POWER INVERTER WITH MULTI-FED ON-BOARD POWER SUPPLY

Abstract: An inverter (1) for feeding electric energy from at least one DC power source (3) into a DC power grid (4) comprises a DC/AC converter (5) connectable to the DC power grid (4); at least one DC/DC converter (9) arranged upstream of the DC/AC converter (5) and providing a galvanic isolation; a DC voltage link (10) at the input of the at least one DC/DC converter (9) and connectable to the at least one DC power source (3); at least one further DC voltage link (6) which is galvanically isolated from the first DC voltage link (10) by the DC/DC converter (9); on-board voltage rails (15) supplying a controller and other auxiliary devices of the inverter (1) with electric energy; and an on-board supply unit (14). The on-board supply unit (14) is configured and adapted to feed the electric energy into the on-board voltage rails (15) both out of the first DC voltage link (10) and out of the at least one further DC voltage link (6).
POWER INVERTER WITH MULTI-FED ON-BOARD POWER SUPPLY

CROSS REFERENCE TO RELATED APPLICATIONS

FIELD OF THE INVENTION

The present invention relates to a power inverter for feeding electric energy from a DC power source into an AC power grid. More particularly, the present invention relates to a power inverter comprising a controller, which for example controls the switches of inverter bridges of the inverter in a coordinated way, and an on-board power supply supplying this controller as well as other auxiliary devices with electric energy.

The DC power source may particularly be a photovoltaic generator or a wind power plant. The AC power grid may be a public power grid or an island grid. The number of loads in the AC power grid is not important. Thus, the power inverter may be used for supplying a single load with electric energy from of the power source.

BACKGROUND OF THE INVENTION

In power inverters for feeding electric energy from a DC power source into an AC power grid, it is known to galvanically isolate the AC power grid from the DC power source by means of a DC/DC converter. Such a DC/DC converter is connected upstream of a DC/AC converter of the inverter and galvanically isolates a DC voltage link at its input from a DC voltage link between the DC/DC converter and the DC/AC converter, for example by means of a high frequency transformer or by means of a high frequency AC voltage link with galvanically...
isolating capacitors. A further converter stage, like for example a boost or buck converter, may be provided between the DC power source and the DC voltage link at the input of the DC/DC converter. Typically, the capacitance of the DC voltage link at the input of the galvanically isolating DC/DC converter is smaller than the capacitance of the DC voltage link between the galvanically isolating DC/DC converter and the DC/AC converter, because a smaller buffer capacitance is sufficient for supplying the high frequency AC voltage link of the DC/DC converter as compared to supplying the inverter bridges of the DC/AC converter. When the inverter is switched off, however, the large capacitance of the DC voltage link between the DC/DC converter and the DC/AC converter is to be discharged within a defined interval of time in a controlled way for security reasons.

For the purpose of feeding on-board voltage rails of power inverters including the inverters described above, it is known to have an on-board supply unit which generates the required auxiliary voltages via a flyback converter out of a DC voltage which is present in a DC voltage link of the inverter. It is preferred to feed the on-board voltage rails out of a DC voltage link which is already loaded by a connected DC power source even prior to starting the inverter. It is also known to use the AC voltage of a connected AC power grid as an alternative power source for the on-board power supply.

EP 1 107 438 A2 discloses a balancing circuitry for two partial capacitances of a DC voltage link of a power inverter, which are connected in series. In this balancing circuitry the partial voltages at the partial capacities are each used for feeding one primary winding of a flyback converter, which is used as an on-board supply unit feeding on-board voltage rails of the inverter.

EP 2 058 921 A1 discloses a power inverter for feeding electric energy from a DC power source into an AC power grid. Here, a charger/discharger circuit is arranged between a DC voltage link at the input of a DC/AC converter of the power inverter and an accumulator to load this accumulator out of the DC voltage link and to pre-charge the DC voltage link out of the
accumulator if needed. Further, the accumulator serves as a secondary power source of an on-board power supply of this known inverter.

