
(19) United States
US 2004O122902A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0122902 A1
Anderson (43) Pub. Date: Jun. 24, 2004

(54) METHOD, APPARATUS AND SYSTEM FOR
PROCESSING MESSAGE BUNDLES ON A
NETWORK

(76) Inventor: Todd A. Anderson, Beaverton, OR
(US)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD, SEVENTH
FLOOR
LOS ANGELES, CA 90025 (US)

(21) Appl. No.: 10/326,395

(22) Filed: Dec. 19, 2002

Publication Classification

(51) Int. Cl." ... G06F 15/16
(52) U.S. Cl. .. 709/206

(57) ABSTRACT

Network bundles may be processed in a distributed network
having a decentralized Serving Structure. The message
bundles may be modified to include a client address. Addi
tionally, each message bundle comprises a plurality of
Sub-messages, and each Sub-message may contain either a
link to the output of another Sub-message, or a network
address. A network device may be implemented to gather
responses to the Sub-messages from various Servers and to
organize the responses into a final response to Send to the
client.

401
402

Server removes the first Sub
message from the bundle

Creating modified message bundle

ls the
modified bundle

OW empty

Current Server Sends the modified
bundle to the network address listed

in the next sub-message

Client sends bundle to the server responsible for
the first sub-message in the bundle

Server executes the first
sub-message in the bundle

Sub-message return
a network address

Server replaces appropriate links
in subsequent sub-messages with

Server sends response to the
Sub-message to client's address

Received
all the responses
for this bundle

NO

Client generates
a message bundle

403

the returned network address

409
YeS

Gatherer
Organizes all the
responses into
Single response

Gatherer sends single
response to the client

US 2004/O122902 A1 Jun. 24, 2004 Sheet 1 of 4 Patent Application Publication

US 2004/O122902 A1

000 ºf

/

Z02 8.BAHES W LWOWIEW/| 0:3 || NE|TO

Patent Application Publication Jun. 24, 2004 Sheet 2 of 4

US 2004/O122902 A1 Patent Application Publication Jun. 24, 2004 Sheet 3 of 4

Å A801038IGGQS, ^ XHOM LENGYS

Patent Application Publication Jun. 24, 2004 Sheet 4 of 4 US 2004/O122902 A1

401
402

Client Sends bundle to the Server responsible for Client generates
the first Sub-message in the bundle a meSSage bundle

403
Server eXecutes the first

Sub-meSSage in the bundle
404

Did
Sub-message return YeS
a network address 405

Server replaces appropriate links
in SubSequent Sub-messages with

the returned network address Server removes the first Sub
meSSage from the bundle

Creating modified meSSage bundle
407

Server Sends response to the
Sub-message to client's address

408
Gatherer intercepts the response

409
Received YeS

all the respOnSeS YeS 411
for this bundle

Gatherer
Organizes all the
responses into
Single respOnSe

410

Gatherer COntinues
to gather responses

Stop processing Gatherer sends Single
the bundle response to the client

414 42

1 IS the
mOcified bundle
now empty

416
Current Server Sends the modified F G 4

bundle to the network address listed
in the next sub-message

US 2004/O122902 A1

METHOD, APPARATUS AND SYSTEM FOR
PROCESSING MESSAGE BUNDLES ON A

NETWORK

FIELD OF THE INVENTION

0001. The present invention relates to the field of net
working, and, more particularly to a method for processing
messages by a distributed and decentralized Service infra
Structure and constituent network.

BACKGROUND

0002. A distributed file system enables a client to access
and proceSS data Stored on a remote Server as if it were on
the client machine. In a distributed file System running on a
high latency network (e.g., a wide area network), client
machines may experience significant delay when attempting
to retrieve data from a remote Server especially when
retrieving that data may require multiple network round trips
(as described in further detail below). Distributed file sys
tems may be centralized or decentralized. In a centralized
Serving environment, all data (e.g., directories and files)
typically resides on the same machine as the metadata (e.g.,
data pertaining to the location of the files or directories and
other Such related information). A client may therefore
access metadata and data from a single centralized Server by
navigating the Server's file System. File Systems are well
known to those of ordinary skill in the art and further
description thereof is omitted herein.
0003. In a decentralized serving environment, on the
other hand, the data and metadata may reside on different
Servers (e.g., the data, comprising the contents of files and
directories, on data server(s) and metadata on metadata
Server(s)). In order for a client to retrieve data on a network
comprising Such a decentralized file System, the client first
obtains metadata from a metadata Server and uses this
information to determine the location of the data. The client
may then access the data from the appropriate data Server
location by navigating the data Server's file System.
0004. When a client retrieves a file (e.g., document File
A) from a server, the client first sends a message to a
metadata server, asking for information (metadata) pertain
ing to File A. The client then parses the metadata and
retrieves the file from the appropriate data Server. Thus, for
example, if File A resides within Subdirectory Z, which
resides within Subdirectory Y, which in turn resides within
Directory X, the complete path for File A may look as
follows: X/Y/Z/A.doc. A client attempting to retrieve File A
therefore may first locate Directory X, then Subdirectory Y
and Subdirectory Z, and finally retrieve File A. Although
transparent to the user, file System navigation may differ,
depending on whether the file System is centralized or
distributed.

