labels 73 and 74.
0068 A prior art example CCL method allows region
labels to be the unique designators for data structures in
memory that hold region information useful to segmentation.
For example, for segmenting pixels by color, the region infor
mation structure addressed by a region label would contain
the average color of that region. After segmentation, impor
tant region information has been collected, and the data can be
handled as regions (#73, #68) instead of individual data ele
mentS.

0069. In summary. CCL and segmentation are interrelated
functions. CCL labels and groups data locations selected by
segmentation rules. Segmentation analyzes individual data
values and the collected region qualities from CCL.
0070 The disadvantages of prior art CCL technique are
numerous. For example, if the amount of data is n elements, in
locations in memory for labels and region information must
be allocated. Also, for prior art methods, a whole array of data
must be labeled and then connected, requiring multiple passes
and several operations for each data element. In prior art
techniques, region growth is unpredictable, making collec
tion of details about region shape expensive and difficult
because another complicated and costly pass over the whole
data set is required. As a result of prior art methods of per
forming CCL, the results obtained are presented ad hoc. In
other words, there is no standard format for encoding and
communicating region features.
0071 Referring now to FIG. 2C, a flow diagram illustrates
a method according to an embodiment. As shown, block 210
provides for “region” labeling of groups of raw data, includ
ing designating data structures containing information about
whole regions. Block 220 provides for re-labeling regions
into Subregions as a “feature’ labeling to expose spatial dis
tribution of region features.
0072 Block 220 includes optional block 2202 which pro
vides for collecting and communication information about
Subregions using a feature data structure. More particularly,
feature labels can designate the feature data structures. Such
as a feature data structure for containing information about
subregions. The feature data structure can provide for collect
ing and communicating feature information. As a result, fea
tures can be acquired with controllable precision that uses an
architecture that minimizes the memory required for pre
CCL actions, such as segmentation. By designating feature
labels, memory required for acquiring region features is opti
mized.
0073. In one embodiment, as illustrated in optional block
2204, the method provides for recording shapes and sizes of
regions on previously segmented data. In another embodi
ment, the method provides in optional block 2206 for per
forming CCL to raw data by incorporating a segmentation
rule for determining which data elements are related and
should be “connected.” Thus, CCL can operate on labels
applied during segmentation or CCL can be configured to
re-label data without regard for previous processing.
0074. In general the data being considered is arranged in
“raster' order, typically rows (lines) of width w stacked from
top to bottom with a height of h rows. For example a specific

Aug. 6, 2009

element of image data is referenced by location, the pixel
value at X width and y height is p(x, y).
0075 Block 230 provides for setting up a memory array
with a 1:1 correspondence to a data array. More particularly,
the data in the data array is labeled by setting up a memory
array that is addressable in a 1:1 correspondence to the data
array. For example, if the data is indexed by p(x, y), then the
labels can be indexed by Lp(x, y). Depicted within block 230
is optional block 2302 which provides for using memory with
a linear address space. Thus, labels can be indexed by p(m),
where m is equivalent to (x, y), for example m (yw)+X.
Additional or optional appropriate spatial conversion and/or
memory address offset calculations may be required. For
example, the memory address and contents will be Label73
=73 and Label74–73 for the example. Regions 73 and 74 are
merged. Referring to FIG.3, an exemplary CCL operation on
label memory is illustrated. As shown, raw data 310 is iden
tified as regions 73 and 74 as labels in label memory 320.
Next, labels are connected by pointers 330 and finally, a
region label 340 is produced as label 73.
0076. Additionally, some region qualities might be col
lected Such as region size, shape, or color. Region qualities
can be combined such that no more memory is required to
store the result of combining regions. For example, “average
region color” will require the same amount of storage space
regardless of how many regions were combined during seg
mentation. The region qualities are stored in memory
addressed by region labels with address conversions and/or
offsets as needed.
0077. The CCL operations on region information memory
are illustrated in FIG. 4. Specifically, as shown, there can be
four regions. Raw data 410 is identified as region metrics in
region information memory 420, the region information in 74
is then combined with 73 in block 430, and region informa
tion for region 73 is then stored 440. Each of the memory
areas have the same indexing scheme taken from the original
data label such that the original data label provides the raw
data index, data label index, region label index and region
information index. The same indexing scheme can provide
different kinds labels for data, region, border information and
other types of information about the raw data 410.
(0078 Referring now to FIG. 5, an embodiment is directed
to a method for storing region data. Block 510 provides for
assigning region labels independent of data labels. Rather,
block 520 provides for assigning region labels in an order
determined as a function of label demand. Block 530 provides
that a region information index is assigned independent of
region labels. Rather, block 540 provides for assigning a
region information index in an order determined by region
information index demand. As a result of the independence
from data labels and region labels, it has been discovered that
line buffer segmentation processes are Supported and Union
Find and Find-Root algorithms are supported while minimiz
ing memory usage. Moreover, assigning an order based on
index demand can be applied to different types of data. For
example data labeling beyond data and region labeling can
include border data, color data, Subregion data, and stochastic
data.

Line Buffer

0079 A line buffer, for purposes of the present disclosure,
can include one or more lines of memory, each line of
memory containing a line of data, which can be image data.
The data may be stored in different formats, such as a run

US 2009/O 1965.04 A1

length encoded (RLE) format. The data locations making up
the lines of memory and the lines of memory making up the
line buffer may or may not be contiguous memory locations.
0080 Referring now to FIG. 6, a method for operating a
CCL using a line buffer is illustrated. More particularly, a data
stream from a video camera or computer network can be
processed in a data buffer (memory) by writing the newest
line of data at the bottom of the buffer while moving all of the
existing data in the buffer up one row. As a result, segmenta
tion methods are Supported that can operate on data in line
buffers. For example, a segmentation process can be executed
such that the upper lines of the buffer are completely seg
mented before the lower lines of the buffer.

0081 Block 610 provides for moving all of the data in a
line buffer up one row when a top row of data is fully seg
mented. Block 620 provides for entering the next data line in
the bottom row of the buffer. Block 630 provides for segment
ing the data in the buffer. Block 640 provides for moving all
the data in the buffer up one row when the top row of data is
fully segmented. Block 650 provides for entering the next
data line in the bottom row of the buffer. Block 660 provides
for repeating the process until complete.
I0082 Referring back to FIG. 2A, the line buffer is illus
trated can that is appropriate for embodiments. More particu
larly, FIG. 2A includes several lines and illustrates apparent
movement of the line buffer over the input data, such as an
image. Advantageously, instead of buffering the full image,
only a few lines at a time are stored in memory. Further, the
actual Xy coordinates of data can be derived from the Xy
coordinates in the buffer along with the location of the buffer
over the complete data array. Next, region labels are assigned
to the data buffer locations.