There still is a need for a power inverter for feeding electric energy from a DC power source into an AC power grid, which comprises optimized on-board power supply.

SUMMARY OF THE INVENTION

The present invention relates to a power inverter for feeding electric energy from at least one DC power source into an AC power grid, the inverter comprising: a DC/AC converter configured and adapted for being connected to the AC power grid; at least one DC/DC converter arranged upstream of the DC/AC converter and providing a galvanic isolation between its input and output; a first DC voltage link, which is arranged at the input of the at least one DC/DC converter, and which is configured and adapted for being connected to the at least one DC power source; at least one further DC voltage link, which is arranged between the DC/DC converter and the DC/AC converter, and which is galvanically isolated from the first DC voltage link by the DC/DC converter; a controller; on-board voltage rails configured and adapted to supply the controller with electric energy; and an on-board supply unit configured and adapted to feed the electric energy into the on-board voltage rails; wherein the on-board supply unit is configured and adapted to feed the electric energy both out of the first DC voltage link and out of the at least one further DC voltage link.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be understood better with reference to the following drawings, in which emphasis is placed upon clearly illustrating the principles of the present invention. In the drawings, like reference numerals designate corresponding parts throughout the several views.
Fig. 1 illustrates a first embodiment of the power inverter.

Fig. 2 shows the power inverter according to Fig. 1 with further details of its on-board power supply.

Fig. 3 shows an example of a voltage controller of the on-board power supply of the power inverter according to Fig. 1 and 2; and

Fig. 4 illustrates a second embodiment of the power inverter.

DETAILED DESCRIPTION

In the power inverter of the present invention, the on-board voltage rails are fed with electric energy by the on-board supply unit out of the first DC voltage link at the input of the at least one DC/DC converter, on the one hand, and out of at least one further DC voltage link which is galvanically isolated from the first DC voltage link, on the other hand. The at least one further DC voltage link may be the DC voltage link at the input of the DC/AC converter. The supply out of the first DC voltage link at the input of the at least one DC/DC converter has the advantage that this DC voltage link is directly loaded by the DC power source with increasing output voltage of the DC power source, and that, thus, a link voltage is available already prior to activating the inverter. Further, electric energy which is taken out of this DC voltage link has not yet passed the at least one DC/DC converter, which is advantageous with regard to the efficiency of the on-board power supply out of the DC power source. The alternative feeding of the on-board voltage rails with electric energy out of the at least one further DC voltage link between the DC/DC converter and the DC/AC converter, on the other hand, has the advantage that it still allows a feeding of the on-board voltage rails even if the link voltage at the input of the DC/DC converter breaks down, because no more electric energy is forwarded by the connected DC power source, for example, due to a total breakdown of the DC power source. Further,
feeding the on-board voltage rails with electric energy out of the DC voltage link between the DC/DC converter and the DC/AC converter results in discharging this further link even if the adjacent DC/DC and DC/AC converters are switched off. Correspondingly, an additional discharge device, particularly a discharge resistor, which generates permanent power losses can be avoided. This increases the overall efficiency of the power inverter.

An on-board supply unit of the power inverter may primarily feed the on-board voltage rails and generate the required auxiliary voltages out of the first DC voltage link at the input of the DC/DC converter and only secondarily out of the at least one further DC voltage link. This ranking order in feeding the on-board voltage rails considers that the first DC voltage link is already loaded by the DC power source prior to starting the inverter. Further, use is made of the higher efficiency of the on-board power supply out of the first DC voltage link due to an avoided power conversion by the DC/DC converter. Additionally, drawing energy out of the further DC voltage link between the DC/DC converter and the DC/AC converter, which may, at acceptable efforts, not always be effected at a constant rate, superimposes a noise to the link voltage in this DC voltage link, which is preferably kept constant. This noise is reduced to a minimum, if electric energy is only taken out of this further DC voltage link, when this electric energy is not available from the first DC voltage link at the input of the DC/DC converter. In normal operation, however, this situation does not occur so that in normal operation the link voltage in the further DC voltage link between the DC/DC converter and the DC/AC converter is not disturbed.

