wo 2015/073915 A1 [N 00RO Y O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2015/073915 Al

21 May 2015 (21.05.2015) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/38 (2006.01) GO6F 15/80 (2006.01) kind of national protection available). AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2014/065825 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
14 November 2014 (14.11.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
14/082,073 15 November 2013 (15.11.2013) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
Attn: International IP Administration, 5775 Morehouse TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Drive, San Diego, California 92121-1714 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(72) Inventor: KHAN, Raheel; 5775 Morchouse Drive, San DK, EE, ES, FL FR, GB, GR, HR, HU, IL, IS, IT, LT, LU,
Diego, California $2121-1714 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
(74) Agents: MATTHEW, Benjamin B. et al; NOVAK GW, KM, ML, MR, NE, SN, TD, TG).
DRUCE CONNOLLY BOVE + QUIGG LLP, P.O. Box Published:

2207, Wilmington, Delaware 19899 (US).

with international search report (Art. 21(3))

(54) Title: VECTOR PROCESSING ENGINE WITH MERGING CIRCUITRY BETWEEN EXECUTION UNITS AND VECTOR
DATA MEMORY, AND RELATED METHOD

/%)
VLANEG 1003} VLANEY 10001) VLANE15 10000
VECTOR DATA VECTOR DATA VECTOR DATA
woy || A0 || FILE 82(1) %0 FILE 8215)
6(1)
\ ~ ~
L Sl L st} 8009 s
— G B S =g R
TABPED-DELAY LINES =
803, 78(1)
296(1)
L~ 2%6%)
| [l || 301{1) ~A//’301(X'}
- WERGIG CIRCUITRY =
2z N
4] = = =t~ 300X
— L 202(%)
= EEEs B P
A el | 1) SINE =
d -~ _my\ gg(1) " 292(1) 885(X) T
j y ‘
80] 7] ' s {2 e I
90(0) 865(1)
sy %0
FiG. 31

(57) Abstract: Vector processing engines (VPEs) employing merging circuitry in data flow paths between execution units and vec -
tor data memory to provide in-flight merging of output vector data stored to vector data memory are disclosed. Related vector pro -
cessing instructions, systems, and methods are also disclosed. Merging circuitry is provided in data flow paths between execution
units and vector data memory in the VPE. The merging circuitry is configured to merge an output vector data sample set from execu -
tion units as a result of performing vector processing operations in-flight while the output vector data sample set is being provided
over the output data flow paths from the execution units to the vector data memory to be stored. The merged output vector data
sample set is stored in a merged form in the vector data memory without requiring additional post-processing steps, which may delay
subsequent vector processing operations to be performed in execution units.

WO 2015/073915 PCT/US2014/065825

VECTOR PROCESSING ENGINE WITH MERGING CIRCUITRY BETWEEN
EXECUTION UNITS AND VECTOR DATA MEMORY, AND RELATED METHOD

RELATED APPLICATIONS

{6061} The present application is related to U.S. Patent Application Serial Nao.
13/798,641 cutitied “VECTOR PROCESSING ENGINES HAVING
PROGRAMMABLE DATA PATH CONFIGURATIONS FOR PROVIDING MULTIE-
MODE VECTOR PROCESSING, AND RELATED VECTOR PROCESSORS,
SYSTEMS, AND METHODS,” 123249 filed on March 13, 2013 and incorporated
herein by reference m its entirety.

16062} The present application is related to U.S. Patent Application Serial No.
13/798.618 entitled “VECTOR PROCESSING CARRY-SAVE ACCUMULATORS
EMPLOYING REDUNDANT CARRY-SAVE FORMAT TO REDUCE CARRY
PROPAGATION, AND RELATED VECTOR PROCESSORS, SYSTEMS, AND
METHODS,” 123248 filed on March 13, 2013 and incorporated herein by reference in
its entirety.

[60463] The present apphication is also related to ULS. Patent Application Serial No.
14/082,075 entitled “VECTOR PROCESSING ENGINES (VPEs) EMPLOYING A
TAPPED-DELAY LINE(S) FOR PROVIDING PRECISION FILTER VECTOR
PROCESSING OPERATIONS WITH REDUCED SAMPLE RE-FETCHING AND

AND METHODS” 124362 filed on November 15, 2013 and incorporated herein by
reference in ifs entirety,

16004] The present application is also related to U8, Patent Application Serial No.
14/082,079 entitled “VECTOR PROCESSING ENGINES (VPEs) EMPLOYING
TAPPED-DELAY LINE(R) FOR PROVIDING PRECISION
CORRELATION/COVARIANCE VECTOR PROCESSING OPERATIONS WITH
REDUCED SAMPLE RE-FETCHING AND POWER CONSUMPTION, AND
RELATED VECTOR PROCESSOR SYSTEMS AND METHODS,” 124364 fled on

November 15, 2013 and incorporated herein by reference in its entirety.”

WO 2015/073915 PCT/US2014/065825

[RLEERY The present application is also related to U.S. Patent Application Serial No.
14/082,088 entitied “VECTOR PROCESSING ENGINES (VPEs) EMPLOYING
FORMAT CONVERSION CIRCUITRY IN DATA FLOW PATHS BETWEEN
VECTOR DATA MEMORY AND EXECUTION UNITS TO PROVIDE IN-FLIGHT
FORMAT-CONVERTING OF INPUT VECTOR DATA TO EXECUTION UNITS
FOR VECTOR PROCESSING OPERATIONS, AND RELATED VECTOR
PROCESSOR SYSTEMS AND METHODS,” 124365 filed on November 15, 2013 and
incorporated herein by reference in its entirety.

16006] The present application is also related to U8, Patent Application Serial No.
14/082,081 entitled “VECTOR PROCESSING ENGINES (VPHs) EMPLOYING
REORDERING CIRCUITRY IN DATA FLOW PATHS BETWEEN EXECUTION
UNITS AND VECTOR DATA MEMORY TO PROVIDE IN-FLIGHT REORDERING
OF OUTPUT VECTOR DATA STORED TO VECTOR DATA MEMORY, AND
RELATED VECTOR PROCESSOR SYSTEMS AND METHODS,” 124450 filed on
November 15, 2013 and mcorporated herein by reference in its entirety.

16007 The present application is also related to U8, Patent Application Serial No.
14/082,067 entitled “VECTOR PROCESSING ENGINES (VPEs) EMPLOYING
BESPREADING CIRCUITRY IN DATA FLOW PATHS BETWEEN EXECUTION
UNITS AND VECTOR DATA MEMORY TO PROVIDE IN-FLIGHT
DESPREADING OF SPREAD-SPECTRUM SEQUENCES, AND RELATED
VECTOR PROCESSING INSTRUCTIONS, SYSTEMS, AND METHODS,”
12436302 filed on November 15, 2013 and mcorporated herein by reference in its

entirety.

BACKGROUND

L Field of the Disclosure
[6008] The field of the disclosure relates to vector processors and related systems
for processing vector and scalar operations, imnchiding single mstruction, multiple data

{SIMDy) processors and muthtiple instruction, multiple data (MIMDY) processors.

HR Background
[8069] Wireless computing systems are fast becoming one of the most prevalent

technologies in the digital mformation arcna. Advances tn technology have resulted in

WO 2015/073915 PCT/US2014/065825

smaller and more powerful wireless communications devices. For example, wircless
computing devices commonly include portable wircless telephones, personal digital
assistanis (PDAs), and paging devices that are small, hightweight, and easily carried by
users. More specifically, portable wireless telephones, such as cellular telephones and
Internet Protocol {IP) teiephones, can comnmunicate voice and data packeis over wireless
networks. Further, many such wireless comyounications devices include other types of
devices. For example, a wireless telephone may inchude a digital still camera, a digital
video camera, a digital recorder, and/or an audio file player. Also, wireless telephones
can include a web interface that can be used to access the Intemet. Further, wireless
communications devices may include complex processing resources for processing bigh
speed wireless commumications data according to designed wireless communications
technology standards {c.g., code division muktiple access (CDMA), wideband CDMA
(WCDMA), and long term evolution (LTE)). As such, these wircless communications
devices mchide significant computing capabilities.

8010} As wireless compuling devices become smaller and more powerful, they
become increasingly resource constrained. For example, screen size, amount of
available memory and file systero space, and amount of mput and output capabilities
may be hmited by the small size of the device. Further, battery size, amount of power
provided by the battery, and life of the battery are also limited. One way to increase the
battery hife of the device is to design processors that consume less power.

[B011] In this regard, baseband processors may be employed for wireless
commumnications devices that include vector processors. Vector processors have a
vector architecture that provides high-level operations that work on vectors, i.¢. arrays
of data. Vector processing involves fetching a vector instruction once and then
executing the vector instruction multiple tiroes across an entire array of data elements,
as opposed to executing the vector instruction on one set of data and then re-fetching
and decoding the vector instruction for subsequent clements within the vector. This
process allows for a reduction in the energy required to execute a program, because
among other factors, each vector inmstruction needs to be fetched fewer times. Since
vector instructions operate on long vectors over multiple clock cycles at the same time,
a high degree of parallelism is achievable with simople m-order vector instruction

dispatch.

