Abstract: A switching power converter (8) having a current sensing transformer (T1) providing input to an auxiliary power supply (12) provides efficient current sensing, while reducing the cost of the magnetic coupling element (L1). The auxiliary power supply (12) and current sense circuit (14) both receive input from a secondary winding (sec) of a current sensing transformer (T1) having a primary winding (pri) coupled in series with the converter's main magnetic coupling element (L1). To provide accurate sensing, the magnetization the current sensing transformer is accounted for. The magnetization is compensated for in the current sensing result, current sensing is performed during a part of the cycle in which charging of the auxiliary power supply is disabled, or the core of the current sensing transformer is made large, raising its mutual inductance. In another alternative technique, a circuit node can be pre-charged to a value that cancels the offset due to the magnetization current.
SWITCHING POWER CONVERTER WITH CURRENT SENSING TRANSFORMER
AUXILIARY POWER SUPPLY

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates generally to switching power converter circuits, and more specifically, to a switching power converter in which an auxiliary winding power supply and a current sensing circuit receive input from the same current sensing transformer secondary winding.

2. Background of the Invention

[0002] Operation of switching power converters in continuous conduction mode (CCM) is desirable for efficiency and to reduce the peak current levels in the converter for reliability and reduction of component costs. In CCM operation, the current through the magnetic coupling element never changes polarity and typically never fully drops to zero. Since the current is never permitted to reach zero, saturation of the magnetic coupling element can occur if an increasing magnetic flux progressively accumulates in the magnetic coupling element at the end of each switching cycle, a phenomenon sometimes referred to as "flux walking." Eventually the core of the magnetic coupling element will saturate, causing the magnetic coupling element to appear as a short circuit, resulting in failure of the switching circuits. Therefore, in CCM operation, detection of the peak current, or
another reference current level, through the series circuit formed by the magnetic storage element and the switching circuit is needed. The peak current value determines the off cycle period needed to discharge the inductor. In discontinuous conduction mode (DCM), there is always a period of zero current flowing in the magnetic coupling element, and therefore the core of the magnetic coupling element always resets to zero at each cycle.

[0003] In order to sense the current through the magnetic coupling element, a sense resistor may be inserted into the series switching circuit, or an additional current sensing transformer can be provided. The current sensing transformer approach is typically more efficient than the approach of adding a current sense resistor, as the transformer and current sensing circuit are designed to produce minimal disturbance and loss in the power switching circuit. A current sensing transformer primary winding typically includes only a few turns, so the voltage across the primary winding is small. The secondary winding of the current sensing transformer generally produces a voltage on the order of a volt or less, so that the magnetization current of the current sensing transformer (also referred to as the magnetizing current) can be disregarded. Therefore, the secondary current of the typical current sense transformer is substantially proportional to the primary current, so that a voltage
generated across a resistor connected across the secondary of the current sensing transformer is linearly related to the primary current and provides a measure of the current passing through the primary winding of the main magnetic coupling element of the converter.

[0004] In order to supply power to control circuits of a switching power converter, a low voltage power supply is needed. When the only voltage available or convenient is a high-voltage power supply, or when isolation of the auxiliary power supply is required, an auxiliary winding on the main magnetic coupling element of the switching converter is commonly used to supply power to the control circuits. However, including an auxiliary winding increases the cost of the magnetic coupling element. In contrast to the characteristics of the secondary winding in the above-described current sensing transformer, as the auxiliary power supply typically must provide a voltage on the order of 10V and also generate substantial current, on the order of tens or hundreds of milliamps. Therefore, an auxiliary winding generally has substantial magnetization current, and the voltage across the typical auxiliary winding does not provide an accurate indication of the current flowing through the primary winding of the main magnetic coupling element of the switching power converter.
Therefore, it would be desirable to provide an auxiliary power supply in a switching power converter having a current sense transformer without requiring an auxiliary winding on the main magnetic coupling element of the switching power converter.
SUMMARY OF THE INVENTION

[0006] The above stated objective of providing an auxiliary power supply circuit and a current sensing circuit without requiring a sense resistor or an auxiliary winding on the main magnetic coupling element of a switching converter, is provided in a switching converter and a method of operation of the switching converter.