The primacy of feeding the on-board voltage rails out of the first DC voltage link may, for example, be realized by means of a controller of the on-board supply unit, which closed-loop controls an on-board supply voltage present at the on-board voltage rails. This voltage controller may differently define the feeding powers fed into the on-board voltage rails out of the first DC voltage link and out of the further DC voltage link based on a difference between the actual value of the on-board supply voltage and a reference value. For example, different variables may be effective for the two different feeding powers of the on-board supply unit into the on-
board voltage rails. The voltage controller may particularly be adjusted in such a way that it first only increases the feeding power requested from the first DC voltage link at the input of the DC/DC converter, when the actual value of the on-board supply voltage drops below the reference value. If the difference between the actual value of the on-board supply voltage and the reference value nevertheless remains, the voltage controller also requests power from the further DC voltage link between the DC/DC converter and the DC/AC converter.

The voltage controller for the on-board supply voltage itself may first be supplied with electric energy out of the first DC voltage link at the input of the DC/DC converter, until the on-board supply voltage is present. Afterwards the voltage controller of the on-board supply unit may be supplied with electric energy by the on-board supply voltage.

All advantages of the power inverter due to its on-board power supply described above are particularly relevant, if a capacitance of the first DC voltage link at the input of the DC/DC converter is much smaller than the capacitance of the further DC voltage link between the DC/DC converter and the DC/AC converter. The original reason for having a big capacitance of the further DC voltage link between the DC/DC converter and the DC/AC converter is to keep the link voltage at the input of the DC/AC converter constant, even with the low-frequency power pulsation of single-phase DC/AC-converters. By also feeding the on-board voltage rails with electric energy out of the DC voltage link between the DC/DC converter and the DC/AC converter a considerable additional amount of electric energy is available to the on-board supply unit due to the high capacitance of this further DC voltage link. At the same time, feeding the on-board voltage rails out of the further DC voltage link replaces a discharge device which would have to be of large dimension to securely discharge the capacitance of the further DC voltage link within a defined period of time. With single-phase DC/AC-converters, the capacitance of the first DC voltage link at the input of the DC/DC converter will nearly always be less than 50% of the capacitance of the further DC voltage link between the DC/DC converter and the DC/AC converter. In the power inverter described here it will most often be less than...
25% of the capacitance of the further DC voltage link 10%. Often, the capacitance of the first
DC voltage link at the input of the DC/DC converter will be less than 10% or even less than 5%
of the capacitance of the further DC voltage link between the DC/DC converter and the DC/AC
converter.

In an actual embodiment of the power inverter, the on-board supply unit may comprise a
flyback converter fed out of the first DC voltage link at the input of the DC/DC converter and a
further flyback converter fed out of the further DC voltage link between the DC/DC converter
and the DC/AC converter. Alternatively, a single flyback converter with a single transformer may
be provided, which is fed both out of the first DC voltage link at the input of the DC/DC converter
and out of the further voltage link between the DC/DC converter and the DC/AC converter. Each
flyback converter may operate in a voltage mode or, as usual with switching power supplies
having a flyback converter, in a current mode control scheme.

For the purpose of combining the two branches of the on-board supply unit, the on-board
supply unit may generally have a transformer comprising two primary windings electrically
isolated with regard to each other, one of which is fed out of the first DC voltage link at the input
of the DC/DC converter, and the other of which is fed out of the further DC voltage link between
the DC/DC converter and the DC/AC converter. The primary windings isolated with regard to
each other do not challenge the galvanic isolation of the two DC voltage links out of which the
on-board voltage rails are fed. If the DC/DC converter provides a voltage transformation in
addition to the galvanic isolation between these two DC voltage links, so that the two link
voltages differ in general, the primary windings of the transformer of the on-board supply unit
may comprise a winding ratio which corresponds to 50% to 200%, particularly to 70% to
140% to the transformation ratio of the DC/DC converter. In other words, the winding ratio
should essentially be equal to the transformation ratio of the DC/DC converter.

