(54) 发明名称
移动通信系统和方法

(57) 摘要
一种移动通信系统包括移动通信网络，该移动通信网络可操作为给移动终端提供服务以通过多个互连的接入点进行通信。该系统包括第一移动终端，该第一移动终端可操作为通过该系统所述第一移动终端所接入的、所述多个接入点中的第一接入点将带有第二移动终端的标识符的通信起动消息发送至所述移动通信网络来发起通信会话。所述移动通信网络可操作为通过所述第二移动终端所接入的、所述多个接入点中的所述第二接入点或所述第二接入点的所述第二接入点的位置标识符存储在与所述第二移动终端的标识符相关联，用于当发起随后的通信会话时定位所述第二移动终端。本发明的实施方式能够提供一种移动通信网络，其不需要包括用户信息的中央存储库或每个移动用户的当前位置的中央存储，例如HLR或HSS。
1. 一种移动通信系统，包括：

移动通信网络，操作为给移动终端提供设施以通过多个互连的接入点进行通信；

第一移动终端，操作为通过经由所述第一移动终端所接入的、所述多个接入点中的第一接入点将带有第二移动终端的标识符的通信发起消息发送至所述移动通信网络来发起与所述第二移动终端的通信会话，所述第一移动终端不知道所述第二移动终端所接入的接入点，所述移动通信网络操作为通过所述第二移动终端所接入的、所述多个接入点的所述第一接入点或第二接入点将所述通信发起消息传输至所述第二移动终端，所述第二移动终

端响应于所述通信发起消息。

将位置标识符传输至所述第一移动终端，所述位置标识符标识所述第二移动终端所接
入的、所述移动通信网络的所述第一接入点或所述第二接入点，所述第一移动终端操作为
将所述第二移动终端接入的、所述移动通信网络的所述第一接入点或所述第二接入点的所
述位置标识符存储为与所述第二移动终端的标识符相关联，用于当发起随后的通信会话时
定位所述第二移动终端。

2. 如权利要求1所述的移动通信系统，其中，所述通信发起消息包括标识所述第一移
动终端所接入的、所述移动通信网络中的所述第一接入点的位置标识符，所述第二移动终
端操作为将所述第一接入点的位置标识符存储为与所述第一移动终端的标识符相关联。

3. 如权利要求1所述的移动通信系统，其中，所述移动通信网络操作为响应于所述通
信发起消息而通过所述移动通信网络的所述多个接入点中包括所述第二接入点的一个或
多个接入点将寻呼消息传输至所述第二移动终端，所述第二移动终端响应于所述寻呼请求
而通过所述第二移动终端所接入的、所述移动通信网络的所述第一接入点或所述第二接入
点接收所述通信会话发起，所述第一移动终

端操作为向所述第一移动终端提供标识所述移动通
信网络的所述第二接入点的位置标识符。

4. 如权利要求1、2或3所述的移动通信系统，其中，所述第二移动终端操作为响应于所
述第二移动终端从所述第一接入点漫游到第三接入点而将新的位置标识符传输到至少所
述第一移动终端，所述新的位置标识符标识所述第二移动终端所接入的、所述移动网络的
所述第三接入点，所述第一移动终端操作为将所述第三接入点的位置标识符存储为与所述
第二移动终端的标识符相关联。

5. 如权利要求1、2或3所述的移动通信系统，其中，响应于所述第二移动终端从所述第
二接入点漫游至接入于所述移动通信网络的第三接入点，所述移动通信网络操作为

响应于从所述第一移动终端接收的所述通信发起消息，通过将所述通信会话发起消息传
输至位于所述第二接入点的位置标识符处的所述第二移动终端来尝试发起通信会话，

识别所述通信发起消息未被已从所述第二接入点漫游到所述第三接入点的所述第二移
动终端接收，

识别标识所述第二移动终端所接入的、所述移动网络的所述第三接入点的新位置标识
符，

将所述通信发起消息传输至位于所述第三接入点处的所述第二移动终端，以及所述第
二移动终端操作为

将所述第三接入点的位置标识符传输至至少所述第一移动终端，所述第一移动终端操
作为将所述第二移动终端所接入的所述第三接入点的位置标识符存储为与所述第二移动
6. 如权利要求 1-3 所述的移动通信系统，其中，响应于所述第二移动终端从所述第二接入点漫游至第三接入点，所述第二移动终端操作为向所述第二接入点提供标识所述第二移动终端接入于所述第三接入点时的位置的地址指针，所述移动通信网络操作为使用所述地址指针通过所述第二接入点将所述通信发起消息从所述第一移动终端转发至所述第二移动终端。

7. 如权利要求 6 所述的移动通信系统，其中，所述第二移动终端操作为响应于所述第二移动终端从所述第三接入点漫游至第四接入点，为所述第三接入点提供标识所述第二移动终端接入于所述第四接入点时的位置的地址指针，所述移动通信网络操作为使用标识所述第三接入点的第一地址指针和标识所述第四接入点的、由所述第三接入点提供的所述第二地址指针通过所述第三接入点将所述通信发起消息转发至所述第二移动终端。

8. 如前述权利要求 1-3 中的任一项所述的移动通信系统，其中，所述位置标识符包括基站代码、子网地址，或用于标识所述第一移动终端或所述第二移动终端所接入的接入点的接入点地址。

9. 如前述权利要求 1-3 中的任一项所述的移动通信系统，其中，所述第一移动终端和所述第二移动终端中的每个均包括用户识别模块，在所述用户识别模块上存储了包括用户已经订阅的服务的指示的用户信息，以及所述第一移动终端操作为根据存储在所述用户识别模块上的所述用户信息确定所述用户是否已经订阅由所述通信发起消息发起的所述通信会话。

10. 如前述权利要求 1-3 中的任一项所述的移动通信系统，其中，所述第一移动终端和所述第二移动终端中的每个均包括用户识别模块，所述系统还包括互联网协议多媒体子系统，所述互联网协议多媒体子系统包括：

 呼叫状态控制功能模块，操作为与应用服务器结合以根据所述移动终端被登记为活动的或非活动的，并根据指定配置服务所要满足的条件的触发条件，将所述服务配置至所述移动终端，其中，所述触发条件存储在所述第一移动终端或所述第二移动终端的所述用户识别模块上，所述第一移动终端或所述第二移动终端操作为从所述用户识别模块将所述触发条件加载到用于配置所述服务的所述呼叫状态控制功能模块。

11. 如权利要求 10 所述的移动通信系统，其中，所述用户识别模块包括由归属网络发送的所述移动终端的公用标识符、以及由所述移动终端的归属网络的运营商排他地使用的所述移动终端的专用标识符。