0005 FIG. 1 illustrates a known method of retrieving
data (“File A”) on a distributed network including a cen
tralized file server. As illustrated, Network 100 comprises
multiple sub-networks and includes Client 101 and Central
ized Server 102. Centralized Server 102 includes Directory
X, Subdirectory Y and Subdirectory Z, and Subdirectory Z
includes File A.doc. Centralized Server 102 also includes all
metadata corresponding to File A.doc (e.g., the locations of
Directory X, Subdirectory Y. Subdirectory Z and File A.doc
on Centralized Server 102). When Client 101 desires to

Jun. 24, 2004

access X/Y/Z/A.doc, Client 101 first obtains the metadata
for Directory X, Subdirectory Y. Subdirectory Z, and File
A.doc, and then uses all the retrieved metadata to access the
contents of that file. An example of a distributed file system
with a centralized server is UNIX-based Network File
Server (Version 4, Internet Engineering Task Force, RFC
3010, hereafter “NFS V4”).
0006 FIG. 2 illustrates a known method of retrieving
File A.doc on a distributed, decentralized file System. AS
illustrated, Network 200 comprises multiple sub-networks
and includes Client 201, Metadata Server 202 and Data
Servers 203 and 204. Data Server 203 includes Directory X.
The contents of all directories on Data Server 203, including
Directory X, may be presented as a list of names and unique
identifiers for all included Subdirectories, and the metadata
server on which the metadata for each of the included
Subdirectories can be found. In the illustrated example,
Directory X may contain a single entry that indicates that
Subdirectory Y’s metadata is on Metadata Server 202. In
turn, Subdirectory Y may contain only Subdirectory Z.
Given the decentralized nature of the file System depicted in
Network 200, however, Subdirectory Y may physically
reside on Data Server 203 while Subdirectory Z may physi
cally reside on Data Server 204.
0007 When Client 201 desires to access X/Y/Z/A.doc,
Client 201 may have to perform the following. First, Client
201 may obtain the metadata for Directory X from Metadata
Server 202. Client 201 may then use this metadata to
determine that the contents of Directory X are stored on Data
Server 203. Client 201 may then retrieve the contents of
Directory X and determine that Subdirectory Y exists and
that Subdirectory Y’s metadata is also stored on Metadata
Server 202. Client 201 may again contact Metadata Server
202 to identify the location of the contents of Subdirectory
Y. Once again, Client 201 may determine that Subdirectory
Y’s data is on Data Server 203. Client 201 may then contact
Data Server 203 yet again to identify the contents of
Subdirectory Y. Client 201 may determine that Subdirectory
Z exists in Subdirectory Y and that the metadata for Sub
directory Z can be found on Metadata Server 202. There
after, Client 201 may contact Metadata Server 202 to iden
tify where the contents of Subdirectory Z are stored. Upon
determining that the contents of Subdirectory Z reside on
Data Server 204, Client 201 may then contact Data Server
204 to get the contents of Subdirectory Z. Client 201 may
then determine that File Adoc exists and that the file’s
metadata may be located on Metadata Server 202. Client 201
may then contact Metadata Server 202 to find the location of
the contents of File A.doc and again determine that the
contents of file A.doc are on Data Server 204. Finally, Client
201 may contact Data Server 204 to retrieve the contents of
File A.doc.

0008. As illustrated by the above figures, in either cen
tralized or decentralized file systems, the client (Client 101
or Client 201) may need to send a set of several related
messages (e.g., commands, queries, instructions, method
invocations, etc.) in Succession to a server to retrieve data.
For example, when attempting to acceSS File A in either
Scenario, the client may send a Series of messages to the
Serving infrastructure to parse the directory Structure and
then to locate and acceSS File A.

0009. As illustrated in the above example, retrieval of
File A from a data server on a distributed network may thus

US 2004/O122902 A1

involve numerous messages over the network. In many
distributed file Systems, these messages must be sent one at
a time because the output of one message may be the input
to the next message. Thus, each message and/or query often
requires a network roundtrip, from the client to the Server
and back. The network roundtrips are likely to be on a Wide
Area Network (“WAN”), i.e., across networks with a high
round-trip latency. These roundtrips are therefore likely to
have a significant negative impact on performance.

