
(19) United States
US 2004.0068735A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0068735A1
York et al. (43) Pub. Date: Apr. 8, 2004

(54) JAVA AND NATIVE APPLICATION WINDOW
INTEGRATION

(76) Inventors: Justin E. York, Spring, TX (US);
Geoffery A. Schunicht, Spring, TX
(US)

Correspondence Address:
HEWLETTPACKARD COMPANY
Intellectual Property Administration
P.O. BOX 272400
Fort Collins, CO 80527-2400 (US)

(21) Appl. No.: 10/663,956

(22) Filed: Sep. 16, 2003

Related U.S. Application Data

(63) Continuation of application No. 09/303,799, filed on
Apr. 30, 1999, now Pat. No. 6,675,371.

Publication Classification

(51) Int. Cl. .. G06F 9/46

200

202

24

native application 160 is
launched

(52) U.S. Cl. .. 719/328

(57) ABSTRACT

A System for adding functionality to a graphical user inter
face of a non-Java based, or native, application, using the
Java programming language is provided. A Java window, or
dialog, is configured to be accessible by a native application.
While the native application is executed in a first thread, a
Java dialog is launched in a Second thread. Execution of the
native application in the first thread is then continued. The
Java dialog next calls the native application and registers
itself with the native application. Also, the native code can
control the Java dialog like other dialogs Supported by the
native code. A command for a Java dialog from a native
application is routed to an invisible dialog. The invisible
dialog passes that command to the Java dialog through a
native interface connection. A very SeamleSS integration
between the Java and native code thus occurs. The graphical
user interface operates and Visually appears as if controlled
from a Single Source of code.

user requests dialog that is
implemented using Java

210

22

24

'" native application 160 loads
a Java virtual machine 190

native application 160 calls a
static Java method through

the JN 100

Java code runs, completely
stopping the thread of the
native application 160

native application 160 fails to
update dialogs it supports,

making user think application
160 is locked up

Java code completes
operation, returns control to

native application 160

Patent Application Publication Apr. 8, 2004 Sheet 1 of 12 US 2004/0068735A1

Figure 1

native source code

native compiler

machine code

02 00

java source code

java compiler

java class files

04

06

(bytecode)

26

Java runtime environment
6

100

JNI

java
virtual

operating system machine

processor

video display

application

computer system

P 0 O atent Application Publication Apr. 8, 2004 Sheet 2 of 12 9 O

dialog A2

US 2004/0068735A1

Figure 2
graphical user interface

dialog Bl
50 dialog Al

"A handle'

60

R

message
handler B

68

lmeSSagc
handler N

native application program

70

message
queue

message
loop &

dispatcher

PostMessage(Al Handle)
Windows operating system

user input devices
(keyboard or mouse)

Patent Application Publication Apr. 8, 2004 Sheet 3 of 12 US 2004/0068735A1

Figure 3
graphical user interface

SO

90

Java bytecode

Java virtual machine

70

message
queue

Windows operating
system

user input devices
(keyboard or mousc)

Patent Application Publication Apr. 8, 2004 Sheet 4 of 12 US 2004/0068735A1

Figure 4
native application program

45 atchmens)-
message
handler A

50

-

as:
message S.S:

No S/ loop & SS dialog Al
S dispatcher
a ge

3. st A handle
S | 55

dialog A2

A2handle

70

message dialog P
queue

Windows / ????:
operating system

90

Java bytecode

Java virtual machine

Patent Application Publication

Figure 5

Apr. 8, 2004 Sheets Of 12

202

204

206

208

20

22

24

200

native application 160 is
launched

user requests dialog that is
implementcd using Java

native application 160 loads
a Java virtual machine 190

native application 160 calls a
static Java method through

the JN 100

Java code runs, completely
stopping the thread of the
native application 160

native application 160 fails to
update dialogs it supports,

making user think application
160 is locked up

Java code completes
operation, returns control to

native application 160

US 2004/0068735A1

Patent Application Publication Apr. 8, 2004 Sheet 6 of 12 US 2004/0068735A1

Figure 6
222 220

native application 160 is launched
224

user launches a Java dialog 182

native application 160 loads a JVM 190

228

native application 160 calls a static
232 Java method through the JNI 100 234

226

native application 1
pp. 60 a Java dialog class is launched into a Java dialog 182 draws returns to task it was

new thread (thread B) itself on screen performing (thread A)
230

236
Java dialog class calls
into native application
160 (a reverse JNI call)

242

238

native application 160 calls
FindWindow(Java name) to

retrieve handle of Java dialog from
operating system 170

Java dialog class registers itself with
native application 160, giving text

name of dialog (Java name)

/ 240
Q: have all Java dialog 182 continues running
Java dialogs

occin accounted
for?

native application 160 creates an
invisible dialog, has invisible

dialog handle

native application 160 runs
as normal

256

Java dialog 182 is
248

manipulated according to
invisible dialog directive

250

native application 160 needs
to manipulate Java dialog 2S4

252

native application 160 issues Post or invisible dialog contacts
SendMessage to operating system Java dialog, through JN
170 (using invisible dialog handle)

Patent Application Publication Apr. 8, 2004 Sheet 7 of 12 US 2004/0068735A1

Figure 7
native application program

message
handler A

St)

52

message
loop &

dispatcher 65 atchMes, N
invisible dialog
message handler

dialog Al

A1 handle

54

dialog A2 (3)

A2 handle

70 dialog P'

message g dialog P
oS queue Eas S

ES5 S 9dS Pname Windows S operating system 3&
is ...) S

bo s
2 RS g,
C. S. p ce.
id:
So as
J- s M)
69

90

Java virtual machine

Java bytecode

Patent Application Publication Apr. 8, 2004 Sheet 8 of 12 US 2004/0068735A1

Figure 8
native application program

message
handler A

4,61ispatchMes ge)
invisible dialog
message handler

19

message
loop &

dispatcher
dialog Al

Alhandle

dialog A2

A2 handle

70 dialog P'

dialog P

Pname

N

Qname

message
queue

operating system
82

i
190

Java bytecode

Java virtual machine

P tent Application Publication Apr. 8, 2004 Sheet 9 of 12 US 2004/0068735A1

Figure 9a

280

MD Widoy

: Stsys.

MIDI Windoy 2

286

.
$38,

MDI Window l 286

Patent Application Publication Apr. 8, 2004 Sheet 10 of 12 US 2004/0068735 A1

Figure 9c

29()

292

29

Patent Application Publication Apr. 8, 2004 Sheet 11 of 12 US 2004/0068735 A1

Figure 10

g
Thread

Free memory (8102096)
Total memory (8388600)
looking for Window Compaq 5422 with an O of 170
LaunchPrmm: deviced=170
LaunchPrmm: devicelpAddress=72.25.54.254
LaunchPimm: deviceClass=compaq.NetworkingProducts. PMM.SW54 nn.SW54nn-Jni g 300
LaunchPrnm: deviceDescription=WBEM 5422 Switch: Compaq 5422 170
LaunchPnm: deviceType)escriptions Compaq 5422
LaunchPimm: baseFath: dicnms22COresource.cpcinefweb.
launchPrmm: about to create frare
LaunchPrm: frare created
errorcode: 2
Unit type is 2
PrmmuniwindowMonitor windowRegisterMaster Compac 5422 - WBEM 5422 Switch: Compaq 54221

: Prm miniwindowMonitor,WindowRegister now it's time to register the pmm
PmmJniWindowMonitor,Window?Register registered
LaunchPimm:success

Patent Application Publication Apr. 8, 2004 Sheet 12 of 12 US 2004/0068735A1

Figure 11 30

silesia:RESSESSESSEESAERS ARES
basas

y 5A: ;

configural vow RMon info renet , 's
. e z Minutes

3.18

US 2004/0068735 A1

JAVA AND NATIVE APPLICATION WINDOW
INTEGRATION

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The invention relates to integrating Java-based
dialogs with native dialogs in an application program and,
more particularly, to resolving inadequacies of a native
interface.