12. 一种通过移动通信网络的多个互连的接入点为移动终端提供通信设施的方法，所述方法包括：

 从第一移动终端发起与第二移动终端的通信会话，所述第一移动终端不知道所述第二移动终端所接入的接入点，发起所述通信会话包括：

 通过所述第一移动终端所接入的、所述多个接入点中的第一接入点，将带有所述第二移动终端的标识符的通信发起消息发送至所述移动通信网络，

 通过所述第二移动终端所接入的、所述多个接入点中的所述第一接入点或第二接入点，将所述通信发起消息传输至所述第二移动终端，

 响应于所述通信发起消息，将位置标识符从所述第二移动终端传输至所述第一移动终
端，所述位置标识符标识所述第二移动终端所接入的、所述移动通信网络的所述第一接入点或所述第二接入点，以及

将所述第二移动终端所接入的、所述移动通信网络的所述第一接入点或所述第二接入点的所述位置标识符在所述第一移动终端中存储为与所述第二移动终端的标识符相关联，用于当发起随后的通信会话时定位所述第二移动终端。

13. 一种移动终端，操作为通过移动通信网络与至少一个其它移动终端进行通信，所述移动通信网络操作为所述移动终端提供通过多个互联的接入点通信的设施，其中，

所述移动终端包括：

用于通过经由所述移动终端所接入的，所述移动通信网络的所述多个接入点中的第一接入点将带有所述其它移动终端的标识符的信息发送至所述移动通信网络，发起与所述其它移动终端的通信会话的装置，所述移动终端不知道所述其它移动终端所接入的接入点。

用于响应于所述通信发起消息，从所述移动通信网络接收位置标识符，所述位置标识符标识所述其它移动终端所接入的、所述移动通信网络的所述多个接入点中的所述第一接入点或所述第二接入点的装置，以及

用于将所述其它移动终端所接入的、所述移动通信网络的所述第二接入点的位置标识符存储为与所述其它移动终端的标识符相关联的装置，用于当发起随后的通信会话时定位所述其它移动终端。
移动电信系统和方法

技术领域
[0001] 本发明涉及一种被配置以给移动终端提供移动通信设施的移动电信系统，并涉及一种用于通过移动电信网络的多个互连接入点给移动终端提供通信设施的方法。

背景技术
[0002] 移动电信网络通常被认为是包括两个功能部分：无线网络和核心网络。无线网络包括直接与移动设备进行无线通信的网络元件。本领域的技术人员将熟悉根据 GSM/GPRS 标准的无线网络元件的实例，例如，基站、基站控制器（BSC）和移动交换中心（MSC）。核心网络包括控制和管理网络的网络元件。此外，本领域的技术人员熟悉根据 GSM/GPRS 标准的包括网关支持节点（例如，SGSN 和 GGSN）和归属位置寄存器 (HLR) 的实例。HLR 形成大多数移动电信网络的一部分并执行核心网络中的两个基本功能：
[0003] •维护订阅移动电信网络的用户（即，网络运营商客户）列表和允许用户访问的网络服务。
[0004] •维护与每个用户的位置相关的信息，从而能够将呼叫路由至用户的移动终端。
[0005] 在移动通信网络（例如，GSM 和 GPRS）中，性能最高且因此最重要的元件之一是归属位置寄存器 (HLR)。这是因为 HLR 必须一直维护提供移动通信网络中的所有移动终端的位置和所有移动终端的用户信息的实时或接近实时的数据库。因此 HLR 具有许多弱点。具体地，在逻辑上或物理上将 HLR 配置为单个实体都是高成本且低效率的。在大多数情况下，用户设备与移动电信网络之间的每次交互都将以各种方式传送至 HLR。因此 HLR 不仅必须足够大以提供内存空间用于与每个用户相关联的所有必要数据，并且必须具有充分的处理能力以实时或接近实时地获取和改变这些数据。本领域的技术人员可理解，数据存储容量越大和存储器存取速度越快，数据存储的成本则将会越高。将类似 HLR 的网络元件定位于核心网络的中心导致了更多的不利条件。存在回弹（resilience）的问题。如果 HLR 失效，则整个网络失效。此外，负责中央 HLR 的网络运营商负责通过其自身的集中式网络路由大量的业务。这意味着更难以完全利用支持更多分布式路由（例如，IPv6 和移动 IP）的网络技术的改进和优点。因此，需要简化核心网络。
[0006] US 2003/0100302 提出了提供分布式 HLR 和网络 HLR。被称为个人 HLR 的分布式 HLR 提供了存储用户的订阅信息和漫游信息。因此，将通常存储在 HLR 内的信息分布到个人 HLR 中。还需要网络 HLR 以将呼叫路由至移动终端。

发明内容
[0007] 根据本发明，提供了一种移动通信系统，包括可操作为给移动终端提供设施以使其通过多个互连的接入点进行通信的移动通信网络以及可操作为发起与第二移动终端的通信会话的第一移动终端。所述第一移动终端被配置为通过所述第一移动终端所接入的、所述多个接入点中的第一接入点，将带有第二移动终端标识符的通信发起消息发送至所述移动通信网络。所述移动通信网络可操作为通过所述第二移动终端所接入的、所述多个接
入点的所述第一入点或第二入点将所述通信发起消息传输至所述第二移动终端。所述第二移动终端响应于所述通信发起消息而将位置标识符传输至所述第一移动终端，所述位置标识符标识所述第二通信终端接入所述移动通信网络的所述第一入点或所述第二入点时的位置。所述第一移动终端可操作为将所述第二移动终端接入的所述移动通信网络的所述第一入点或所述第二入点的位置标识符存储为与所述第二移动终端的标识符相关联，用于当发起随后的通信会话时定位所述第二移动终端。

[0008] 本发明的实施方式能够提供一种移动通信网络，所述移动通信网络不需要在所述网络中包括用户信息的中央存储库或每个移动用户的当前位置的中央存储。例如对于GSM或GPRS网络，本发明提供了一种技术，其允许移动通信网络在没有归属位置寄存器（HLR）的情况下工作。对于其它的实施例，例如网际协议多媒体子系统（IMS），本发明能够提供一种技术，其允许去除归属用户服务器（HSS）。

[0009] 在没有HLR或等效功能模块的情况下，可能导致大多数常规的移动通信网络不可用。首先，不存在定位用户以优化数据路由的装置，其次，不存在维护用户列表、中央地控制用户已经访问了哪些服务，以及由此对他们进行计费的装置。因此，为了简化网络希望从移动通信网络去除HLR。然而，为了去除HLR，HLR的功能必须由可选的装置取代。

[0010] 除了存储通常存储在HLR中的与用户相关的信息之外，本发明的实施方式提供了一种配置，允许移动通信网络中的移动终端自定位。也就是说，所述移动终端被配置为维护所述网络中的所述移动终端的位置，而不是由移动通信网络中的元件来维护移动终端中的每个位置。如果每个移动终端维护移动通信网络中的每个其它移动终端的位置，则代表需要相当大规模的数据和大量的信令业务。然而，本发明的实施方式被配置为维护移动终端已经呼叫过的移动终端的位置。这是因为移动通信网络仅可能与接入于移动通信网络的所有移动终端中的相对小的子集发出或接收呼叫或发起通信会话。此外，移动终端倾向于漫游而不是通常在相对较小数量的位置之间均等地移动。因此，通过在呼叫发起消息已经从呼叫的移动终端发送至被呼叫的移动终端之后将被呼叫的移动终端在移动通信网络中的位置地址存储为与呼叫的移动终端相关联，呼叫的移动终端将被呼叫的移动终端的位置用于以后的呼叫。因此，每个移动终端可建立其作为一个移动终端组，并且包括该组中的每个移动终端的位置地址，所述位置地址被存储为与所述移动终端相关联。因此，移动终端将向另一移动终端的已知的位置处发出对所述另一移动终端的呼叫。