I0083) Referring now to FIG.7, labeled “prior art”, a label
buffer 710 is illustrated on the left, followed by a labellist 720
and a region list 730 is illustrated on the right. The labels in a
region buffer point to the region list 730 which also points to
the list of region structures located in memory.

Arbitrary Labeling

0084. According to an embodiment, label index allocation
can be arbitrarily assigned such that labels have a random
quality. For example, a label allocation can be assigned 1, 8,
2, 25, etc., Such that labels are neitherin increasing order or in
an ordered sequence. Further, labeling can be performed Such
that the relationship between data labels, region labels, and
region information indices is made more independent while
maintaining label coherency, thereby enabling arbitrary and
independent labeling. Referring to FIG. 8, a flow diagram
illustrates a method for enabling arbitrary and independent
labeling for CCL. Block 810 provides for choosing a label for
a region containing the “earliest data” as a root when con
necting related data elements. For example, for the raster
ordered example, the top row is y=0 and the first column is
X-0. A segmentation process might expect labels ordered as
shown on the top two rows. The “earliest data” will have the
lowest result for ((y*w)+x). The data labeled 91 and 75 are
linked. Label 91 is selected as root according to the test.
According to an embodiment, other conventions for selecting
the root label can be adopted.
0085 Block 820 provides for flagging or otherwise mark
ing the root label. Specifically, the root label no longer points
to itself, so the root label is flagged or marked. For example,
an unused memory bit may be set.

Aug. 6, 2009

I0086) Referring to FIG. 9A in combination with FIG. 7,
label buffer 910 includes an arbitrary label “91” that is arbi
trary but indexed by label list 920 to location r23. Region list
930 identifies region R23 as including r23 and r7 informa
tion. According to an embodiment, the flagged root label
contains the region list index. In the example, the “r” in the
label list 920 at L91 indicates a region list index. L75 has
had its original r7 index overwritten by a pointer to L91.

Label Reuse and Memory Allocation Efficiency
I0087. Referring now to FIG.9B, a method for label reuse
is shown in a flow diagram. Block 940 provides for assigning
one or more labels to one or more groups of raw data repre
senting one or more regions by designating one or more data
structures as containing information about the one or more
regions. For example, label buffer 910 in FIG.9A can interact
with instructions received from a module, ASIC or the like.
Block 950 provides for connecting the one or more labels
determined to be related. Block 960 provides for choosing a
root label for the connected one or more labels, the root label
determined by locating an earliest data element from the one
or more groups of raw data. In one embodiment choosing a
root label for the connected one or more labels includes
determining the earliest data element according to a lowest
result for ((yw)+x) wherein y represents a row value, x
represents a column value, and w represents a width value.
The earliest data element can be according to a first-in-first
out (FIFO) algorithm for raster-organized data arrays. The
choosing can also be accomplished by flagging the root label
by setting an unused memory bit when a prior root label no
longer points to itself.
I0088 Block 970 provides for altering a labellist of the one
or more labels, the label list altered by flagging the root label
to include a region label index. For example, the altering can
include flagging the root label by setting an unused memory
bit when a prior root label no longer points to itself.
I0089 Block 980 provides for overwriting one or more
region label indexes according to the root label. Thus, region
label indexes are reused. For example, a pointer can be pro
vided to the root label.
(0090 Referring now to FIG.9C a flow diagram illustrates
a method for reusing one or more labels in a connected com
ponent labeling system. Block 990 provides for determining
a location value for each of the one or more labels, each
location value identifying a maximum “y” extent ("yMax”) of
an associated label region. For example, determining a loca
tion value can include assigning as theyMax value a y coor
dinate for each label of the one or more labels located in a
memory, they coordinate assignment based on a row level in
the memory. In one embodiment, determining they coordi
nate can be a function of the row level in the memory wherein
the memory is a data buffer configured to receive label and
region information in a receiving row. In an embodiment,
determining the row level can be according to raster order of
rows wherein the rows of are formed by moving data up from
a bottom row to a top row. For example, label and region
information could include receiving in the memory and deter
mining they coordinate as a function of the row level in the
memory wherein the memory is a data buffer configured to
receive label and region information in a bottom row.
(0091 Block 992 provides for determining which of the
one or more labels refer to areas Subsumed in a determination
of the yMax location value. When determining which of the
labels refer to areas Subsumed, an embodiment directs storing

US 2009/O 1965.04 A1

a location of each root in an associated region information
location to enable label comparison during Subsuming of
label data.

0092 Block 994 provides for reusing the one or more
labels and/or region information memory location values Sub
sumed in the determination of the yMax location value.
0093. In one embodiment, the method for reusing includes
determining that a row of the memory is fully processed
and/or about to be overwritten. Next, for each label in the fully
processed and/or about to be overwritten row, the method
directs comparing each yMax value to a y coordinate for the
row. For each yMax value that matches they coordinate, the
method calls for designating an associated label as an avail
able label. For each yMax value that does not match they
coordinate, the method then directs determining that the
yMax value is associated with a series of labels. Next, the
method compares each yMax value in the series of labels to
they coordinate. For each yMax value in the series of labels
that matches they coordinate, the method designates an asso
ciated label as an available label.

0094. In another embodiment, the reusing includes deter
mining whether the one or more labels and/or region infor
mation memory location values are part of a tree structure and
locating a root of the tree structure to enable reusing an
associated label and/or region information memory location
value associated with the root.

0095. In another embodiment, the reusing includes
enabling each yMax location value to propagate from root
value to root value of each region Such that each region root
contains a yMax location value that is an actual maximum y
coordinate.

0096 Block 996 provides for comparing two or more
yMax values to determine a maximum yMax value. Block
998 provides for assigning the determined yMax value as a
root result.

0097. Referring now to FIG. 10A, a connected compo
nents labeling system appropriate for enabling label reuse is
illustrated. FIG. 10A shows a processor 1002, and a memory
1003 coupled to the processor 1002. Memory 1003 includes
a circular buffer 1004 configured to contain a plurality of
locations for holding one or more region labels for the con
nected components labeling system and a label buffer 1005
coupled to the circular buffer. Label buffer 1005 is configured
to be initialized with a sequential count at the beginning of an
operation for each array of input data in a raster order. Further,
label buffer 1005 holds current labels in use during an opera
tion, and is independent from the height of a connected
region. FIG. 10A also illustrates a label list 1006 coupled to
the label buffer 1005 and the circular buffer 1004 the label list
1006 receives closed labels no longer required by label buffer
1005. Label list 1006 can be initialized with a maximum
number of label position to prevent a last label from overtak
ing a lead label and return label availability to circular buffer
1004 in ascending order.
0098 FIG. 10A further includes region queue 1007
coupled to label list 1006. Region queue 1007 can be config
ured to send and receive a plurality of region information
locations equal to a number of possible roots. FIG. 10A
further can include region information module 1008 coupled
to label list 1006. In an embodiment, region information
module 1008 outputs region information wherein the maxi
mum number of region information locations is equal to the

Aug. 6, 2009

number of possible roots, the number of region information
locations being a fraction of the maximum number of region
information locations.