0003 2. Description of the Related Art
0004. In the pre-Java programming paradigm, an appli
cation program was typically written in a high-level pro
gramming language, Such as C, C++, or Visual Basic. Before
compiling the program, or converting it into a machine
readable format, the application developer was forced to
decide the environment in which the application was to be
used, known commonly as a platform. The platform is made
up both of the CPU that runs the application software and the
operating System upon which the application Software is
loaded. A platform-specific compiler was then Selected to
convert the high-level program into a binary file Suitable for
that platform to run the program.

0005. Unfortunately, the output of these compilers was
usually understood only by the target platform. So, even
though the application was written using a portable, high
level Source code, with the goal of platform independence,
each compiler outputted platform-specific code. The end
result, for most application developers, was that a decision
about which platform was being Supported had to be made
before any code was written.
0006 Then, a new programming language, Java,
emerged, along with a new programming paradigm. Java is
a programming language, developed in the 1990s by Sun
Microsystems of Palo Alto, Calif. A program written in Java
compiles to a file, known as a bytecode file. A bytecode file
can run wherever a Java virtual machine resides; thus, the
bytecode is not specific to any physical machine. Sun
describes the Java virtual machine, or JVM, as an abstract
machine or “Soft' computer that can be implemented in
either hardware or Software, to reside on top of existing
platforms.

0007 Unlike compilers under the old paradigm, there is
only one specification for the Java Virtual Machine. (Virtual
machines are available from a great many vendors, including
Sun, Netscape, IBM, etc.. Those virtual machines which
adhere to the original virtual machine Specification are
known as “pure Java” VMs.) So, an application developer
who uses the Java language can rest assured that the appli
cation runs oil any Java-capable platform: that is, any
platform upon which a Java virtual machine resides. (Slight
differences may appear on the GUI, but these are visual, not
functional, differences.) This portability makes Java particu
larly suited for use on the Internet.

0008. The Java virtual machine is also flexible in how it
is implemented. The Java virtual machine may be installed
onto a machine as a distinct application program, may be
embedded within the operating System that resides upon the
machine, or may be part of an application program which
uses a Java Virtual machine. Many browsers and operating

Apr. 8, 2004

Systems today are touted as “Java-capable” because they
include a Java virtual machine.

0009. The presence of this new programming paradigm
presents both new opportunities and new concerns. For one
thing, an enormous installed base of application programs,
written in other high-level programming languages under
the old paradigm, are still being used and maintained.
However most Java-aware developers understandably want
to develop new applications, or add functionality to existing
applications, using Java. The “write-once, run anywhere'
promise of Java bytecode eliminates the need for the devel
oper to rewrite an application for each possible platform.
Thus, it may be sensible for developers to write all new code
in Java where possible.
0010 When developing new applications, it may be
possible to write the application entirely in Java. For adding
new functionality to an existing application, however, Some
mechanism for allowing newly developed, Java-based byte
code to interact with the legacy, or native, application
Software, is required.

0011 A Software development kit, known as the Java
Development Kit, or JDK, provides Several programs to
assist Java developers. The Java Virtual Machine, described
above, is one of its many components. Additionally, the
development kit includes an application programming inter
face known as the Java Native Interface, or JNI. As named,
JNI provides a mechanism for interfacing between native
Software programs and newly developed Java-based byte
code.

0012. The JNI allows code that runs inside a Java virtual
machine (bytecode) to inter-operate with applications writ
ten in other high-level programming languages. DeveloperS
who program through the JNI enable native code to interact
with Java code, including: creating, viewing, and updating
Java objects, calling Java methods, loading and obtaining
class information, handling exceptions, and the like.
0013 Despite its best intentions, JNI may be inadequate
in Some environments. For example, the Win32 application
programming interface, or API, permits application devel
operS to maintain different windows, or dialogs, in a graphi
cal user interface, or GUI. As is further developed, below,
the mechanism provided by JNI for interaction between
native code and Java-based code is inadequate. For one
thing, the Java-based dialog is visually distinct, making its
appearance on a user interface with other native dialogs look
out-of-place. Second, calls to methods through the JNI
causes the native code to block. This blocking nature of JNI
causes a stoppage of message handling in the native dialogs,
thus making the application appear to be locked up or
non-responsive. Third, the native code is limited in its ability
to manipulate a Java-based dialog under the JNI Specifica
tion. For example, the native code cannot control any of the
Java-based dialogs that it created.
0014. The choices for resolving the limitations imposed
by the JNI are very unattractive. First, the developers could
completely rewrite the existing native code in Java, elimi
nating the need to use the JNI at all. Such an approach is
generally not feasible because of the large amount of code
that must be rewritten. Second, a development team could
restrict all Java coding to non-GUI elements. Under Such a
limited environment, JNI would be sufficient. However,

US 2004/0068735 A1

GUIs are a large part of most applications, requiring devel
opers to maintain multiple versions of user interface code for
each platform Supported. Furthermore, if the native code is
never phased out, the high level of portability that makes
Java-based development attractive remains elusive.
0.015 Ultimately, these unattractive choices severely
restrict the benefits of JNI and effectively divert developers
from adding new features to native applications using Java.

SUMMARY OF THE INVENTION

0016 Briefly, the illustrative system provides a method
for adding functionality to a user interface of non-Java
based, or native, applications, using the Java programming
language. Further, the illustrative System provides a method
for Java-based and non-Java-based windows, or dialogs, to
communicate in an application program on a graphical user
interface.

0.017. To add functionality to the user interface of the
native application, new dialog Support is written in the Java
programming language. Under the Standard protocol, a call
to the Java Native Interface (JNI) blocks and waits for the
function call to complete, then accepts a return value. In the
system illustrated herein, however, the JNI calls do block, as
normal, but, once a Java thread is created, control immedi
ately returns to a separate thread where the native applica
tion can run. Following the creation of the Java thread,
message passing between the thread and the native applica
tion is implemented, to “register the Java dialog with the
native application.
0.018 Following the registration, the Java-based dialog
performs its intended function as a thread Separate from the
native code. When the native code receives the information
for registering the Java dialog, it determines the handle of
the Java dialog and then creates its own “invisible' dialog.
The invisible dialog is Subsequently used for all message
passing to the Java dialog.
0019. The result is a very seamless integration on a
graphical user interface between the Java-based code and the
native code. From the perspective of the user, the interface
operates and Visually appears as if controlled from a single
Source of code. In one embodiment, a native icon is dis
played on the Java dialog, rather than a generic Java icon, So
that the Java dialog “matches the native dialogs in appear

CC.

