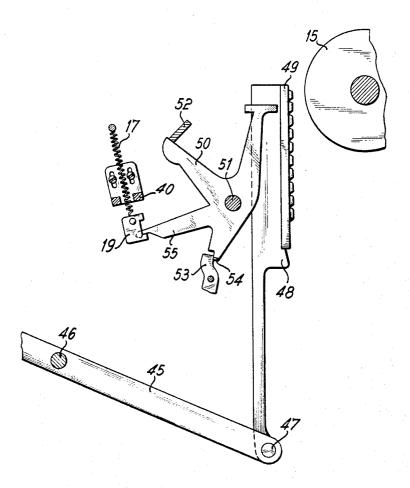

PRINT MEMBER ACTUATORS WITH LOST MOTION COUPLING MEANS

Filed April 28, 1967

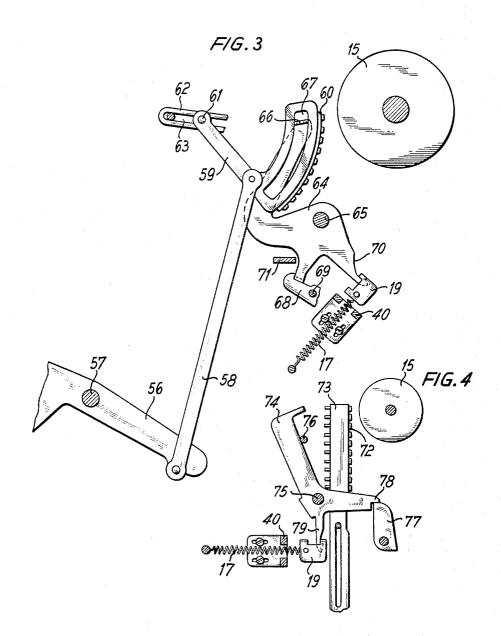
Sheet _/_ of 3



PRINT MEMBER ACTUATORS WITH LOST MOTION COUPLING MEANS

Filed April 28, 1967

Sheet 2 of 3



MYENTOR
Milly Johnson
Milly Johnson
Milly Johnson
Milly Johnson
Milly Johnson

PRINT MEMBER ACTUATORS WITH LOST MOTION COUPLING MEANS

Filed April 28, 1967

Sheet <u>3</u> of 3

INVENTOR

Montage Collins

1

3,420,165
PRINT MEMBER ACTUATORS WITH LOST
MOTION COUPLING MEANS
Willy Kohmann, Villingen, Black Forest, Germany,
assignor to Kienzle Apparate G.m.b.H., Villingen,
Germany
Filed Apr. 28, 1967, Ser. No. 634,739

Claims priority, application Germany, Apr. 29, 1966, K 59,121

U.S. Cl. 101—93 Int. Cl. B41j 9/10 13 Claims ₁₀

ABSTRACT OF THE DISCLOSURE

Ordinal printing members or printing hammers for driving type carriers to a printing position, are driven by springs through lost motion couplings which are stopped shortly before the type carriers arrive in the printing position so that the printing members and type carriers are disconnected from the springs and move by inertia into the printing position.

Background of the invention

The present invention relates to a multi order printer of the type used in calculators and data processing machines and having individually settable type carriers provided with types representing the digits. The type carriers are set to a selected digital position by the setting means of the machine and returned to an initial position after the type carriers have simultaneously made imprints. The printing force is derived from force accumulators, and more particularly biasing means in the form of springs which urge the set type carriers to the printing position. As soon as the type carriers are released, the springs move the type carriers rapidly toward the printing area of a platen.

Due to the fact that the type carriers are driven by springs, it occurs frequently that the type carriers bounce 40 back from the platen and engage the printing area repeatedly, whereby ghost imprints may be produced, and a clear and sharp imprint cannot be obtained.

However, in modern data processing machines, it is desirable that the imprints can be automatically read out 45 by machines. It has been found that the imprints produced by the printers of the prior art cannot be accurately and reliably read out by machines due to the smudged contours of the printed characters which are formed of a main imprint and several ghost imprints.

Summary of the invention

It is one object of the invention to provide an ordinal printer which produces clear and sharp imprints suitable for being read out by a machine.