(0099 Referring now to FIG. 10B, another embodiment is
directed to enabling reuse of label and region information in
memory locations that are no longer needed. More specifi
cally, one problem is that labels that are not roots and no
longer in use inside the buffer area may be required by a
Find-Root function. Block 1010 provides for creating label
chains by Successive merge operations on roots with decreas
ing ((yw)+X) values. For example, a chain of labels such as
5-65-74-342-2-57 (root) might be created. If any of these
labels is destroyed, a Find-Root on 5 will not return 57. Even
if 65, 74, 342, 2 and 57 have moved out of the buffer and are
no longer being processed by segmentation, an attempt to
perform segmentation with label 5 will fail. The problem is
that there is no way to detect when a label is no longer needed
without scanning the whole label list.
0100 Block 1020 provides for attaching a location value
to every label to record the maximum y extent (“yMax”) of
the label's region. They extents are the top and bottom loca
tions of a region's spatial location. In one embodiment, the
method provides that only the root result of each Union-Find
operation has the yMax value updated. Even if some method
other than Union-Find is used there is still an implicit com
parison of two roots from which one root will remain. Only
two operations are required, compare and write, both of
which can be executed in parallel with other Union-Find
operations so that no time or delay is added to the CCL
process.

0101 Block 1030 provides for assigning as the label for
the bottom row of the label bufferyMax as they coordinate
for the buffer bottom row.

0102 Block 1040 provides for comparing the yMax for
each root when two roots are compared during Union-Find or
the equivalent and selecting the larger valued yMax. Block
1050 provides for updating the root result of the Union Find
or equivalent with the new yMax.
(0103 Block 1060 provides for checking each yMax of
each label in the top row of the label buffer when top row of
label buffer is completely processed and ready to be reused
(or labels in the label buffers top row are about to be over
written) then for each label in the top row of the label buffer.
More specifically, block 10602, depicted within block 1060
provides that if a label’syMax=they coordinate for the buffer
top row, the label can be reused (return label to queue), which
optimizes memory usage. Block 10604, also depicted within
block 1060 provides that if the label is not root, then it is part
of a chain of labels. Block 106042 provides for checking
yMax for the next label in the chain. Block 106044 provides
for reusing the label by returning the label to the queue if
yMax they coordinate for the buffer top row and continuing
to consider the chain of labels. Chains in accordance with an
embodiment can be created by Successive merge operations.
Successive merge operations propagate higher yMax from
root to root. As the chain is traversed to root, yMax can not
decrease. Label chains and label reuse in connected compo
nent labeling enables processing for any sized object. More
specifically, the yMax procedure explained above is agnostic
to at least one dimension of data, which enables segmentation
and CCL in a line buffer. Moreover, by successive application
of theyMax procedure, the number of dimensions of data can
be extended as needed by System requirements.

US 2009/O 1965.04 A1

0104. As a result of the method described in FIG. 10B, the
CCL is based on merging regions by pointing one region root
at another region root resulting in one root, thereby making
every region have one root. Further, only a region's rooty Max
is updated. Further, every label is either root or has been
merged as root at least once during the process. Further, only
roots are merged. After operating the method, the yMax
propagates from root to root. Therefore, for every region, the
region root contains the yMax that is the actual maximum y
coordinate for that region. The non-root labels in the region
are part of a chain of pointers to root. No labels will escape
reuse, even if several chains combine before the root is
reached (tree structure). Therefore, the method reuses labels
completely, and no labels are missed.
0105. In one embodiment, when a label and label memory

is initially allocated for use, for example, when a label is
applied at the bottom of the buffer, or when a region info
structure is filled with a new label's data, the memory space is
termed “opened.” When the memory space is no longer
needed and can be reused it is “closed.”
0106. As a result of reusing labels and the methods as
described above, the region information memory locations
that were potentially unused after region merge operations are
now known to be available for reuse, which optimizes
memory. For every merge operation between two regions, one
region label will no longer be root. Every root label has a
corresponding region information structure in memory.
0107 From the time a label is no longer root to the time the
label is closed by theyMax technique, the region information
structure for that label is unused. In an embodiment, yMax is
stored in the label list instead of the region list. Becausey Max
is stored in the labellist, the non-root region info structure has
no useful information. As a result, the region info structure
can be closed as soon as the region label pointing to it is no
longer root. Therefore, for every region merge operation, one
region info structure can be closed. The region info locations
pointed to by the root labels can be closed when the corre
sponding root label is closed according to yMax.
0108) Note that if linking conventions need to be main
tained, then the actual (x, y) location of each root can be
included in the region info locations. The actual (x, y) is
useful for comparing labels to choose root during merge
operations.
0109 As a result of the method described both region
labels and region information structures now have exact con
ditions when they can be closed. Memory usage is made
maximally efficient because memory locations are closed as
Soon as the memory location is no longer needed. Region
labels can be closed whenyMax is satisfied. When a root label
is closed by the yMax method, the associated region infor
mation structure can be closed. When a root label becomes a
non-root label during region merging, the non-root region
information memory space can be closed. In one embodi
ment, the method using yMax is also key to making the line
buffer technique work for CCL. Thus, any size region can be
segmented in any size line buffer, which is a tremendous
savings in memory and a breakthrough for CCL in embedded
applications.

Label Queue
0110. A problem with label queuing includes the closing
of region labels and region information locations in an unpre
dictable order. CCL works with arbitrary labels if the methods
disclosed herein are applied. The labeling methods herein

Aug. 6, 2009

described enable reallocation and opening of labels and
region information locations in the order in which they were
closed.