[0011] 根据本发明的一方面，提供了一种移动通信系统，包括一个或多个移动通信网络，每个所述移动通信网络均包含多个接入点、标识服务器以及一个或多个移动终端。所述一个或多个移动终端中的每个均可操作为通过所述多个接入点进行数据通信。所述一个或多个移动终端中的每个包含用户识别模块，所述用户识别模块具有存储于其上的与所述移动终端的用户相关联的信息。所述标识服务器被配置为：为每个所述用户识别模块存储与存储在每个所述移动终端的所述用户识别模块上的所述用户信息相关联的网际协议地址，以及为每个所述用户识别模块存储资源定位符，所述资源定位符被存储为与所述用户识别模块上的所述用户信息的所述网际协议地址相关联，用于通过指向所述标识服务器的资源定位符访问所述用户信息，所述标识服务器提供所述用户信息的所述网际协议地址。

[0012] 本发明的这个方面的实施方式能够给通常将用户信息存储在中央实体（例如,
HLR 上的移动通信网络提供移动管理。通过将用户识别模块 (SIM) 与资源定位符 (例如，统一资源定位符 (URL) 相关联，提供了作为移动通信网络的一部分的移动定位功能。标识服务器可以是例如域名系统 (DNS) 服务器。标识服务器通过将用户信息的网际协议地址存储在 SIM 上并与资源定位符相关联来提供移动管理，使得能够通过查阅资源定位符来访问用户信息。资源定位符指向提供用户信息的网际协议地址的标识服务器 (DNS 服务器)。

[0013] 根据本发明的某些实施例，一旦在 DNS 服务器内将 URL 与 SIM 关联，现有的 IP/DNS 功能就确保了无论移动终端发现其自身位于何处，其 IP 地址（一旦由接入点分配）则被报告回 DNS 服务器并由 DNS 服务器管理。当 DNS 服务器将 URL 与 SIM 关联时，能够提供完全的移动性管理和用户信息管理。

[0014] 本发明的各种进一步的方法和特征由权利要求限定。

附图说明
[0015] 仅参考附图示例性地描述本发明的实施方式，附图中相似的部件用相同的标号表示，其中：
[0016] 图 1 皆示出了根据 3GPP 标准的移动电信的简化表示；
[0017] 图 2 皆示出了包括根据本发明技术的 SIM 的、根据 3GPP 标准的移动通信的简化表示；
[0018] 图 3 皆示出了包括位置缓存的，根据本发明技术的移动电信网络的实施例；
[0019] 图 4 皆示出了包括位置缓存的，根据本发明技术的移动电信网络的实施例；
[0020] 图 5 皆示出了根据图 3 和 4 的方案由一个移动终端发起与另一移动终端的呼叫所执行的操作的流程图；
[0021] 图 6 皆示出了包括定位点的，根据本发明技术的移动通信网络的实施例；
[0022] 图 7 皆示出了包括定位点的，根据本发明技术的移动通信网络的实施例；
[0023] 图 8 皆示出了根据图 6 和 7 中的方案，由移动终端 B 向移动终端 A 发起呼叫的过程；
[0024] 图 9 皆示出了 IMS 子系统的常规配置；
[0025] 图 10 皆示出了根据本发明技术的适当的服务呼叫状态控制功能和适当的代理呼叫状态控制系统；
[0026] 图 11 皆示出了根据本发明的技术使用 DNS 服务器的简化的移动分组通信网络；
[0027] 图 12 皆示出了根据图 11 所示的简化网络，在两个移动终端之间建立的通信会话的过程；
[0028] 图 13 皆示出了包括两个接入点的简化的移动分组通信网络；
[0029] 图 14 皆示出了对图 11 所示的简化网络更新移动终端的 IP 地址的过程；
[0030] 图 15 皆示出了用户能够根据与 URL 相关联的 SIM 访问 IP 地址的简化的 IP 网络；
[0031] 图 16 是根据本发明技术被配置为通过不同的接入网络通信的通信终端的示意性框图；
[0032] 图 17 是根据本发明技术被配置为利用不同的通信服务的通信终端的另一示意性示意性框图；以及
[0033] 图 18 皆示出了客户确定与 URL 相关联的 IP 地址的过程。
具体实施方式

[0034] 下面将描述移动通信系统的三个示例性实施方式。第一实施方式（位置高速缓存）涉及使移动终端和/或接入点适用于网络，以在不依赖于中央 HLR 的情况下保持和管理与移动终端的位置相关联的信息。这通过将用户资料信息和认证信息存储在移动终端中而实现，例如，存储在 SIM 上面移动终端被配置为自定位的。还说明了该技术基于网际协议的多媒体子系统（IMS）中的示例性应用。

[0035] 在第二实施方式（与 URL 相关联的 SIM）中，用户的唯一标识符（通常为 SIM）与互联网 URL 相关联并与适合的 DNS 服务器结合。这类系统提供了不依赖于中央 HLR 管理用户数据和位置的装置。

[0036] 在第三实施方式（基于 SIM 的服务）中，在移动终端中提供了授权接口，该授权接口创建了物理层与应用层之间的接口。提供授权接口以允许有条件地访问通信服务。网络运营商不必在 HLR 中维护指示准许各用户访问哪些服务的数据，就能够控制对其服务的访问。