WO 2015/073915 PCT/US2014/065825

18612} Figore 1 illustrates an excmplary bascband processor 10 that may be
employed in a computing device, such as a wireless computer device. The baseband
processor 10 meludes multiple processing engines (PEsS) 12, each dedicated to providing
function-specific vector processing for specific applications. In this example, six (6)
separatc PEs 12((1)-12(5} arc provided in the baseband processor 10. The PEs 12(0}-
12(5} are each configured to provide vector processing for fixed X-bit wide vector data
14 provided from a shared memory 16 to the PEs 12(0)-12(5). For example, the vector
data 14 could be 512 bits wide. The vecior data 14 can be defined in smaller multiples
of ¥X-bit width vector data sample sets 18(0)-18(Y) {e.g., 16-bit and 32-bit saraple sets).
In this maoner, the PEs 12(0)-12(5) are capable of providing vector processing on
multiple vector dala sample sets 18 provided in paraliel to the PEs 12(0)-12(5) 1o
achieve a high degree of parallelism. Each PE 12{0}-12¢(5) may include a vector register
file (VR) for storing the results of a vector fnstruction processed on the vector data 14
[B8013] Each PE 12(0)-12(5) i the bascband processor 10 m Figure 1 includes
specific, dedicated circuitry and hardware specifically designed to efficiently perform
specific types of fixed operations. For example, the bascband processor 10 Figure 1
nchudes separate WCDMA PEs 12(0), i2(1) and LTE PHs 12{4), 12(5), because
WCDMA and LTE involve different types of specialized operations. Thus, by
providing scparate WCDMA-specific PEs 12(0), 12(1) and LTE-specific PEs 12(4),
12053, cach of the PEs 12(0), 12(1), 12{(4}, 12(5) can be designed to include specialized,
dedicated circuitry that 15 speecific to frequently performed fimetions for WCDMA and
LTE for highly efficient operation. This design is in contrast to scalar processing
engines that include more general circuitry and hardware designed to be flexible to
support a larger number of unrelated operations, but in a less efficient manner.

16014} Certain wireless baseband operations requite merging of data samples
determined from previous processing operations. For example, #t may be desired to
accurnulate vector data samples of varying widths that arc wider than the data paths of
the execution units. As another example, it may be desired to provide a dot product
muliiplication of output vector data samples from different execotion units to provide
merging of output vector data in vector processing operations. The vector data samples
in these vector processing operations can include complex routing that provides data
paths crossing vector data lanes. However, this increases complexity and can reduce

efficiency of a vector processing engine (VPE), because of parallelization difficulties in

WO 2015/073915 PCT/US2014/065825

oo "

the output vector data to be merged crossing over different vector data lanes. Vector
processors can also include circuitry that performs post-processing merging of ouiput
vector data stored n vector data memory from execution units. The post-processed
cutput vector data samples stored in vector data memory are fetched from vector data
memory, merged as desired, and stored back in vecior data memory. However, this
post-processing can delay the subsequent vector processing operations of the VPE, and

cause computational components in the execution s to be underutilized.

SUMMARY OF THE DISCLOSURE

16315} Embodiments disclosed herein mclude vector processing engines {VPEs)
employing merging circuitry in data flow paths between execution umiis and vector data
memory fo provide in-flight merging of oufput vector data stored to vector data
memory. Related vector processing instructions, systems, and wethods are also
disclosed. Merging circuitry is provided in data flow paths between execution units and
vector data memory in the VPE. The merging circuitry is configured 1o merge an oulput
vector data sample set from execution units as a result of performing vector processing
operations in-fhight while the output vector data sample set is being provided over the
cutput data flow paths from the execution units to the vecior data memory 1o be stored.
In-flight merging of oulput data sample sets means that the desired, programamed output
vector data samiples in the output vector data sample set provided by execution units are
merged before being stored in vector data memory, so that the output vector data sarople
set is stored in vector data memory i merged format. As a non-Hmiting example, the
merging of output vector data may include adding output vector data sample sets to
provide merged output vector data saraple sets and an output scalar data sample set. As
another non-liroiting example, the merging of output vector data sample sets may
inchide generating maximoum and/or minimuim output vector data between compared
output vector data sample sets from execution units. The merged ountput vector data
sample set is stored m 3 merged {orm In the vector data memory without requiring
additional post-processing steps, which may delay subsequent vector processing
operations to be performed in the execution units.

18816} Thus, the efficiency of the data flow paths in the VPE are not limited by the
merging of output vector data. The subsequent vector processing in the execution units

is only fimited by computational resources rather than by data flow limitations when

WO 2015/073915 PCT/US2014/065825

cuiput vector data sample sets are to be sfored in merged form in vector data memory.
The VPE is also configured to provide merged intra-vector ouiput vector data sample
sets i the desired destination location in the vector data roemeory without affecting
efficiency of the computational elements of the execution unils.

10687} In this regard 1o one embodiment, a VPE configured to in-flight merge a
resultant output vector data sarople set generated by at least one execution unit
exccutng a vector processing operation is provided. The VPE comprises at least one
vector data file. The vector data file(s) is configured to provide a feiched input vector
data sample sot i at least one joput data flow path for a vecior processing operation.
The vector data file(s) is also configured to receive at least one merged resultant output
vector data sample set from at least one output data flow path o be stored. The VPE
also comprises at least one execution unit provided in the at least one input data flow
path. The execution unit(s) is configured to receive the input vector data sample set oo
the at least one mput data flow path. The execution unit(s) 1s also configured to execute
the vector processing operation on the input vector data samiple set to provide a resultant
output vector data saraple set on the at least one output data flow path. The VPE also
nchudes at least one merging circuitry. The merging cireuitry is configured to receive
the resultant output vector data sample set. The merging circuitry is also configured to
merge the resultant output vector data sample set to provide at least onc merged
esultant output vector data sample set without the resultant output vector data saraple
set being stored in the at least one vector data file. The merging circuitry is also
configured to provide the at least one merged resuliant culput vector data sample set on
the at feast one output data flow path,

16018} in another embodiment, a VPE configured to in-flight merge a resuliant
oufpui vector data sample set generated by at least one execulion unit executing a vector
processing operation i provided. The VPE comprises at Igast one vector data file
means. The vector data file means comprises a means for providing a fetched mput
vector data sample set in at least one input data flow path means for a vector processing
operation. The vector data file means also comprises a means for receiving at least one
merged resultant output vector data sample set from at icast one output data flow path
means 1o be stored. The VPE also comprises at least one execution unit means provided
in the at least one input data flow path means. The execution unit means comprises a

means for receiving the input vector data sample set on the at least one input data flow

WO 2015/073915 PCT/US2014/065825

path means. The execution unit means aiso comprises an execution means for executing
the vector processing operation on the input vector data sample set to provide a resuliant
output vector data sample set on the at least one input data flow path means.

16319} Farther, the VPE also comprises at least one merging circuttry means. The
merging circuitry means comprises a means for receiving the resultant oulput vector
data sample set on the at least one input data {low path means. The merging ciremitry
means also comprises a merging means for merging the resultant output vector data
sarapic set with the code sequence vecior data sample set to provide at least one merged
resultant output vector data sample st without the resultant output vector data sample
set being stored 1 the at least one vector data file means. The merging circuitry means
also comprises a means for providing the at least one merged resultant ouiput vector
data sample set on the at least nne output data flow path means,

(8026} In another embodiment, a method of in-flight merging of a resubtant output
vector data sample sct generated by at least one execution unit executing a vector
processing operation is provided. The method comprises providing a f{etched mput
vector data sarople set in at least one input data flow path for a vector processing
operation from at least one vector data file. The method also comprises receiving the
mput vector data sample set on the at least one wmput data flow path in at least one
exgcution unit provided in the at least one input data flow path. The method also
corprises excouting the vector processing operation on the input vector data sarople set
to provide a resultant output vector data sample set on the at least one mmput data flow

path. The method also comprises merging the resultant output vector data sample set to

=

provide at least one merged resultant output vector data sample set without the resuhan
output vector data sample set being stored in the at least one vector data file. The
method also comprises storing the at least one merged resultant output vector data

sampie set from the at least one output data flow path in the at least one vector data file.

BRIEF DESCRIPTION OF FIGURES

8021} Figure 1 i3 a schematic diagram of an exemplary vector processor that
includes multiple vector processing engines {VPEs), each dedicated to providing
function-specific vector processing for specific applications;

16022} Figure 2 13 a schematic diagram of an exemplary baseband processor that

inchides a VPE having programmable data path configurations, so that common

WO 2015/073915 PCT/US2014/065825

circuitry and hardware provided in the VPE can be programamed in multiple modes to
performo specific types of vector operations in a highly efficient manner for multiple
applications o7 technologies, without a requirement to provide separate VPEs;

16023} Figure 3 1s a schematic diagram of a discrete fimte impulse response {(FIR}
filter that may be provided in a filter vector processing operation supported by a VPE;
[8024] Figure 4 1s a schematic diagram of an exemplary VPE employing tapped-
delay lines to receive and provide shifted input vector data sample sets o execulion
units to be processed with filier coefficient data for providing precision filter vector
processing operations with reduced re-fetching and power consumption;

[6025] Figure 5 is a flowchart illustrating an exemplary filter vecior processing
operation that can be performed in the VPE i Figure 4 according to an exemplary filter
veotor instraction;

(8826} Figure HA 1s a schematic diagram of filter tap coefficicnts stored in a register
file m the VPE of Figure 4;

8027} Figure 6B is a schematic diagram of exemplary input vector data sample sets
stored in a vector data file in the VPE in Figure 4;