BRIEF DESCRIPTION OF THE DRAWINGS

0.010 The present invention is illustrated by way of
example and not limitation in the figures of the accompa
nying drawings in which like references indicate Similar
elements, and in which:
0.011 FIG. 1 illustrates a known method of retrieving
data (“File A”) on a distributed network including a cen
tralized file server,
0012 FIG. 2 illustrates a known method of retrieving
File A on a distributed network having a decentralized file
System;

0013 FIG. 3 illustrates a system according to one
embodiment of the present invention; and
0.014 FIG. 4 is a flow chart illustrating an embodiment
of the present invention.

DETAILED DESCRIPTION

0.015 Embodiments of the present invention provide a
method, apparatus and System for processing network mes
Sage bundles in decentralized distributed Systems. Reference
in the specification to “one embodiment” or “an embodi
ment' of the present invention means that a particular
feature, Structure or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention. Thus, the appearances of the
phrases "in one embodiment,”“according to one embodi
ment' or the like appearing in various places throughout the
Specification are not necessarily all referring to the same
embodiment.

0016. In order to address the problem of multiple
roundtrip messages on high latency networkS Such as WANS,
Some distributed file Systems have implemented “message
bundling.' Message bundling enables a client to group
together commands (“messages”) that relate to one another
into a "bundle,” and Send the message bundle to the Server
in a single transmission. The Server may process the various
messages in the message bundle (“Sub-messages”) prior to
Sending the appropriate data back to the client. This batch
processing of messages results in elimination of multiple
WAN roundtrips. As used herein, WANs shall include any
high latency network environment.
0017 Distributed networks that employ centralized serv
ing, Such as NFS V4, may currently implement this message
bundling methodology. With message bundling, Client 101
in FIG. 1 above may Send a Single message bundle to
Centralized Server 102 in order to retrieve File A.doc.
Centralized Server 102 may execute all the sub-messages
within the message bundle consecutively, potentially use the
output of each Sub-message as the input for the next Sub
message, and retrieve the result (e.g., File A.doc) to transmit

Jun. 24, 2004

to Client 101. If, as illustrated, Centralized Server 102 is on
a separate Sub-network from Client 101, i.e., each roundtrip
may be across a WAN, the elimination of multiple roundtrips
contributes to a Significant increase in performance on a high
latency network.
0018. The current message bundling methodology does
not, however, work within a decentralized Serving environ
ment. In a decentralized Serving environment, the functions
originally performed by a single server (e.g., Centralized
Server 102 in FIG. 1) are instead spread out amongst two or
more servers (e.g., Metadata Server 202, Data Server 203
and Data Server 204 in FIG. 2) with the goal of allowing
those Servers to specialize in different functionality and to
distribute the load for more scalability. In such a decentral
ized Serving environment, there is no single node available
to receive a message bundle, determine where each Sub
message in the bundle should be sent, collect the various
returned results and respond to the client.
0019 Embodiments of the present invention enable mes
Sage bundles to be processed in a decentralized Serving
environment. More Specifically, various aspects of the tra
ditional message bundling methodology may be modified to
enable the bundles to be processed in the decentralized
Serving environment. According to one embodiment of the
present invention, the message bundling Structure itself may
be modified. In an embodiment, the methodology used by
the Servers on the network to process the message bundles
may also be modified. Embodiments of the present invention
may also modify the manner in which the data is returned
from the server(s) to the client. The following paragraphs
address each of these areas in turn.

0020. According to one embodiment, a message bundling
Structure in a decentralized Serving environment may be
implemented as follows. The network address of the client
originating the message bundle may be added to the bundle
to ensure that any machine on the network that receives the
message bundle knows the Source of the bundle, i.e., the
address to which any responses may be returned. Addition
ally, according to embodiments of the present invention, the
Sub-messages in the message bundle may include informa
tion necessary to properly process the Sub-messages. Spe
cifically, the first Sub-message in each message bundle may
contain a network address of a Server, and each Subsequent
Sub-message in the message bundle may contain either a
network address for a server and/or a "link to an output
from a previous command.
0021. Thus, for example, if a client generates a message
bundle comprising two Sub-messages, according to embodi
ments of the present invention, the message bundle may
include the following. In one embodiment, if the client is
aware that these Sub-messages need to be executed on
different Servers, and the client knows the network address
of each of those Servers, the client may specify those known
network addresses in the first and Second Sub-messages of
the message bundle respectively.