0020) Further, the registration between the Java-based
code and the native code enables the native code to perform
additional tasks upon the Java dialog. In addition to provid
ing a Java-based icon Similar to a native icon, the native code
can detect the presence of the Java dialog or tell the Java
dialog to close or move to a certain position on the Screen,
features which were not possible using the standard JNI
protocol. In another embodiment, the native code can further
capture the Java dialog into a multi-document interface, or
MDI, framework, so that the Java dialog is virtually indis
tinguishable from the native dialogs in the application. Thus,
the illustrative System provides tight Java and native win
dow-level integration that gives the Java dialogs a similar
“look and feel” to the native dialogs.
0021. The illustrative system can particularly be used
when augmenting a native code-based application with Java.
Using the techniques described herein, a "bridge' between

Apr. 8, 2004

new Java code and an existing native code is provided. This
gives the graphical user interface (GUI) a consistent “look
and feel,” even though different technologies are used to
develop the various GUI components.

BRIEF DESCRIPTION OF THE DRAWINGS

0022 Abetter understanding of the present invention can
be obtained when the following detailed description of the
disclosed embodiment is considered in conjunction with the
following drawings, in which:
0023 FIG. 1 is a block diagram illustrating generally the
Java Native Interface and its interaction with other compo
nents of a computer System;
0024 FIG. 2 is a block diagram illustrating how different
Software components of an application program keep track
of native dialogs on a graphical user interface under a Win32
operating System environment;
0025 FIG. 3 is a block diagram illustrating how a Java
Virtual machine application program keeps track of native
dialogs on a graphical user interface under a Win32 oper
ating System environment;
0026 FIG. 4 is a block diagram of a native application
program coupled with a Java-based application program,
both of which Support dialogs on a graphical user interface,
but which cannot communicate information to the dialogs of
each; and
0027 FIG. 5 is a flow diagram illustrating how using JNI
blocks updates to native dialogs,
0028 FIG. 6 is a flow diagram illustrating how the
illustrative System enables a native application to commu
nicate with a Java-based dialog,
0029 FIG. 7 is a block diagram depicting the process of
registering a Java-based dialog with the native application
code;
0030 FIG. 8 is a block diagram depicting the process of
controlling a Java-based dialog by the native application
code;

0031 FIG. 9a is a screen shot of an MDI framework in
a Word processing application program, including a parent
window and two child windows;
0032 FIG.9b is a screen shot of a window in which it is
unclear whether MDI is being employed;
0033 FIG. 9c is a screen shot of two non-MDI windows
on a desktop,
0034 FIG. 10 is a screen shot of a Java-based dialog,
including a Java icon; and
0035 FIG. 11 is a screen shot of CNMS, including both
dialogs controlled by native code and Java code.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

0036) The illustrative system provides a method for add
ing functionality, particularly user interface Support, to
native code using the Java programming language. For
purposes of explanation, Specific embodiments are set forth
to provide a thorough understanding of the present inven
tion. However, it will be understood by one skilled in the art,

US 2004/0068735 A1

from reading the disclosure, that the invention may be
practiced without these details. Further, although the
embodiments are described in terms of Windows-based
application programming, most, if not all, aspects of the
System illustrated apply to interfacing any high-level pro
gram to the Java language. Moreover, well-known elements,
devices, proceSS Steps, and the like, are not set forth in detail
in order to avoid obscuring the disclosed System.
0037. The Java Native Interface Specification, a product
of Sun Microsystems of Palo Alto, Calif., published on May
16, 1997 and available on the world-wide-web at http://
www.javasoft.com/products/dk/1.1/docs/guide/ni/Spec, is
hereby incorporated by reference as if Set forth in its entirety.
0.038 A network management application describes net
work management models and their use in web environ
ments in commonly assigned U.S. patent application Ser.
No. 09/231,286 entitled “Interactive Web-based Network
Management” to Geoffery A. Schunicht, Justin E. York,
Peter A. Hansen, and Charles W. Cochran, filed on Jan. 15,
1999, which is hereby incorporated by reference as if set
forth in its entirety.
0.039 A second application describes a method for inter
facing between network management Software and the mod
ules Supporting devices on a network. This commonly
assigned U.S. patent application Attorney Docket No.
A99010US is entitled “Intelligent PMM Application Pro
gramming Interface With Utility Objects” to Geoffery A.
Schunicht and Justin E. York, and was filed concurrently,
which is also hereby incorporated by reference as if set forth
in its entirety.

0040 First, an illustration of the Java Native Interface, or
JNI, provides a introduction to the various elements that may
interact in an application programming environment. A Java
Native Interface 100, or JNI 100, is shown, coupled between
a native Source code 102 and a Java Source code 108. JNI
can refer to any interface that is effectively compliant with
the JNI standard. As stated in the Background section, the
JNI is a native programming interface that allows Java code
(bytecode) that runs inside a Java Virtual Machine to inter
operate with applications and libraries written in other
high-level programming languages. ProgrammerS use JNI to
write Java native methods to handle Situations where an
application cannot be written entirely in Java. An application
may Support platform-dependent features that arent Sup
ported by the Standard Java class library. Or, new Support for
an existing application, written in a high-level language,
may be desired. A variety of Situations requiring interrela
tionship between native code and Java-based code may
present themselves to the application programmer.
0041 FIG. 1 shows a typical computer system 126
supporting a Java runtime environment (JRE) 101. The
computer System 126 includes a processor 120, which may
be an 8086-based CPU, Such as a Pentium II Processor, a
product of Intel Corporation, of Santa Clara, Calif. Or, the
processor 120 may be a Power PC-based processor, a
product of Motorola Corporation, of Austin, Tex. In either
case, the processor 120 is a key component of the computer
system 126. The processor 120 is shown coupled to a video
display 123. The video display 123 provides an interface to
the user of the computer System 126 by displaying an
application program, often in the form of a graphical user
interface.

Apr. 8, 2004

0042. The Java runtime environment 101 includes an
operating system 118, such as the Windows 95 operating
System, a product of MicroSoft Corporation, of Redmond,
Wash. A variety of other operating Systems may optionally
be selected for inclusion in the Java runtime environment
101.

0043. Notice that the native source code 102 and Java
Source code 108 proceed along distinct paths. AS is well
known among programmers, the native Source code 102 is
compiled, using a native compiler 104, to produce machine
code 106. Generally, the native compiler 104 selected is
dependent upon the processor 120 and the operating System
118 upon which an application ultimately runs. The machine
code 106 may be linked with other machine code (not
shown) to produce an executable file, a binary file 114, for
execution in the computer System 126.
0044) The Java source code 108 proceeds along a sepa
rate path. This time, the Java source code 108 is compiled by
a Java compiler 110, to produce a Java class file 112, known
as bytecode. As with the native compiler 104, the Java
compiler 110 is dependent upon the runtime environment
101 in order for compilation to take place. However, unlike
the native source code 102, the Java Source code 108, once
compiled, produces the same output, no matter where it is
compiled.

0045. As described above, the Java runtime environment
101 includes a Java virtual machine 122, in order to run the
Java class file 112. In FIG. 1, the Java virtual machine 122
is shown as a distinct element. However, the Java virtual
machine 122 can be implemented in hardware or Software.
Further, the Java virtual machine 122 can be embedded in
the operating System 118 or in a native application 116,
loaded on top of the operating System 118.