Another object of the invention is to provide a printer whose type carriers do not bounce back from the platen and produce no ghost imprints.

With these objects in view, the present invention provides a printer in which the ordinal type carriers are disconnected from the driving biasing means and move by inertia when engaging the printing area.

More particularly, in accordance with the invention, the biasing means which drive the type carriers toward the printing position, are disconnected from the same 65 shortly before the type carrier impinge the printing area so that the imprint is made only due to the inertia of the moving parts and the entire kinetic energy is absorbed by the platen during the first impact of the types.

One embodiment of the invention relates to a printer 70 which has an ordinal set of printing units. Each printing unit is settable to a plurality of digital positions in which

2

different selected types are operative, and is mounted for movement between a position of readiness in which the selected type is spaced from the printing area, and a printing position. Lost motion coupling means connect the printing units with biasing means so that the same urge the printing units into the position of readiness and beyond the same toward the printing position. Control means hold the printing units in the position of readiness, and when the control means are released, the printing units are moved by the biasing means toward the printing position.

Stop means stop the lost motion coupling means shortly before the printing units have reached the printing position. In this manner, the force of the biasing means is taken up by the stop means, while the lost motion coupling means permits the printing units to move by inertia to the printing position without any influence of the biasing means on such a motion. In this manner, bouncing of the types on the printing area is prevented.

In the preferred embodiment of the invention, the biasing means include an ordinal set of springs respectively connected by lost motion couplings with the printing units, and each lost motion coupling cooperates with an individual adjustable stop so that the moment in which the inertia movement of the printing units toward the printing position starts can be exactly determined.

Each printing unit includes a type carrier means movable between ten digital positions, and also movable between the position of readiness and the printing position, and further includes a printing means or hammer connected by a lost motion coupling with a spring of the biasing means. When the printing hammers are released, they move to an operative position engaging the type carrier means and driving the same toward the printing position. When during such movement, the lost motion couplings are stopped by the stop means, the printing hammers move further due to inertia until they have driven the type carrier means into the printing position.

Consequently, the last part of the printing movement of the printing hammers and type carrier means is due to the kinetic energy of the same, and is not produced by springs so that, particularly by adjustment of the stops, impact forces can be obtained which are completely consumed by a single impact so that bouncing back and repeated imprints are reliably prevented.

The present invention can be applied to printers having different kinds of type carriers, for example type carrier wheels, type carrier bars, type carrier segments, and carrier bars having type pins mounted thereon.

In a preferred embodiment of the invention, the lost motion coupling includes a lost motion member having an elongated slot in which a portion of a printing hammer is movable. As long as the spring pulls the lost motion member, the coupling portion of the printing hammer engages one end of the opening. When the lost motion member is stopped by a stop, the printing hammer can continue it movement while its coupling portion moves in the opening of the lost motion member. During this inertia movement of the printing hammer, the entire spring force is taken up by the stop against which the spring pulls the lost motion member.

The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawing.

Brief description of the drawing

FIGS. 1a, 1b, and 1c are fragmentary side views,

partially in section, illustrating one embodiment of the invention in different operational positions;

FIG. 2 is a fragmentary side view, partially in section, illustrating a second embodiment of the invention, parts which are shown in detail in FIG. 1a being omitted in 5 FIG. 2 for the sake of simplicity;

FIG. 3 is a fragmentary side view, partially in section, illustrating a third embodiment of the invention, parts shown in FIG. 1a being omitted in FIG. 3 for the sake

of simplicity; and

FIG. 4 is a fragmentary side view, partially in section, illustrating a fourth embodiment of the invention, parts illustrated in FIG. 1a being omitted for the sake of

Description of the preferred embodiments

Referring now to the drawings, and particularly to FIGS. 1a, 1b and 1c, the invention is applied to a printer having an ordinal set of printing units, only one of which is shown in the drawing. Each printing unit includes a support lever 6 carrying meshing gears 2, 3 and 4, gear 4 being fixed to a type carrier wheel 5 having ten digit types and being turnable on support lever 6 between ten digital positions in which different types are located opposite a printing area of a platen 15.