0022. In an alternate embodiment, the client may only be
aware of the network address of the server that is responsible
for executing the first Sub-message. The output of the first
Sub-message may then provide the client with the network
address of the Server responsible for executing the Second
Sub-command. In this embodiment, the client may specify
the first Server's network address in the first Sub-message in

US 2004/O122902 A1

the bundle and a "link' in the Second Sub-message in the
bundle pointing to network address output parameter of the
first Sub-message. The output of the first Sub-message may
thus be used as an input to the Second Sub-message.
Although the foregoing example assumes that the input of
the Second Sub-message is the output of the Sub-message
immediately preceding the Second Sub-message, in embodi
ments of the present invention, for larger message bundles
containing more than two Sub-messages, a link may not
necessarily Specify as input the output of the immediately
preceding Sub-message. Instead, the link may refer to any
output parameter of any of the preceding Sub-messages in
the message bundle.
0023. Once a message bundle has been constructed (with
network addresses and/or links), the client may transmit the
bundle to the first Server, and wait for a response. According
to one embodiment, the first Server processes the first
Sub-message in the bundle, and then examines the remaining
Sub-messages in the bundle. The first Server then replaces
any links that refer to the output of the first Sub-message
with a corresponding network address, i.e. the output result
ing from processing the first Sub-message. The Server may
also examine the Second Sub-message in the bundle. In one
embodiment, the network address Specified in the Second
Sub-message may be the same as the current Server's
address. In this instance, the Server may repeat the proceSS
described above, i.e. the Server may process the Second
Sub-message in the bundle and replace any links that refer to
the output of the second Sub-message. The server may repeat
this process as many times as necessary So long as the
network address in the next Sub-message to be processed is
its own. In one embodiment, the Server may then Send its
responses to the client (i.e., the server may gather together
the responses to all Sub-messages that it processed and Send
those responses to the client in one transmission). In an
alternate embodiment, the Server may send out a response to
each Sub-message as it processes the Sub-message.

0024. In an embodiment of the present invention, when
the Server examines a Subsequent Sub-message in the
bundle, it may encounter a network address other than its
own. In this instance, the Server may modify the message
bundle by deleting the Sub-messages that it processed. The
Server may then forward the modified message bundle to the
network address of the Second Server Specified in the first
Sub-message not processed by the first Server. The Second
Server may then process the first Sub-message in the modi
fied bundle and repeat the process, potentially Sending yet
another modified bundle to another server.

0.025. Once the Sub-messages have been processed, the
responses are transmitted back to the client. In one embodi
ment of the present invention, once a client dispatches a
message bundle to a Server, it expects to receive responses
from that Server, in the order corresponding to the order of
the requests in the original message bundle. Thus, for
example, if Client 201 in FIG.2 above dispatches a message
bundle containing Sub-messages 1, 2 and 3 to Metadata
Server 202, Client 201 may expect responses from Metadata
Server 202, and it may expect to receive a response to
Sub-message 1 before the responses to Sub-messages 2 and
3. In a centralized Serving environment, this order may be
maintained naturally because a centralized server (e.g. Cen
tralized Server 102 in FIG. 1 above) may process the
Sub-messages in the message bundle consecutively and

Jun. 24, 2004

return the results in order. In a distributed Serving environ
ment, however, this order is not guaranteed because there is
no centralized Server. As a result, each Sub-message in the
message bundle may be processed by a different Server (e.g.,
Metadata Server 202, Data Server 203 and/or Data Server
204 in FIG. 2 above) and the output from each sub-message
may be returned to the client without regard for the other
Sub-messages.
0026. According to one embodiment of the present inven
tion, a network device (hereafter referred to as a "gatherer')
may be utilized to gather the responses from various Servers
prior to returning the output of the various Servers to the
client. FIG. 3 illustrates a system according to one embodi
ment of the present invention. As illustrated, Network 300
comprises multiple sub-networks and includes Client 301,
Metadata Server 302 and Data Servers 303 and 304. Net
work 300 additionally includes Gatherer 305. As illustrated,
Metadata Server 302, Data Servers 303 and 304, and Gath
erer 305 are on the same Sub-network. In other words,
network traffic amongst these nodes travels within a local
area network (“LAN”), which tends to experience low
network latencies, instead of a WAN, which tends to expe
rience high network latencies. Client 301, on the other hand,
may reside on a separate Sub-network from the Servers and
Gatherer 305.

0027. In one embodiment, Gatherer 305 may be a router
along the common path from Client 301 to the servers
(Metadata Server 302 and Data Servers303 and 304). It will
be readily apparent to those of ordinary skill in the art that
Gatherer 305 may be selected by plotting the paths between
Client 301 to each of the servers, and identifying a network
device on the route through which all traffic between Client
301 and the servers must travel. According to one embodi
ment, Gatherer 305 may be identified dynamically with the
participation of the Servers. In an alternate embodiment,
Gatherer 305 may be statically assigned by a network
administrator or other Such network management entity who
engineers the network in Such a way that all the traffic from
the Servers will pass through one and only one gatherer.
0028. To enable Gatherer 305 to properly collect all
responses to a message bundle, according to one embodi
ment of the present invention, each server (e.g., Metadata
Server 302 and Data Servers 303 and 304) that responds to
a Sub-message in a message bundle may add a header to their
output. The header may include a unique message bundle ID
(i.e., an ID that uniquely identifies a particular message
bundle), the network address of the client, the last Sub
message number (i.e., the total number of Sub-messages in
the original message bundle) and a current Sub-message
number.