If current is fed at the same time to both primary windings out of the first and the further
DC voltage link, a synchronisation of the currents fed to both primary windings of the
transformer of the on-board supply unit is useful. For this purpose, all switches via which the
primary windings are fed with current may be synchronized. If all these switches are controlled
by a single voltage controller for the on-board supply voltage, it is preferred with regard to the
galvanic isolation of the two DC voltage links on both sides of the DC/DC converter to transfer
at least one control signal from the voltage controller to at least one of the two galvanically
isolated primary windings via at least one optocoupler.

For the purpose of being able to activate the controller of the power inverter, even if no
DC power source is connected, or if, for example, a photovoltaic generator as the DC power
source does not provide electric energy at night for a longer period of time, the on-board supply
unit may also feed the on-board voltage rails with electric energy out of an AC power grid
connected to the DC/AC converter. Here, a smaller reference value for the on-board supply
voltage may be set in a voltage controller for the feeding power out of the AC power grid than in
the voltage controller for the feeding power out of the two DC voltage links. Thus, as long as the
on-board voltage rails is fed out of the DC voltage links, no feeding power into the on-board
voltage rails is requested from the AC power grid.

The on-board voltage rails may additionally be fed with electric energy out of any
additional link of the inverter. With regard to the various power sources of the on-board power
supply, it is, however, useful to have a ranking order starting at the top with that source(s) which
 corresponds to the lowest consumption of electric energy with regard to the primary production
of the electric energy.

The power inverter may also have one or more further converter stages between the DC
power source and the first DC voltage link at the input of the DC/DC converter, like for example
boost converters to which additional voltage links may be associated. Thus, the first DC voltage
link is not necessarily directly connected to the DC power source. However, no galvanic
isolation should exist between the DC power source and the first DC voltage link at the input of
the DC/DC converter, if the first DC voltage link shall be passively chargeable out of the DC power source, i.e. prior to active operation of the further converter stages.

Referring now in greater detail to the drawings, the inverter 1 illustrated in Fig. 1 serves for feeding electric energy from a photovoltaic generator 2 as an example of a DC power source 3 into an AC power grid 4. Whereas the AC power grid 4 is indicated as being single-phased here, the inverter 1 may also be configured and adapted for feeding into a three-phase AC power grid. The inverter 1 comprises a DC/AC converter 5 connected to the AC power grid 4, which takes electric charge or energy out of a DC voltage link 6 to feed an AC current into the AC power grid 4. The DC voltage link 6 comprises a large capacitance 7 provided by one or more capacitors to keep the link voltage of the DC voltage link 6 constant despite the withdrawal of charge by the DC/AC converter 5 modulated at twice the grid frequency. Here the capacitance 7 is provided by an electrolytic capacitor of, for example, 1.5 mF. The DC voltage link 6 is charged via a DC/DC converter 9 out of the DC voltage link 10. The DC/DC converter 9 is provided for galvanic isolation between the AC power grid 4 and the DC power source 3 and, for example, comprises a high frequency transformer for this purpose, whose primary winding is high frequently operated via an inverter bridge whereas a current flowing from its secondary winding is rectified via a rectifier bridge (not depicted here). For the desired function of the DC/DC converter 9, a capacitance 11, which is much smaller than the capacitance 7 and which is a film capacitor 12 of, for example, 55 µF here, is sufficient in the DC voltage link 10. A further converter stage 13 is arranged upstream of the DC voltage link 10. This further converter stage does not provide a galvanic isolation between the DC voltage link 10 and the DC power source 3. Instead, it is, for example, a boost converter which allows for passively charging the capacitance 11 from the DC power source 3 even in its inactive state when, for example, the output voltage of the photovoltaic generator 2 increases with increasing solarisation in the morning.
An on-board supply unit 14 of the inverter 1 feeds on-board voltage rails 15 with electric energy and generates on-board supply voltages, which are provided by the on-board voltage rails 15 to auxiliary devices of the inverter 1. The on-board supply unit 14 takes electric energy both out of the DC voltage link 10 and the DC voltage link 6. The on-board supply unit 14 feeds the on-board voltage rails 15 primarily and as long as possible with electric energy out of the DC voltage link 10. Only if the link voltage in the DC voltage link 10 is insufficient, the on-board supply unit 14 feeds the on-board voltage rails 15 out of the DC voltage link 6. The on-board voltage rails 15 particularly serve for supplying electric energy to a controller 60 of the inverter 1, which for example controls switches of inverter bridges of the DC/AC converter 5 and of the DC/DC converter 9 in a coordinated way (not depicted here). Due to feeding the on-board voltage rails 15 with electric energy out of the DC voltage link 10, electric energy is available by the on-board voltage rails 15 as soon as the DC power source 3 charges the DC voltage link 10. If, however, the DC voltage link 10 breaks down together with the DC power source 3, there is still sufficient electric energy for feeding the on-board voltage rails 15 for a longer period of time in form of electric charge stored in the electrolytic capacitor 8 to, for example, shut down the controller 60 in a controlled way.