[0007] The switching converter has a magnetic coupling element coupled in series with a switching circuit and a current sensing transformer. The current sensing transformer secondary winding is provided to an auxiliary power supply circuit and also provides input to a current sensing circuit. In order to provide current sensing functionality in the face of a significant magnetization current due to the higher voltage required for auxiliary power supply charging, the current through the auxiliary winding is either corrected for the magnetization current, the current sensing is performed while charging of the auxiliary power supply is disabled, the inductance of the current sensing transformer is made large, or the offset due to the magnetization current is compensated for by pre-charging a circuit node to an opposing offset.

[0008] The foregoing and other objectives, features, and
advantages of the invention will be apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Figure 1 is a block diagram depicting a switching converter in accordance with an embodiment of the present invention.

[0010] Figure 2 is a schematic diagram depicting details of a current sensing circuit 14A and of an auxiliary power supply 12A that can be used to implement current sensing circuit 14 and auxiliary power supply 12 of Figure 1, respectively, in accordance with an embodiment of the present invention.

[0011] Figure 3 is a schematic diagram depicting details of a current sensing circuit 14B and of an auxiliary power supply 12B that can be used to implement current sensing circuit 14 and auxiliary power supply 12 of Figure 1, respectively, in accordance with another embodiment of the present invention.
Figure 4 is a schematic diagram depicting details of a current sensing circuit 14C and of an auxiliary power supply 12C that can be used to implement current sensing circuit 14 and auxiliary power supply 12 of Figure 1, respectively, in accordance with yet another embodiment of the present invention.

Figure 5 is a signal waveform diagram depicting details of operation of the switching converter of Figure 1 in accordance with an embodiment of the invention.
DESCRIPTION OF ILLUSTRATIVE EMBODIMENT

[0014] The present invention encompasses switching power converters having an auxiliary power supply operated from a winding of a current sensing transformer. The current sensing transformer is coupled in series with the switching circuit and main magnetic coupling element of the converter. The present invention also includes methods for providing power to control and/or other circuits internal to a switching power converter from a current sensing transformer.

[0015] Referring now to Figure 1, a switching power converter 8 in accordance with an embodiment of the present invention is shown. A switching controller 10 provides a switching control signal CS that controls a switching circuit implemented by a transistor N1. When transistor N1 is active, a magnetic coupling element implemented by inductor L1 is charged by imposing input voltage \(V_{in} \) across inductor L1, causing a current \(I_L \) through inductor L1 to linearly increase. When transistor N1 is deactivated, charge is pushed through inductor L1 and diode D1 into capacitor C1, raising the voltage at output terminal OUT. A current-sensing transformer T1 is connected in series with transistor N1 and inductor L1 to provide a signal indicating the magnitude and polarity of current \(I_L \) through inductor L1 without introducing significant
losses, as would otherwise be present if a series resistor were used to produce such a signal.

[0016] Switching power converter 8 is a boost converter circuit that can control the voltage provided to output terminal OUT in conformity with a feedback voltage provided from terminal OUT. Alternatively, switching power converter 8 may be controlled entirely by current-mode feedback. In the illustrated application, the boost converter circuit is a power-factor corrector (PFC) that provides a high voltage DC output from alternating current (AC) power line input voltage \(V_{IN} \). Switching controller 10 operates transistor N1 to maintain a phase relationship of zero degrees between input voltage \(V_{IN} \) and the input current. A current sensing circuit 14 provides an indication of the magnitude of current \(I_L \) derived from an input voltage received from secondary winding sec of current sensing transformer T1. An auxiliary power supply 12, supplies a voltage \(V_{DDH} \) to switching controller 10, and is generally integrated in the same integrated circuit (IC) with switching controller 10 and current sensing circuit 14. The inputs of auxiliary power supply 12 are also connected to secondary winding sec of current sensing transformer T1. Unlike typical current sensing transformers, current sensing transformer T1 has a higher turns ratio, so that a voltage \(V_{DDH} \) can be generated by auxiliary power supply 12 sufficient to operate
control circuits in a controller IC, including switching
controller 10, which contains the gate drive circuit needed to
control switching of transistor N1. Voltage V_{DDH} is therefore
generally in the range of 10-15VDC.