0029. In order to ensure that the message bundle ID
generated for a message bundle is unique, in one embodi
ment, the Servers may utilize their network interface card
addresses as a prefix to the message bundle ID. Network
interface cards typically adhere to existing network Stan
dards to ensure that the card addresses (e.g., 48 bit 802.3
MAC addresses) are unique. In one embodiment, each
Server may use the 48-bit unique address and append a
number or character to the address (up to 16 bits) to serve as
a unique message ID. It will be readily apparent to those of
ordinary skill in the art that various other methods may be
employed to ensure that the message bundle ID is unique for
each message bundle.

US 2004/O122902 A1

0.030. It will additionally be readily apparent to one of
ordinary skill in the art that for a given message bundle ID,
each Server must report the same value for the “last Sub
message number” (the total number of Sub-messages in the
original message bundle). The first server to receive the
message bundle (e.g., Metadata Server 302) may assign the
message bundle ID and append it to the message bundle data
structure. Subsequent servers (e.g., Data Servers 303 and
304) may user this unique ID in their responses to Client
301. For the purposes of illustration, the following descrip
tion assumes that Metadata Server 302 is the first server that
Client 301 sends its message bundle to, and that Data
Servers 303 and 304 are the subsequent servers that process
other Sub-messages in the message bundle. It will be readily
apparent to those of ordinary skill in the art, however, that
this designation is for descriptive purposes only and the
order is not necessary to implement embodiments of the
present invention.
0031. In one embodiment, Gatherer 305 examines all
network traffic that passes through it for headers that the
various Servers may have added to the output of a Sub
message in a message bundle. Based on these headers,
Gatherer 305 may continue to gather the output from various
Servers until it has received all of the responses for each of
the sub-messages. In one embodiment, Gatherer 305 may
use the "last Sub-message number” in the headers to deter
mine whether it has received all the responses to a particular
message bundle, identified by its unique message ID. Upon
receipt of all the responses for a message bundle, Gatherer
305 may then generate a Single response consisting of each
of the Sub-message responses (hereafter “the Response').
When generating the Response, according to one embodi
ment of the present invention, Gatherer 305 may organize
the Sub-message responses in the appropriate order (e.g.,
using the "current Sub-message number” and “last Sub
message number to order the various responses). Gatherer
305 may then send the Response to Client 301.
0032. In one embodiment, the Response from Gatherer
305 to Client 301 may be addressed from Metadata Server
302 to maintain the illusion that the first server is responding
to the entire message bundle. Thus, for example, when
Client 301 receives the Response, the Response appears to
originate in its entirety from Metadata Server 302, i.e., the
first server that received Client 301’s message bundle. In
other words, it may be transparent to Client 301 that the
Sub-messages in the bundle were processed by multiple
Servers. This illusion may be accomplished in a number of
ways.

0033. In one embodiment, the system in FIG.3 may be
implemented using a connectionleSS protocol Such as the
User Datagram Protocol (“UDP). As is well known to those
of ordinary skill in the art, UDP is an inherently unreliable
protocol, i.e., there is no assurance that a message Sent using
the UDP protocol will be delivered. This characteristic of
UDP may not, however, be problematic for a certain class of
network applications. If a System according to one embodi
ment of the present invention is implemented using UDP,
when Gatherer 305 collects the responses from various
servers and generates the Response, Gatherer 305 may send
the Response to Client 301 using Metadata Server 302's
address as the originating address for the Response. This
process is facilitated by the fact that UDP connections are
Stateless, i.e., no connections are established between Client

Jun. 24, 2004

301 and any of the servers or Gatherer 305. It will be readily
apparent to those of ordinary skill in the art that manipulat
ing a UDP header (i.e., IP source/destination address,
Source/destination port number, and checksum) to make it
appear as if the Response was Sent from the first Server may
be accomplished by creating a packet with the original
server's IP address and port number.
0034 Connection-oriented transport protocols are cur
rently more widely used than connectionless protocols. In
order to accomplish a similar result as the above in a System
using a connection-oriented network transport protocol,
such as Transport Control Protocol (“TCP”), the Gatherer
305 may have to perform additional steps to ensure that
responses from the servers to Client 301 are handled prop
erly. Although the following description assumes the use of
TCP, it will be readily apparent to those of ordinary skill in
the art that other connection-oriented protocols may also be
used without departing from the Spirit of the present inven
tion.