[0037] 如上所述，UMTS/GPRS 网络中最复杂的元件之一是归属位置寄存器（HLR）。图 1 显示 UMTS/GPRS 网络的示例性图解。在图 1 中，在 UMTS/GPRS 术语中被称为节点 B 的基站 1 被连接至无线网络控制器 2，基站 1 和无线网络控制器 2 共同形成 GPRS/UMTS 通信网络的无线网络部分的一部分。无线网络控制器（RNC）2 被连接至 GPRS 业务支持节点 4，GPRS 业务支持节点 4 还被连接至 GPRS 网关支持节点 8。GGSN 8 实现由 UMTS/GPRS 标准实现的移动通信网络的网关功能，从而 GGSN 8 被连接至外部网络 10 用于从移动通信网络外部的实体接收数据并将数据发送到移动通信网络外部的实体。图 1 包括被连接至 SGSN 4 和 GGSN 8 的 HLR 18。该 HLR 通常存储用户资料信息和用户偏好以及与向移动终端的用户收取通信会话（或者由其它终端发起）的费用相关联的信息。此外，HLR 18 实现将移动终端 12 的当前位置存储在移动通信网络中的功能。因此，例如在图 1 中，HLR 18 包括移动终端所接入的当前位置 b 或基站的指示。因此，当呼叫移动终端时，GGSN 接收该呼叫和将接收该呼叫的移动终端的标识符。该标识符通常是国际移动用户识别码（IMSI）或例如移动用户识别号（MSISDN）的其它标识符。然后，GGSN 8 询问 HLR 18 以获取由移动终端标识符标识的移动终端的当前位置。然后，从 HLR 获取移动终端的位置标识符，如图 1 所示的实施例，该位置标识符可能是该移动终端当前所接入的节点 B 的代码。这样 GGSN 可通过 SGSN 和 RNC 将对该移动终端的呼叫路由到适当的节点 B 以完成通信会话的建立。因此在任意时刻，HLR 18 都必须包括移动终端 12 的位置的标识符。如理解，HLR 18 代表复杂且非常大的数据库，因为已经订阅移动网络的每个移动终端都必须在 HLR 中具有存储空间。此外，必须接近实时地访问存储在 HLR 内的数据。在 R. Steele, C-C Lee 和 P. Gould 的“GSM, CdmaOne and 3G Systems (GSM, CdmaOne 以及 3G 系统)”中能够找到 RMTS GPRS 移动通信系统的体系结构的更详细的内容，该文献在 Wiley 中公开，国际 ISBN 号为 0 471 491853。

[0038] 图 2 提供了将本发明的技术应用到图 1 所示的 GPRS/UMTS 网络的示例性实施例。图 2 所示的移动通信网络对应于图 1 所示的移动通信网络，但是提供了将 HLR 从移动通信网络中去除的本发明技术的示图。如上所述，HLR 执行两个功能，其一是存储与用户资料相关联的用户信息以及移动终端已经订阅的服务的指示。其二是，HLR 提供了用户位置数据
库，该数据库标识移动终端在移动通信网络中的当前位置。本发明技术的实施方式将常规移动通信网络中由 HLR 实现的两个功能配置为在没有 HLR 的情况下实现。

[0039] 位置高速缓存

[0040] 根据本发明技术，移动通信系统的移动终端适用于：

[0041] - 存储用户信息（例如，用户资料）、通信服务以及与移动终端内的计费相关联的任何其它信息。在一个实施例中，将用户信息存储在移动终端的用户识别模块（SIM）中，以及

[0042] - 通过包含对该移动终端可能呼叫的移动终端的标识符以及标识该移动终端当前位置的位置标识符提供存储的高速缓冲存储器或数据存储，将该移动终端配置为自定位。

[0043] 可理解，在某些实施例中，可独立于存储在 SIM 中的用户资料信息实现移动终端的自定位配置。

[0044] 在一个实施例中，移动通信网络中的移动终端的位置标识符（例如，移动终端所接入的接入点的地址）可与该移动终端的标识符相关联地存储在接入点内，或者存储在移动终端自身的高速缓冲存储器内。

[0045] 如果对在移动通信网络中的位置地址未知的移动终端发起呼叫，则能够将移动通信网络配置为将寻呼消息从移动通信网络中的一个或多个接入点发送到该移动终端。如果被发送呼叫发起消息的移动终端响应寻呼消息而接受呼叫尝试，被呼叫的移动终端则将其位置地址提供给被呼叫的移动终端。此后，呼叫的移动终端将知道被呼叫的移动终端的位置地址。

[0046] 对于 GSM/GPRS 标准，位置标识符是标识移动终端所从属的基站或接入点地址的子网地址。

[0047] 图 3 和 4 图示了更一般地将本发明技术应用到移动通信网络中的接入点的示例性实施例。图 3 和 4 提供了允许移动通信网络中的移动终端自定位的本发明技术的实施例的一般性图解。为此，每个移动终端均包括在下面描述中被称为位置高速缓冲存储器的数据存储或高速缓冲存储器，该位置高速缓冲存储器包含移动终端呼叫过的移动终端的最后位置。如图 3 所示，多个接入点 30、32、34 和 36 互连以形成移动通信网络。接入点可以是例如“WiFi”（IEEE802.11），或者在一个实施例中，接入点是图 1 和 2 的 GPRS 网络的节点 B。因而，可选地，接入点可以是移动电信网络的基站。如图 3 所示，以 A、B 和 C 表示的移动终端 38 通过接入点 30、32、34 和 36 彼此通信。因而，移动终端 A 当前从属于接入点 30，移动终端 B 当前从属于接入点 34，移动终端 C 当前从属于接入点 32。根据本发明的技术，移动终端 A、B 和 C 是自发现的或自定位的。每个移动终端包括位置高速缓冲存储器，该位置高速缓冲存储器提供该移动终端呼叫过的每个其它移动终端的最后位置的指示。这样，对于移动终端 A 所示的位置高速缓冲存储器 40 指示移动终端 B 的最后位置是接入点 34 以及移动终端 C 的最后位置是接入点 32。

[0048] 移动通信网络的一个特征是移动终端可在接入点之间漫游。因而，如果移动终端从第一接入点漫游到第二接入点，由其它移动终端保持的该移动终端的位置地址则不再有效。对于这种情况提供了两种可能的解决方案：

[0049] - 在最后的接入点处提供指针地址以指向移动终端目前所在的接入点；

[0050] - 移动终端用它新的位置地址对其移动终端列表上的所有其它移动终端进行更
新。该更新可以在该移动终端进行呼叫尝试之前或在对该移动终端进行呼叫尝试之后实现。

【0051】 如图 4 所示，移动终端 B 将其从属关系从接入点 34 改变到接入点 36。因此，移动终端 A 的位置高速缓冲存储器就过时了，因为移动终端 B 已经从接入点 34 移动到接入点 36。因此，移动终端 A 的位置高速缓冲存储器需要被更新以标识移动终端 B 目前从属于接入点 36。有各种可选的技术用于更新已经从先前的位置离开的移动终端的位置。这些技术将被简要描述。然而，在描述当移动终端已经从先前的位置离开时用于更新位置高速缓冲存储器的技术之前，将参考图 5 所示的流程图描述该移动终端的位置高速缓冲存储器由其它移动终端的位置填充的过程。

【0052】 图 5 提供了建立由移动终端执行的操作以发起与另一移动终端的呼叫的流程图。将图 5 概括如下：

【0053】 S1：该移动终端发起与移动终端 B 的通信会话。

【0054】 S2：移动终端 A 询问其位置高速缓冲存储器以确定高速缓冲存储器中是否存在移动终端 B 的标识符，如果存在，又是否提供了位置标识符。如果位置高速缓冲存储器中存在移动终端 B 的位置标识符，则处理进入到处理步骤 S14。

【0055】 S4：如果在位置高速缓冲存储器内没有包含终端 B 的位置，该移动终端则将带有移动终端 B 的标识符的通信会话请求发送至移动通信网络。在 GPRS/UMTS 的情况下，移动终端 B 的标识符是国际移动用户识别号。