[0017] Referring now to Figure 2, details of an auxiliary
power supply circuit 12A that may be used to implement
auxiliary power supply 12 of Figure 1 and details of a
current sensing circuit 14A that can be used to implement
current sensing circuit 14 of Figure 1 are shown in accordance
with an embodiment of the invention. The input of auxiliary
power supply 12A is connected to the secondary winding of
current sensing transformer T1. A diode D10 provides a half-
wave rectifier that conducts only when the current provided
from secondary winding sec is in the positive direction, i.e.,
when inductor L1 is being charged and transistor N1 is
conducting. A resistor R10 ensures that when transistor N1 is
de-activated and inductor L1 is being discharged, that the
magnetization of current-sensing transformer T1 is reset at
the end of each cycle. Current sensing circuit 14A includes a
resistor R11 connected in series with secondary winding sec to
provide a voltage $V_{p,n}$ proportional to current I_{sec} to an
amplifier A1 having a gain determined by a pair of resistors
R12 and R13. The output of amplifier A1 is provided to
switching controller 10, which in digital implementations will
generally measure the output of amplifier A1 with an analog-to-digital converter (ADC). However, in other analog embodiments of a switching control circuit in accordance with the invention, a peak detector and/or comparator may be used to detect a time at which current I_{sec} reaches a predetermined threshold for indicating to switching controller 10 the appropriate switching period to maintain CCM operation and avoid flux walking. A Zener diode Z1 is provided to ensure that output voltage V_{DDH} does not exceed a maximum level, but Zener diode Z1 is not activated normally in auxiliary power supply circuit 12A. The turns ratio of current sensing transformer T1 is generally determined such that voltage V_{DDH} is maintained below a maximum voltage level without activating Zener diode Z1 except under abnormal operating conditions.

[0018] Current I_{sec} is measured by current sensing circuit 14A to provide an indication of the magnitude of current I_L through inductor L1 of Figure 1. However, the magnetization of current sensing transformer T1 produces an error in the direct proportionality of current I_{sec} to current I_L, which will be explained in further detail below, along with solutions provided in accordance with various embodiments of the invention, to reduce or correct for the error. In auxiliary power supply 12A, as mentioned above, transformer T1 has a higher secondary to primary turns ratio than ordinary current...
transformers, so that the higher voltage required to operate switching controller 10 is generated at the output of auxiliary power supply 12A as output voltage V_{DDH}. Since the product of voltage V_{sec} generated across secondary winding sec and the duration of the period for which transistor N1 is active determines the magnetization of the transformer at the end of the active portion of the switching cycle. The magnetization causes an error that reduces the value of current I_{sec} through secondary winding sec below that of an ideal current level as computed from the turns ratio of transformer T1.

[0019] The above-described error also reduces the magnitude of the indication of current I_{sec} provided by secondary winding sec to amplifier A1, since the current through resistor R11 will be less than an expected current calculated from the turns ratio of transformer T1. The reduction in current is due to the magnetization current of transformer T1, which is the integral of the voltage across secondary winding sec multiplied by the mutual inductance of transformer T1 (sometimes referred to as the magnetizing inductance). Since voltage V_{sec} is substantially constant over the switching period, the integral reduces to the product of the mutual inductance, the voltage and the duration of the pulse:
\[I_{\text{sec}} = \frac{N_{\text{sec}}}{N_{\text{pri}}} \times I_{\text{pri}} - I_{\text{mag}} = \frac{N_{\text{sec}}}{N_{\text{pri}}} \times I_{L} - d \times \frac{V_{\text{sec}}}{L_{M}} \]

where \(I_{\text{sec}} \) is the secondary current, \(\frac{N_{\text{sec}}}{N_{\text{pri}}} \) is the secondary to primary turns ratio, \(I_{L} \) is the primary winding current (i.e., the switching current under measurement) and \(I_{\text{mag}} \) is the magnetization current. Magnetization current \(I_{\text{mag}} \) can be approximated by \(d \times \frac{V_{\text{sec}}}{L_{M}} \), where \(d \) is the time period for which transistor \(N_{1} \) is on, \(V_{\text{sec}} \) is the voltage generated at secondary winding \(\text{sec} \) and \(L_{M} \) is the mutual inductance of transformer \(T_{1} \). In ordinary current sensing transformer circuits, the term \(d \times \frac{V_{\text{sec}}}{L_{M}} \) can be ignored, because \(V_{\text{sec}} \) is small, due to the smaller secondary to primary turns ratio. In the current sensing transformer circuit of the present invention, the error cannot generally be ignored, unless the mutual inductance is made large by increasing the number of turns and providing a sufficiently-sized core, requiring more space and adding cost. The alternative is to provide techniques for eliminating the error, one of which is provided in auxiliary power supply circuit 12A.