0035. According to one embodiment, Client 301 may
establish a TCP Session with Metadata Server 302 when it
initially sends out its message bundle. To enable Gatherer
305 to route a final response to Client 301, Gatherer 305 may
ensure that the TCP connection between Client 301 and
Metadata Server 302 is not terminated while Gatherer 305
collects responses to Client 301’s message bundle. Addi
tionally, according to an alternate embodiment, Gatherer
305"masquerades” as Client 301 to Data Servers 303 and
304 to enable the servers to respond to the Sub-messages in
the message bundle. Details of each embodiment are
described in further detail below.

0036). According to one embodiment, Gatherer 305
ensures that the TCP connection between Client 301 and
Metadata Server 302 is not terminated while Gatherer 305
collects responses to Client 301’s message bundle. Specifi
cally, Client 301 may establish a TCP session with Metadata
Server 302 by sending a TCP message (i.e., TCP SYN) to
Metadata Server 302. Once the TCP session is established,
Client 301 may send a message bundle to Metadata Server
302. According to one embodiment, Metadata Server 302
may process the first Sub-message in the bundle, Send a
response to Client 301 for the first Sub-message in the
bundle, delete the first Sub-message and Send the modified
message bundle to the next server (Data Server 303, in this
example). Metadata Server 302 may then send a TCP
shutdown message (i.e., TCPFIN) to Client 301 to terminate
the TCP session with Client 301. Establishing and terminat
ing TCP sessions is well known to those of ordinary skill in
the art and further description thereof is omitted herein in
order not to unnecessarily obscure the present invention.

0037 According to one embodiment of the present inven
tion, Gatherer 305 may intercept the response from Metadata
Server 302 to Client 301. Gatherer 305 may also intercept
the TCP FIN message from Metadata Server 302 to Client
301. In other words, Gatherer 305 may send the appropriate
responses to Metadata Server 302, allowing Metadata Server
302 to believe that the TCP Session with Client 301 has been
terminated. Upon receiving responses to other Sub-messages
in the message bundle from other servers (Data Servers303
and 304 in this example), Gatherer 305 may organize the
responses, generate a Response to the message bundle, and
send the Response to Client 301, purportedly “from Meta

US 2004/O122902 A1

data Server 302. Gatherer 305 may then send a TCP FIN
message to Client 301 to terminate the TCP session. Accord
ing to one embodiment of the present invention, Gatherer
305 acts transparently, i.e., neither the servers nor Client 301
may be aware that Gatherer 305 may be intercepting and
handling their messages in the above described manner.

0.038. As described above, upon processing the first Sub
message in the message bundle, Metadata Server 302 may
delete the first Sub-message and forward the modified mes
sage bundle to another server (Data Server 303 in this
example) for processing. Data Server 303 may repeat this
proceSS and Send a modified message bundle to Data Server
304. Upon processing the sub-messages, Data Servers 303
and 304 may each attempt to respond to Client 301 (based
on Client 301’s address in the message bundle). More
Specifically, each server may send a TCP message (i.e., TCP
SYN) to Client 301 to establish a TCP session with Client
301.

0.039 According to one embodiment, Gatherer 305 may
intercept the TCP SYN messages from the servers. In other
words, Gatherer 305 may “masquerade” as Client 301 to
Data Servers 303 and 304. Each server may therefore
establish a TCP session with Gatherer 305, send out its
response and then terminate the session. Gatherer 305 may
collect all the responses, organize the responses and Send the
combined Response to the actual client, Client 301.

0040 According to an alternate embodiment of the
present invention, Client 301 may be configured to accept
responses from various Servers. In this embodiment, the
functionality of Gatherer 305 above may logically be incor
porated into Client 301. If so, Client 301 may send out a
message bundle to Metadata Server 302, which may process
the first Sub-message, Send a response to Client 301, exam
ine the remaining Sub-messages, replace any links as appro
priate with its output, delete the first Sub-message and
forward the modified message bundle to the next server. The
next Server may repeat the proceSS and forward yet another
modified message bundle to a third Server. According to this
embodiment, however, instead of Gatherer 605 intercepting
communications between the servers and Client 301, Client
301 may establish TCP sessions with various servers,
receive the responses to the Sub-messages in the order in
which they come in, and then organize the responses into a
final response to the original message bundle.