Each support lever 6 is mounted on a bracket 10 on the frame of the machine for angular movement about a pivot 9 turnable between the position of readiness illustrated in FIG. 1a and the printing position illustrated in FIG. 1c.

Gear 2 of each ordinal type carrier means meshes with an ordinal setting rack bar 1 which is operated by known apparatus to assume a selected digital position for setting the type carrier wheel 5 to the corresponding digital position. For example, setting rack bars 1 may 35 sense the position of set pins of a pin carriage. The movement of the setting rack bars 1 is carried out while the type carrier 5 is spaced from the platen 15, as shown in FIG. 1a. A printing lever 8 is mounted on support lever 6 for pivotal movement about a pivot 7, and can move 40 a small angular distance between the position shown in FIG. 1a in which its engaging portion 14 is spaced from gear 4, and the position shown in FIG. 1b in which engaging portion 14 engages a notch between two teeth of gear 4 to arrest type carrier wheel 5 in a selected digital position. During further movement of support 45 lever 6 with type carrier wheel 5 to the printing position shown in FIG. 1c, printing lever 8 moves with support lever 6.

All printing levers 8 have projections 11 cooperat- 50 ing with a common control bar 12 which is operated by the drive means of the machine to perform a reciprocating motion for moving the printing levers 8 from the operative position shown in FIG. 1c to the initial position shown in FIG. 1a in which support levers 6 abut a common stop bar 43. Each printing lever 8 has a coupling portion 16 located in an elongated opening 23 of a lost motion member 19 which has two lateral walls 20 and 21 and a connecting wall 22, as best seen in FIGS. 1b and 1c in which the lost motion member 19 is illustrated in a perspective view. Each lost motion member 19 is connected by a biasing spring 17 to a prong of a stop comb 18 which is secured to the frame of the machine. In the position of FIG. 1a, one end of the opening 23 engages coupling portion 16 of printing lever 8, and the respective spring 17 urges the printing lever 8 to turn in clockwise direction, but since printing lever 8 is blocked by control bar 12, and only limited angular movement is possible between support lever 6 and printing lever 8, support lever 6 remains in the position shown in FIG. 1a as long as the respective printing lever 8 is blocked by control bar 12.

Each printing lever 8 has a transverse projection 24 engaged by a shoulder of an angular trigger lever 25 lever 25 with a releasing lever 28. All trigger levers 25 are mounted for turning movement about a shaft 27, and all releasing levers 28 are mounted for turning movement about a shaft 29. Shaft 29 is mounted on a Ushaped part 30 which is turnable about a fulcrum 31. Shaft 29 is engaged by the arm 33 of a rotary cam 32

which is driven from the main shaft of the machine during each machine cycle to lower shaft 29 with all release levers 28.

In the initial position of the setting rack bars 1, a projecting stop 34 on each rack bar engages the corresponding release lever 28 so that the same assumes the position shown in FIG. 1a in which a coupling portion 36 is spaced from a corresponding coupling por-

tion 26 on the respective trigger lever 25.

When the setting rack bars 1 are moved to the right to a digital position to set the carrier wheels 5 to corresponding digital positions, stop 34 moves away from release lever 28 so that the respective release levers are turned by springs 35 to a position in which coupling portion 36 is located above coupling portion 26. Consequently, during operation of cam 32, when cam fingers 33 move shaft 29 downward together with release levers 28, coupling portions 36 engage coupling portions 26 and turn trigger levers 25 in counterclockwise direction so that the same release projecting portions 24 of the printing levers 8 in the same order, permitting the biasing means 17 to turn through lost motion coupling means 19, 16, the respective printing unit to the printing position as soon as control means 12 has moved to the right as viewed in FIG. 1a under the action of cam means which operate in synchronism with cam 32.

Before the printing operation is carried out, the ordinal setting rack bars 1 are moved to the right to digital positions which may be different in each order so that the type carrier wheels 5 assume corresponding digital positions. Printing levers 8 are held by control means 12 so that springs 17 cannot turn printing levers 8 through lost motion coupling means 19, 16.