0046) The Java virtual machine 122 also shows the Java
native interface 100 included therein. Communication
between the binary file 114 and the Java bytecode 112 occurs
through the JNI 100. Native code accesses Java features by
calling JNI functions, called Java native methods. In FIG. 1,
the Java virtual machine 122 is shown coupled to both the
native application 116 and the operating System 118.

0047 Next, to better understand some of the limitations
of JNI, a discussion about how graphical user interfaces, or
GUIs, are typically maintained may be helpful. The illus
tration to follow describes a particular embodiment, using
Windows Win32 Application Programming Interface, or
API. (The Win32 API currently permits applications written
for it to work under the Windows 95, Windows NT, and
Windows 98 operating systems.) Therefore, in the disclosed
embodiment, the native application 116 is a Win32 appli
cation. However, this embodiment is not meant to in any
way limit the possible applications of the illustrative System
to other programming environments.
0048. The Win32 API provides a mechanism for an
application programmer to readily create graphical user
interfaces, or GUls, in the form of windows or dialogs. One
skilled in the art understands a dialog to be a rectangular
region of a Screen to display data or act as a useful input area.
Most computer users today are quite familiar with Such
interfaces. What may be less familiar to the user is how the
processing of each dialog occurs during the operation of the
user interface.

US 2004/0068735 A1

0049. One mechanism for supporting multiple dialogs on
a graphical user interface is employed by applications writ
ten under Win32 API. First, the many entities supporting the
GUI, discussed in more detail below, communicate by
Sending and receiving “messages.” Messages permit the
entities to perform a vast number of operations upon the
dialogs, Such as resizing the dialog, changing the name of
the dialog, and changing the color of the dialog. For pur
poses of this discussion, though, it is only important to know
that messages are Sent and received.
0050 For communicating these messages, the mecha
nism is pretty Simple. First, the application program contains
a continuously running, very tight, loop which does nothing
more than receive and dispatch messages. The messages are
typically processed in a first-in-first-out fashion, but the
application program code decides how and even whether the
messages are processed. (The application program code may
even decide not to proceSS certain messages, or messages
from certain Sources.)
0051) Second, the application program generally includes
one or more message handlers. These handlers may be a
Single message handler for each dialog, a message handler
for all dialogs of a certain type, a message handler for
dialogs which perform a Specific function, and So on. Again,
the application program code decides how many message
handlers there are and what dialogs are to be controlled.
0.052 A message handler, then, receives from the mes
Sage loop those messages that are intended for the dialog or
dialogs controlled by the message handler. The message
handler may also Send messages to another message handler.
If So, the message handler Sends the message to an operating
System, which has its own message queue for receiving
messages from various Sources. The operating System then
Sends the message on to the intended recipient.
0.053 Besides receiving messages from the application
program, the operating System further responds to user
input, Such as mouse clicks or keyboard input, by Sending a
message to the message loop of the application program for
which the user input is intended.

0.054 Under Windows, functions are available for com
municating a host of possible messages. For example, the
application program "pulls' messages intended for one of its
message handlers from the operating System using a Get
Message function. The application program further sends a
message to an intended message handler using a Dispatch
Message function. Any messages Sent to the operating
System may arrive using a SendMessage functions or a
PostMessage function. The SendMessage function does not
“complete” until the intended recipient receives the mes
Sage, So SendMessage essentially blocks further execution
by the Submitting entity. The PostMessage function, by
contrast, returns immediately upon “posting the message to
the operating System, thus permitting the Submitting entity
to perform other tasks immediately.

0.055 For each function, arguments are passed. One
argument further identifies the message being Submitted to
the recipient. A Second argument identifies the dialog for
which the message is intended. In Windows, each dialog has
a unique 32-bit identifier called a handle. When the handle
of a dialog is not known, Windows provides a function,
FindWindow, to retrieve the handle for a dialog. The

Apr. 8, 2004

requestor may provide other identifying information about
the dialog, Such as its location on the Screen, its name, its
level, and So on, and, from there, receives the desired handle
from the FindWindow function.

0056 FIG. 2 illustrates this mechanism pictorially.
Because the discussion, above, describes generally how
dialogs on a GUI are tracked under a Microsoft Windows
operating environment, FIG. 2 shows a Windows operating
system 170. Also shown is a graphical user interface 150 and
an application program 160. Because the operating System
170 is Windows-based, the application program 160 is
compiled to be Windows-compliant.
0057 For purposes of explaining the illustrative system,
the native application program 160 and the operating System
170 show only the components which are relevant to
describing one way in which dialogs on a GUI may be
tracked. Numerous other components of the native applica
tion program 160 and the operating system 170 are omitted
to avoid obscuring the description of the relevant Subject
matter.

0.058. The graphical user interface 150 includes three
dialogs: a dialog A1152, a dialog A2154, and a dialog
B1156. Each dialog is identified both by name (usually, this
is the name seen at the top of the dialog) and by its handle.
Each of dialogs A1152, A2154, and B1156 may have a
message Sent to it by any entity which knows its unique
handle.

0059) Next, FIG. 2 shows the Windows operating system
170, which is shown coupled to a user input device 174. A
user of the application program 160 commonly “communi
cates” with the graphical user interface 150 by pressing a
key on a keyboard or clicking on a mouse. The operating
system 170 receives this user input from the user input
device 174. The operating system 170 further includes a
message queue 172, which is a portion of code that, in effect,
routes messages to the element that controls the GUI
accessed by the user, in this case the native application
program 160. Messages which are Sent to the message queue
172 typically arrive via either the SendMessage or PostMes
Sage functions. For example, if the user clicks on a mouse
174, a SendMessage command may be sent to the message
queue 172 of tile operating system 170 by a driver program
(not shown) that controls the mouse 174. Also the applica
tion program 160 may issue a PostMessage command to the
operating system 170.
0060. As part of the native application program 160,
which is Windows-based, FIG. 2 also shows a message loop
and dispatcher 162. This is a portion of code which essen
tially retrieves available messages from the operating System
170 and passes them to an appropriate message handler for
the intended dialog. Then, a message handler A 164, a
message handler B 166, and a message handler N 168 are
shown. The ellipses are meant to convey that any number of
message handlers could be present in the native application
program 160.
0061 The message loop and dispatcher 162 pulls mes
Sages from the operating System 170 by repeatedly calling
the GetMessage function. Upon receiving a message from
the operating System 170, the message loop and dispatcher
162 then sends the message to the appropriate message
handler using the DispatchMessage function. Both the Get
Message and Dispatch Message operations are illustrated in
FG, 2.

US 2004/0068735 A1

0062) A single message handler may control multiple
dialogs. Thus, the message handler A 164 is shown coupled
to the dialog A1152 and the dialog A2154 in the graphical
user interface 150. The message handler B 166 is coupled to
the dialog B1156. The message handlers receive the mes
Sage information and communicate with the dialogs, as
needed.