0041 AS will be readily apparent to those of ordinary
skill in the art, in the event one of the ServerS fails to proceSS
a Sub-message, Gatherer 305 may receive no responses for
a Sub-message in a message bundle. If, for example, Meta
data Server 302 processes its Sub-message and sends the
response back to Client 301 (intercepted by Gatherer 305),
but the Subsequent server, Data Server 303, fails to process
its Sub-message, Data Server 303 may send an error message
indicating its failure. According to one embodiment of the
present invention, Data Server 303 may also send error
messages (e.g., the “unprocess” message) for the Sub-mes
Sages remaining in the message bundle. In one embodiment,
Gatherer 305 may intercept all the error messages, and upon
receiving either a response or an error for each of the
sub-messages, Gatherer 305 may forward the response
bundle to Client 301. In an embodiment, the response and/or
error message from a Server may fail to arrive at Gatherer
305 altogether. In this embodiment, Gatherer 305 may wait

Jun. 24, 2004

for responses for a predetermined amount of time until it
times out. Client 301 may then have to resend its message
bundle for processing. This technique (known as “soft
state”) is well known to those of ordinary skill in the art and
further description thereof is omitted herein in order not to
unnecessarily obscure the present invention.

0042 FIG. 4 is a flow chart illustrating an embodiment
of the present invention. As illustrated, in 401, a client
generates a message bundle and Sends the bundle to the
Server responsible for the first Sub-message in the bundle in
402. The server executes the first Sub-message in the bundle
in 403. In 404, the response to the Sub-message is examined
to determine whether the Sub-message returned a network
address. If the Sub-message returned a network address, in
405, the Server may replace the appropriate links in Subse
quent Sub-messages with the returned network address. The
Server may then remove the first Sub-message from the
message bundle. If the Sub-message did not return a network
address in 404, then the server skips 405 and simply
removes the first sub-message from the bundle in 406. In
407, the server may then send the result of the sub-message
to the client's address. The gatherer may intercept this
response in 408, and continue to do so until it has received
all the responses for a particular message bundle. In 409, if
the gatherer determines that it has not received all the
responses to the Sub-messages in a particular message
bundle, the gatherer may continue caching the responses it
receives in 410. If, however, the gatherer determines that it
has received all the responses to the Sub-messages, it may
organize all the responses into a single response in 411 and
Send the Single response to the client in 412.

0043. Upon sending the result of the Sub-message to the
client’s address in 407, the server may determine whether
the message bundle is empty in 413. If the message bundle
is now empty, i.e., all the Sub-messages have been pro
cessed, the Server may stop processing the bundle in 414. If,
however, the message bundle is not empty, the Server may
then determine in 415 whether the network address of the
next Sub-message in the bundle is itself. If the address is not
its own address, then in 416, the server sends the modified
message bundle to the Server address listed. The next server
may then go through the same process beginning at 403. If,
however, the address is its own address, the server will
repeat the process itself beginning at 403.

0044) The client and servers according to embodiments
of the present invention may be implemented on a variety of
data processing devices. According to embodiment of the
present invention, data processing devices are machines that
may include various components capable of executing
instructions to accomplish an embodiment of the present
invention. For example, the data processing devices may
include and/or be coupled to at least one machine-accessible
medium. AS used in this specification, a “machine' includes,
but is not limited to, any data processing device with one or
more processors. AS used in this specification, a machine
accessible medium includes any mechanism that Stores
and/or transmits information in any form accessible by a
data processing device, the machine-accessible medium
including but not limited to, recordable/non-recordable
media (Such as read only memory (ROM), random access
memory (RAM), magnetic disk Storage media, optical Stor
age media and flash memory devices), as well as electrical,

US 2004/O122902 A1

optical, acoustical or other form of propagated signals (Such
as carrier waves, infrared signals and digital signals).
0.045 According to an embodiment, a data processing
device may include various other well-known components
Such as one or more processors. The processor(s) and
machine-accessible media may be communicatively coupled
using a bridge/memory controller, and the processor may be
capable of executing instructions Stored in the machine
accessible media. The bridge/memory controller may be
coupled to a graphics controller, and the graphics controller
may control the output of display data on a display device.
The bridge/memory controller may be coupled to one or
more buses. A host bus host controller Such as a Universal
Serial Bus (“USB') host controller may be coupled to the
bus(es) and a plurality of devices may be coupled to the
USB. For example, user input devices Such as a keyboard
and mouse may be included in the data processing device for
providing input data.
0046. In the foregoing specification, the invention has
been described with reference to specific exemplary embodi
ments thereof. It will, however, be appreciated that various
modifications and changes may be made thereto without
departing from the broader Spirit and Scope of the invention
as Set forth in the appended claims. The Specification and
drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive Sense.

What is claimed is:
1. A method for processing message bundles, comprising:
generating a message bundle comprising a plurality of

Sub-messages,

transmitting the message bundle to a first Server respon
Sible for processing a first of the plurality of Sub
meSSages,

processing the first of the plurality of Sub-messages,
deleting the first of the plurality of Sub-messages to

generate a modified message bundle comprising at least
one Sub-message; and

transmitting the modified message bundle to a Second
Server responsible for processing the at least one Sub
meSSage

2. The method according to claim 1 wherein the message
bundle includes a network address of a client.

3. The method according to claim 1 wherein the first of the
plurality of Sub-messages includes a network address of the
first server.