[0020] Auxiliary power supply circuit 12A includes a control circuit 16 that provides output signals for controlling transistors \(N_{10} \) and \(P_{10} \). Transistor \(N_{10} \) is activated when current sensing circuit 14A is measuring the voltage across resistor \(R_{11} \) to generate the indication of
current I_L in inductor L_l, which is provided to switching controller 10. Logical-AND gate AND_1 controls the gate of transistor N_{10} so that when switching controller is in CCM mode and signal ccm is asserted and when the sense signal generated by switching controller 10 is active, transistor N_{10} is turned on. In general, transistor N_{10} can be activated during DCM operation as well, and there is no requirement that any selection of sensing and charging operations be dependent on whether switching controller 10 is operating in CCM or DCM mode. When activated, transistor N_{10} substantially reduces the voltage across secondary winding sec to near zero, since only the total voltage of the forward voltage drop across diode D_{10}, the voltage generated across resistor R_{11} and the drain-source voltage of transistor N_{10} will be present across secondary winding sec. Resistor R_{11} can be selected as a low resistance to reduce its voltage drop, and it is desirable to do so in general, since in the depicted circuit, resistor R_{11} reduces the voltage provided for charging capacitor C_2 and therefore reduces the maximum possible value of output voltage V_{DDH}.

[0021] Transistor N_{10} is de-activated after a time period determined by signal sense provided from switching controller 10. Signal sense may have a fixed timing determined from the switching period of switching controller 10, or may be
controlled in conformity with a determination that the current measurement has been completed, e.g., when current I_L has reached some threshold value as determined by circuits within switching controller 10 in response to the signal provided from current sensing circuit 14A. After signal sense is de-asserted, auxiliary power supply 12A is permitted to charge capacitor C2 from secondary winding sec to provide output voltage V_{DDH}. Transistor P10 is activated to permit the charging of capacitor C2 according to a charge signal generated by logical-NAND gate NAND1. Logical-NAND gate NAND1 combines an inverted version of the output signal from logical-AND gate AND1 provided from an inverter II, with the output of a comparator K1, that is activated only when output voltage V_{DDH} is less than a threshold voltage V_{TH}, thereby providing regulation of output voltage V_{DDH} by the action of a comparator K1. As long as output voltage V_{DDH} is at or above threshold voltage V_{TH} for some portion of the duty cycle of switching converter 8 while switching transistor N1 is active and while signal sense is inactive, capacitor C2 will be charged in that duty cycle. Charging of capacitor C2 will generally happen during all of or the later portion of each duty cycle if the loading by controller 10 and other circuits connected to V_{DDH} is sufficient and capacitor C2 is relatively small. Resistor R11 will have a voltage indicative of current
I_L in inductor L1 at the end of the sensing portion of the duty cycle before auxiliary power supply 12A starts charging capacitor C2. The indication from the output of current sensing circuit 14A can be sampled at a predetermined time or peak-detected by switching controller 10. Alternatively, multiple sampling points can be gathered from the output of current sensing circuit 14A and used to better indicate to switching controller 10 the shape of a current waveform describing current I_L.

[0022] While current sensing circuit 14A first measures current I_L, and then permits auxiliary power supply circuit 12A to charge the capacitor C2 to maintain output voltage V_{DDH}, the order of current sensing and auxiliary power supply charging is generally not restricted. In other embodiments of the present invention, the sensing can be performed after auxiliary power supply output voltage V_{DDH} is replenished, as long as the reference point for the measurement of current I_L is not required to be the peak current or some value in the later portion of the duty cycle. However, performing sensing before substantial magnetization of current transformer T1 has occurred generally requires that sensing be performed first, unless other measures are taken to correct for the magnetization or to remove it.
Referring now to Figure 3, details of an auxiliary power supply circuit 12B that may be used to implement auxiliary power supply 12 of Figure 1 and details of a current sensing circuit 14B that can be used to implement current sensing circuit 14 of Figure 1 are shown in accordance with an alternative embodiment of the invention. Auxiliary power supply circuit 12B and current sensing circuit 14B of Figure 3 are similar to auxiliary power supply circuit 12A and current sensing circuit 14A of Figure 2, and therefore only differences between them will be described below. In auxiliary power supply 12B, control signal sense is provided from switching controller 10, which controls transistors N10 and P10. Control signal sense may or may not be qualified by switching controller 10 being operated in CCM mode, so that sensing is not performed when switching controller 10 is operating in DCM mode. Control signal sense can be asserted first in either polarity, although as mentioned above, sensing is generally performed first with control signal sense being asserted for the first portion of the duty cycle, and the timing can be determined from switching signals within switching controller 10. Alternatively, a result of measuring the output of current sensing circuit 14B can be used to determine when measurement is complete and auxiliary power supply 12B can begin to charge capacitor C2. In such an embodiment, signal sense is asserted at the beginning of a
switching duty cycle, reducing the voltage across secondary winding sec and then transistor N10 is subsequently deactivated and transistor P10 is activated to charge capacitor C2. Since switching controller 10 controls the switching cycle of transistor N1, the timing of operation of signal sense can be completely determined. Therefore, current sensing and auxiliary power supply charging could be performed in either order, depending on the relative priority of sensing accuracy and sensing the current every cycle versus maintaining low voltage variation in auxiliary power supply output voltage V_{DDH}.