[6028] Figure 7 s 4 schematic diagram illustrating an exemplary tapped-delay line
and optional shadow tapped-delay line that can be provided m the VPE in Figure 4,
wherein the exemplary tapped-delay lines cach comprise a plurality of pipeline registers
for receiving and providing, to execution units, an joput vector data sarople set from
vector data memory and & shifted input vector data sample set, during Giter vector
processing operations performed by the VPE;

18629] Figure 8 is a schematic diagram illustrating more exemplary detail of the
tapped-delay lines fo Figure 7, illustrating excmplary detail of pipeline registers in data
fanes, mcluding infra-lane and ioter-lane routing among the pipeline registers for
shifting of input vector data samples in an input vector data sample set during a filter
VeCtor processing operation;

[8030] Figure 9A 1s a schematic diagram of an input vector data sample set initially
stored i a primary tapped-delay line in the VPE of Figure 4 as part of a first filter tap
execution of an exerapiary eight (8) tap filter vector processing operation;

18631} Figure 98 15 a schematic diagram of filter tap coefficients stored in a register
file and shadow nput vector data sample set initially stored 1o a shadow tapped-delay

Line in the VPE of Figure 4 as part of a first filter tap execution of the exemplary eight

WO 2015/073915 PCT/US2014/065825

{8) tap filter vector processing aperation filter vector processing operation illustrated in
Figure 9A;

[6032) Figure 9C is a schematic diagram of shified input vector data sample sets
stored in the primary tapped-delay line and the shadow tapped-delay line, and the filter
tap coctiicients stored in a register file, in the VPE of Figure 4 as part of a second filter
tap execution of the exemplary eight (8) tap {ilter vector processing operation;

8833} Figure 913 is a schematic diagram of the shifted input vector data sample sets
stored in the primary tapped-delay line and the shadow tapped-delay line, and the filter
tap coefficients stored in the register file, in the VPE of Figure 4 as part of an cighth
filter tap execution of the exemplary eight (8) tap filter vector processing operation;
16034} Figure 10 is a schematic diagram of contents of accomulators of the
execution units in the VPE of Figure 4 after the exeraplary eight (8) tap filter vector
processing operation has been fully executed;

[B035] Figure 11 is a schematic diagram of an exemplary VPE employing tapped-
delay lines to receive and provide shifted input vector data sample sets o execulion
units to be processed with sequence wnumber data for providing precision
cotrelation/covariance vector processing operations with reduced re-fetchmg and power
consumption;

{8034} Figures 2A and 12B are flowcharts illustrating excmplary
correlation/covariance vector processing operations that can be performed in parallel in
the VPE in Figure 11 with fetched miterleaved on-tiroe and late jnput vector data samople
sels according to an exemplary correlation/covariance veclor processing operatiorn;
37} Figure 13 is a schematic diagram of a correlation/covariance input vector
data sample set stored in a register file in the VPE of Figure 11;

[6038] Figure 14 15 a schematic diagram illustrating an exemplary tapped-delay hne
and optional shadow tapped-delay line that can be provided in the VPE in Figure 11,
wherein the exemplary tapped-delay lines each comprise a plurality of pipeline registers
for receiving and providing, o execution units, an input vector data sample set from
vector data memory and a shifted input vector data sample set, during a
correlation/covariance vector processing operation performed by the VPE;

16839] Figure 15A 18 a schematic diagram of the nput vector data sanple set from

the vector data file mitially provided in the primary tapped-delay line i the VPE of

WO 2015/073915 PCT/US2014/065825
10

Figure 11 as part of a first processing stage of a correlation/covariance vector processing
operation;

[6048] Figure 15B 1s a schematic diagram of a shadow mput vector data sample set
from the vector data {ile initially stored in the shadow tapped-delay line in the VPE of
Figure 11 as part of a first processing stage of a correlation/covariance vector processing
operation;

8041} Figure 13C 18 a schematic diagram of the shifted input vector data sample
seis stored in the primary tapped-delay line and the shadow tapped-delay line and the
shifted input vector data saraple set stored in the register file, n the VPE of Figure 11 as
part of & second processing stage of a correlation/covariance vector processing
operation;

{6042} Figure 15D is a schomatic diagram of the shified input vector data sarople
sets stored in the primary tapped-delay line and the shadow tapped-delay Huoe, and the
shifted mput vector data sample set stored in the register file, in the VPE of Figure 11 as
part of a fourteenth processing stage of a correlation/covaniance vector processing
operation;

[6043] Figure 16 is a schematic diagram of conlents of acconulators of the
execulion units in the VPE of Figure 11 after the exemplary correlation/covariance
vector processing operation has been fully executed:

{80344} Figure 17A is a diagram of exemplary vector data files showing a stored
resultant filter output vector data sample set stored in the real and imaginary
components of resultant filter output vector data samples siored separately;

1884 5] Figure 17B is a diagram of exemplary vector data files showing a stored
resultant filter output vector data sample set stored with its even and odd resultant filter
output vector data samples stored separately;

{8046} Figures 18A and 18B are diagrams of exemplary interleaved vector data
sampies of a vector data sarople st stored in a vector data file of a VPE in signed
complex sixteen (16) bit format and complex eight (8) bit format, respectively;

8047} Figure 19 is a schematic diagram of an exemplary VPE employing format
conversion circuitry configured to provide in-flight format-converting of input vector
data sample set in at least one nput data flow path between a vector data file and at least

one exccution anit without the nput vector data samiple set being required to be re-

WO 2015/073915 PCT/US2014/065825
11

-,

ctehed from the vector data file, to provide a format-converted input vector data sample
set 1o the at least one execution unit for executing a vector processing operation;

6048} Figure 20 15 a flowchart illusirating exemplary m-flight format-converting of
an input vector data sample set in the at least one input data flow path between the
vector data file and the at least onc execution unit that can be performed in the VPE of
Figure 19;

80349} Figure 2! is a schematic diagram of an exemplary formal conversion
circuitry provided between tapped-delay lines and execution units in the VPE of Figure
19, wherein the format conversion circutiry is configured to provide in-flight format-
converting of the input vector data sample set provided by the tapped-delay lines in the
mput data flow path to the execution units;

[8056] Figure 22 illustrates an exemplary vector instruction data format to provide
programiing o the VPE of Figure 19 to provide ju-flight format conversion of the
mput vector data sample set in an mput data flow path before receipt at execution units;
8051} Figure 23 48 a schematic diagram of an exemplary VPE cmploying
reordering circuilry configured to provide in-flight reordering of a vesultant ouiput
vector data sample set in at least one ouiput data {low path between at least one
execulion unit and at least one vector data file without the resultant culput vector data
sampic set being stored in the at least one vector data file, to provide and store a re-
ordered resultant output data sanple set;

[B8053] Figure 24 is a flowchart iHustrating exemplary in-flight de-interleaving of an
culput vector data sample set in the at least one output data flow path between the
vector data file and the at least one execution unit in the VPE of Figure 23 to be stored
in reordered form in the vector data file;

[6053] Figure 25 is a schematic diagram of an exemplary VPE eroploying
cordering circuilry in cutput data flow paths between executions oniis and a vector data
file to provide m-tlight reordering of output vector data sample sets stored to the vecior
data file;

[8054] Figure 26A is a diagram of an exemplary vector data sample sequence
representing a comimunications signal;

16055) Figure 26B is a diagram of an exemplary code division vwiltiple access

{(CDMA) chip sequence;

WO 2015/073915 PCT/US2014/065825
12

{356} Figure 26C is a diagram of the vector data sample sequence in Figure 26A
after being spread with the COMA chip sequence in Figure 268;

18057} Figure 26D is a diagram of despreading the spread vector data sample
sequence i Figure 26C with the CDMA chip sequence in Figure 26B to recover the
original vector data sample sequence in Figure 26A;

[B058] Figure 27 ds a schematic diagram of an exemplary VPE coploving
despreading circuitry configured to provide despreading of a resultant cutput vector data
sarapic sei in at least one oulput data flow path beiween at least one execution unit and
at least one vector data file without the resultant output vector data sarmople set being
stored in the at least one vector data file, 1o provide and store a despread resultant output
vector data sample set;

[8059] Figure 28 is a flowchart illustrating exemplary despreading of a resultant
output vector data sample set in the at least one output data flow path between the at
least one vector data file and the at least one execution anit in the VPE of Figure 27, to
provide and store the despread resultant outpuot vector data sample set in the at least one
vector data file;

[80610] Figure 29 is a schematic diagram of an exemplary despreading circuitry in
cutput data flow paths between at least one execution unit and at least one vector data
file in the VPE of Figure 27 to provide despreading of resultant output vector data
samplie sets to provide and store the despread resuliant output vector data saraple sets in
the 4t least one vector data file;

8061} Figure 30 1s a diagram of exemplary vector data samples to be merged, and
lustrating the merged resultant vector data samples;

18862) Figure 31 is a schematic diagram of an exenplary VPE employing merge
cireutiry configured to provide merging of a resuliant output vector data sample set in at
least one ouiput data flow path between at least one execution unit and at least one
vector data file without the resultant output vector data sample set being stored in the at
least one vector data file, to provide and store a merged resultant output vector data
sample set;

[#363] Figure 32 is & flowchart flustrating exemplary add-merging of a resultant
output vector data sample set in the at least one output data flow path between the
vector data file and the at least one execution unit in the VPE of Figure 31, to provide

and store the add-merged resultant output vector data sample sct in the vector data file;