0111. The number of labels required for the CCL methods
disclosed herein efficiently result in less than the width mul
tiplied by height amount of labels required with known tech
niques. The number of labels required as herein disclosed is a
function of both buffer size and a chosen segmentation
method. Specifically, the number of labels increases with the
size of the buffer; the number of labels decreases with the
increase in aggressiveness and/or effectiveness of a chosen
segmentation method. Label requirements also vary with dif
fering image or data conditions. Fore example, an image with
many objects can require many labels. Therefore, according
to an embodiment, a method allows for optimization of
memory usage according to one or more of image conditions,
application requirements, and/or segmentation techniques.
More specifically, in an embodiment, image conditions can
be such that memory must be allocated for fine details and an
embodiment addresses the label requirement for such known
conditions. For example, an image of a detailed tree could
require memory allocation for leaf regions. In contrast, a
memory allocation that prioritizes application usage could be
configured to ignore leaf detail requirements in memory.
Likewise, a memory allocation that prioritizes segmentation
techniques could ignore leaf details as well.
0112 Referring now to FIG. 11, a flow diagram illustrates
a method in accordance with an embodiment. Describing the
required number of labels as maxLabels, the required number
of region information locations is Smaller than maxLabels.
Allow the data name maxInfo to represent the number of
region information locations. Block 1110 provides for creat
ing a circular buffer, or “queue.” with maxLabels locations
holding all of the region labels. Block 1120 provides for
creating an array "LabelQueue maxLabels' as a circular list
with a head and tail index. Block 1130 provides for opening a
next label as openlabel=labelhead. Block 1140 provides for
returning a closed label to the list at label tail closedlabel.
Block 1150 provides for initializing the label list with label
ii, i=0 ... maxLabels.
0113. Initially, head=0 and tail=0. Thus, labels are first
opened in ascending order, 0 maxLabels. Labels return to
the circular list for reuse in the order closed. The label list will
become disordered but will remain correct (tail will not over
take head), because there can only be a maxLabels number of
labels open at a time. The RegionQueue also follows the
same method described in FIG. 11.

0114. In an alternate embodiment, block 1160 provides for
reducing the label queue size by initializing the label buffer
with a sequential count at the beginning of a segmentation or
CCL for each full array of input data. For example, when a
new image is to be segmented or labeled via CCL, the method
directs initializing the label buffer from a counter with a
sequential count applied to each buffer location in raster
order. As a result, the label queue size required is large enough
to contain the number of labels that might be required to label
chains and roots for the portion of regions that extend outside
the top of the label buffer.
0115 The absolute maximum number of region info loca
tions is equal to the number of possible roots, i.e., the number
of locations in the line buffer plus one row. The actual number
of region information locations results in Some fraction of the
maximum unless a segmentation error occurs.

US 2009/O 1965.04 A1

0116. In accordance with embodiments disclosed herein,
the maximum number of labels becomes greater than the
maximum number of roots due to label chains that cross the
top row of the buffer. More specifically, the maximum num
ber of labels results in the number of buffer locations plus an
estimate for the number of links outside the buffer on chains
that cross the top row of the buffer, plus the number of roots
above the top row of the buffer for regions that cross the top
row of the buffer.
0117 Referring now to FIG. 12, segmentation performed
on a line buffer 1200 is illustrated showing the flow of data
through the buffer. The raw data input 1210 is grouped with
similar neighbors until larger regions 1220 are created. As the
data moves up from the start of segmentation 1230 through
the buffer until segmentation ends 1240, the regions in buffer
1200 become larger.
0118. At the top of the line buffer 1200, segmentation is
practically finished and the 1:1 relationship between labels
and raw data locations is at an end. The result of segmentation
needs to be acquired from the top line at data output 1250.
Segmentation precedes feature labeling, or the data is in a
form that is effectively segmented. For example, text made of
black characters on a white background. For ease of discus
Sion, the input to feature labeling will be shown as line seg
ments that are considered to be already labeled; the regions
are known. The use of line segments does not preclude the use
of Feature Labeling on unsegmented, unlabeled, or raw data.
Line Segments from Segmentation Labels
0119 Referring now to FIG. 13, a diagram illustrates a
method for a simple model made of line segments. Labeled
line segments represent the input data. Line segments with
labels pointing to the same root are considered to be con
nected. Block 1310 provides for relabeling segmented data.
Block 1320 provides for representing data that is known to be
connected because of Some discernable quality or because it
has been labeled and the roots are known by overlapping line
segments. Block 1330 provides for operating on line seg
ments from two lines. Referring to FIG. 14, a Features Label
diagram 1400 illustrates the simple model with the “Current
Line” 1410 representing the newest data or the segmented
data from the top of the segmentation label buffer. The “Pre
vious Line 1420 represents the previous line of input data or
the previous line taken from the top of the segmentation label
buffer. Empty spaces between segments represent data that
has no connections relevant to the current discussion.
Line Segments from Data
0120 Referring to FIG. 15, a raster-organized data 1500 is
arranged in horizontal lines read left to right. The lines are
stacked top to bottom to make a 2-D array Such as image data
arranged to display an image. For exemplary purposes, this
disclosure represents a segment, such as a line segment, as an
unbroken sequence of one or more of the same data value
organized horizontally on a raster line. Other ways of orga
nizing or representing data can be considered a segment. Data
can be Run-Length Encoded (RLE). Other data relationships
may be chosen by a user or other relationship choosing auto
matic or responsive program as required by the application.
For example, segments can be created by dissimilar data or
data with arbitrary relationships. Non-linear relationships can
be applied to the data, Such as connecting data based on
spatial relationships such as shape.
0121. A common Union-Find data structure is known as
the linked-list. Labels are the indexes of the linked list loca
tions and the data of each location is a pointer to another label.

Aug. 6, 2009

The labels are linked by the pointers to associate the labels
representing a group of related segments. One of the labels in
a linked group is chosen as the region number or “root'.
Typically, the root is the lowest label number. For example,
labels 1, 2, 3, 4, 5, 6, and 7 can point to label 1 as the region
number (root). The pointing creates a tree structure wherein
the elements (labels 1, 2, 3, 4, 5, 6, 7) point to the root (label
1).
0.122 The input data elements are numbered (labeled) and
each label is an index of the linked list. For example, data
element #3 is listed as Label3 =3. As the connected data
labels are linked, all of the labels will point to the root or
region label.

Modified Propagate Last Labeling
I0123. According to an embodiment, a method for modi
fied propagated last labeling is provided that enables collec
tion of region features (feature encoding) using only one line
of data memory and the equivalent of one line of feature
structures. According to an embodiment, the input to Propa
gate Last Labeling includes using known-connected line seg
ments which are to be relabeled with regard to connectedness
but without regard to previous labeling except to take advan
tage of labels indicating connectedness. In one embodiment,
a labeling method numbers and/or labels each of the segments
in raster order. In the embodiment, the root label designates
the region segments.
0.124 Propagated labeling saves memory space by imme
diately reusing labels. Labels are applied as the data arrives,
left to right, top to bottom. Overlapping segments take the
label from the segment above.
0.125 “Modified Propagate Last” refers to an embodiment
that abides by a labeling rubric in which any label occurs at
most once per line; segments below take the label of the
overlapping segment above; if one segment above overlaps
more than one segment below, the first segment below gets the
label from the segment above; if more than one segment
above overlaps one segment below, the segment below takes
the label from the last overlapping segment above.
0.126 The rubric enables exposing all spatial details of the
region; also, labels designate unique areas of a region con
taining spatial details. Moreover, the rubric enables a very
efficient hardware process. All of the necessary segment and
label States are known at the end of each segment on the
current line for labeling that segment. Therefore Feature
Labeling can proceed as data arrives with one line of memory
for buffering the label process.
I0127. Referring now to FIG. 16, the modified propagated
last labeling method is illustrated that enables exposing of all
spatial details of a region. Specifically, block 1610 provides
for preventing repeated labels in each line of the line buffer by
assigning a different label for each of the one or more seg
ments of data received in each line buffer. Block 1620 pro
vides for labeling the incoming segment of the one or more
segments of data by adopting a label of an overlapping seg
ment on a prior received line when the overlapping segment
does not overlap any other segment of data. Block 1630
provides for labeling the incoming segment of the one or
more segments of data by adopting a label of an overlapping
segment on a prior received line when the overlapping seg
ment overlaps more than one segment on the incoming when
the segment is a first segment in the line buffer. Block 1640
provides for labeling the incoming segment of the one or
more segments of data by adopting a label of a last overlap