【0056】 S6：移动通信网络从移动通信网络的接入点发送带有移动终端 B 的标识符的寻呼消息。

【0057】 S8：移动终端 B 对来自它当前接入的接入点的寻呼请求做出响应。

【0058】 S10：移动通信网络将移动终端 B 接入的接入点的标识符发送至移动终端 A，移动终端 B 已经对来自它所接入的接入点的寻呼请求做出响应，接入点提供了该接入点的识别码。

【0059】 S12：移动终端 A 将移动终端 B 的位置标识符和移动终端 B 的标识符存储在位置高速缓冲存储器中，用于发起随后的通信。

【0060】 S14：移动终端 A 发送带有移动终端 B 的标识符和移动终端 B 所接入的接入点的位置标识符的通信会话请求。

【0061】 因而，图 5 所示的流程图图示了即使移动终端没有移动终端 B 的当前位置，也可以通过从移动通信网络的接入点或基站寻呼移动终端 B 来建立。在某些实施例中，移动通信网络可从移动终端 B 的最后已知的位置开始该寻呼过程，然后将寻呼请求的区域从该接入点或基站增加到位置区域，再增加到由例如访问位置寄存器（VLR）覆盖的区域。一旦移动终端做出响应，则识别该移动终端所接入的接入点或基站，该接入点或基站后被转发生起通信会话的移动终端用于存储在位置高速缓冲存储器中。然后在发起的移动终端与被邀请的移动终端之间建立通信会话。

【0062】 随着移动更新位置高速缓冲存储器

【0063】 如上所述，尽管本发明的技术提供了一种配置，即，一旦已经在移动通信网络中建立了移动终端的位置，移动终端则是自定位的，但是有利地，可以提供允许在每个位置高速缓冲存储器内更新位置的技术，以尽可能地减少寻呼移动终端的需求。将理解，寻呼移动终
端会增加建立呼叫声所需的延迟，并且增加了建立移动终端的位置所需的信令。因此，如果能够减少寻呼操作，则将在移动通信网络上的呼叫建立时间和信令业务方面提供改进。下面将描述用于减少寻呼移动终端的需求的某些技术。

【0064】早期缓存/后期缓存

【0065】如图4所示，一旦移动终端将其从属关系从接入点34改变到接入点36，该移动终端就知道它的新的接入点。因此，该移动终端检查在位置高速缓冲存储器中标识的所有移动终端，并且将标识该移动终端所从属的新的接入点的更新传输至这些移动终端。这样，当移动终端B将其从属关系从接入点34改变到接入点36时，移动终端B与移动终端A和C通信，以提供移动终端B所从属的接入点36的新的标识符。因而移动终端A更新它的位置高速缓冲存储器以标识位置高速缓冲存储器中的移动终端B的标识符指示接入点36为移动终端B的新位置。

【0066】作为可选方式，不执行位置更新。这是所谓的“后期缓存(latecaching)”的实施例。不执行高速缓冲存储器更新，从而当进入的呼叫针对移动终端B时将针对先前的位置，即接入点34。因而该呼叫不会传递到移动终端B。因而有两种可选方式来识别终端B的新位置。可以由网络执行寻呼操作来识别终端B的位置。可选地，移动通信网络没有用于识别移动终端的新位置的访问位置寄存器。

【0067】用户资料复制

【0068】在该实施例中，为所附接的每个移动终端复制用户资料。该技术假设每个用户通常频繁地与少量通信。因而能够在每个位置处复制用户资料。由于每个用户（因此每个移动通信终端）与少量接入点通信，因此能够将这些接入点提供给可能呼叫该移动终端的移动终端B的位置高速缓冲存储器。因而，当发起呼叫时，可提供若干位置标识符并依次搜索这些位置标识符用于将通信会话连接到移动终端，从而更有可能建立通信会话。

【0069】定位点

【0070】下面参考图5、6和7描述用于提供从当前的接入点移动到新的接入点的移动终端的位置的技术，新的接入点称为“定位点(anchormapit)”图5和6对应于图3和4，对应的部件具有相同的参考标志。根据定位点技术，在移动终端曾经或通常接入的接入点处建立该移动终端的资料。例如。如图6所示，如果移动终端从接入点34漫游到接入点36，则移动终端B的定位点仍然在接入点34。一旦移动终端B变为接入于接入点36，如箭头40表示的信令数据的交换则传送移动终端B所接入的新接入点。将该接入点的位置标识符传输至接入点34处的定位点。如图7所示，一旦移动终端B接入于新的接入点36，包括用于移动终端B的定位点的旧的接入点34则包括指向接入点36的指示。从图6和7可见，移动终端B在它在的位置高速缓冲存储器中包括了与移动终端B的标识符相关的接入点34。此外，如图6和7所示，未对移动终端A的位置高速缓冲存储器进行更新。也就是说，即使移动终端B已经移动到接入点36，但是该位置高速缓冲存储器仍然包括接入点34作为图6和7中的移动终端B的位置。

【0071】图8描述了在移动终端B已经移动到接入点36之后建立由移动终端A发起的与移动终端B的呼叫的过程。在图8中，移动终端A通过接入点30，经过可能包含在通信网络中的网关交换机发出呼叫。移动终端A将接入点34作为移动终端B的最后位置。因而，网关交换机会在接入点34处完成到移动终端B的呼叫。然而，如图6和7所示，移动终端
B 已经移动到新的接入点 36。由于在接入点 34 处接收到该呼叫，因此用于移动终端 B 的定
位点被询问以确定移动终端 B 的位置。该接入点包括用于移动终端 B 的定位资料 (anchor
profile)，并在该定位点中提供了指向移动终端 B 已经移动到的新的接入点的指针。因此，
将信令数据转发至接入点 36，指示正在向移动终端 B 发起通信会话，并通过网关交换机 42
的信令经由接入点 36 建立向移动终端 A 的呼叫，从而在移动终端 A 与 B 之间的接入点 30
与接入点 36 完成呼叫。

【0072】对基于网络协议的多媒体子系统 (IMS) 的应用

【0073】参考图 9 和 10 描述被应用到基于网络协议的多媒体子系统的本发明技术的应用。
在图 9 中，图示了根据 3GPP 标准用于两个移动终端通过移动通信网络通过的 IMS 子系统的
常规配置。那些了解 IMS 体系结构的技术人员将理解，基于 IP 的多媒体网络子系统被提供
以对移动终端执行不同的功能。IMS 子系统被提供以将服务配置到移动终端，并与信令数
据（例如，会话初始化协议消息 (SIP 消息)）交互。如图 9 所示，IMS 子系统被提供用于发
起通信会话的移动终端 80 和被邀请到通信会话的移动终端 82。如图 9 所示，图示了从邀请
第二移动终端 82 加入通信会话的移动终端接收信令消息的两个 IMS 子系统 84、86。如那
些了解 IMS 子系统的技术人员所熟悉地，IMS 系统包括服务呼叫状态控制功能 (S-CSCF) 88.1、
88.2, 代理呼叫状态控制功能 (P-CSCF) 90.1、90.2, 归属用户服务器 (HSS) 92.1、92.2 以及
通常的应用服务器 94.1、94.2。那些了解 IMS 的技术人员将理解 IMS 体系结构中的各个组
件的操作。然而，在本发明技术的应用中，归属用户服务器 (HSS) 执行与移动通信网络的
HLR 类似的功能。HSS 包含用户信息，该用户信息包括用户被登记为活动中或被登记为不活
动的用户当前状态的指示以及其它信息（例如，当移动终端为活动的时，用于执行从 HSS 下
载到 SCSCF 和 P-CSCF 的各种服务的触发条件）。根据本发明的技术，IMS 适用于去除 HSS。
图 10 提供了本发明的技术对 IMS 系统的示例性应用。