In addition to the details depicted in Fig. 1, Fig. 2 shows the following details of the power inverter 1. The on-board supply unit 14 comprises a flyback converter with two input flyback converter branches 16 and 21 and a transformer 18. The flyback converter branch 16 feeds a primary winding 17 of the transformer 18 out of the DC voltage link 10. The flyback converter branch 16 comprises a semiconductor switch 19 and a diode 20 as its essential components. The flyback converter branch 21 which is also made of a semiconductor switch 22 and a diode 23 is provided for feeding a further primary winding 24 of the transformer 18 out of the DC voltage link 6. The two primary windings 17 and 24 of the transformer 18 are electrically isolated with regard to each other. Each of the secondary windings 25 and 26 of the transformer which are also electrically isolated with regard to each other feeds one of several output circuits.
33 and 34 of the on-board supply unit 14 via a rectifier circuitry 27 and 28, respectively. Each of
the rectifier circuitries 27 and 28 essentially consists of a diode 29 and 30, respectively, and a
 capacitor 31 and 32, respectively. The various output circuits 33 and 34 serve for providing
different and galvanically de-coupled on-board supply voltages via the on-board voltage rails 15
to the controller of the inverter. The semiconductor switches 19 and 22 are controlled to feed
electric energy out of the respective DC voltage link 10 and 6, respectively, into the transformer
18. If electric energy is fed out of both DC voltage links 10 and 6 at the same time, the control
signals of the semiconductor switches 19 and 22 are to be synchronized, and they may always
be synchronized. All output circuits 33 and 34 of the on-board supply unit 14 are always
simultaneously fed out of each of the DC voltage links 6 and 10.

Fig. 3 illustrates how control signals 35 and 36 for both semiconductor switches 19 and
22 may be generated. The frequency of the control signals 35 and 36 is provided by a sawtooth
voltage 37 which is applied to one input of comparators 38 and 39. A control signal from a PI-
controller 40 whose reference value is provided by a voltage source 41 is applied to the
respective other input of the comparators 38 and 39. Here, the control signal is directly applied
to the other input of the comparator 38, whereas a Zener-diode 42 is connected between the PI-
controller 40 and the comparator 39, which is biased via a resistor 49. The required feedback
for comparison with the reference value is provided to the PI-controller by the input 43, which is
connected to the on-board voltage rails 15 according to Fig. 1 and 2 at which an on-board
supply voltage is present. A core component of the PI-controller is an operational amplifier 44.
The characteristic of the PI-controller is defined by a capacitor 45 and by resistors 46 and 47. A
resistor 48 serves for adjusting the operation point. For the purpose of keeping the two flyback
converters 16 and 21 according to Fig. 2 galvanically isolated although their control signals 35
and 36 are generated by a common circuitry according to Fig. 3, it is preferred to arrange an
optocoupler in at least one of the outputs 50 and 51 of this common circuitry, particularly in the
output connected to the respective other semiconductor switch or flyback converter branch at which the circuitry according to Fig. 3 is not residing.