US 2009/O 1965.04 A1

ping segment when more than one segment overlaps the
incoming segment. Block 1650 provides for identifying one
or more spatial details in the data according to the connect
edness identified by labeling the one or more segments.
0128. The segments can be received from raster-organized
data arrays wherein the data is image data arranged to display
an image, and/or can be from an unbroken sequence of a data
value organized horizontally on a raster line, and/or can be
run-length encoded data and/or data encoded by a user-di
rected application.
0129. For clarity, the convention will be to refer to “unique
areas of a region containing spatial details” as "features.”
Labels therefore designate features.
0130 FIGS. 17A and 17B illustrate how modified propa
gate last labeling according to an embodiment reveals feature
locations via an illustration of extents of labels thereby illus
trating how all of the features of region 1 are revealed. Spe
cifically, FIG. 17A illustrated a prior art labeling that directs
labels 1710 to Region 1 1720 via a prior art process that
results in one region for the entire data array. In contrast, FIG.
17B illustrates a label buffer 173 that results in region iden
tification 1740 with several features being made visible.
0131 Referring now to FIG. 18, a flow diagram illustrates
how to process two lines of labels with a one line buffer. The
line buffer data type will be suitable to the data being stored.
Although the data may be stored in an RLE compressed
format, for clarity purposes FIG. 18A illustrates data as input
data that is labeled segments 1810 and input data as written
into a label buffer 1820. For example, if the highest valued
label can be recorded in one byte, then the line buffers could
be bytes of memory with each byte representing a buffer
location that corresponds to the spatial representation of a
Segment.
0132 Various methods for representing and recording
labeled segments to the buffer are within the scope of the
present disclosure. For example, if the label for the segment is
written in the last space of the buffer covered by the segment.
In the figures, data in the buffer, “X” in the input data 1820
corresponds with data for which exact data does not matter as
long as it is not a label that connects to neighboring segments.
0133. In accordance with an embodiment, the method of
using propagate last labeling enables evaluation of segments
as they arrive from the input data stream. Each segment is
evaluated at the end of each segment 1830 as shown in FIG.
18B.
0134. By the end of an input segment, all of the overlap
ping segments for that segment are known. Therefore, the
label for the segment in the line above stored in the Label
Buffer can be overwritten by the new label. In FIG. 18C, after
a segment below is evaluated and labeled, the segment below
can overwrite the segment above, as shown by arrows 1850.
0135. As a result of the method, no valuable data in the
buffer is overwritten. If the segment in the label buffer repre
senting a segment in the previous line does not extend to the
right of the current segment, then the segment above can not
overlap with future segments. If the segment in the label
buffer representing a segment in the previous line does extend
to the right of the current segment, then the portion of the
segment above that might overlap future segments is not
overwritten.

Reducing Memory Requirements: Closing Features

0.136 For purposes of the present disclosure, a label des
ignates a Feature structure that holds the region description

Aug. 6, 2009

(features). As long as a segment on the previous line connects
to a segment on the current line, that Feature might still be
updated with new information, so that label can be referred to
as "open. According to an embodiment, the maximum pos
sible number of open labels is the same as the maximum
number of labels on a line. Correspondingly, the maximum
number of labels on a line is the number of pixels on a line. If
the segmentation process sets a minimum horizontal segment
size, then the maximum number of labels on a line is (line
width/min segment size). For example, the minimum seg
ment size for a segmented image might be one pixel. Refer
ring to FIG. 19, flow diagram illustrates a method that proves
that only one label will occur on a line of a line buffer, whether
operations are performed a line at a time or multiple lines at a
time. The maximum number of labels on a line matches the
number of pixels on the line. Specifically, FIG. 19 illustrates
block 1910 which provides for designating a segment. Next,
block 1920 provides for labeling the incoming segment of the
one or more segments of data by adopting a label of an
overlapping segment on a prior received line when the over
lapping segment does not overlap any other segment of data.
Block 1930 provides for labeling the incoming segment of the
one or more segments of data by adopting a label of an
overlapping segment on a prior received line when the over
lapping segment overlaps more than one segment on the
incoming when the segment is a first segment in the line.
Block 1940 provides for labeling the incoming segment of the
one or more segments of data by adopting a label of a last
overlapping segment when more than one segment overlaps
the incoming segment. Finally, block 1950 provides for iden
tifying one or more spatial details in the data according to the
connectedness identified by labeling the one or more seg
mentS.

0.137 As noted, the modified propagated labeling method
in accordance with an embodimentallows any particular label
to occurat most once on a line. It has been discovered that if
the segment on the previous line does not connect to a seg
ment on the current line, it will never connect to another
segment for the rest of the image. In accordance with an
embodiment, the method takes advantage of the label limit.
That segment's label will not be used again and the Feature it
points to will not have any more segments added. A result that
is counterintuitive is that if a segment on the previous line
does not connect to a segment on the current line, the segment
label and the Feature it points to can be "closed.” There is no
reason to maintain the storage of a closed Feature as that
Feature will no longer be updated. The closed Feature can be
output to whatever receiving process follows the CCL func
tion. For example, the contents of the closed Feature can be
written to a First-In-First-Out (FIFO) type memory. Thus, the
closed feature can be immediately output to the receiving
process, which enables reuse of the feature memory space to
conserve memory.