【0074】在图 10 中，适当的呼叫状态控制功能 (S-CSCF) 100 被连接至适当的代理呼叫
状态控制功能 (P-CSCF) 102。如上所述，根据本发明技术操作的移动终端是自定位的并且包
括本发明技术的上述方式中描述的位置高速缓冲存储器。此外，根据本发明的技术，移动
终端 104 包括 SIM 106，在 SIM 106 上存储有通常存储在 HSS 上的用户信息。因而，存储
在 SIM 中的用户信息包括移动终端是否登记的指示，以及例如通过应用服务器 108 提供的
用于触发服务的触发条件。

【0075】那些熟悉 IMS 系统的技术人员将理解，在未登录的状态中，可以将例如语音信息
或呼叫转移的服务配置到移动终端。同样根据本发明的技术，通过移动终端 104 将配置这
些服务的触发条件从存储在 SIM106 上的用户信息加载到 PCSCF 102。因此，SCSCF 100 和
PCSCF 102 适用于从移动终端自身而不是 HSS 接收触发条件。

【0076】此外，根据本发明的技术，SIM 106 包括用于将服务配置到移动终端并且通常存储
在 HSS 92.1、92.2 中的服务授权码。根据本发明的技术，当该移动终端未登记时，该移动终
端将必要的触发条件上载到 SCSCF 以配置适当的设备。同样地，当该移动终端被登记为活
动时，该移动终端将适当的触发条件上载到 P-CSCF 和 S-CSCF。

【0077】根据本发明的技术，用户信息还包括由归属网络发送的移动终端的公用标识符和
由移动终端的归属网络的运营商排他地使用的、移动终端的专用标识符。因而，SIM 106 包
括公用标识符和专用标识符之间的关联。
根据本发明的技术，图10所示的适用的IMS体系结构包括授权认证和结算服务器108，授权认证和结算服务器108被配置为将专用标识符和公有标识符提供给移动终端104用于存储在SIM上。由归属网络运营商分配的专用用户标识符用于订阅读识别登记和其它授权结算和管理目的。专用用户标识符是全球唯一的并且永久地分配用于用户订阅。专用用户标识符采用网络接入标识符的形式，该网络接入标识符具有与邮件地址类似的格式。

将公用用户标识符分配给移动终端。移动终端可具有一个或多个公用用户标识符。公用用户标识符用于与其它移动终端通信的联系信息。不同的公有标识符能够用于区分用于单个用户的各种用户情况。例如，个人公用用户标识符用于与家庭成员和朋友联系，而商业公用标识符由同事和合作伙伴知道。公用用户标识符可采用SIP URI的形式，例如，SIP:user1@operator1.com。

在操作中，如果移动终端想要接入通信服务，移动终端则被配置为向AAA服务器108确定它是否被授权执行该通信服务。因此，将信令消息发送给AAA服务器108以请求许可启动该通信服务。此外，为了协助通信服务的计费，PCSCF 102提供了公用用户标识符与专用用户标识符之间的关联，由AAA服务器108用于执行授权和计费。

与URL相关的SIM

下面将描述根据本发明技术的方案，在该方案中域名系统(DNS)和统一资源定位符(URL)的组合适用于提供对存储在移动终端(例如，SIM)中的信息进行访问的配置，该信息因而可通过分组数据通信网络访问。特别地，例如当移动终端接入移动通信网络时，用户信息可被访。附件1更详细地描述了DNS系统。下面部分描述了该技术的实施例。这些实施例允许通过URL访问移动终端SIM上的信息。

位置管理

图11示出了本发明技术的实施方式。第一移动终端121包括用户识别模块(SIM)122。第一移动终端121通过无线链路与接入点123进行分组数据通信。无线链路可根据例如“WiFi”(IEEE802.11)标准工作。当首先建立接入点123与第一移动终端121之间的无线链路时，从IP地址分配服务器124为移动终端121配置了IP地址。然后，第一移动终端121可操作为通过IP网络125向DNS服务器126发送消息，指示第一移动终端的身份和IP地址分配服务器124分配给第一移动终端121的IP地址。DNS服务器126可操作为将先前与移动终端121的身份相关联的URL(根据DNS)与通过IP地址分配服务器124分配给第一移动终端121的IP地址相关联。

第二移动终端128可操作为通过无线链路与第二接入点127进行分组数据通信。图12示出了在第一移动终端121与第二移动终端128之间建立由第二移动终端128发起的通信会话(例如，通过IP的语音(VoIP)呼叫)的步骤。首先，第二移动终端128将包括第一移动终端121的URL的第一消息139发送至DNS服务器126。DNS服务器126(根据域名系统)查询与在第一消息129中发送的URL对应的IP地址。该IP地址是第一移动终端121的当前IP地址。DNS服务器126将包括第一移动终端1的IP地址的第二消息1310发送给第二移动终端128。配备有第一移动终端121的IP地址的第一移动终端128将第三消息1311发送至第一移动终端121，建立通信会话(例如，VoIP呼叫)。第一移动终端121和第二移动终端128能通过建立的通信会话1312彼此通信。以这种方式，在没有HLR的移动电信网络中，简单地通过使用URL和适当的DNS服务器就可路由对移动终端的呼叫。
图 13 示出了图 11 所示的实施方式具有第二接入点 1414 和第二 IP 地址分配服务器 1413 的情况。图 13 图示了移动终端 121 从由第一接入点 123 提供的第一覆盖区域 1415 移动至由第二接入点 1414 提供的第二覆盖区域 1416 的情况。图 14 示出了当移动终端 121 从由第一接入点 123 提供的第一覆盖区域 1415 移动至由第二接入点 1414 提供的第二覆盖区域时更新 DNS 服务器 126 的步骤。在移动终端 121 移动到第二覆盖区域 1416 之后，移动终端 121 建立移动终端 121 与第二接入点 1414 之间的无线链路。当建立无线链路时，移动终端将 IP 地址请求消息 1551 发送至第二接入点 1414。作为响应，第二接入点 1414 将 IP 地址分配请求消息 1552 发送至第二 IP 地址分配服务器 1413 用于请求给移动终端 121 分配 IP 地址。IP 地址分配服务器 1413 将 IP 地址分配消息 1553 发送至第二接入点 1414。第二接入点 1414 将包括分配的 IP 地址的 IP 地址分发消息 1554 发送至移动终端 121。移动终端然后可操作为将更新消息 1555 发送至 DNS 服务器 126，更新消息 1555 包括移动终端 121 身份的指示和新分配的 IP 地址。DNS 服务器 126 然后可操作为将先前与移动终端 121 的身份相关联的 URL（根据域名系统）与由第二 IP 地址分配服务器 1413 分配给移动终端 121 的 IP 地址相关联。如上所述，通过该方案，在不考虑移动终端 121 可能接入的接入点的情况下，简单地通过与移动终端 121 中的 SIM 122 相关联的 URL 来定位移动终端 121 并与其通信。