[0024] Current sensing circuit 14B differs from current sensing circuit 14A of Figure 2, in that resistor RI1 is omitted, and the voltage generated across transistor N10 by current I_{sec} is used to generate the indication of current I_L. The voltage drop of additional resistor RI1 is eliminated, reducing the magnetization of current transformer T1 during the entire duty cycle and therefore reducing error due to the magnetization. Eliminating the voltage drop across resistor RI1 also provides a higher voltage for charging capacitor C2 during the charging portion of the duty cycle.

[0025] Referring now to Figure 4, details of an auxiliary
power supply circuit 12C that may be used to implement auxiliary power supply 12 of Figure 1 and details of a current sensing circuit 14C that can be used to implement current sensing circuit 14 of Figure 1 are shown in accordance with an alternative embodiments of the invention. Auxiliary power supply circuit 12C can be used to implement auxiliary power supply 12 of Figure 1. Auxiliary power supply circuit 12C is illustrative of multiple alternative embodiments of the present invention depending on the inclusion or omission of optional elements as described in further detail below.

Auxiliary power supply circuit 12C and current sensing circuit 14C of Figure 4 are similar to auxiliary power supply circuit 12B and current sensing circuit 14B of Figure 3, and therefore only differences between them will be described below. In one embodiment of auxiliary power supply 12C, an optional pre-charge circuit 32, illustrated as a dashed block, is controlled by a switching signal /CS provided from switching controller 10, which is the complement of control signal CS that activates transistor N1 in switching converter 8 of Figure 1. At the beginning of a duty cycle, i.e., before control signal CS is asserted, pre-charge circuit 32 charges secondary winding sec to a magnetization that is equal to and has an opposite polarity to the magnetization caused by voltage V_{SEC} produced across secondary winding sec during the duty cycle when transistor N1 is active. No switches or
transistors are required in auxiliary power supply 12C, as current sensing circuit 14C receives the correct value of the indication of the current I_L directly from current I_{sec} as provided to current sensing circuit 14C, and capacitor C2 can be charged for the full duration of the active pulse provided from secondary winding sec.

[0026] In an alternative embodiment also illustrated in Figure 4, pre-charge circuit 32 can be omitted and a optional correction block 30 may be provided in switching controller 10, as indicated by the dashed line block. Correction block 30 computes the error in the indication of current I_L from either a predetermined known value of the mutual inductance of transformer T1 or from a mutual inductance measurement made at start-up or during operation. In another embodiment, correction block 30 may determine the error by comparing the different slopes of I_{sec} during the sensing and charging portions of the duty cycle to estimate an actual magnetization current I_{MAG} - The mutual inductance can be measured by driving secondary winding sec with a predetermined voltage and determining the slope of current I_{sec} by observing the rate of decay of current I_{sec} after transistor N1 is deactivated. Alternatively, if transistors, such as transistors N10 and P10 of Figure 2 and Figure 3 are provided, the indication of current I_L during two equivalent cycles in DCM mode, one with
transistor NlO active and one with transistor PlO active can be compared to determine the error. In such an implementation, transistors NlO and PlO are used only for calibration. Transistor NlO would be deactivated and transistor PlO activated during normal operation, and correction block 30 would directly compensate for the error due to magnetization of transformer Tl by subtracting the measured value of the error from the indication of current IL produced by current sensing circuit 14.