Before the setting rack bars are displaced to set the type carrier wheels 5, the stops 34 hold the release levers 28 in the position illustrated in FIG. 1a so that springs 35 hold the trigger levers in the illustrated position locking the printing levers 8. After the type carrier wheels 5 have been set by the setting rack bars 1, the release levers 28 are no longer held by stops 34 and turn to a position, not illustrated, in which coupling portions 36 are located directly above coupling portions 26.

Following the shifting of the setting rack bars 1 and the setting of type carrier wheels 5, cam means, not shown, move control bar 12 to the right as viewed in FIG. 1a, and shortly thereafter, cam fingers 33 move shaft 29 with releasing levers 28 downward so that coupling portions 36 engage coupling portions 26 of trigger levers 25 which are turned in counterclockwise direction to release projections 24, permitting printing lever 8 to turn in clockwise direction under the action of biasing means 17 and lost motion coupling means 19 until engaging portion 14 engages gear 4 and turns the respective support lever 6 with the type carrier wheel 5. Coupling means 19, 16 first turns printing levers 8 about pivot 7 until engaging portion 14 engages a notch in gear 4, whereupon further turning of coupling portion 16 of printing lever 8 results in turning of support lever 6 so that type carrier wheel 5 approaches the printing area of platen 15.

Before the printing operation can take place, lost motion members 19 engage stops 40 so that the entire force of springs 17 is transmitted to stops 40 and no longer acts on the type carrier means 2 to 8. However, the inertia of the masses of the type carrier means 2 to 8 causes continued movement of the same, while coupling arm 16 of printing lever 8 moves freely in the elongated opening 23 of lost motion member 19. While under the action of a spring 35 connecting each trigger 75 the type carrier means 2 to 8 is thus completely discon-

the respective printing means by the lost motion coupling means 19, 55.

nected from the respective spring 17, the selected type on type carrier wheel 5 makes an imprint on the printing area of platen 12, as shown in FIG. 1c. The greater part of the kinetic energy of the type carrier means is consumed by the impact, and the remaining part causes 5 motion of the type carrier means away from the printing area. Preferably, the elongated opening 23 has such a length that coupling portion 16 does not engage any part of lost motion member 19 during the recoil of the type carrier means 2 to 8. However, should the recoil be unusually strong, coupling portion 16 will engage the end portion of opening 23 whereby the remaining kinetic energy is consumed, and type carrier wheel 5 can under no circumstances engage the printing area a second time.

Stop 40 is part of a bracket having elongated slots 41 15 through which screws 42 pass to secure stop 40 to the frame of the machine. Stop 40 is thus adjustable so that exact moment in which lost motion member 19 is stopped by stop 40 can be exactly determined. In this manner, the distance through which the type carrier means 2 to 8 20 move due to inertia only, can be selected.

After the imprints have been made, control bar 12 performs a reciprocating stroke in the opposite direction, engaging projections 11 of printing levers 8 and returning 14 are spaced from gear 4, and then to the position shown in FIG. 1a in which trigger levers 25 snap over projections 24 on printing levers 8, holding the same and thereby the type carrier means 2 to 8 in the position of readiturn with printing levers 8 until abutting stop 43, whereupon engaging portion 14 is separated from gear 4 during further movement of the respective printing lever 8.

Coupling portions 16 of printing levers 8 move lost motion member 19 away from stop 40 and remain tensioned by spring 17 ready for the next following operation.

In the embodiment of FIG. 2, each printing unit includes a type bar 48 having types spaced along the length thereof, and a setting lever 45 turnable about a shaft 46 for setting the respective type bar to a digital position in which a selected type having a selected digit thereon is located opposite the printing area of platen 15. A setting lever 45 is provided for each order so that the type bars 48 form an ordinal set. Levers 45 may have gear segments, not shown, controlled by the gears of a register.

A common shaft 51 supports an ordinal set of printing levers 50. Each printing lever 50 is associated with one of the type bars 48 and has a hammer portion located in the region of the operative type 49 which is located 50 opposite the printing area of the platen. A control bar 52 extends across all printing levers 50, and cooperates with arms of the same to hold the same in the illustrated position of readiness against the action of springs 17 which are connected to coupling arms 55, respectively, 55 by lost motion members 19, as described with reference to FIG. 1a. An adjustable stop 40 is provided for each lost motion member 19.