在上述实施方式中，当在第一移动终端 121 与第二移动终端 128 之间建立通信会话时，DNS 服务器 126 将包括第一移动终端 121 的 IP 地址的第二消息 1310 发送至第二移动终端 128。之后，DNS 服务器 126 不再需要在第一移动终端与第二移动终端之间进行数据通信。然而，可理解，移动电信网络运营商可能希望通过 DNS 服务器 126 的某些部分对在移动终端之间交换的所有或部分分组进行路由。这就给运营商例如生成计费数据提供了机会。因此，在某些实施方式中，当 DNS 服务器 126 将带有发起的移动通信会话将呼叫路由至的另一移动终端的 IP 地址的消息发送至该发起的移动通信会话时，DNS 实际上可发出与代理节点对应的 IP 地址。通过该代理节点可路由与该呼叫相关的所有分组，从而允许运营商监控通信会话并结账通信会话的费用。

用户管理

图 15 示出了移动终端 121 和 SIM 122。示出了访问被连接到 IP 网络 165 的个人计算机 1662 的用户 1663。DNS 服务器 126 和配置服务器 1661 也被连接到 IP 网络 165。如果用户 1663 希望为 SIM 122 配置服务，例如接入访问运营商的移动电信网络，网络 1663 则将与 SIM122 相关联的 URL（例如，http://www.orange.co.uk/0712345678/provisioning）输入到在个人计算机 1662 上运行的应用程序（例如，网页浏览器）中。根据域名系统，网页浏览器将向 DNS 服务器 126 发送请求，请求与 SIM 122 相关联的 URL 相关联的 IP 地址。DNS 服务器可操作为返回与配置服务器 1661 对应的 IP 地址。配置服务器 1661 和在个人计算机 1662 上运行的应用程序能够建立在其之间传输信息的通信会话。配置数据库 1664 被连接到配置服务器 1661。配置数据库存储指示为订阅运营商的移动电信网络的 SIM 配置的服务。在个人计算机 1662 与配置服务器 1661 之间建立通信会话的过程中，能够将指示为 SIM 122 配置的服务的信息从配置数据库发送至个人计算机 1662。此外，可通过个人计算机 1662 在用户 1663 与配置服务器 1661 之间协商附加的服务或对当前服务的改变。在某些实施方式中，个人计算机是移动终端。
基于SIM的服务

通常，为了管理移动网络的用户，移动终端运营商为每个用户分配集成在用户设备中的用户识别模块 (SIM)。每个SIM均具有与之相关联的唯一标识符，这个标识符就是在HLR中用于识别各用户标识符。为了提供可将HLR或其等效功能从移动通信网络体系结构中去除的配置，用户信息被配置为存储在移动终端中，例如，存储在用户识别模块 (SIM)上。用户信息应包含用户已经订阅的服务的指示（授权数据）、唯一识别移动终端的移动用户识别号，以及通常可存储在HLR中的其它信息。

图16提供了适用于本发明的技术的服务终端的实施例，本实施例中的该通信终端是移动终端。在图16中，移动终端220包括应用处理器230，其工作以执行应用层中的应用程序；授权接口232.1，其与用户识别模块234.1和网络接入收发器236连接。网络接入收发器36可以通过不同的接入网络进行数据通信并且因而可包括被配置为通过不同的接入技术（例如，根据UMTS的WiFi、蓝牙、GPRS和WCDMA）或合适的任何其它接口标准进行通信的数据处理器。应用处理器230可被配置为执行不同的应用程序以给用户提供不同的通信服务。术语应用程序和应用处理器在下面描述中可被替换地使用。

通常，一旦移动终端如果已经漫游到特定接入网络（例如，WiFi、GSM或3G/GPRS）的无线覆盖区域中，移动终端在该接入网络登记或以某种方式接入，用于通过该接入网进行数据通信以支持特定的通信服务。图16的接入网大致表示为226。接入于接入网226的是根据本发明的技术操作的授权服务器238。根据通常的执行，如果用户在应用层启动应用程序230以提供特定的通信服务，则必须使用网络接入收发器236通过接入网226进行数据通信以支持该通信服务。例如，如果通信服务是基于IP的语音（VoIP），则启动应用程序，并通过网际协议分组，使用网络接入收发器236通过接入网226在互联网分组内进行传送表示编码的语音信号的数据，接入网226例如可以是与相应的通信终端240之间的WiFi网络。然而，对于为什么必须限制能够被配置的通信服务和/或能够由特定用户使用的接入网，可能具有操作上的原因。例如，为了确保提供给用户的多个通信处于有足够的级别，电信运营商可能希望限制用户通信使用的接入网和/或给用户配置的通信服务。可选地，电信运营商可根据通信服务或用于支持通信服务的接入网有区别地收费。

如图16所示，通信终端220包括授权接口232.1。根据本发明的技术，授权接口232.1根据用于提供通信服务和/或用于支持通信服务的接入网的使用的预定条件来控制应用程序230对网络接入收发器236的访问。预定条件因此可包括电信运营商是否已经获得接入入网来支持用户所需的通信服务，用户是否已经订阅该通信服务的使用，以及电信运营商是否已经与接入网的运营商达成协议，通信终端通过该接入网可进行数据通信以支持该通信服务。存在各种配置在发起通信会话后或在移动终端接收到某一特定网络的任何时间，将信息（例如，常规更新）从授权服务器238提供至移动终端。这类信息将被称为授权数据。

在实施例中，将授权数据存储在用户识别模块34上的数据存储42中的安全部分。因此，根据本发明的技术，用户识别模块 (SIM) 包括加密/解密处理器以及能够存储授权数据42的安全硬件存储。这些特征通常在所谓的“智能卡”上可得到。

除了授权数据以外，可将通常存储在HLR内的其它用户信息分布到移动终端，例如存储在SIM上。对图16所示的实施例，授权接口232.1被提供为通信终端220中的软件
元件。例如，授权接口 232.1 可以是应用程序的接口。通常应用程序 230 与网络接入收发
器 236 连接，而根据本发明的技术，与网络接入收发器的连接必须通过授权接口 232.1。授
权接口 232.1 询问用户识别模块 34.1 上保存的授权数据，以确定特定的通信服务是否已经
授权给用户，特定的接入网是否已经授权给用户，假如是这样的话，则询问向用户收取使用
通信服务和 / 或接入网的适当的价目表。下面将简要描述，由授权接口 232.1 确定通信服务
和接入网的使用，并且可将类似信息存储在用户识别模块 234.1。类似地，将识别用于接收
通信服务和 / 或使用特定接入网的条件的授权数据从应用服务器 238 传输到通信终端 20，
并且由用户识别模块 234.1 存储在安全存储 242.1 中。通过提供临时授权和结算，将授权
数据本地高速缓存在 SIM 上减少了接入网络的等待时间。在恰当的时刻，授权接口 232.1
透明地且安全地与授权服务器 238 通信以确定授权并且传输增加的结算数据。