Whereas the circuitry according to Fig. 3 illustrates a generation of the control signals 35 and 36 in a so-called voltage-mode, the generation of such control signals with modulated pulse width may also be done in a usual current mode in that the output signal of the PI-controller 40 is not compared with a sawtooth voltage 34 but in that a comparison is made with the current actually flowing in the respective flyback converter branch.

In the embodiment of the inverter 1 illustrated in Fig. 4, the DC voltage link 6 at the input of the DC/AC converter 5 is not only charged via the one DC/DC converter 9 but also via a second DC/DC converter 55 connected in parallel to the DC/DC converter 9. An input DC voltage link 56 of the second DC/DC converter 55 is connected to a second DC power source 53 in form of a second photovoltaic generator 52 via a second converter stage 54. The second DC/DC converter 55 does and the second converter stage 54 does not provide a galvanic isolation of the DC voltage link 6 from the DC power source 53. Here, the on-board supply unit 14 primarily feeds the on-board voltage rails 15 with electric energy out of both DC voltage links 10 and 56 having small capacitances 11 and 57, which are galvanically isolated from each other and from the DC voltage link 6 by the two DC/DC converters 9 and 55. This galvanic isolation continues to the area of the on-board supply unit 14. A breakdown of the link voltage of one of the DC voltage links 10 and 56 due to a failure in the area of the DC voltage source 3 or 53, respectively, thus does not result in a breakdown of the on-board supply unit 14 even after a longer period of time. Secondarily, the on-board supply unit 14 feeds the on-board voltage rails 15 with electric energy out of the DC voltage link 6 with the large capacitance 7 arranged between the two DC/DC converters 9 and 55 and the DC/AC converter 5.

Many variations and modifications may be made to the preferred embodiments of the invention without departing substantially from the spirit and principles of the invention. All
such modifications and variations are intended to be included herein within the scope of the present invention, as defined by the following claims.
LIST OF REFERENCE NUMERALS

1 inverter
2 photovoltaic generator
3 DC power source
4 AC power grid
5 DC/AC converter
6 DC voltage link
7 capacitance
8 electrolytic capacitor
9 DC/DC converter
10 DC voltage link
11 capacitance
12 film capacitor
13 converter stage
14 on-board supply unit
15 on-board voltage rails
16 flyback converter branch
17 primary winding
18 transformer
19 semiconductor switch
20 diode
21 flyback converter branch
22 semiconductor switch
23 diode
24 primary winding
25 secondary winding
26 secondary winding
27 rectifier circuitry
28 rectifier circuitry
29 diode
30 diode
31 capacitor
32 capacitor
output circuit
output circuit
control signal
control signal
sawtooth voltage
comparator
comparator
PI-controller
voltage source
Zener-diode
input
operational amplifier
capacitor
resistor
resistor
resistor
resistor
output
output
photovoltaic generator
DC power source
converter stage
DC/DC converter
DC voltage link
capacitance
controller
CLAIMS

1. A power inverter for feeding electric energy from at least one DC power source into an AC power grid, the inverter comprising:
 - a DC/AC converter configured and adapted for being connected to the AC power grid;
 - at least one DC/DC converter arranged upstream of the DC/AC converter and providing a galvanic isolation between its input and output;
 - a first DC voltage link, which is arranged at the input of the at least one DC/DC converter, and which is configured and adapted for being connected to the at least one DC power source;
 - at least one further DC voltage link, which is arranged between the DC/DC converter and the DC/AC converter, and which is galvanically isolated from the first DC voltage link by the DC/DC converter;
 - a controller;
 - on-board voltage rails configured and adapted to supply the controller with electric energy; and
 - an on-board supply unit configured and adapted to feed the electric energy into the on-board voltage rails;
 - wherein the on-board supply unit is configured and adapted to feed the electric energy both out of the first DC voltage link and out of the at least one further DC voltage link.