0.063. In FIG. 2 an arrow is also drawn from the message
handler B 166. The message handlers themselves may issue
SendMessage and PostMessage commands to the operating
System 170. Thus, one dialog can, through the message
handlers, essentially communicate with another dialog, as
needed. Rather than directly issuing a SendMessage or
PostMessage command, it should be understood that a
command having SendMessage or PostMessage as a Subset
may instead be issued.
0.064 Suppose the message handler B 166 wants to
communicate with the dialog A1152. Suppose the dialog
A1152 has a handle, Alhandle, as shown in FIG. 2. The
message handler B 166 may issue a PostMessage command,
including the Alhandle as an argument, to the message queue
172 of the operating system 170. The message loop and
dispatcher 162 of the application program 160 retrieves the
message from the operating System 170 using the GetMeS
Sage command. Then, because Alhandle is passed as an
argument, the message loop and dispatcher 162 knows than
the dialog A1152 is the intended recipient. So, the dispatcher
162 issues a DispatchMessage command to the message
handler A 164, as the control mechanism for the dialog
A1152.

0065 Thus, FIG. 2 illustrates several mechanisms which
together enable multiple dialogs, or windows, on a graphical
user interface 150 to be supported. First, the operating
System 170 acts as the main repository of messages from all
Sources in the System. Second, the application program 160
pulls messages intended for dialogs Supported by the appli
cation program 160 and dispatches the messages to one or
more message handlers. Third, the dialog to which a mes
Sage is intended is identified using a unique handle. Fourth,
different dialogs can essentially communicate with one
another by posting messages to the operating System 170.

0.066 FIG. 3 is a second block diagram which shows a
Java virtual machine 190 as the application program under
Windows. As FIG. 3 shows, the Java virtual machine 190,
or JVM 190, is simply a type of application program. Thus,
it may employ a mechanism Similar to that shown in the
more general illustration of FIG. 2 for keeping track of
dialogs on a graphical user interface 150.

0067. The operating system 170 of FIG. 3 is identical to
that of FIG. 2, a Windows operating system. The Java
virtual machine 190 is therefore a Windows-compliant
application program, which means the JVM 190 is compiled
explicitly for Windows. As such, the JVM 190 is capable of
posting messages to the operating System 170 and pulling
messages from the message queue 172 of the operating
System 170 just as can any application program 160 that runs
under the Windows operating system 170.
0068. Despite being compiled to run under Windows, the
JVM190 may or may not employ the mechanisms described
in conjunction with FIG. 2. In general, the Java program
ming language uses methods and objects to perform opera

Apr. 8, 2004

tions. Thus, message passing may not be the mechanism by
which dialogs communicate in Java. FIG. 3 therefore shows
a more general interface to the operating System 170, one of
"message retrieval' and “message Submission.”

0069. The JVM 190 includes a Java bytecode 192. The
Java bytecode 192 depends upon the presence of a JVM 190
in order to run, as explained above. Whether the Java
bytecode 192 employs distinct “handlers” for each dialog on
the graphical user interface 150 is unclear.

0070 What is known about the Java bytecode 192 is that
when a Java-based dialog is created, the Windows operating
system 170 is not informed, as is the case when a native
based dialog is created. Java-based dialogs may be assigned
unique handles upon their creation, for example, but because
the operating system 170 is not informed by the dialogs, the
handles appear not to be used.

0071 FIG. 3 shows three Java-based dialogs on the
graphical user interface 150: a dialog P182, a dialog Q 184,
and a dialog R186. Upon creation, the operating system 170
is not informed of their presence on the graphical user
interface 150. Thus, one of the key mechanisms described in
FIG. 2 for communication between dialogs on a graphical
user interface, the assignment of a unique handle, is not
available to the native application program 160.
0072 FIG. 4 depicts both the application program 160 of
FIG. 2 and the Java virtual machine 190 of FIG.3 together
as creators of different dialogs on the graphical user interface
150. Some of the dialogs are controlled by the native
application program 160 while others are controlled by the
JVM 190. FIG. 4 thus illustrates an application program
which contains code to Support new dialogs on a GUI using
the Java programming language and code to Support other
dialogs in the native language of the application.

0073. If the message handler 164 needs to send a message
to the dialog P182 or the dialog Q 184, FIG. 4 shows that,
under the mechanism described in FIG. 2, the issuance of a
SendMessage function to the operating system 170 is no
longer available. This is because the message handler 164
knows the handle for neither the dialog P182 nor the dialog
Q 184. In fact, the message handler A 164 may not even
know about the dialogs P182 and Q 184.

0.074 FIG. 4 also shows the JNI 100 of FIG. 1. Recall
that the JNI 100 is the interface between native application
programs and Java bytecode. The JNI 100 is intended to
facilitate interaction between these two pieces of Software.
For example, a native application program 160 may, through
the JNI 100, call Java methods, as needed, to perform
particular functions. So, as long as the message handler A
164 of FIG. 4 knows what Java method to call, the message
handler A 164 should be able to send messages to either the
dialog P 182 or the dialog Q 184 of FIG. 4.

0075). Unfortunately, a call through the JNI 100 by a
native application program 160 has adverse consequences
for maintenance of the graphical user interface 150. This is
because a call through the JNI 100 blocks and does not
return until the Java method called through the JNI 100 is
completed. Other dialogs A1152 and A2154 cannot be
maintained during this blocking period. To the user, the
application program 160 appears to be locked up, although
the application program 160 is not really locked up at all.

US 2004/0068735 A1

0.076 AS a practical illustration, Suppose an application
program is Written using the C programming language.
Suppose then that additional features are added to the
application program, including a dialog for the GUI, but it
is written using C++ programming language. Such a Sce
nario is possible because both the old, C-based code and the
new, C++-based code must be compiled to run on the same
platform, whatever it may be. So, in the case of a Windows
operating System, both the old and new programs are com
piled using a Windows-compliant compiler, the first being a
C compiler and the Second being a C++ compiler.
0077. The same is not true for Java, however. If a new
feature is added to the user interface 150 of an application
program 160, it may be written using Java. The Java-based
addition controls a new dialog. However, Since Java is
inherently platform-independent, it does not compile to a
particular machine or platform, but only to bytecode.
0078 FIG. 5 is a flow diagram illustrating a problem
with JNI. The process begins at step 200. First, the native
application 160 of FIG. 4 is launched, at step 202. Then, at
Step 204, a user performs an operation, using a user input
device 174, that causes a Java dialog to be launched.
0079 At this point, shown as step 206, the native appli
cation 160 loads a Java virtual machine 190. (This step is not
necessary if the JVM 190 has been previously launched.)
Then, through the JNI 100, the native application 160 calls
a static Java method to launch a Java dialog, at step 208. The
Java code which controls the new Java dialog runs, which
effectively blocks other activity by the native application
code 160, at step 210. The Java code is a separate thread
from the native application code 160, yet by blocking
activity by the native application 160, the graphical user
interface 150 appears to be locked up.
0080 Because of the Java code block, step 212 shows
that the native application 160 fails to update the dialog or
dialogs its Supports, making the user think the application
160 is locked up. In fact, however, the application 160 is not
locked up, but the dialogs Supported by the application 160
are not maintained during this time. During this time, the
dialogs controlled by the native application 160 are not
responsive to user input and are not “repainted.” At Step 214,
the Java code completes its update of the Java dialog and
control returns to the native application 160. At step 216, the
proceSS is complete.