Feature Encoding
0.138 According to an embodiment, an efficient method
for collecting feature information is provided that uses a
compact format for storing and communicating feature infor
mation. Specifically, feature encoding herein can include col
lecting feature information from the raw data, or from the
labeled data, or from the region information, and representing
that information in a format for collected feature information.
0.139. Using raw data enables networked sensors, e.g.
cameras, that contain the processing required for communi

US 2009/O 1965.04 A1

cating with other devices and computers on a network to
efficiently pass information. The image processing required
for scene understanding in networked cameras is limited by 1)
the complexity of existing segmentation methods, and 2) the
lack of a method for encoding region information, 3) the fact
that each camera only has one viewpoint. Each camera has an
isolated viewpoint and limited processing power. Without the
feature encoding method disclosed herein, camera networks
are forced to waste processing resources on compressing
Video images, and to burden the network with high-band
width pixel representations of camera views. It is currently
expensive and difficult to track moving objects as they pass
through different camera views. The feature encoding
method herein is an efficient method for CCL/segmentation
for each networked camera, a low-bandwidth format for com
municating region information, and a way to combine the
viewpoints of cameras on the network. Feature encoding
makes low-cost distributed Scene understanding possible.
0140. The actual region property, such as the color red, can
be encoded digitally as a number, for example if 42 denotes
red, then (red(Xmin, ymin, Xmax,ymax)) may be represented
in digital form as (42, 18, 735, 423, 1024).
0141. The disclosed feature encoding encompasses the
extraction and communication of more complex characteris
tics. For example a series of points marking the boundary of
a region can be collected from the endpoints of the line
segments, or the region boundary may be described by the
coefficients and constants of splines or higher-order curves.
0142. The encoding method herein encompasses various
representations of region properties. For example a region
texture may be represented digitally as wavelet constants and
coefficients. Further, disparate region segmentations can be
described. For example, a red colored region has an area that
is Smoothly textured and an area that is roughly textured
(strong edges). An adjoining blue colored region has an area
that is Smooth and an area that is rough. The Smooth areas are
contiguous and the rough areas are contiguous. The encoded
features may include the red region (blue(X1, y1, X2, y2)), the
blue region (blue(x3, y3, X4, y4)), the smooth region (blue
(x5, y5, x6, y0)), the rough region (blue(x7, y7, x8, y8)), or
combinations such as (rough/blue(X9, y9, x10, y10)), etc.
0143 Feature encoding enables the communication of
region information 1) between different parts of a system, 2)
between networked computers, 3) between networked com
puters and networked sensors, 4) between networked sensors.
For example one machine vision camera on a network may
communicate to another camera on a network "do you see the
red ball at location (x1, y1)?' The response from the second
camera to the first camera might be “no, I see blue ball at (x1,
y1) and a red ball at (x2, y2). Feature encoding allows local
processing of images by networked cameras that share por
tions of the same view. For example, two cameras observing
the same room can communicate to one another the encoded
feature information of their respective views, and thereby
construct a 3D representation of objects in the room.
0144. Referring to FIG. 20, a flow diagram illustrates a
method for feature encoding that is based on raw data format
ted as a 1D, 2D, or 3D array. The method illustrates that
features can be represented as the extents of groups of line
Segments.
0145 A compact description of region features is effi
ciently collected from the data array. Block 2010 provides for
collecting data line segments in raster order during Modified
Propagate Last Labeling. Block 2020 provides for grouping

Aug. 6, 2009

line segments according to Modified Propagate Last Labeling
combined with other application requirements such as Preci
sion Feature Labeling.
0146 Block 2030 provides for representing features as the
extents of groups of line segments. Thus, the method is com
patible with the raw data format and the CCL labeling meth
ods disclosed herein and so is the most efficient for hardware
and Software implementations. Further, a compact represen
tation of a feature is provided. For example, a color Subregion
can be described as (red(Xmin, ymin, Xmax, ymax)).
0147 Advantageously, the encoding is flexible. For
example, the encoding is compatible with 1D, 2D, and 3D
spatial details as exposed by Propagate Last Labeling. Thus,
the encoding produces a simple standard format for commu
nicating feature information to other systems.
0148 Referring now to FIG. 21, a digitized version of the
encoded feature is illustrated. The bracketed (< ... >) material
such as label 2110, property 2120, and boundary 2130 repre
sent numerical values illustrate an encoding. For example the
color “red could be represented by the number 2. In one
embodiment, region properties vary according to the needs of
the application. For example, a banana-Sorting machine
needs to determine yellow and green regions, while a golf
ball counting machine needs to determine circular regions.
0149 Referring now to FIG.22 a diagram illustrates how
data region properties and encoding are determined by the
application requirements. An application can set up the seg
mentation rules and the appropriate property encoding so that
the feature encoding function can extract and package the
region features. More specifically, data 2210 is received by
block 2220 that applies segmentation rules to satisfy an appli
cation. Next, regions 2230 are output to feature encoding
block 2240. Feature structure 2250 is output to application
2260. Application 2260 interacts with both feature encoding
block to determine feature properties encoding 2270. Also,
application 2260 determines segmentation requirements
2280.
0150 Referring now to FIG. 23, a network example is
illustrated. Compatible applications have compatible prop
erty encoding. As shown, Application 12310 can be net
worked to application 2 2320 and application 3 2330 via a
wired or wireless connection 2340. For example, Application
3 can request that App. 2 and App. 3 perform color segmen
tation and encode “red as “2. Thereafter all three applica
tions can communicate features. Also some standard property
encodings may be previously known by applications on the
network.

Precision Features

0151 Region features are captured as the segments arrive
from either the segmentation process or from an appropriate
data source. The region maximum and minimum boundaries
comprise the extents of the region, represented by a box
showing the max-min boundaries, as shown in FIG. 24.
Region features are comprised of groups of segments, defined
by subextents. FIG. 24 illustrates that curved object 2410 can
be interpreted by features with a low precision 2420 resulting
in a square, a medium precision 2430 resulting in a coarse
object, or a high precision resulting in a segmented version of
the curved object 2440. Some features, such as shape, vary
within the Subextent. The larger the group of segments within
a Subextent, the more inaccurate the feature representation as
shown in 2440. But the smaller the extent, the more data that
must be recorded and transmitted to the receiving process.