WO 2015/073915 PCT/US2014/065825

13
18664] Figure 33 is a schematic diagram of an exemplary merge circuilry in ouiput

data flow paths between executions units and a vector data file in the VPE of Figure 31
to provide add-merging of resultant output vector data sample sets and storing of the
add-merged resultant output vector data sample set in the vector data file;

[8065] Figure 34 is a schematic diagram of an exemplary merge circuitry in output
data flow paths between executions units and 4 vector data file in the VPE of Figure 31
te provide maximum/minimum merging of resultant output vector data sample sets and
storing of the maximumy/mininnug-merged resuitant output vector data sample sets in
the vector data file;

[8066] Figure 35 1s a schematic diagram of exemplary vector processing stages that
can be provided in a VPE, wherein certain of the vector processing stages include
exemplary vector processing blocks having programmable data path configurations;
{8067} Figure 36 is a flowchart illustrating exemplary vector processing of
multiphier blocks and accumulator blocks, each having programmable data path
configurations and provided in different vector processing stages in the exemplary VPE
of Figure 35;

[8068] Figure 37 is a more detailed schematic diagram of a plurahty of multpher
blocks provided in a veclor processing stage of the VPE of Figure 35, wherein the
plurality of mukltiplier blocks each have programamable data path configurations, so that
the plurality of multiplier biocks can be programmed in moultiple modes fo perform
specific, different types of vector multiply operations;

8069} Figure 38 i3 a schematic diagram of internal components of a multipher
block among the plurality of multiplier blocks in Figure 37 having programmable data
paths configurations capable of being programamed to provide multiply operations for 8-
bit by §-bit input vector data sample sets and 16-bit by 16-bit input vector data sample
sets;

18876 Figure 39 is a generalized schematic diagrarn of a muwltiphier block and
accumulator block in the VPE of Figure 38, wherein the accumulator block employs a
carry-save accumulator structure employing redondant carry-save format to reduce carry
propagation;

18671} Figure 40 is a detailed schematic diagram of exenplary internal components
of the accumulator block of Figure 39, which is provided in the VPE of Figure 35,

wherein the accumulator block has programomable data path configurations, so that the

WO 2015/073915 PCT/US2014/065825
14

accuntulator block can be programmed in multiple modes to perform specific, different
types of vector accumulate operations with redundant carry-save format; and

16672} Figure 41 1s a block diagram of an exemplary processor-based systern that
can include a vector processor that can include the VPEs disclosed herein to provide the
vector processing circuits and vector processing operations, according 1o the

embodiments disclosed herein.

BETAILED DESCRIPTION

16073} With reference now to the drawing figures, several exemplary embodiments
of the present disclosure are described. The word “exemplary” is used herein to mean
“serving as an example, instance, or iHustration.” Any embodiment described herein as
“excroplary” is not necessarily to be construed as preferred or advantageous over other
embodiments.
[B8074] Embodimenis disclosed herein also include vector processing engines
{(VPEs) employing merging circuitry in data flow paths between execution units and
vector data memory to provide in-flight merging of output vector data stored to vector
data memory. Related vector processing jnstructions, systems, and methods are also
disclosed. Merging circuitry s provided in data flow paths between execution umits and
vector data memory in the VPE. The merging circuitry is configured to merge an output
vector data saraple set from execution units as a result of performing vector processing
operations in-fhght while the output vector data sample set is being provided over the
culput data flow paths from the execution units to the vector data memory to be stored.
In-flight merging of output data sample sets means that the desired, programimed ouiput
vector data samples in the output vector data sample set provided by execution units are

erged before being stored in vector data mernory, so that the output vector data sample
set is stored in vector data memory in merged format. As a non-Himiting example, the
merging of output vector data may include adding output vector data sample sets fo
provide merged output vector data sample sets and an output scalar data sample set. As
another non-limiting example, the merging of cutput vector data sample sets may
include gencrating maximum and/or minimum oulput vector data between corpared
output vector data sample sets from execution units. The merged output vector data

sarople set is stored in a merged form in the vector data memory without requiring

WO 2015/073915 PCT/US2014/065825
15

additional post-processing steps, which may delay subscquent vector processing
operations to be performed in the execution units.
18075] Thus, the efficiency of the data flow paths in the VPE are not limited by the
merging of output vector data. The subsequent vector processing in the execution umits
is only limited by computational resources rather than by data flow Himitations when
output vector data sample sets are to be stored in merged forro in vector data memory.,
The VPE is also configured to provide merged intra-vector output vector data samiple
seis in the desired destination location in the vector data memory without affecting
cfficiency of the computational clerents of the execution units.
18076} in this regard, Figure 2 1s a schematic diagram of a baseband processor 20
that inclodes an exemplary vector processing unit 22, also referred to as a veclor
processing engine (VPE) 22, As will be discussed in more detail below, the VPE 22
includes execution units ¥4 and other particular exemplary cireuitry and functionality o
provide vector processing operations including the exemplary vector proccssing
operations disclosed herein. The baseband processor 20 and its VPE 22 can be provided
in a semiconductor die 24. In this embodiment, as will be discussed in more detal
below, the baseband processor 20 imchides a common VPE 22 that inclades
programmable data paths 26 that can be programmed to provide different programmable
data path configurations. In this manner, the programmable data paths 26 beiween the
cxecution units 84 and vector data files B2 in the VPE 22 can be programumed and
reprogrammmed to provide different, specific types of vector processing operations in
different operation modes without the requirement to provide separate VPEs 22 in the
bascband processor 20.
18677] Before discussing the particular circuitry and vector processing operations
configured to be provided by the VPE 22 in this disclosure for efficient processing
starting with Figure 3, the components of the baseband processor 20 in Figore 2 are first
described. The bascband processor 20 1n this non-Hiniting exanple is a 512-bit vector
processor. The baseband processor 20 meludes components in addition to the VPE 22
te support the VPE 22 providing vector processing i the baseband processor 20. The
haschand processor 20 inchides vector registers, alse known as vector data files 82, that
are configured to receive and store vector data 30 from a vector unit data memory
(LMEM) 32, For example, the vector data 30 is X bits wide, with ‘X’ defined

according to design choice {e.g., 512 biis). The vector data 30 may be divided into

WO 2015/073915 PCT/US2014/065825
16

vector data sample seis 34, As a non-limiting example, the vecior data 30 may be 256-
hits wide and may coraprise smaller vector data sample sets 34(Y)-34(0). Sorne vector
data samople sets 34(Y)-34(0) can be 16-bits wide as an example, and others of the
vector data sample sets 34(Y)-34(0) can be 32-bits wide. The VPE 22 is capable of
providing vector processing on certain chosen vector data sample sets 34(Y)-34(0)
provided m parallel to the VPE 22 to achieve a high degree of parallelism. The vector
data files 82 are also configured to store resulis generated when the VPE 22 processes
the vector data 30. In certain enmbodiments, the VPE 22 is configured to not store
intermediate vector processing results in the vector data files 82 to reduce register writes
to provide [aster vector instruction execution times. This configuration is opposed o
scalar mstructions executed by scalar processing engines that store intermediate results
in registers, such as scalar processing digital signal processors (B8Ps).
[6078) The baschand processor 20 1 Figure 2 also meludes condition registers 36
configured to provide conditions to the VPE 22 for use m conditional execution of
vector msiructions and to store updated conditions as a result of vector instruction
gxecution. The bascband processor 20 also inchudes accumulate registers 38, a global
register file 40 that includes global registers, and address registers 42. The accunulate
registers 38 are configured to be used by the VPE 22 to store accumulated results as a
result of executing certain specialized operations on the vector data 30. The global
cgister file 40 is configured to store scalar operands for certain vector instructions
supported by the VPE 22, The address registers 42 are configured to store addresses
addressable by vector load and store instructions supported by the VPE 22 to retrieve
the vector data 30 from the vector unit data memory 32, and store vecior processing
results n the vector unit data reemory 32.
16079] With contmuing reference to Figure 2, the bascband processor 20 in this
embodiment also includes a scalar processor 44 (also referred to as an “integer unit™} {o
provide scalar processing o the baseband processor 20 in addition to vector processing
provided by the VPE 22. It may be desired to provide a central processmg unit (CPL)
configured to support both vector and scalar instruction operations based on the type of
instruction exccuted for highly cfficient operation. In this embodiment, the scalar
processor 44 is a 32-bit reduced instruction set computing (RISC) scalar processor as a
non-lmiting example. The scalar processor 44 neludes an arithmetic logic wmit (ALU)

46 for supporting scalar instruction processing in this example. The bascband processor