0081. The illustrative system solves a problem shown in
FIG. 5 by letting the native application 160 return imme
diately following the Java method call through the JNI.
Then, the Java code, a separate thread from the native
application 160 calls through the JNI into the native appli
cation 160, which may be thought of as a “reverse JNI” call.
During this reverse JNI call, the Java thread provides the text
name of the Java dialog to the native application 160.
0082 Once the native application 160 knows the name of
the Java dialog, a call to FindWindow retrieves the handle of
the Java dialog. Once the handle of a dialog is known, the
dialog may be manipulated in a number of ways. For
example, the position on the graphical user interface 150 can
be changed, the Size of the dialog can be modified, and So on.
0.083. In a disclosed embodiment, once the Java handle is
retrieved, the icon for the Java-based dialog (which looks
like a steaming cup of coffee) is replaced with an icon for the

Apr. 8, 2004

native application 160. In this way, the Java-based dialog
looks to the user like a native dialog. Also, the native
application 160 can capture the Java dialog into a Windows
multi-document interface, or MDI, framework, in one
embodiment. MDI is described in more detail in conjunction
with the description of FIGS. 9a, 9b, and 9c, below.
0084. Meanwhile the Java code thread continues running
as long as the Java dialog is opened. Whenever the native
application 160 needs to manipulate the Java dialog, a
SendMessage or a PostMeSSage is Sent to the operating
System 170, passing the invisible dialog handle as an argu
ment. The invisible dialog then contacts the Java dialog,
through the JNI, causing the Java dialog to be updated as
desired.

0085. Because the native application 160 and the Java
bytecode 192 are distinct code threads, the illustrative sys
tem simply allows the calling thread (the native application
160) to return from the call to the Java thread. Instead, the
Java thread simply identifies the newly created dialog by
name. Further, the problem of Java not identifying its
dialogs with handles is avoided by the native application 160
creating an “invisible” dialog with which it can perform
messaging operations normally.

0086 FIG. 6 shows how the illustrative system addresses
a problem of FIG. 5. The process begins at step 220. At step
222, the native application 160 is launched. Next, at step
224, the user performs an operation which causes a Java
dialog 182 to launch to the user interface 150. The JNI 100
may be utilized in launching the Java dialog 182. The native
application 160 then loads a Java virtual machine 190, at
step 226. Step 226 will not be performed if a Java virtual
machine 190 is already loaded.
0087. At step 228, the native application calls a static
Java method through the JNI 100. This causes a Java dialog
class to be launched into a new thread, shown at step 230.
The steps described so far are identical to those in FIG. 5.
In FIG. 6, however, the native application 160 immediately
returns to whatever task it was performing prior to the
launch of the Java dialog 182. The JNI “block”, which
impaired the updates to the user interface 150 in FIG. 5,
does not affect the native application 160 in this case
because the blocking is very Short. In fact, the blocking is
unnoticeable to a viewer of the graphical user interface 150.
Thus, the native application 160 is able to perform as normal
and does not appear to be locked up by the user. The Second
thread, shown as thread B in FIG. 6, begins by the Java
dialog 182 drawing itself on the screen, at step 234. Then, at
Step 236, the Java dialog class calls into the native applica
tion 160 and registers itself. In FIG. 6, step 236 is described
as a reverse JNI call because generally calls through the JNI
typically pass from the application Software to the Java byte
code. Step 238 shows that the actual registration of the Java
dialog class takes the form of providing the name of the
dialog to the native application 160.
0088. Once the Java dialog 182 is registered with the
native application 160, the handle of the Java dialog can be
retrieved from the operation system 170. Thus, at step 242,
in thread A, the native application 160 calls FindWindow
giving it the Java name that was registered to it by thread B,
and retrieves the handle of the Java dialog from the oper
ating system 170. As stated above, in one embodiment, the
handle is used to replace the "coffee' icon on the Java dialog

US 2004/0068735 A1

182 with one appropriate for the native application 160.
Further, the native application 160 uses the Java dialog
handle to capture the Java dialog 182 into a Windows MDI
framework, in one embodiment. MDI is described in more
detail in conjunction with the description of FIGS. 9a, 9b,
and 9c, below.

0089 Subsequently, the native application 160 creates an
invisible dialog having an invisible dialog handle, shown at
step 234. In one embodiment, a linked list is maintained by
the native application program 160 which establishes a
connection between each Java-based dialog 182 and the
invisible dialog which “shadows the Java-based dialog 182.
0090. At step 246, a query is made whether all Java
dialogs have been accounted for. If not, control proceeds
back to step 242 where a new call to FindWindow is made
for each Java dialog that has been registered with the native
application 160. Otherwise, control turns to step 248 where
the native application 160 runs normally.

0.091 At this point, both threads A and B are still running.
At some point later the native application 160 may wish to
manipulate the Java dialog 182. For example, user input may
prompt Such need. Or, the native application 160 may want
to put an icon on the Java dialog 182 that resembles the icons
of the other native dialogs. So, in step 250, the native
application 160 needs to manipulate the Java dialog 182. At
step 252, the native application 160 issues a PostMessage or
a SendMessage to the operating System 170 using the
invisible dialog handle as an argument. The invisible dialog
then, at step 254, contacts the Java dialog 182 through JNI.
Following this step in thread A, the native application 160
returns to normal. Thus, an arrow is shown from step 254
back to step 248. However, a dashed arrow is shown
between steps 254 and step 256, which is a step in thread B.
Step 256 shows that the Java dialog 182 is manipulated
according to the invisible dialog directive. From there con
trol proceeds to step 240 where the Java dialog 182 contin
ues running.

0092. If the native application 160 wants to close the Java
dialog 182, steps 250 through 256 would also be utilized to
achieve the closure of the Java dialog 182. It is at the point
when the Java dialog 182 is closed that thread B goes away.
In the disclosed embodiment, a Java dialog 182 is closed
using the JNI.
0.093 Using the approach outlined in FIG. 6, the native
application 160 has control over the Java dialog 182, via the
invisible dialog, Sufficient to manipulate the Java dialog 182
in a manner that appears Seamless to the user. For one, the
generic Java Runtime Environment (JRE) icon that typically
appears at the top left corner of the dialog can be replaced
with an icon that matches the other dialogs Supported by the
native application 160. Further, the Java dialog 182 can be
controlled by the native application 160, such that the dialog
can be moved, closed, and, at the very least, made known to
the native application 160 in the first place. Under the
current JNI protocol, Such GUI manipulation was not poS
sible. The tight integration of the Java window with the
native code windows permits these useful operations to take
place in a manner that is Seamless to the end user.
0094 FIGS. 7 and 8 pictorially represent what occurs in
the flow diagram of FIG. 6. FIG. 7 focuses on the regis
tration of the Java-based dialogs P180 and Q 182 on a

Apr. 8, 2004

graphical user interface 150. FIG. 8 is dedicated to how a
native application program 160 updates the Java-based
dialogs P180 and Q 182.
0.095 First, in both figures, a dialog P178 and a dialog
Q'180 are shown. These represent the “invisible” dialogs
which essentially shadow the Java-based dialogs P182 and
Q 184. The handles for these invisible dialogs P'178 and
Q'180 are Phandle and Q"handle, respectively, as shown.
Also shown in FIGS. 7 and 8 is an invisible dialog message
handler 191, which is dedicated to supporting the invisible
dialogs P178 and Q'180. Although a single handler 191 is
shown, a separate handler can be implemented for each
invisible dialog, if desired.
0096. As stated, FIG. 7 shows the steps, as described in
FIG. 6, for “registering one or more Java dialogs. The
block diagram of FIG. 7 includes three symbols to identify
the order of occurrence: CD, (2), and . Notice that, in
FIG. 7, the JNI 100 is depicted as an arrow going from the
Java bytecode 192 to the native application program 160.
This illustrates that a “reverse JNI' call is made during
registration of the Java-based dialogs P182 and Q 184.
0097 First, the Java-based dialogs P 182 and Q 184 are
created by the Java bytecode 192, shown as a CD in FIG 7.
Then, according to the illustrative System, the Java dialogs
P 182 and Q 184 register themselves with the native appli
cation 160 by Supplying their names, Pname and Qname.
This is sent through the JNI 100 and is shown as a (2) in
FIG. 7.