US 2009/O 1965.04 A1

Therefore, the precision required of the features should deter
mine Subextent size. Lower precision produces less feature
data and a more compact representation of a region. Higher
precision allows a more accurate representation of the fea
ture. For example, for text recognition, the shape of letters
will be important. For counting letters, only the full extent of
each letter is required.
0152. A “feature closed flag” is included in the feature
structure. When the feature is output to the receiving process,
the flag signifies whether this is the last subextent for the
feature. If the feature is closed, the next time a feature with the
same label is output it will be a new and distinct feature. If the
feature is not closed, the next feature with the same label will
be the next subextent for this feature.
0153. Precision feature encoding consumes no extra
memory because each feature Subextent is output when the
precision threshold is reached. But the “feature closed flag” is
not set. The next feature subextent is written to the same
feature structure with the same feature label.
0154 Referring now to FIG. 25, a method for features is
illustrated. Block 2510 provides for collecting features one
segment at a time and one line at a time. Block 2520 provides
for adjusting precision to enable data bandwidth control.
Block 2530 provides for rescanning data for feature informa
tion.
(O155 Disposed within block 2530 is block 25302 which
provides for determining labeled segments appropriate for
transforming to determining additional feature information.
Specifically, some data qualities may not be captured during
segmentation. Although data labels and region information
for segments are processed into features, the equivalent raw
data locations can be processed and the needed data qualities
added to features. For example, desired feature information
for an image may include complex texture qualities. The
image data locations corresponding to the labeled segments is
rescanned and transformed to spatial/frequency coefficients
and saved to the appropriate feature.
0156 Note that raw data may be used in the segmentation
process, so that some buffering of the raw data could have
occurred or be required in accordance with system require
ments. Precision features allow the user to adjust the data rate
from CCL to suit the application. Motion detection would
only need large extents, which produce a low data rate. Object
recognition may need Smaller extents for more feature infor
mation, which would generate a higher data rate. Precision
features and a variable data rate make this new CCL technol
ogy Suitable as the pre-processor for the full range of host
processors, from 8-bit embedded microprocessors to 64-bit
computers.
O157 All of the functions described above can be linear
and efficient in software and parallelizable for hardware for
an embedded system.
0158 While the subject matter of the application has been
shown and described with reference to particular embodi
ments thereof, it will be understood by those skilled in the art
that the foregoing and other changes in form and detail may
be made therein without departing from the spirit and scope of
the Subject matter of the application, including but not limited
to additional, less or modified elements and/or additional, less
or modified steps performed in the same or a different order.
0159. Those having skill in the art will recognize that the
state of the art has progressed to the point where there is little
distinction left between hardware and software implementa
tions of aspects of systems; the use of hardware or software is

Aug. 6, 2009

generally (but not always, in that in certain contexts the
choice between hardware and Software can become signifi
cant) a design choice representing cost vs. efficiency
tradeoffs. Those having skill in the art will appreciate that
there are various vehicles by which processes and/or systems
and/or other technologies described herein can be effected
(e.g., hardware, Software, and/or firmware), and that the pre
ferred vehicle will vary with the context in which the pro
cesses and/or systems and/or other technologies are
deployed. For example, if an implementer determines that
speed and accuracy are paramount, the implementer may opt
for a mainly hardware and/or firmware vehicle: alternatively,
if flexibility is paramount, the implementer may opt for a
mainly software implementation; or, yet again alternatively,
the implementer may opt for some combination of hardware,
software, and/or firmware. Hence, there are several possible
vehicles by which the processes and/or devices and/or other
technologies described herein may be effected, none of which
is inherently superior to the other in that any vehicle to be
utilized is a choice dependent upon the context in which the
vehicle will be deployed and the specific concerns (e.g.,
speed, flexibility, or predictability) of the implementer, any of
which may vary. Those skilled in the art will recognize that
optical aspects of implementations will typically employ
optically-oriented hardware, Software, and or firmware.
0160 The foregoing detailed description has set forth vari
ous embodiments of the devices and/or processes via the use
of block diagrams, flowcharts, and/or examples. Insofar as
such block diagrams, flowcharts, and/or examples contain
one or more functions and/or operations, it will be understood
by those within the art that each function and/or operation
within Such block diagrams, flowcharts, or examples can be
implemented, individually and/or collectively, by a wide
range of hardware, Software, firmware, or virtually any com
bination thereof. In one embodiment, several portions of the
subject matter described herein may be implemented via
Application Specific Integrated Circuits (ASICs), Field Pro
grammable Gate Arrays (FPGAs), digital signal processors
(DSPs), or other integrated formats. However, those skilled in
the art will recognize that some aspects of the embodiments
disclosed herein, in whole or in part, can be equivalently
implemented in standard integrated circuits, as one or more
computer programs running on one or more computers (e.g.,
as one or more programs running on one or more computer
systems), as one or more programs running on one or more
processors (e.g., as one or more programs running on one or
more microprocessors), as firmware, or as virtually any com
bination thereof, and that designing the circuitry and/or writ
ing the code for the software and or firmware would be well
within the skill of one of skill in the art in light of this
disclosure. In addition, those skilled in the art will appreciate
that the mechanisms of the subject matter described herein
are capable of being distributed as a program product in a
variety of forms, and that an illustrative embodiment of the
Subject matter described herein applies equally regardless of
the particular type of signal bearing media used to actually
carry out the distribution. Examples of a signal bearing media
include, but are not limited to, the following: recordable type
media such as floppy disks, hard disk drives, CD ROMs,
digital tape, and computer memory; and transmission type
media Such as digital and analog communication links using
TDM or IP based communication links (e.g., packet links).
0.161 The herein described aspects depict different com
ponents contained within, or connected with, different other

US 2009/O 1965.04 A1

components. It is to be understood that Such depicted archi
tectures are merely exemplary, and that in fact many other
architectures can be implemented which achieve the same
functionality. In a conceptual sense, any arrangement of com
ponents to achieve the same functionality is effectively “asso
ciated such that the desired functionality is achieved. Hence,
any two components herein combined to achieve a particular
functionality can be seen as “associated with each other such
that the desired functionality is achieved, irrespective of
architectures or intermedial components. Likewise, any two
components so associated can also be viewed as being “oper
ably connected, or “operably coupled', to each other to
achieve the desired functionality, and any two components
capable of being so associated can also be viewed as being
“operably couplable', to each other to achieve the desired
functionality. Specific examples of operably couplable
include but are not limited to physically mateable and/or
physically interacting components and/or wirelessly inter
actable and/or wirelessly interacting components and/or logi
cally interacting and/or logically interactable components.
0162. While particular aspects of the present subject mat
ter described herein have been shown and described, it will be
apparent to those skilled in the art that, based upon the teach
ings herein, changes and modifications may be made without
departing from the subject matter described herein and its
broader aspects and, therefore, the appended claims are to
encompass within their scope all Such changes and modifica
tions as are within the true spirit and scope of this subject
matter described herein. Furthermore, it is to be understood
that the invention is defined by the appended claims. It will be
understood by those within the art that, in general, terms used
herein, and especially in the appended claims (e.g., bodies of
the appended claims) are generally intended as "open’ terms
(e.g., the term “including should be interpreted as “including
but not limited to the term “having should be interpreted as
“having at least, the term “includes should be interpreted as
“includes but is not limited to, etc.). It will be further under
stood by those within the art that if a specific number of an
introduced claim recitation is intended, such an intent will be
explicitly recited in the claim, and in the absence of Such
recitation no such intent is present. For example, as an aid to
understanding, the following appended claims may contain
usage of the introductory phrases “at least one' and “one or
more' to introduce claim recitations. However, the use of
Such phrases should not be construed to imply that the intro
duction of a claim recitation by the indefinite articles “a” or
“an limits any particular claim containing Such introduced
claim recitation to inventions containing only one such reci
tation, even when the same claim includes the introductory
phrases “one or more' or “at least one' and indefinite articles
such as “a” or “an” (e.g., “a” and/or “an' should typically be
interpreted to mean “at least one' or "one or more'); the same
holds true for the use of definite articles used to introduce
claim recitations. In addition, even if a specific number of an
introduced claim recitation is explicitly recited, those skilled
in the art will recognize that Such recitation should typically
be interpreted to mean at least the recited number (e.g., the
bare recitation of “two recitations, without other modifiers,
typically means at least two recitations, or two or more reci
tations). Furthermore, in those instances where a convention
analogous to “at least one of A, B, and C, etc. is used, in
general Such a construction is intended in the sense one hav
ing skill in the art would understand the convention (e.g., “a
system having at least one of A, B, and C would include but