WO 2015/073915 PCT/US2014/065825
17

28 meludes an instruction dispatch circuit 48 configured to fetch instructions from
program memory 50, decode the fetched instructions, and direct the feiched instractions
either the scalar processor 44 or through a vector data path 53 to the VPE 22 based on
mstruction type. The scalar processor 44 inclodes general purpose registers 54 for use
by the scalar processor 44 when executing scalar imstructions. An integer unit data
memory (DMEM)} 56 s included in the baseband processor 20 to provide data from
main memory into the general purpose registers 54 for access by the scalar processor 44
for scalar instruction execution. The DMEM 56 may be cache memory as a non-
Hniting example. The baseband processor 20 also includes a memory controller 58 that
nchuides memory controller registers 60 configured o receive memory addresses from
the general purpose registers 54 when the scalar processor 44 is executing vector
instructions requiring access to main memory through memory controller data paths 62.
[G0RE] Oue type of specialized vector processing operation that may be desired to
be supported by vector msiruction processing by the VPE 22 is filtering. A filter
operation compules a guantized time-domain representation of the convolution of a
saropied input fime function and a represeuntation of a weighting function of the filter.
Convolution 1o the time domain corresponds to multiphication in a {requency domain.
Thus, digital filters can be realized in the VPE 22 by an extended sequence of
mulftiplications and additions carried out at a uniformly spacced sample interval. For
example, a discrete fiotte impulse response (FIR) filter can be mplemented using a
finite nomber (Y) of delay taps on a delay bne with Y™ computation filter coefficients
te compute a filter function.
18081} In this regard, Figore 3 is a schematic diagram of an cxemplary discrete FIR
filter 64 that may be desired to be supported through a filter vector processing operation
in the VPE 22 m Figure 2. A digitized input signal 66 (xin}) can be filicred by passing
digitized input signal samples (x[0], x[1], ... x[n]} through delay structores called “filter
delay taps” 68(1}-68(Y-1). The filter delay taps 68(13-68(Y-1) shift clocked digitized
myput signal samples (e, x{0}, x[1}, ... xIn]) nto multiphers 70(0)-70(Y-1} for all
digitized input signal samples (e, x[0], x{1], ... x[n]} to cach be multiphed by filter
coetficients (h[3{-b{Y-1}) to provide filter sample muiiiplicands 72(0)-72(Y -1 {i.e,, b))
* x[o-f)). The filter sample nwltiplicands 72(0)-72(Y-1) arc summed together by
summers (1.e., adders) 74(1}-74(Y-1} to provide a resultant filtered output signal 76 (e,

yin}). Thus, the discrete FIR filter 64 in Figure 3 can be summarized as follows:

WO 2015/073915 PCT/US2014/065825
18

yin] = T « xfn — 1]
, where:

1 18 the number of input signal samples;

x{n] is the digitized input signal 66;

yin] is the resaliant filtered output signal 76;

h{f} are the filter coetlicients; and

Y is the number of filter coefficients.
The filter coefficients h{/) may be complex. In one aspect, the VPE 22 may receive
Her cocfiicients (e.g., from the global register file 40}, The VPE 22 may use the
received filter coefficients directly to perform the FIR filter function, fn which case the

filter coefficients h{/} n the above equation may represent the rececived flter

coefficients. Alternatively, the VPE 22 may compute the complex conjugates of the
received filter coeflicients before using them to perform the FIR filter function, in
which case the filicr coefficients h{/} in the above equation may represent the conjugates
of the received filter coefficients.

16082} The above discrete FIR filter 64 in Figure 3 can be recast as:

v[oFxin]*h0 + x{n-1*hi+ ..+ x{n-7]*h7

(0083} However, filtermg operations, such as the discrete FIR filter 64 in Figure 3,
may be difficult to parallelize in vector processors due to the specialized data flow paths
provided in a vector processor. When the input vector data sample set (e.g., the
vectorized digitized input signal 66) to be filtered is shifted between filter delay taps
{e.g., 68(1)-68(Y-1)), the mput vector data sample set s re-fetched from a vector data
file, thus increasing power consumption and reducing throughput. To minimize re-
fetching of input vector data sample sets from a vector data file, the data flow path in a
vector processor could be configured to provide the same number of muiﬁph s {e.g.
TO(0}-70(Y-1)) as filter delay taps (e.g., 6B(1)}-68(Y-1)) for efficient p.ndilehzed
processing. However, other vector processing operations may require fewer multipliers
thereby providing inefficient scaling and vnderutilization of the multiphiers in the data
flow path. 1f the number of multipliers is reduced to be less than the number of filter

delay taps to provide scalability, paralielism s himited by more re-fetches being required

—

o memory to obtain the same nput vector data sample set for different phases of the

e

filter processing.

WO 2015/073915 PCT/US2014/065825
19

18084] In this regard, Figure 4 is a schematic diagram of an exemplary VPE 22(1)
that can be provided as the VPE 22 in Figure 2. As will be deseribed in more detail
below, the VPE 22{1) m Figure 4 provides precision flter vector proccssing operations
in the VPE 22(1) with eliminated or reduced vector data sample re-felching and reduced
power consumption. The precision filter vector processing operations can be provided
m the VPE 22(1) as compared to filter vector processing operations that require storage
of intermediate results requiring vector data sample re-fetching, thereby increasing
power consumption as a result,. To eliminate or minimize re-fetching of mput vector
data samples from a vector data file to reduce power conswmption and improve
processing cfficiency, tapped-delay hines 78 are included m input data flow paths 80(0)-
8O(X} between veclor data files 82{0)-82(X) and execution units 84(0}-84({X) (also
labeled “EU”Y in the VPE 22(1). XC+1 is the maximum number of paralle! input data
lanes provided 1o the VPE 22(1} for processing of vector data saraples in this example.
The tapped-delay hincs 78 are configured to receive an mput vector data sample set
86(0}-86(X} on tapped-delay line inputs 88(0)-88(X} as a subset or all of the mput
vector data samples 8¢ of the input vector data sample set 86(03-86(X) from a
corresponding subset or all of the vector data files 82{03-82(X). The mput vector data
sample set 86(0}-86(X) 1s comprised of “X+17 input vector data samples 86, which in
this example are 86(0), 86(1}, ..., and 86{X}.

[B085] With continuing reference to Figure 4, the tapped-delay lines 78 store input
vector data sample sets 86(0)-86(2) fetched from the vector data files §2(0)-82(X) to be
processed by the exccution umits 84(0)-84(X) for a filter vector processing operation.
As will be discussed in more detail below with regard to Figures 6 and 7 below, the
tapped-delay lines 7% are configured to shift the mput vector data sample scots 86(0)-
86(X) for each filter delay tap (G.e., filter processing stage) of the filter vector processing
operation according to a filter vector imstruction to be executed by the VPE 22(1) to
provide a shified input vector data sample set 868(0}1-868(X) 1o the exccution units
84(03-84(%). All of the shifted input vector data samples 8658 comprise the shifted mput
vector data sample set 86S{0)-865(X). The tapped-delay hines 78 provide the shifled
input vector data sample €6S{(01-865(X) to execution unit inpuls 9KG}-90(X) of the
execution units 84(0}-84(X) during the filter vector processing operation. In this
manner, intermediate flter results based on operations performed on the shifted mput

vector data sample set 868(0)-868(X} for the filter taps of the filter vector processing

WO 2015/073915 PCT/US2014/065825
20

operation do not have 1o be stored, shified, and re-fetched from the vector data files
R2(0)-82(X) during cach processing stage of the filter vector processing operation
performed by the VPE 22{1). Thus, the tapped-delay lmnes 78 can reduce power
consumption and increase processing efficiency for filter vector processing operations
performed by the VPE 22(13.

[B086] A processing stage n the VPE 22(1), which is also referved to as a “vector
processing stage,” comprises circuitry and associated vector data paths that are designed
to carry out a specific task or operation. A vector processing operation may cxecuied
by the VPE 22(1) in several different processing stages. Each processing stage may be
performed over one or multiple clock cyeles of the VPE 22(1). Consequently, execution
of a vector processing operation in the VPE 22(1}y may take many clock cycles to
complete, since cach processing stage of the vector processing operation may consume
one or more clock cycles each. For cxample, a processing stage may include the
fetching of the mput vector data sample set 86(0}-86(X) into the tapped-delay hines 78
m the VPE 22(1) in Figure 4. The vector processing stages in the VPE 22(1} can be
pipelined.

16087} The execution units 84(0)-84(X} may include one or more pipeline stages
that process the fetched input vector data sample set 86(0)-86(X). For example, one
pipeline stage in the execution units 84(0)-84(X} may inchude an accumulation stage
comprised of accumulators configured to perform accumulation operations. As another
example, another pipeline stage i the execution units 84{(0)-84(X) may include a
multiplication stage comprised of multiphers configured to perform multiplication
operations,

16088] With continuing reference to Figure 4, the execution units 84{0)-84(X)
recetve a filter coefficient 92 from among filter coelficients 92(0)-92(Y-1) stored m the
global register file 40 of Figure 2 for the filter vecior processing operation, where Y’
can equal the number of filter coefficients for the filter vector processing operation. The
exceution uits 84{0)-84(X) are cach configured to multiply one of the received {filter
coefficient 92(0), 90(1), ... S80(Y-1) with a shified input vector data sample 868(0),
868(1), ... 865{X} of the shifted input vector data sample set 865(1)-868(X) during
cach processing stage of the vector filter processing operation to provide intermediate
filter vector data output samples m the execution anits 84(0)-84(X). The intermediate

o~

filter vector data ouiput sample sets are accumulated in cach of the cxecution units

WO 2015/073915 PCT/US2014/065825
21

84(0}-84(X) (i.c., a prior accumulated filter cutput vector data sample is added to a
current accurnulated filter output vector data sample). This provides a final, resultant
filter output vector data sample set 94(0)-94(X) provided by the exccution units 84(0)-
84(X} on execution unit outputs 96{0)-96(X) on output data fow paths 98(0}-98(X),
respectively, for cach shified input vector data sample 865(0), 865(1), ... €68{X) in the
shifted nput vector data sample set 865(0)-865(X). The resultant {ilter output vector
data sample set 94(03-94(X) s comprised of “X+17 resultant filter output vector data
samples 94, which in this example are 940}, 94(1), ..., and 94{X). The resultant filter
output vector data sample set 94(0)-94(X} is stored back in the respective vector data
files 82(0)-82(X) for further use and/or processing by the VPE 22(1) without having to
store and shift intermediate filter vector data ouiput sample sets generated by the
execution units 84(0)-84(X).