Each printing lever 50 has another arm formed with a transverse projection 54 corresponding to projection 24 of the embodiment of FIG. 1a. Projection 54 of each printing lever is engaged by a trigger lever 53 which cooperates with a release lever, not shown, in the manner described for trigger lever 25 and release lever 28 of FIG. 1a, a spring, not shown, connecting the release lever with the trigger lever 53 in each order. The common shaft 29 of the release levers 28 is operated by cam means 32, 33, as described with reference to FIG. 1a, but not shown in FIG. 2. In the position of readiness illustrated in FIG. 2, type bar 48 with types 49 is spaced from the printing area, and the hammer portion of each printing lever 50 is spaced from the type bar since the printing levers are held by the common control bar 52, and by the individually acting trigger levers 53, against

At the beginning of the machine cycle, setting levers 45 are operated to move to digital positions for setting the type carriers 48 of the several orders to selected digital positions. At the same time, a cam, not shown, moves control bar 52 to the right as viewed in FIG. 2, so that printing levers 50 are only held by trigger levers 53, abutting projections 54. When all type bars 48 are in the desired digital positions, cam 32 operates the release levers, as explained with reference to FIG. 1a, so that all trigger levers 53 release the printing levers 50 which are urged by biasing springs 17 to turn in clockwise direction so that the hammer portions of the printing levers engage, respectively, a shoulder of the respective type bar 48 to turn the same about pivot 47 toward the printing position. Shortly before a type face engages the printing area of platen 15, lost motion member 19 reaches stop 40 so that the force of biasing springs 17 no longer acts on the printing levers 50 which, however, continue the movement due to inertia together with type bars 48 so that the same assume the printing position engaging the printing area.

By adjustment of the position of stops 40, it is possible the same first to the position in which engaging portions 25 to provide just sufficient kinetic energy in the moving members 50 and 48 that the impact force is consumed by the impact. At the moment of impact, coupling portion 55 is spaced from the ends of the elongated opening in lost motion member 19, and if a printing lever 50 bounces ness. During such return movement, support levers 6 first 30 back, coupling portion 55 is stopped by the end of the elongated opening in lost motion member 19 so that it cannot make a second imprint on the printing area. When the printing operation has been completed, control bar 52 is again moved to the left as viewed in FIG. 2 and turns all printing levers 50 so that springs 17 are tensioned until trigger levers 53 again engage portions 54 and lock the printing levers in a position ready for the next following operation.

In the embodiment of FIG. 3, type carrier levers 59 have segment shaped portions provided with a series of digital types 60. Each type carrier lever 59 has a pivot pin at one end located in a guideway 63 of a U-shaped supporting means 62 which is turnable about a shaft. Consequently, each carrier lever is turnable about pivot 61 between digital positions in which different types are located opposite the printing area, and also movable in the direction of the guideway 63 toward and away from platen 15.

Each carrier lever is connected by a link 58 to the setting lever 56 of the respective order, all setting levers 56 being mounted on a common shaft 57 and operated in a conventional manner to set the ordinal set of carrier levers to the required digital positions.

Each segment portion has an arcuate slot 67 in which a transverse lug 66 of a printing lever 64 is guided. The center of the arc of slot 67 is located in pivot 61 so that the carrier levers can be turned to the selected digital positions without influencing the position of the respective printing lever 64.

All printing levers 64 are mounted on a common shaft 65 and have coupling portions located in elongated openings of a lost motion member 19 which is connected by spring 17 to a fixed point of the frame. Each lost motion member 19 is spaced from the adjustable stop 40 in the position of readiness of the device shown in FIG. 3.

Each printing lever 64 has an arm with a transverse projection engaged by a trigger lever 68, all trigger levers 68 being mounted on a common shaft 69 and controlled by release levers and a cam of the machine as described with reference to FIG. 1a.