[0097] 图 17 显示了另一种配置。图 17 基本对应于图 16 所示的配置，除了将授权接
口 232.2 提供在用户识别模块 234.2 中。因此，用户识别模块 234.2 包括授权接口
232.2（例如，应用程序接口）。根据本发明的技术，在用户识别模块 34.2 上提供授权接口
232.2 提高了存储授权数据和使用数据（简要描述）的安全性，从而使不道德的用户更难
以获取授权数据而接入用户未被授权的服务或者电信运营商未实现的接入至特定接入网的
服务。

[0098] 这种配置对电信网络的运营商提供大量的有利条件，运营商通过移动终端给用户
提供了它的服务，移动终端通过在该移动终端中提供的网络接入收发器获得对非常规的网
络接入技术（例如，WiFi，蓝牙或红外）的访问。

[0099] 例如，通过采用上述的方案，电信网络运营商能够仅通过配置在授权接口中的一
个公共的授权 / 接入程序使用户获得对大量不同网络接入技术（例如，GPRS/GSM，WiFi，蓝
牙，WiMax，红外）的访问。这为用户提供了附加的便利，因为它能够克服为用户想要使用
的每个不同的网络接入技术分别配置授权 / 接入的要求。此外，电信网络运营商可能希望
来监控或控制其用户对某些非常规网络接入技术的访问，以确保用户不会暴露于可接受级
别之下的服务质量。移动终端中的授权接口是能够对非常规的网络接入技术提供访问的接
口。无论何时通过移动终端上运行的应用程序对非常规的接入技术进行尝试性访问，例如
对于通过 IP 的语音（VoIP）的客户，授权接口将向电信运营商提供的认证服务器发送消
息。该消息包括表示 SIM 身份和应用程序身份的数据。因此采用适当的行为协助了电信运
营商。

[0100] 适当的行为可包括简单地说明对非常规网络的尝试性访问或者生成与由 SIM 识
别的用户相关联的计费数据。适当的行为还可包括将响应发送回手机，通知用户他们将接
入非常规的网络接入技术并且可能不能保证期望的服务质量。

[0101] 由授权接口产生的消息还可允许电信运营商基于网络接入设备进行操作所根
据的应用程序而采用不同的计费。例如，电信运营商可对 VoIP 提供优先的应用程序，而对
第三方提供 VoIP 提供非优先的应用程序，上述两种情况以不同的比率计费。

[0102] 如上所述，在一个实施例中，授权接口提供在 SIM 中，因此手机在没有由电信运
营商提供的 SIM 的情况下不能用于获得对非常规网络接入技术的访问。在该实施例中，可将
授权接口的细节提供给第三方，使其可以开发能够在移动终端上运行的应用程序。在第三
方根据其控制提供应用程序的电信运营商保持不变时，这尤其值得期望。
权利要求限定了本发明的各个方面和特征。在不偏离本发明的范围的前提下可以对本文中描述的实施方式进行各种修改。例如，尽管在说明书通篇提到 GSM/GPRS 网络标准，但是本发明的实施方式还能应用至其它分组无线通信系统，例如，cdma2000、EVDO、1S-95、WiMax、WiMAN 等。此外，这些标准的进展和改变不能够排除本发明的实施方式的应用。

附件 1: URL 和 DNS
统一资源标识符 (URL) 是识别互联网上的资源的名称和位置的标签。例如，URL 是:
http://www.orange.co.uk/example_resource
该示例性 URL 包括三个不同部分:
• http:// 表示访问资源的接入方案或协议。其它实施例包括 ftp://、mailto://、https:// 等。
• www.orange.co.uk 表示资源所在的主机 (即, 服务器) 的域名。
• /example_resource 表示到达主机内的资源的路径 (或位置)。
为了获取由 URL http://www.orange.co.uk/example_resource 指定的资源 example_resource, 可以使用互联网浏览器应用。通常，用户将 URL 输入到互联网浏览器应用中。浏览器则被提供了指令，相当于通过 http 协议在 www.orange.co.uk/example_resource 获取资源的请求。然而，在获取资源之前，必须创建识别主机 www.orange.co.uk 的 IP 地址。这可通过域名系统 (DNS) 服务器获得。
域名系统是将“域名” (即, 计算机主机名) 解释为 IP 地址的系统。图 18 图示了域名系统如何工作的简化的实施例。如上所述，客户应用程序 111 (例如，互联网浏览器) 希望建立识别主机 www.orange.co.uk 的 IP 地址。客户 111 首先将请求与 www.orange.co.uk 相关联的 IP 地址的第一询问 112 发送至默认的根 DNS 服务器 113。假设根 DNS 服务器 113 没有任何与 www.orange.co.uk 相关联的缓存信息，则客户 111 通常进入分层过程以发现 IP 地址。根 DNS 服务器 113 将具有.uk DNS 服务器 115 的 IP 地址 1 的第一响应消息发送回客户。然后客户 111 将请求与 www.orange.co.uk 相关联的 IP 地址的第二询问 116 发送至.uk DNS 服务器 115。假设 .uk DNS 服务器 115 没有任何与 www.orange.co.uk 相关联的缓存信息，则将具有.co.uk DNS 服务器 118 的 IP 地址 2 的第二响应消息 117 发送回客户。客户 111 将请求与 www.orange.co.uk 相关联的 IP 地址的第三询问 119 发送至.co.uk DNS 服务器 118。.co.uk DNS 服务器 118 则返回应该与主机名 www.orange.co.uk 对应的 IP 地址 3。客户则可操作为与 .orange.co.ukDNS 服务器 120 交换确认消息 121、122。
现在回到 URL, 当给互联网浏览器应用程序提供了与主机的域名对应的 IP 地址时，互联网浏览器能够通过使用 http 协议向主机 (www.orange.co.uk) 发送请求消息，请求传输由 URL (www.orange.co.uk/example_resource) 标识和定位的资源。
图 3

图 4
移动终端A发起与移动终端B的通信

S2 高速缓冲存储器中是否存在移动终端B的位置？

否

S4 将带有移动终端B的通信会话请求发送至移动通信网络

S6 移动通信网络从移动终端B的接入点发送寻呼消息

S8 移动终端B对来自移动终端B当前接入点的寻呼消息做出响应

S10 移动通信网络将移动终端B所接入的接入点的标识符发送至移动终端A

S12 移动终端A将移动终端B的位置标识符和移动终端B的标识符存储在位置高速缓冲存储器中

移动终端A发送带有移动终端B的标识符和移动终端B的位置标识符的通信会话请求

图 5
图13