0098. Once the Java dialogs P 182 and Q 184 register
themselves with the native application program 160, the
native application program 160 creates invisible dialogs
P"178 and Q'180 to essentially “shadow” the Java-based
dialogs P182 and Q 184. As the invisible dialogs P178 and
Q'180 are generated by the native application program 160,
handles Phandle and Q'handle are assigned to them, as
would be done with any other dialog created by the native
application program 160. Along with the dialogs P'178 and
Q'180 themselves, an invisible dialog message handler 191
is available to process requests made to these dialogs,
identified in FIG. 7 as a (3). This completes the “registra
tion' of a Java-based dialog.
0099 Moving on to FIG. 8, the control of a Java-based
dialog by the native PSSI program 160 is now depicted as steps (4), (5), (6), (7) and (8) in the figure. When
a native dialog wants to communicate with a Java-based
dialog, the illustrative System makes this possible once the
registration of FIG. 7 has taken place.
0100 First, suppose dialog A1152 or dialog A2154 wants
to communicate with the dialog Q 184, the latter a Java
based dialog. First, shown as Step (4) in FIG. 8, the message
handler A 164, which processes requests for dialogs A1152
and dialog A2154, issues a message to the message queue
172 of the operating system 170. Instead of providing the
handle of the Java dialog Q 184, however, the message
handler A 164 passes the argument Q'handle, or the handle
of the invisible dialog Q'180 along with the sing O
PostMeSSage command. This Step is depicted as a in
FIG 8.

0101 Next, the message loop and dispatcher 162
retrieves the message from the message queue 172 of the
operating System 170, using the GetMeSSage command.

US 2004/0068735 A1

Depicted as a (5) in FIG. 8, this step is normally how any
message intended for a message handler of the native
application program 160 is retrieved, as explained in the
description of FIG. 2, above. Again, the argument Q'handle
identifies that the message is intended for the invisible
dialog Q'180. The message loop and dispatcher 162 then
Submits the message to the invisible dialog message handler
191 using the Dispatch Message command, shown as a (6) in
FIG 8.

0102) Using the JNI 100, the invisible dialog message
handler 191 next makes contact with the Java bytecode 192
which controls the intended Java dialog Q 184, shown as a
(7). The invisible dialog message handler 191 tells the Java
bytecode 192 what to do to the Java dialog Q 184. Finally,
shown as in FIG. 8, the dialog Q 184 is updated
according to the directive of the message handler A 164 of
the native application program 160.
0103) Additional updates to all “registered” Java-based
dialogs P182 and Q 184 of the graphical user interface 150
can be made until the Java-based dialogs P182 and Q 184
are finally closed by the native application program 160.
0104. The illustrative system may be employed under an
MDI framework. As stated above, the disclosed embodiment
captures the Java dialog into an MDI framework as Soon as
its handle is known (see description of FIG. 6, above). MDI
is a specification that defines a user interface for applications
that wish to Support more than one document at the same
time. MDI employs a single primary dialog or window,
called a parent window, to visually contain other windows,
or child windows, inside its borders. Thus, the parent
window provides a visual and operational framework for the
child windows. Once the Java dialog is part of the MDI
framework, the Java dialog is virtually indistinguishable
from other native dialogs in the application program 160.
0105 FIG. 9a is a screen shot which illustrates the use of
MDI by a word processor, Microsoft Word. Here, the MDI
parent window is the application window 280. A first MDI
window 282 and a second MDI window 284 are shown. The
MDI window 284 is truncated by the MDI boundary of the
parent application, rather than overlapping onto the desktop
286.

0106 FIG. 9b is a second screen shot, which shows a
window 286. The window 286 has the text “MDI window 1
inside it. However, but for this text, it is not clear whether
the window 286 is an MDI window. Without seeing a parent
window 280 or a desktop 286, such as shown in FIG. 9a, the
MDI status of the window 286 is unknown.

0107 FIG. 9c is a third screen shot. This figure shows
two non-MDI windows, both using the Netscape browser
Software. A first window 292 and a second window 294 are
shown in FIG. 9c. Notice that the two non-MDI windows
are separate of each other. Notice, too, that both windows
292 and 294 appear directly on the desktop 294. No parent
window, as in FIG. 9a, encapsulates the two windows 292
and 294.

0108. The illustrative system may be used in either an
MDI framework or a non-MDI framework. In one embodi
ment which uses MDI, a Java dialog is captured into the
MDI by calling a SetWindowParent function. The argu
ments in the SetWindowParent function include both the
parent window handle and the Java window handle.

Apr. 8, 2004

0109 The applications for the illustrative system
depicted in FIGS. 6, 7, and 8 are numerous. Virtually any
application program which Supports multiple dialogs on a
graphical user interface may employ the methodology
described herein to integrate new Java-based Support into
the application. For example, the assignee of this patent,
Compaq Computer Corporation, of Houston, TeX., currently
utilizes the illustrative System in connection with its network
management Software, Compaq Networking Management
Software, or CNMS. CNMS provides network support for a
large number of devices under a Microsoft Windows oper
ating environment.
0110 Under CNMS, each device on the network is Sup
ported by a distinct product management module, or PMM.
The PMMs are designed to run in a number of operating
environments. For example, CNMS runs under Windows,
but, from a web browser, a user can also access CNMS on
a web server. The PMMs may be used in either environment.
The use of the term “PMM’ throughout this disclosure
should be understood to encompass management modules,
which might also be termed Software plug-ins.
0111. As part of CNMS, a graphical user interface pro
vides a visual representation of the device Supported by each
PMM. Newer PMMs are typically written using the Java
programming language. The core CNMS, however, is writ
ten using the Win32 APII. Thus, for many if not most of the
Screens that appear on a graphical user interface of CNMS,
Some dialogs are Win32-based while others are Java-based.
Thus, the illustrative System provides a mechanism for
communication between these different dialogs.
0112 FIG. 10 is a screen shot of a Java-based dialog 300
before being integrated into a native application 160, as
described above. The name of the Java-based dialog 300 is
“PMM Session Debug,” as shown at the top of the dialog.
FIG. 10 shows how the Java-based dialog contains a Java
icon 302, which looks like a steaming cup of coffee. The
Java icon 302 is ideally replaced with an icon representative
of the native application 160, once the Java-based dialog 300
is incorporated with other dialogs of the native application
160.