[G0RY] With continuing refercoce to Figure 4 and as will be discussed in more detail
below, the tapped-delay Hnes 78 are programmabie 1o be controlled according to the
vector insiruction being processed. If a filter vector instraction is not being processed,
the tapped-delay lines 78 can he programmed to not be included in the input data flow
paths 80(0}3-80(X) between the vector data files 82(0}-82(X) and the execulion units
84(0}-84(X). In this embodiment, the tapped-delay lines 78 are configured to load and
shift the input vector data sample set 86{0)-86(X) received from the vector data files
§2(03-82(X) to provide a shifted input vector data sample set 86S(03-865(X) for each
filter tap of the filter vector processing operation. Thus, the shifted input vector data
sample set 865{03-865(X} can be provided to the execution units 34(0)-84(X} for
exccution of a filter tap of the filter vector processing operation. Without a tapped-
delay line 78, a separate shifting process would have to be performed to provide the
shifted mtermediate input vector data sample set again to the execution umts 84(0)-
84(X} for subsequent filter taps of the filter veclor processing operation, thereby
increasing latency and consuming additional power. Further, the efficiency of the mput
and output data flow paths 80{0}-80(X), 98(0}-98(X) in the VPE 22(1} is not Hited by
the re-fetching delay of the shifted input vector data sample set 865(0)-868(X) from the
vector data files 82(0}-82(X) during the filter vector processing operation.

16006 The shifted mput vector data sample set 865(0)-865(X) is provided by the
tapped-delay hnes 78 localized to the execution units #24(0)-84(X). The vector

processing in the oxecution uniis S4(03-84(X} is ounly limited by computational

WO 2015/073915 PCT/US2014/065825
22

resources rather than by data flow limitations. This means that the exccution units
R4(0)-84(Xy are kept busy continuously, or substantiaily continuously, recetving the
shifted iput vector data sample set 86S5{03-865(X) for performing vector processing
operations without having to wait for the shifted input vector data sample set 868(0}-
863(X)} 1o be fetched from the vector data files 82(03-82(X).

[8091] Further, the filter vector processing operations performed by the VPE 22(1)
m Figure 4 may be more precise by employing the tapped-delay lines 78, because oulput
accuntulations for intermediate filier processing stages in the execution units 84(0)-
84(X) do uvot have to be stored in the vector data files 82(0)-82(X). Storing of
intermediate output vector data sample sets from the execution anits 84(0)-84(X) m the
vector data {iles 82(0)-82(X} may result in rounding. Thus, when the next intermediate
output vector data sample set would be provided to the exccution units 84(0)-84(X} for
the vector processing operation, any rounding ervor would be propagated and added
during each multiplication phase of the vector processing operation. In contrast, in the
example of the VPE 22(1) in Figure 4, the intermediate output vector data sample sets
calculated by the execution units 84(03)-84(X) do not have to be stored in the vector data
files B2{0)-82(X). The execution units 84(0)-84(X) can accumulate prior intermediate
cutput vector data sample sets with intermediate output vector data sample sets for next
filter delay taps, because the tapped-delay lines 78 provide the shifted input vecior data
sampie set B6S(03-865(X) to the execufion umits 84(0)-84(X) during the vector
processing operation to be processed, and the results are accumulated with prior vector
data sample sets {or prior filter delay taps.

[0352] With continuing reference to Figure 4, the VPE 22(1) in this embodiment is
comprised of a plurality of vector data lanes (labeled VLANEG-VLANEX) 100(0)-
100(X)) for paralielized processing. Each vector data lane 100(0)-100(X) contains a
vector data file 82 and an execution unit 84 in this embodiment. Taking vector data lane
100(0) as an exarople, the vector data file 82(0) therein is configured o provide the
mput vector data sample 86{0) on the mput data flow path 80(0} to be received by the
exccution unit 84{0) for filter vector processing. As discussed above, the tapped-delay
lines 78 arc provided tn the mput data flow path 80(0) to shift the input vector data
saropic 86(0}) and to provide the shifted mput vector data sample 865(0) to the execution
unit 84(0) for filter vector processing. The vector data file 82(0} s also configured to

receive a resultant filter output vector data sample 94¢0) provided by the execution unit

WO 2015/073915 PCT/US2014/065825
23

84(0} as a result of filter vector processing from the outpot data flow path 98(0} to be
stored back in the vector data file 82(0) for a subsequent vector processing operation, as
needed or desired according to the current or next vector instruction to be processed by
the VPE 22(1).

16093} Any number of vector data lanes 100{0}- 100(X) may be provided in the VPE
22(1} as desired. The number of vector data lanes 100{0)-100(X) provided m the VPE
22(1} may be based on tradeoffs for paralichzed vector processing for efficiency
purposes versus the additional circuitry, space, and power consumption invelved in
providing additional vector data lanes 100{0}»-100{X}). As onc non-limiting example,
sixteen vector data lanes 100 may be provided in the VPE 22(1}, with each vector data
lane 100 having a data width capability of thirty-two {32} bits, to provide for
paraliclized processing of up to 512 bits of vector data in the VPE 22{1).

18394} With continuing reference o Figure 4, using vecior data file 820} in vector
data lane 100(0) as an example but apphcable 1o all vecior data fles 82(0)-82(X), the
vector data file 82(0) allows one or multiple samples of an inpat vector data sample
R6(0) to be stored for vector processing. The width of the wput vector data sample
&6(0) 13 provided according o programming of the input vector data sample 86(0)
according to the particular vector instruction being executed by the VPE 22(1}. The
width of the input data flow path 8O0(0) is programmable and reprogrammable on a
vector-instruction-hy-vector-instruction basis, including on clock-cycle-by-clock-cycle
basis for a given vector instruction to provide diffevent widths of the fnput vector data
sampie 86{C} to the tapped-delay lines 78 and the execcution unit 84(0). In this manner,
the vecior data lane 10({0) can be programmed and reprogrammed to provide
processing of different widths of the fnput vector data sample 86(0) depending on the
type of vector instruction being executed.

16095} For exarapie, the vector data file 82(0) may be thirty-two (32} bits wide and
capable of sforing input vector data saraples 86 that are also up to thirty-two {32} bhits
wide. An input vector data sample 86{0) may consume the entire width of the vector
data file 82{0} (e.g., 32 bits}, or may be provided in smaller sample sizes of the vector
data file 82(0} width. The input vector data sample 86(0) size can be configured based
on progranuming of the fnput data flow path 80(0) configuration for the size of the input
vector data sample 86(0) based on a vector instruction being exccuted by the VPE 22(1).

For example, the input vector data sarmaple 86{0) may comprise two {2} separate 16-bit

WO 2015/073915 PCT/US2014/065825
24

vector data samples for one vector instruction. As another example, the input vector
data sample 86{0) may comprise four (4) 8-bit vector data samples i the vector data fle
R2(0) for another vector instruction, as opposed 1o one (1) 32-bit vector data sample. In
another example, the inpat vector data sample 86(0) may comprise one {1} 32-bit vector
data sample. The VPE 22(1) is also capabic of programming and reprograming the
output data fow path 98(0} for the vector data file 32(0) to receive differvent sizes of a
resultant filter sutput vector data samples 84(0) provided by the execution unit 84(0) to
the vector data file 82(0) for each vector instruction and/or each clock cyele of a given
vector instruction.

16096} A further description of additional details and features of the VPE 22(1) in
Figure 4 and the tapped-delay hnes 78 for providing the shified mput vector data sample
set 868(0)-868(X) to the cxecution units 84{01-84(X)} in the input data flow paths 806{0}-
SH(X) in this embodiment witl now be described. In this regard, Figure 5 is a flowchart
iustrating an exemaplary filter vector processing operation 102 that can be performed in
the VPE 22(1} i Figure 4 employing the tapped-delay lines 78 according to an
exemplary filter vector instruction. The exemplary tasks performed in the filter vector
processing operation 102 m Figure 5 will be deseribed with reference to the examples
provided in Figures 6A-10.

{8097} With reference to Figure 5, the input vector data sample set 86(0)-86(X) to
be processed io the filter vector processing operation 102 according to a filter vector
msiniction is fetched from vector data files 82(0)-82(X)} into the mput data flow paths
80(0)-80(X} for the filter vector processing operation 102 (block 104). As discussed
above with regard to the VPE 22(1) in Figure 4, the input vector data sample set 86(0)-
R6(X) is nultiplied by the filter coefficicnts 92(03-92(Y-1} reccived from the global
register file 40 in the execution units 84(0)-84(X). For examople, Figure 6A illustrates
filter coefficients 92{03-92(Y-1) (i.e., h7-h}} in the global register file 40. In this
example, there are eight (8} filter coefficients 92 stored in the global register file 40
providing eight (8) filter taps in the filter vector processing operation 102 to be
performed. Note that m this example, the {ilter vector processing operation 102 from
the discrete FIR filter 64 equation in Figure 3 discussed above is

yin]=x[o}*h0 + x{no-1J*hi+ .+ x[0-TPh7.