Aug. 6, 2009

not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). In those instances where a con
vention analogous to “at least one of A, B, or C, etc. is used,
in general Such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.).

I claim:
1. A method for assigning one or more labels to one or more

segments of data received in an incoming segment to a line
buffer for propagated component labeling, the method com
prising:

preventing repeated labels in each line of the line buffer by
assigning a different label for each of the one or more
segments of data received in each line;

labeling the incoming segment of the one or more segments
of data by adopting a label of an overlapping segment on
a prior received line when the overlapping segment does
not overlap any other segment of data;

labeling the incoming segment of the one or more segments
of data by adopting a label of an overlapping segment on
a prior received line when the overlapping segment over
laps more than one segment on the incoming segment
when the segment is a first segment in the line buffer; and

labeling the incoming segment of the one or more segments
of data by adopting a label of a last overlapping segment
when more than one segment overlaps the incoming
Segment.

2. The method of claim 1 further comprising:
identifying one or more spatial details in the data according

to a connectedness identified by the labeling the one or
more Segments.

3. The method of claim 1 wherein the one or more segments
are received from raster-organized data arrays wherein the
data is image data arranged to display an image.

4. The method of claim 1 wherein the one or more segments
are received from raster-organized data arrays wherein the
data is one or more of text data, numerical data, medical
image data, cryptographic de-ciphering data, compressed
data, and/or statistical data.

5. The method of claim 1 wherein each of the one or more
segments is an unbroken sequence of one or more of a data
value organized horizontally on a raster line.

6. The method of claim 1 wherein the data is one or more of
run-length encoded data and/or data encoded by a user-di
rected application.

7. A computer program product comprising a computer
readable medium configured to perform one or more acts for
performing labeling of one or more labels to one or more
segments of data received in an incoming segment to a line
buffer for propagated component labeling the one or more
acts comprising:

one or more instructions for preventing repeated labels in
each line of the line buffer by assigning a different label
for each of the one or more segments of data received in
each line;

one or more instructions for labeling the incoming segment
of the one or more segments of data by adopting a label
of an overlapping segment on a prior received line when
the overlapping segment does not overlap any other seg
ment of data;

US 2009/O 1965.04 A1

one or more instructions for labeling the incoming segment
of the one or more segments of data by adopting a label
of an overlapping segment on a prior received line when
the overlapping segment overlaps more than one seg
ment on the incoming segment when the segment is a
first segment in the line buffer; and

one or more instructions for labeling the incoming segment
of the one or more segments of data by adopting a label
of a last overlapping segment when more than one seg
ment overlaps the incoming segment.

8. The computer program product of claim 7 further com
prising:

one or more instructions for identifying one or more spatial
details in the data according to a connectedness identi
fied by the labeling the one or more segments.

9. The computer program product of claim 7 wherein the
one or more segments are received from raster-organized data
arrays wherein the data is image data arranged to display an
image.

10. The computer program product of claim 7 wherein each
of the one or more segments is an unbroken sequence of one
or more of a data value organized horizontally on a rasterline.

11. The computer program product of claim 7 wherein the
data is one or more of run-length encoded data and/or data
encoded by a user-directed application

12. A method for propagated last labeling comprising:
receiving one or more data files holding segmented data;
setting a maximum number of available labels as a function
of a number of label locations on a current line of
memory;

identifying one or more spaces between at least two seg
ments in the segmented data, the one or more spaces
sharing a same region; and

labeling the one or more spaces as a feature of the same
region, each feature representing a predetermined prop
erty of the same region.

13. The method of claim 12 wherein the receiving one or
more data files holding segmented data includes:

receiving the one or more data files as run-length encoded
data and/or data encoded by a user-directed application.

14. The method of claim 12 wherein the setting a maximum
number of available labels as a function of a number of label
locations on a current line of memory includes:

determining the number of label locations on the current
line of memory in accordance with a user-directed appli
cation and/or in accordance with a predetermined fea
ture in the data file.

15. The method of claim 12 wherein the setting a maximum
number of available labels as a function of a number of label
locations on a current line of memory includes:

Aug. 6, 2009

determining the number of label locations on the current
line of memory so that the maximum number of avail
able labels is equal to a required number features.

16. The method of claim 12 wherein the identifying one or
more spaces between at least two segments in the segmented
data, the one or more spaces sharing a same region includes:

identifying the one or more spaces according to one or
more region properties, the one or more region proper
ties including a color and/or a texture.

17. The method of claim 12 wherein labeling the one or
more spaces as a feature of the same region, each feature
representing a predetermined property of the same region
includes:

labeling the one or more spaces as a feature using a label
from a dedicated label queue, the maximum number of
labels in use being equal to a number of possible label
locations on the current memory line.

18. The method of claim 12 wherein labeling includes:
determining a maximum number of unique segments on

the current memory line;
setting a number of possible label locations as the maxi
mum number,

for each segment that does not connect to a segment on the
line below, closing that segment to enable reuse of an
associated feature label and feature memory location;

for each segment that connects to a segment on a line
below, and the segment on the line below only connects
to one segment, propagating the label resulting in no net
alteration in a number in use labels; and

for each segment that connects to more than one segment
on a line below, propagating a label for connected seg
ments in the current line of memory.

19. A computer program product comprising a computer
readable medium configured to perform one or more acts for
performing propagated last labeling, the one or more acts
comprising:

one or more instructions for receiving one or more data
files holding segmented data;

one or more instructions for setting a maximum number of
available labels as a function of a number of label loca
tions on a current line of memory;

one or more instructions for identifying one or more spaces
between at least two segments in the segmented data, the
one or more spaces sharing a same region; and

one or more instructions for labeling the one or more
spaces as a feature of the same region, each feature
representing a predetermined property of the same
region.