4. The method according to claim 1 wherein each of the
plurality of Sub-messages includes at least one of a network
address and a link.

5. The method according to claim 2 further comprising
inserting a response from processing the first of the plurality
of Sub-messages into the link in a Subsequent one of the
plurality of Sub-messages.

6. A method for generating a message bundle, comprising:
generating a header including a first network address,
generating a first Sub-message including a Second network

address, and
generating a Second Sub-message including one of a third

network address and a link to the third network address.

Jun. 24, 2004

7. The method according to claim 6 wherein the first
network address is a client network address.

8. The method according to claim 6 wherein the second
network address is a network address for a first Server
responsible for processing the first Sub-message.

9. The method according to claim 6 wherein the third
network address is a network address for a Second Server
responsible for processing the Second Sub-message.

10. A method for gathering and routing responses to a
message bundle, comprising:

receiving from a plurality of Servers responses to a
plurality of Sub-messages in the message bundle;

organizing the responses into a final response; and
forwarding the final response to a client.
11. The method according to claim 4 wherein each of the

responses to the plurality of Sub-messages includes at least
one of a message bundle identifier, a current Sub-message
identifier and a last Sub-message identifier.

12. The method according to claim 4 wherein organizing
the responses further comprises organizing the responses
based on at least one of the message bundle identifier, the
current Sub-message identifier and the last Sub-message
identifier.

13. A method for routing responses to a message bundle,
comprising:

intercepting a first request from a first Server to a client to
establish a first network Session;

establishing the first network session on behalf of the
client;

receiving from the first Server a first response to a first
Sub-message in the message bundle; and

terminating the first network Session.
14. The method according to claim 13 further comprising:
intercepting a Second request from a Second Server to the

client to establish a Second network Session;

establishing the Second network Session on behalf of the
client;

receiving from the Second Server a Second response to a
Second Sub-message in the message bundle; and

terminating the Second network Session.
15. The method according to claim 14 further comprising:
organizing the first response and the Second response into

a final response; and
transmitting the final response to the client.
16. A System for processing message bundles, compris

ing:

a client capable of generating a message bundle compris
ing a plurality of Sub-messages,

a first Server capable of processing a first of the plurality
of Sub-messages in the message bundle, the first Server
additionally capable of deleting the first of the plurality
of Sub-messages to generate a modified message bundle
comprising at least one Sub-message, and

a Second Server capable of processing the at least one
Sub-message in the modified message bundle.

US 2004/O122902 A1

17. The system according to claim 16 wherein the mes
Sage bundle includes a network address of the client.

18. The system according to claim 16 wherein the first of
the plurality of Sub-messages includes a network address of
the first server.

19. A System for gathering and routing responses to a
message bundle, comprising:

a first Server capable of responding to a first Sub-message
in the message bundle;

a gatherer capable of intercepting a first response to the
first Sub-message in the message bundle.

20. The system according to claim 19 further comprising
a Second Server capable of responding to a Second Sub
message in the message bundle, and the gatherer is further
capable of intercepting a Second response to the Second
Sub-message in the message bundle.

21. The System according to claim 20 wherein the gath
erer is further capable of organizing the first response and
the Second response into a final response, and routing the
final response to a client.

22. An article comprising a machine-accessible medium
having Stored thereon instructions that, when executed by a
machine, cause the machine to:

receive from a plurality of Servers responses to a plurality
of Sub-messages in a message bundle,

organize the responses into a final response; and
forward the final response to a client.
23. The article according to claim 22 wherein each of the

responses to the plurality of Sub-messages includes at least
one of a message bundle identifier, a current Sub-message
identifier and a last Sub-message identifier.

24. The article according to claim 22 wherein organizing
the responses further comprises organizing the responses

Jun. 24, 2004

based on at least one of the message bundle identifier, the
current Sub-message identifier and the last Sub-message
identifier.

25. An article comprising a machine-accessible medium
having Stored thereon instructions that, when executed by a
machine, cause the machine to:

intercept a first request from a first Server to a client to
establish a first network Session;

establish the first network Session on behalf of the client;
receive from the first Server a first response to a first

Sub-message in the message bundle; and
terminate the first network Session.
26. The article according to claim 25 wherein the instruc

tions, when executed by the machine, further cause the
machine to:

intercept a Second request from a Second Server to the
client to establish a Second network Session;

establish the second network session on behalf of the
client;

receive from the Second Server a Second response to a
Second Sub-message in the message bundle; and

terminate the Second network Session.
27. The article according to claim 26 wherein the instruc

tions, when executed by the machine, further cause the
machine to:

organize the first response and the Second response into a
final response; and

transmit the final response to the client.