After all carrier levers have been set to selected digital positions by setting levers 56, a control bar 71, cooperating with all printing levers 64 is moved to the left, so that printing levers 64 are held in the position of readiness the action of biasing springs 17 which are connected with 75 only by trigger levers 68. During the machine cycle, a cam

6

controls release levers 68 to release the trigger levers 68, as explained with reference to FIG. 1a, so that springs 17 move lost motion members 19 toward stop 40 whereby the printing levers 64 are turned to move carrier levers toward the printing position engaging the printing area, while pivot pin 61 moves in guideway 63. Shortly before the respective selected type of the carrier levers 59 engages the printing area, lost motion member 19 abuts stop 40 so that springs 17 no longer act on the printing levers and carrier levers. The movement into the printing position takes place due to the inertia of printing levers 64 and carrier levers 59, and by adjusting the position of stops 40, the kinetic energy of the moving masses can be determined so that the kinetic energy is completely or almost completely consumed by a single impact and 15 no ghost imprints are produced.

In the embodiment of FIG. 4, a type bar 73 has a digital set of type pins 72 mounted in bores for shifting movement between the position of readiness shown in FIG. 4 and a printing position in which the type on the 20 head of the respective type pin engages the printing area on platen 15.

A set of printing levers or printing hammers 74 is mounted on a common shaft 75. Each printing hammer 74 has a portion 78 cooperating with a trigger lever 77, 25 and a coupling arm 79 located in an elongated opening of a lost motion member 19 which is biased by spring 17 toward an adjustable stop 40. Each type bar 73 has elongated slots through which guide rods pass, so that the type bars 73 are guided for rectilinear movement between 30 digital positions.

When a printing operation is started, setting means, not shown, which may be constructed in the manner of setting levers 56, and are connected with the type bars 73, are operated to set each type bar 73 to a selected digital posi- 25 tion in which a selected type pin 72 is located opposite the printing area. Thereupon, control bar 76 is moved by the cams of the machine toward the right as viewed in FIG. 4 so that printing hammers 74 on which the forces of spings 17 act, are held only by the trigger levers 77. 40 At a proper moment of the machine cycle, trigger levers 77 release printing hammers 74 which are urged by springs 17 to hit the respective type pin 72 which is in the position of readiness located opposite the printing area at the level of the head of the printing hammer 74.

Before the type face of the respective type impinges the printing area, lost motion member 19 is stopped by stop 40 so that the last part of the movement of the printing hammers 74 and of type pins 72 takes place due to the inertia of the moving masses.

As in the other embodiments, stops 40 are adjusted so that the kinetic energy of the moving masses is sufficient to produce a single imprint.

It will be understood that each of the elements described above, or two or more together, may also find $_{55}$ a useful application in other types of multi order printers differing from the types described above.

While the invention has been illustrated and described as embodied in a printer with ordinal type carriers and coupling means in each order, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.

Without further analysis, the foregoing will so fully 65 reveal the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that, from the stand-point of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention 70 and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.

What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims.

I claim:

1. A printer comprising, in combination, an ordinal set of printing units, each printing unit including a type carrier means having a plurality of types and being settable to a plurality of digital positions in which different selected types are located opposite a printing area, and a printing means having an inoperative position and an operative position engaging said type carrier means; means mounting each printing unit for movement between a position of readiness in which said type carrier means is spaced from said printing area and said printing means is in said inoperative position, and a printing position in which the selected type engages the printing area and said printing means is in said operative position; biassing means; movable lost motion coupling means connecting said printing means with said biassing means so that the same urges said printing means toward said operative position; control means movable between a holding position for holding said printing means in said inoperative position and said printing unit in said position of readiness, and a releasing position; means supporting said control means for movement; means for actuating said control means to release said printing means so that said biassing means moves said lost motion means which move said printing means to said operative position whereby said printing means in said operative position move said type carrier means to engage said printing area in said printing position; and stop means for stopping said lost motion coupling means before said type carrier means engage said printing area so that the force of said biassing means acting on said lost motion coupling means is taken up by said stop means while said lost motion coupling means permits said printing means with said type carrier means to move by inertia together to said printing position in which said printing means are separated by said lost motion coupling means from said biassing means whereby bouncing of said type carrier means on said printing area does not cause a second imprint.

2. A printer as claimed in claim 1 comprising means mounting said stop means for adjusting movement so that said lost motion coupling means is stopped when said type carrier means is spaced a selected distance from the printing area whereby the impact force can be adjusted.