0113 FIG. 11 is a screen shot showing a Java-based
dialog 314, after being integrated into a native application
160. The native application 160 presents a native dialog 310,
entitled “Compaq Networking Management Software,” as
shown. This dialog 310 has an icon 312 in its upper left
corner. The Java-based dialog 314 is also shown with an icon
316. Although the dialog 314 is Java-based, the icon is not
the Java icon 302, the Steaming cup of coffee, as Seen in
FIG. 10. Instead, the Java icon 302 has been replaced with
an icon 316 which represents the device being managed,
here a 5422 gigabit Switch. Recall that this icon replacement
occurs once a FindWindow command is issued to the
operating system 170 to retrieve the handle of the Java
dialog (step 248 of FIG. 6).
0114 FIG. 11 also shows a dialog 318 which is written
in the C programming language. Like the CNMS dialog 310
and the Java-based dialog 314, the dialog 318 includes an
icon 320 at the top left of the dialog. Thus, FIG. 11 shows
how dialogs created in both C and Java can coexist on a
graphical display and appear to be from the same Source.
Finally, FIG. 11 also illustrates use of MDI in one embodi
ment. The dialog 310 is a parent window, while the dialogs
314 and 320 are child windows.

US 2004/0068735 A1

0115 The foregoing disclosure and description of the
various embodiments are illustrative and explanatory
thereof, and various changes in the components, code Seg
ments, Software interfaces and components, functions, meth
ods, classes, dialog boxes, native interfaces, and windows,
as well as in the details of the illustrated Software and
construction and method of operation may be made without
departing from the Spirit and Scope of the invention.

We claim:
1. A method of controlling a Java window, comprising the

Steps of:
creating an invisible window;
Sending a command for a Java window to the invisible
window; and

passing the command from the invisible window to the
Java window through a native interface.

2. The method of claim 1, the Sending Step comprising the
Step of

calling a messaging function with a handle of the invisible
window.

3. The method of claim 1, further comprising the step of:
executing the command by the Java window.
4. The method of claim 1, further comprising the step of:
executing the command by the invisible window.
5. The method of claim 1, wherein the command is a

command to close the Java window.
6. The method of claim 1, further comprising the step of:
fetching a handle of the Java window.
7. A method of configuring a Java window to be acces

Sible by a native application, comprising the Steps of:
executing a native application in a first thread;
launching a Java window in a Second thread;
returning to execution of the native application in the first

thread after the launching Step; and
registering the Java window with the native application.
8. The method of claim 7, the registering Step comprising

the step of:
providing a text name of the Java window to the native

application.
9. The method of claim 7, the registering Step comprising

the step of:
executing a native interface call to the native application
by the Java window.

10. The method of claim 7, further comprising the step of:
loading a Java Virtual machine by the native application.
11. The method of claim 7, wherein the native application

is network management Software and the Java window is a
product management module window.

12. A computer System adapted for Java window control
by a native application, comprising:

a Java virtual machine having a native interface;
an operating System coupled to the Java virtual machine;

and

a native application coupled to the operating System,

Apr. 8, 2004

wherein the native interface, the operating System, and the
native application are configured to perform the fol
lowing Steps:
executing the native application in a first thread;
launching a Java window in a Second thread;
returning to execution of the native application in the

first thread after the launching Step; and
registering the Java window with the native applica

tion.
13. The computer System of claim 12, the native interface,

the operating System and the native application being con
figured to perform the further Steps of:

creating an invisible window;
Sending a command for the Java window to the invisible
window; and

passing the command from the invisible window to the
Java window through the native interface.

14. The computer System of claim 13, the Sending Step
comprising:

calling a messaging function with a handle of the invisible
window.

15. The computer system of claim 13, the native appli
cation, the operating System, and the native interface con
figured to perform the Step of

executing the command by the Java window.
16. The computer system of claim 13, the native appli

cation, the operating System, and the native interface con
figured to perform the Step of

executing the command by the invisible window.
17. The computer system of claim 13, wherein the native

application is network management Software and the Java
window is a management module window.

18. The computer System of claim 12, the launching Step
comprising the Step of:

loading the Java virtual machine by the native application.
19. The computer System of claim 12, the registering Step

comprising the Step of:
executing a call by the Java window to the native appli

cation through the native interface.
20. The computer System of claim 12, the registering Step

comprising the Step of:
providing a text name of the Java window to the native

application.
21. The computer System of claim 12, further comprising:
a processor coupled to the operating System.
22. The computer System of claim 12, further comprising:
a graphical user interface containing the Java window.
23. The computer system of claim 12, wherein the native

application is a Windows application and the operating
System is a Windows operating System.

24. The computer system of claim 12, wherein the native
application is network management Software and the Java
window is a product management module window.

25. A computer System adapted for Java window control
by a native application, comprising:

a means for executing a native application in a first thread;
a means for launching a Java window in a Second thread;

US 2004/0068735 A1

a means for returning to execution of the native applica
tion in the first thread after launching the Java window;

a means for calling the native application by the Java
window; and

a means for registering the Java window with the native
application.

26. The computer System of claim 25, further comprising:
a means for loading a Java Virtual machine by the native

application.
27. The computer system of claim 25, the means for

calling comprising:

a means for executing a native interface call to the native
application by the Java window.

28. The computer system of claim 25, the means for
registering comprising:

a means for providing a text name of the Java window to
the native application.

29. The computer system of claim 25, further comprising:
a Video display containing a graphical user interface to

display the Java window.
30. A computer system adapted for Java window control

by a native application, comprising:

a means for creating an invisible window;
a means for Sending a command for the Java window to

the invisible window; and

a means for passing the command from the invisible
window to the Java window through a native interface.

31. The computer system of claim 30, the means for
Sending comprising:

a means for calling a messaging function with a handle of
the invisible window.

32. The computer system of claim 30, further comprising:

a means for executing the command by the Java window.
33. The computer system of claim 30, further comprising:

a means for executing the command by the invisible
window.

34. The computer system of claim 30, further comprising:
a Video display having a graphical user interface to

contain the Java window and the invisible window.

Apr. 8, 2004

35. A processor readable medium, comprising:
code to create an invisible window;
code to Send a command for a Java window to the

invisible window; and

code to pass the command from the invisible window to
the Java window through a native interface connection.

36. The processor readable medium of claim 35, the code
to Send a command comprising:

code to call a messaging function with a handle of the
invisible window.

37. The processor readable medium of claim 35, further
comprising:

code to execute the command by the Java window.
38. The processor readable medium of claim 35, further

comprising:

code to execute the command by the invisible window.
39. A processor readable medium, comprising:
code to execute a native application in a first thread;
code to launch a Java window in a Second thread;

code to return to execution of the native application in the
first thread after launching the Java window;

code to call the native application by the Java window;
and

code to register the Java window with the native appli
cation.

40. The processor readable medium of claim 39, tie code
to register the Java window comprising:

code to provide a text name of the Java window to the
native application.

41. The processor readable medium of claim 39, the code
to call the native application comprising:

code to execute a native interface call to the native
application by the Java window.

42. The processor readable medium of claim 39, further
comprising:

code to load a Java Virtual machine by the native appli
cation.