[8098] Figure 6B iHustrates an exemplary foput vector data sample set 86{(1)-86(X)

stored in the vector data files 82(03-82(X)} in the VPE 22(1) in Figure 4 representing an

WO 2015/073915 PCT/US2014/065825
25

input signal to be filtered by the filter vector processing operation 162, In this example,
saropic X0 is the oldest sample, and sarople ¥X63 is the most recent sample. in other
words, 1o this example, sample X63 occurs in time after sarople X0. Because each
address of the vector data files 82(0}-82(X) 1s 16-bits wide, the first inpui vector data
sampie set 86{0}-86(X) stored in the vector data files €2(0)-82(X) spans ADDRESS ¢
and ADDRESS 1, as shown m Figure 6B, This allows the vector data fles §82(0)-82(X)
te provide input vector data samples 86 of 32-bit width to support the 32-bit width
capability of the execcution units 84(0}-84(X} in the VPE 22{1) example in Figure 4. In
this regard, there are sixty-four {64) total input vector data sample subsets (1.e., X0-X63)
cach 8-bits i width totaling 512 bits that comprise the first input vector data sample set
B6(0}-86(X). Similarly, ADDRESS 2 and ADDRESS 3 siore another, second nput
vector data sample set 86(01-86{X) stored in the vector data files 82{0}1-82(X). Note that
in the examople of Figure 68, cight (8) addresses {(ADDRESS 0-7) of cach vector data
file 82(0)-82(X) are shown, which illustrate 256 total input vector data samples 86 (i.¢.,
X(-X255}, but such is not Hmiting,

16099] Either one, some, or all of the vector data lanes 100(0)-100(X) in the VPE
221y in Figure 4 can be employed to provide the filter vector processing operation 102
according to the programming of the vector nstruction depending on the width of the
input vector data sample set 86{0)-86(X) involved in the filter vector processing
operation 102, If the entire width of the vector data files 82(0}-82(X) is required, all
vector data lanes 100(0)-100(X) can be employed for the filter veclor processing
operation 102, Note that the filter vector processing operation 102 may only require a
subset of the vector data lanes 100(0)-100{X) that may be employed for the filter vector
processing operation 102, This may be because the width of the input vector data
sarople set 86(0)-86(X} 18 less than the width of all vector data files 82(0)-82(X), where
it is desired fo emaploy the additional vector data lanes 100 for other vector processing
operations 1o be performed in parallel to the filter vector processing operation 102, For
the purposes of discussing the current example, it is assumed that the input vector data
sample set 86(0}-36(X} employed in the filier vector processing operation 102 involves
all vector data lanes 100{0}-100(X).

1601606 With reference back to Figure 5, a fetched input vector data sample set
RO(N)-86(X} is provided to the input data flow paths 80(0)}-80(X) from the vector data

files 8Z{((1)-82(X} to be loaded into the tapped delay-lines 78 as a current input vector

WO 2015/073915 PCT/US2014/065825
26

data sample sct 86(0)-86(X} (block 106). An input vector dala sample set 86{0}-86(X)
is loaded into the primary tapped-delay line 78(0) as the input vector data sample set
R6(N)-86(X} to be processed by the execution units 84(0)-84(X) for the filter vector
processing operation 102, The imput vector data sample set 86(0)-86{X) loaded into the
primary tapped-delay line 78(0} is not shifted for the first filter tap operation of the filter
vector processing operation 102, However, as discussed above and discussed in more
detail below with regard to Figure 7, the purpose of the tapped-delay lines 78 is to
provide shifting of the input vector data sample set 86(03-86(X) 1o provide a shified
input vector data sample set 86S(0)1-865(X) to the cxecution uniis 84(0)-84(X) for
subsequent filter tap operations of the filier vector processing operation 102, During
cach processing stage of the filter vector processing operation 102 execuated by the
exgcution units 84(01-84(X), the input vector data samples 86 are shifted in the primary-
tapped delay lne 78(0) to provide the shifted input vector data sample set 265{()-
86S(X) to the exccution units 84(0)-84(X). In this manner, the input vector data sarople
set 86(0)-86(X} does not have o be stored, shifled in the vector data files 82(()-82(X},
and re-fetched for each filter tap operation of the filter vector processing operation 102,

160161} If the optional shadow tapped-delay bine 78(1} 1s provided in the VPE 22(1},
a next input vector data sample set 86N(0)-B6N(X) can also be loaded from the vector
data files 82(()-82(X} into the shadow tapped-delay line 78(1). As will be discussed in
more detail below with regard to Figure 7, the next input vector data sample set 86N{()-
SON(XY i3 shifted into the primary tapped-delay lne 78(0) during the fiher vector
processing operation 102 to become at least part of the shifted input vector data sample
set 86S(0)-865(X). Thus, the primary tapped-delay line 78(0) can have the shifted input
vector data sample set 865(0)-865(X) available during the filter vector processing
operation 102 without fetching delay that would otherwise be mourred if the execution
units 84(0)-84(X} were required to wait until the next input vector data sample set
EON{(-86N(X) to be executed for the filter vector processing operation 102 was
fetched from the vector data files 82(03-82(X) into the primary tapped-delay Hue 78(0).

(801621 In this regard, Figare 7 illustrates the exemplary tapped-delay Hnes 78 that
can be provided in the VPE 22(1) o Figure 4. In this embodiment, the tapped-delay
Hnes 78 comprise the shadow tapped-delay hine 78(1) and the prireary tapped-delay line
78(0). The primary-tapped delay line 78(0) in this example is comprised of a phirality

of 8-bit primary pipeline registers 120 to allow resoiution of input vector data samples

WO 2015/073915 PCT/US2014/065825
27

86 down to 8-bits in length. The first input vector data sample sct 86{0})-86{X)
processed by the execution units 84(0)-84(X) will be un-shified in this example for the
first filter tap of the filter vector processing operation 102, as will be discussed in regard
to Figure 9A below. As the execution umits 34(0)-84(X) process subsequent filter taps
for the filter vector processing operation 102, the nput vector data samples 86 in the
mput vector sample set 86{0}-86(X) stored m the primary tapped-delay Iine 78(0) are
shifted m the primary pipeline registers 120(0)-120(4X+3), as indicated by the arrows in
Figure 7, to become the shifted input vector data sample set 865(0)-868(X). In this
manner, the execution units 84(0)-84(X) are fully vtilized by recetving and performing
the filter vector processing operation 102 of the shifted put vecior data sample set
865{0)-86S(X) without having to store and shift the input vector data sample set 86S(0)-
868(X), and re-feich the shifted input vector data sample set 865{0)-8365(X) from the
vector data files 82(0}3-82(X).

(601631 In this embodiment, the primary pipeline registers 120(0)-120(4X+3)
collectively are the width of the vector data files 82(()-82(X} i Figure 4. In the
example of the vector data files 82(03-82(X) bemg 512-bits in width with “X” equal to
fifteen (15), there will be sixty-four (64) total primary pipeline registers 120{0)-120(63)
cach of eight (8) bits in width to provide a total width of 512 bils (1.¢., 64 registers x 8
bits cach). Thus in this cxample, the primary tapped-delay line 78(0) is capable of
storing the entive width of one (1) wput vector data sample set 86(0)-86(X). By
providing the primary pipeline registers 1200} [20{4X+3) of eight (8) bit widths in this
example, the nput vector data sample set 86({(H)-86(X} can be shifted in the primary
pipeline registers 120(0}3-120(4X+3) down to a vector data sample size of eight {8) bits
for 8-bit filter vector processing operations. If larger sized input vector data sample 86
sizes are desired for a lter vector processing operation, such as 16-bit or 32-bit samples
for exarnple, the input vector data sample set86{0}1-86(X} can be shifted in the primary
pipcline registers 120(0)-120(4X+3) by two (2} primary pipeline registers 120 at a time.

[60164] With continuing reference o Figure 7, the shadow tapped-delay line 78(1} 1s
also provided in the tapped-delay line 78. The shadow tapped-delay line 78(1) can be
employed to latch or pipeling a next input vector data sample set 86N{0)-86N{X) from
the vector data files R2{0-82(X) for a subsequent vector processing operation. A next
nput vector data samples 86N from the next mput vector data sample set §6N(0)-

SON(X} is shifted from the shadow tapped-delfay line 78(1) into the primary tapped-

WO 2015/073915 PCT/US2014/065825
28

delay line 78(0) as cach filter tap for the filter vector processing operation 102 is
executed by the execution units 84(0)-84(X). The shadow tapped-delay tne 78(1) 18
also comprised of a plurality of 8-bit shadow pipeline registers 122 to allow resolution
of input vector data samples 86 down to 8-bits in length similar to the primary tapped-
delay line 78((3). Like the primary pipeline registers 120{0}-120(4X+3}, the shadow
pipchine registers [22(0)-122{4X+3} provided in the shadow tapped-delay line 73(1)
colfectively are the width of the vector data files 82(0)-82(X}, which is 512-bits in this
example. Thus, the shadow pipeline vegisters 122(0)-122(4X+3} of the shadow tapped-
delay line 78(1) are also capable of storing the entire width of one (1) input vector data
sarople set B6(0)-86(X). Thus m this embodiment, the number of shadow pipeline
registers 122(0)-122(4X+3} included in the primary tapped-delay hne 78(0} is four
times the number of vector data lanes 100(03-1006{X)}, which total sixteen {16} in this
example (i.e., X=15). Thus, the number of shadow pipeline registers 122 also fotals
sixty-four (64) in this example for a total of 512 buts (i.c., 64 registers x 8§ bits each}.
As discussed above with regard to the primary tapped-delay hne 78(0), by providing the
shadow pipeline registers 122(0}-122(4X+3) of eight (8) bit widths in this example, the
next input vector data sample set 86MN(0)-86N{X) can be shifted down to a vector data
sample size of eight {8} bits for 8-bit {ilier vector processing operations.