3. A printer as claimed in claim 2 wherein said lost motion coupling means includes a member connected with said biassing means and having a slot, and wherein each printing means has a coupling portion located in said slot and abutting one end of the same in said position of readiness, and being in said printing position located intermediate the ends of said slot spaced such a distance from said one end that bouncing of said type carrier means with said printing means cannot cause reengagement of said one end with said printing member.

4. A printer as claimed in claim 2 wherein said biasing means include an ordinal set of biasing members; and wherein said lost motion coupling means include an ordinal set of lost motion couplings respectively connected with said printing units.

- 5. A printer as claimed in claim 2 wherein said stop printing means provided with spring loaded lost motion 60 means includes an ordinal set of stops, each stop being adjustable to determine the moment in which inertia movement of said printing units toward said printing position starts.
 - 6. A printer as claimed in claim 2 wherein said type carrier means includes a support lever mounted for pivotal movement, and a type carrier wheel mounted on said support lever for turning movement, said support lever being movable with said type carrier wheel between said position of readiness and said printing position; and wherein said printing means in said operative position engage said type carrier wheels for aligning the types of the same.
 - 7. A printer as claimed in claim 3 wherein each printing means includes a printing lever mounted for pivotal 75 movement on each support lever and engaging in said

9

operative position the respective type carrier wheel; and wherein said lost motion coupling means includes an ordinal set of lost motion couplings respectively connecting said printing levers with said biasing means.

8. A printer as claimed in claim 2 wherein said type 5 carrier means includes a type bar having said types spaced along the length thereof and being longitudinally shiftable between said digital positions; comprising a shaft mounting said printing means for turning movement, each printing means having an engaging portion abutting in said operative position said type bar in the region of the selected type.

9. A printer as claimed in claim 8 wherein said lost motion coupling means include an ordinal set of lost motion couplings respectively connected with said printing means; and wherein said stop means include an ordinal set of adjustable stop means respectively cooperat-

ing with said lost motion couplings.

10. A printer as claimed in claim 2 wherein each type carrier means includes a carrier lever having a pivot at 20 one end and a type carrier segment on the other end; comprising supporting means having a guide way for said pivot so that said carrier lever turns between said digital positions about said pivot, and moves to said printing position with said pivot moving along said guide way; 25 and wherein each printing means ichludes a printing lever having an engaging portion abutting said type segment in said operative position in the region of the selected type; and comprising a shaft supporting said printing levers for turning movement; said printing levers being 30 connected with said lost motion coupling means.

11. A printer as claimed in claim 10 wherein said lost motion coupling means include an ordinal set of lost motion couplings respectively connected with said printing levers; and wherein said stop means includes an ordinal set of adjustable stops respectively cooperating with said

lost motion couplings.

10

12. A printer as claimed in claim 2 wherein said type carrier means includes a type bar mounted for longitudinal movement between said digital positions and having a plurality of digital type pins mounted thereon for movement between said position of readiness and said printing position; comprising a shaft; and wherein each printing means includes a printing lever mounted on said shaft for turning movement and connected with said lost motion coupling means, each printing lever having an engaging portion engaging in said operative position the selected type pin for moving the same to said printing position, said printing levers moving by inertia when said type pin arrives in said printing position.

13. A printer as claimed in claim 12 wherein said lost motion coupling means include an ordinal set of lost motion couplings respectively connected with said printing levers; and wherein said stop means includes an ordinal set of adjustable stops respectively cooperating with said

lost motion couplings.

References Cited

UNITED STATES PATENTS

1,652,507	12/1927	Shipley 101—96
1,730,147	10/1929	Horton 101—93
1,954,618	4/1934	Coxhead et al 101—93
2,100,213	11/1937	Garbell 101—93
2,117,451	5/1938	Robertson 101—93
2,346,265	4/1944	Mehan 101—96
2,348,789	5/1944	Crosman 101—93
2,457,050	12/1948	Lambert 101—93
2,779,267	1/1957	Chall 101—96
2,800,074	7/1957	Busch et al 101—96
2,821,135	1/1958	Larrabee 101—287

WILLIAM B. PENN, Primary Examiner.