[0027] Current sensing circuit 14C differs from control circuit 14B of Figure 3, in that a current mirror Ml is used to reflect current Isec into a current-input amplifier formed by amplifier A1 and resistor R13. Therefore, the voltage drop introduced by the sensing circuit is similar to that of transistor NlO in current sensing circuit 14B.

[0028] Referring now to Figure 5, signal waveforms within switching converter 8 of Figure 1 including an auxiliary power supply 12A of Figure 2 are illustrated. Other embodiments of the auxiliary power supply have similar output waveforms, but are not directly illustrated. Prior to time T2, switching converter 8 is operated in CCM mode, and signal ccm is asserted. Inductor current IL increases rapidly during charging phases and decreases more slowly as the energy in
inductor L1 is released into capacitor C1. Voltage V_{sec} consists of a positive pulse, a negative transition spike and a lower-voltage negative pulse during the discharge of inductor L1. During the first portion of the positive pulse, current sensing is performed, as indicated by signal sense being in an active state. Transistor N10 clamps voltage V_{sec} to a relatively low value until signal sense is de-asserted. The second portion of the positive pulse, after signal sense is de-asserted and voltage V_{sec} increases to its full potential as determined by the turns ratio of current transformer T1, charges capacitor C2 to restore output voltage V_{DDH} if output voltage V_{DDH} is below threshold voltage V_{TH}. After time $T1$, switching converter 8 operates in DCM mode and the sensing action is suspended, but capacitor C2 is still charged if output voltage V_{DDH} is below threshold voltage V_{TH}. Secondary current I_{sec} illustrates a change in slope during the auxiliary supply charging portion of the duty cycle. A current error I_{mag} represents the difference between a value of current I_{sec} that would be produced with a very low magnetization current, i.e., if transistor N10 were active throughout the duty cycle, and the actual value of I_{sec}, which is reduced by the magnetization of current transformer T1.

[0028] While the invention has been particularly shown and
described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form, and details may be made therein without departing from the spirit and scope of the invention.
WHAT IS CLAIMED IS:

1. A switched-power circuit, comprising:
 a magnetic coupling element for coupling an input of the switched-power circuit to an output of the switched-power circuit and having at least one winding;
 a switching circuit for controlling energizing of the primary winding of the magnetic coupling element from an input voltage source connected to the input of the switched-power circuit;
 a current sensing transformer having a primary winding coupled in series with the at least one winding of the magnetic coupling element and the switching circuit, and having a secondary winding;
 a control circuit for controlling switching of the switching circuit;
 a current sensing circuit coupled to the secondary winding of the current sensing transformer for providing an indication of a magnitude of current conducted through the at least one winding of the magnetic coupling element; and
 an auxiliary power supply having an input coupled to the secondary winding of the current sensing transformer and an output coupled to the control circuit for providing a supply voltage to the control circuit.
2. The switched-power circuit of Claim 1, wherein the current sensing circuit corrects the indication of the magnitude of the current to compensate for a mutual inductance of the current sensing transformer.

3. The switched-power circuit of Claim 2, wherein the current sensing circuit approximates the mutual inductance of the secondary winding of the current sensing transformer from an estimation determined from a measurement of a voltage across the secondary winding of the current sensing transformer.

4. The switched-power circuit of Claim 2, wherein the current sensing circuit approximates the mutual inductance of the current sensing transformer from a predetermined value of the mutual inductance of the current sensing transformer.

5. The switched-power circuit of Claim 1, further comprising a circuit for selectively reducing a voltage across the secondary winding of the current sensing transformer during a measurement interval in which the indication of the magnitude of the current is determined, whereby an effect of a magnetization current of the current sensing transformer on the indication of the magnitude of the current is substantially reduced.
6. The switched-power circuit of Claim 5, further comprising a circuit for isolating the output of the auxiliary power supply when the voltage across the secondary winding is selectively reduced.

7. The switched-power circuit of Claim 5, wherein voltage across the secondary winding of the current sensing transformer is only reduced during the measurement interval if the switched-power circuit is operating in continuous conduction mode.