2. The inverter of claim 1, wherein a capacitance of the first DC voltage link is essentially smaller than a capacitance of the at least one further DC voltage link.
3. The inverter of claim 2, wherein the capacitance of the first DC voltage link is less than 50 \% of the capacitance of the at least one further DC voltage link.

4. The inverter of claim 3, wherein the capacitance of the first DC voltage link is less than 25 \% of the capacitance of the at least one further DC voltage link.

5. The inverter of claim 4, wherein the capacitance of the first DC voltage link is less than 10 \% of the capacitance of the at least one further DC voltage link.

6. The inverter of claim 5, wherein the capacitance of the first DC voltage link is less than 5 \% of the capacitance of the at least one further DC voltage link.

7. The inverter of claim 1, wherein the on-board supply unit is configured and adapted to primarily feed the electric energy into the on-board voltage rails out of the first DC voltage link and secondarily feed the electric energy into the on-board voltage rails out of the at least one further DC voltage link.

8. The inverter of claim 7, wherein the on-board supply unit comprise a voltage controller for an on-board supply voltage present at the on-board voltage rails, the voltage controller defining a feeding power of the on-board supply unit out of the first DC power link and a feeding power of the on-board supply unit out of the at least one further DC power link depending on a difference between the actual value of the on-board supply voltage and a reference value.

9. The inverter of claim 8, wherein different control variables for the feeding power out of the first DC power link and for the feeding power out of the at least one further DC power link are set in the voltage controller.
10. The inverter of claim 8, wherein the voltage controller itself is configured and adapted for being fed out of the first DC voltage link as long as the on-board supply voltage is not yet present, and by the on-board supply voltage afterwards.

11. The inverter of claim 7, wherein the on-board supply unit comprises a flyback converter fed out of the first DC voltage link and a flyback converter fed out of the at least one further DC voltage link.

12. The inverter of claim 11, wherein each of the flyback converters is operated in current mode.

13. The inverter of claim 11, wherein each of the flyback converters is operated in voltage mode.

14. The inverter of claim 7, wherein the on-board supply unit comprises a flyback converter which is configured and adapted for being fed both out of the first DC voltage link and out of the at least one further DC voltage link.

15. The inverter of claim 14, wherein the flyback converter is operated in current mode.

16. The inverter of claim 14, wherein the flyback converter is operated in voltage mode.

17. The inverter of claim 7, wherein the on-board supply unit comprises a transformer which comprises two primary windings electrically isolated with regard to each other, one of the
3. primary windings being fed with current out of the first DC voltage link and the other of the
4. primary windings being fed with current out of the at least one further DC voltage link.

18. The inverter of claim 17, wherein the two primary windings comprise a winding ratio
2. which is in a range of 70 % to 140 % of a transformation ratio of the DC/DC converter.

19. The inverter of claim 17, wherein at least one optocoupler is provided for transmitting a
2. control signal at least one switch through which power is fed to at least one of the galvanically
3. isolated primary windings out of one of the two DC voltage links.

20. The inverter of claim 1, wherein the on-board supply unit is configured and adapted to
2. additionally feed the electric energy into the on-board voltage rails out of at least one additional
3. link of the inverter.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- INV. H02M7/48 H02J3/38
- ADD. H02J7/35 H02J9/06

According to International Patent Classification (IPC) refers to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

- H02M H02J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used):

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 2 058 921 Al (SHARP KK [JP]) 13 May 2009 (2009-05-13) col umn 3, l ines 23-32 ; f igures 1.6a, 6b, paragraph [0008]</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 6 650 028 Bl (CORNELIUS GURLEY D [US]) 18 November 2003 (2003-11-18) col umn 2, l ines 45-51; f igure 1</td>
<td>17</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" later document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

See patent family annex.

Date of the actual completion of the international search: 29 April 2011

Date of mailing of the international search report: 11/05/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Imbernon, Lisa

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 2008026425 AI</td>
<td>06-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009236916 AI</td>
<td>24-09-2009</td>
</tr>
<tr>
<td>US 6650028</td>
<td>18-11-2003</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>