8. The switched-power circuit of Claim 1, further comprising a pre-charging circuit for magnetizing the secondary winding of the current sensing transformer prior to a measurement cycle to a value opposite the magnetization current caused by the voltage across the secondary winding, whereby a magnetization current of the current sensing transformer is compensated for by the magnetizing of the secondary winding.
9. A method of operating a switched-power circuit, comprising:

switching an input voltage source across at least one
winding of a magnetic coupling element to transfer power to an
output of the switched-power circuit;

sensing a current flowing through the at least one
winding of the magnetic coupling element using a sensing
transformer having a primary winding coupled in series with
the at least one winding of the magnetic coupling element; and

generating an auxiliary power supply from the secondary
winding of the current sensing transformer for providing a
supply voltage to a control circuit of the switched-power
circuit.

10. The method of Claim 9, further comprising correcting the
indication of the magnitude of the current to compensate for a
mutual inductance of the current sensing transformer.

11. The method of Claim 10, wherein the correcting comprises
approximating the mutual inductance of the secondary winding
of the current sensing transformer from an estimation
determined by measuring a voltage across the secondary winding
of the current sensing transformer.
12. The method of Claim 10, wherein the correcting comprises approximating the mutual inductance of the current sensing transformer from a predetermined value of the mutual inductance of the current sensing transformer.

13. The method of Claim 9, further comprising selectively reducing a voltage across the secondary winding of the current sensing transformer during a measurement interval in which the indication of the magnitude of the current is determined, whereby an effect of a magnetization current of the current sensing transformer on the indication of the magnitude of the current is substantially reduced.

14. The method of Claim 13, further comprising isolating the output of the auxiliary power supply during the selectively reducing.

15. The method of Claim 13, wherein the selectively reducing only reduces the voltage across the secondary winding of the current sensing transformer during the measurement interval if the switched-power circuit is operating in continuous conduction mode.
16. The method of Claim 9, further comprising magnetizing the secondary winding of the current sensing transformer prior to a measurement cycle to a value opposite the magnetization current caused by the voltage across the secondary winding, whereby a magnetization current of the current sensing transformer is compensated for by the magnetizing of the secondary winding.
17. An integrated circuit, comprising:
 a switching control circuit for controlling a switch for charging an external magnetic coupling element through at least one primary winding;
 at least one input terminal for coupling to a secondary winding of a current sensing transformer;
 a current sensing circuit having an input coupled to the at least one input terminal for providing an indication of a magnitude of current conducted through the at least one winding of the external magnetic coupling element; and
 an auxiliary power supply having an input coupled to the at least one input terminal and an output coupled to the switching control circuit for providing a supply voltage to the control circuit.

18. The integrated circuit of Claim 17, wherein the current sensing circuit corrects the indication of the magnitude of the current to compensate for a mutual inductance of the current sensing transformer.
19. The integrated circuit of Claim 17, further comprising a circuit for selectively reducing a voltage across the secondary winding of the current sensing transformer during a measurement interval in which the indication of the magnitude of the current is determined, whereby an effect of a magnetization current of the current sensing transformer on the indication of the magnitude of the current is substantially reduced.

20. The integrated circuit of Claim 19, further comprising a circuit for isolating the output of the auxiliary power supply when the voltage across the secondary winding is selectively reduced.

21. The integrated circuit of Claim 19, wherein the voltage across the secondary winding of the current sensing transformer is only reduced during the measurement interval if the switched-power circuit is operating in continuous conduction mode.
22. The integrated circuit of Claim 17, further comprising a pre-charging circuit for magnetizing the secondary winding of the current sensing transformer prior to a measurement cycle to a value opposite the magnetization current caused by the voltage across the secondary winding, whereby a magnetization current of the current sensing transformer is compensated for by the magnetizing of the secondary winding.
Fig. 1
Current sensing circuit 14A

Aux power supply 12A

Fig. 2
Fig. 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H02M3/156

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H02M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2003/174520 A1 (BIMBAUD IGOR [FR]) 18 September 2003 (2003-09-18) the whole document</td>
<td>1,9,17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

1 December 2010

Date of mailing of the international search report

16/12/2010

Name and mailing address of the ISA

European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040
Fax (+31-70) 340-3016

Authorized officer

Jansen, Heima

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 6646848 H2</td>
<td>11-11-2003</td>
<td>CN 1369953 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60210217 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1229634 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002131224 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1334551 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2815790 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0235693 A1</td>
</tr>
<tr>
<td>US 2006285365 A1</td>
<td>21-12-2006</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)