(608685 Figure 8 is a schematic diagram illustrating selected primary pipeline and
shadow pipeline registers 120, 122 present in the primary and shadow tapped-delay
Hnes 78(0), 78(1) i Figure 7. Figure 8 is provided 1o facilitate discussing an example
of shifting input vector data samples 86 between primary and shadow pipeline registers
120, 122. As discussed above, the input vector data samples 86 can also be shifted
within the primary and shadow tapped-delay hues 78(0), 78(1) as well as from the
shadow tapped-delay Hne 78(1) fo the privoary tapped-delay line 78(0). The pipeline
registers 120, 122 are cach &-bils wide in this example to allow for input vector data
sampie 86 shifting at 8-bits of resolution if desired. This will be discussed 1o more
detail below. The primary and shadow tapped-delay bines 78(0), 78(1) are also capable
of performing 16-bit and 32-bit shifting resolation of tnput vecior data samples 86, as
will also be discussed in more detail below.

160166] In this regard, Figure § illustrates shifting of mput vector data samples 86
into primary pipeline registers [20{4X+3), 120(2X+1), 120(4X+2), and 120(2X) that

form the storage registers for input vector data sample 86S(X) in the primary tapped-

WO 2015/073915 PCT/US2014/065825
29

delay line 78(1) in Figure 7. Primary pipeline registers 120(4X+3} and 120(4X+2) are
registers Bay and Bae, respectively, in the primary tapped-delay line 78(0) in Figure 7.
Primary pipeline registers 12002X+1) and 12002X) are rvegisters As and Asg,
respectively, in the primary tapped-delay hne 78(0) in Figwre 7. As tllustrated in Figure
7, primary pipcline registers 120(4X+3} and 120{4X+2) for registers By and By are
configured to receive shified input vector data saroples 86 from adjacent shadow
pipeline registers 122 in the shadow tapped-delay line 78(1}. Thus, in the example in
Figure 8, shadow pipeline registers 122(0), 122(1) for registers A’y and A’y
respectively, are illustrated as being configured fo shift jnput vector data samples 86
into privoary pipeline registers 120(4X+3) and 120(4X+2) for Bs; and By, Similarly, in
the example in Figure 8, primary pipeline registers [206{2X+3} and 122X+2) for
registers By and By, respectively, in the primary tapped-delay line 78(0) are illustrated as
peing configured to shift nput vector data samples 86 mto adjacent primary pipeline
registers 120(2X+1} and 120(2X) for registers Asp and Age. Exemplary shifting of mput
vector data samples 86 between these registers will now be discussed.

160167 With continuing reference to Figure 8, fo provide for the flexibility to
configure the primary and shadow pipeline registers 120, 122 to load new jnput vector
data sample sets 86(0)-86(X) from the vector data files 82(0}-82(X) in Figure 4 as well
as shifting of the input vector data samples 86, an input vector data sample selector is
associated with cach of the primary and shadow pipehine registers 120, 122, In this
regard, input vector data sample selectors 124(0)-124(4X+3) are provided to vector data
loaded or shifted into primary pipeline registers 120{0)-120{4X+3), respectively, in the
primary tapped-delay line 78{0). Input vector data sample selectors 126(0)-126{(4X+3}
are provided to vector data loaded or shifled into shadow pipeline registers 122(0)-
122(4X+3), respectively, m the shadow tapped-delay line 78(1}). The mput vector data
sampie selectors 124(0)-124(4X+3} and input vector data sample selectors 126{0)-
126(4X+3} arc each a multiplexor in this example. As will be discussed 1 more detail
below, the mput vector data sample selectors 124(0)-124(4X+3), 126{(0)126{4X+3) can
each be controlled by data width shift control inpats 125 to select input vector data to
cither be loaded or shifted into the primary and shadow pipeline registers 120(0)-
P20(4%X+3), 122(0)-122(4X+3).

[60168] Note that in Figure 8, only input vector data sample selectors 124(4X+3),

124(4X+2), 124(ZX+1), 124(2X) are shown for primary pipeline registers 120{(4X+3),

WO 2015/073915 PCT/US2014/065825
30

120(4X+2), 120(2X+1), 120(2X), respectively, which correspond to registers By, B,
Asy and Asg, respectively. Only input vector data sample selectors 126(1), 126{0),
124(2X+3), 124(2X+2) are shown in Figure & for pipeline registers 1221}, 122((),
12002X+3), 120(2X+2), respectively, which correspond to regisiers Ay, A’g, By, and
By, respectively.

(60168 With continuing reference to Figure 8, if new input vector data is to be
loaded into the primary and shadow tapped-delay lines 78(0), 78(1} for a vector
processing operation, the data width shift control inputs 125 can be configured by the
VPE 22(1) m Figure 4 1o cause the input vector data sample selectors 124(4X+3),
124(4X+2), 124(2X+1), 124(2X) to select the load data flow paths 133 (4X+3),
133(4X-+2), 133(2X+1), 133(2X). Selecting the load data flow paths 133 (4X+3),
133(4X+2), 133(2X+1), 133(2X) allows mput vector data from the vector data files
§2(03-82(X) to be stored in the primary pipeline registers 120(4X+3), 120(4X+2),
12002X+1}, 120(2X). Loading input vector data from the vector data files 82(0)-82(X)
may be performed on a new or next vector instraction to be processed by the VPE 22(1)
as an exanple. Similarly, the data width shift control inputs 125 can also be configured
by the VPE 22(1) m Figure 4 1o cause the mput vector data sample selectors 126(1),
124(2X-+3), 126(0), 1242X+2) to select the mput data flow paths 135(13, 133(2X+3),
135((h, 133(2X+2). Selecting the load data flow paths 135{1), 133(2X+3), 135(0),
133(2X+2) allows input vector data from the vector data files 82(0}-82(X) to be stored
m the pipeline registers 122(1), 120(2X+3}, 124(0), 120(2X+2).

[B613¢] With continuing reference to Figure 8, if the vector data stored in the
primary tapped-delay line 78(0) and shadow tapped-delay line 78(1) is desired to be
shifted for a vector processing operation, the data width shift control nputs 125 can be
configured by the VPE 22{1} m Figure 4 to cause the mput vector data sample selectors
124(4X+3), 124(4X+2), 1242X+1), 124(ZX) to select the input data flow paths
F37(4X+3), 137(4X+2), 137(2X+1), 137(2X) for vector data sample shifting. The data
width shift control mputs 125 also cause the input vector data sample selectors 126(1},
124(2X+3), 126(0), 124(2X+2) to select the input data flow paths 1391}, 137(2X+3},
139(0), 137(2X+2) for vector data sampic shifting. As iflustrated therein, the input
vector data sample sclectors 124(4¥X+3), 124(4X+2), 124(2¥+1), 124(2X) and input
veetor data sample selectors 126(1), 124(2X43), 126(0), 124(2X+2) cach include output
data flow paths 141(43(+3), 141(dX+2), 141022+1), 412X and 143(1), 141(2X+3),

WO 2015/073915 PCT/US2014/065825
31

143(0), 124(2X+2), respectively, that allow vector data to be shifted to other registers.

The output data flow paths shown in Figure & arc part of the output data flow paths

141{-141(dX+3) and 143(0)- 143(4X+3} that are now shown in total, but included for

the mput vector data sample selectors 124(0)-124{4X+3} in the primary tapped-delay
hine 78(0) and the input vector data sampic selectors 126{0})-126{4X+3) in the shadow
tapped-delay line 78(1), respectively.

(80113 As examples, during 8-bit vector data shifting, the input vector data sample
selectors 124(4X+3), 124{4X+2), 124(2X+1), 124(2X) and input vector data sample
selectors 126(1), 124(2X+3), 126(0), 124(2X+2) are configured to sclect the input data

flow paths 137(4X+3), 137(4X+2), 137(2X+1), 137(2X), 139(1), 137(2X+3), 139(1,

137(2X+2), respectively. In this regard, as an example, the vector data in primary

pipeline register 120(2X+1) (i.e., Asy) is shifted on output data flow path 141 2X+1} to
primary pipeline register 120(2X) (1.2, Asg), as Hllustrated in Figure 8. The vector data

m primary pipehine register 120(4X+3) (1.e., By} is shifted on output data flow path 141

{4X-+3) to primary pipeline register EEO(&@XWF-Z) {i.c., Bsg), as illusirated in Figure 8. The

vector data in shadow pipeline register 122(0) (1.e., A’} is shifted on output data flow

path 143(0) to primary pipeline register 120(4X+3) (i.e,, By, as ilustrated in Figure 8.

The vector data in primary pipeline register 120(2X+3) (ie., By) is shifted on output

data flow path 141(ZX+3) to primary pipeline register 120(4X+—2) (i.c., Bie), as

illustrated i Figure 8. The vector data in shadow pipeline register 122(1)Y (J.e., A’y) is
shifted on cutput data flow path 143(1) to shadow pipehne register 122(0) (e, A'y), as
lustrated in Figure 8. The vector data in primary pipeline register 120(2X+2) (i.e., Bo)
is shifted on output data flow path 141(ZX+2)} to primary pipeline register 120(2X-+1)

(i.c., Asy), as illustrated in Figure 8.

160112} With continuing reference to Figure 8, during 16-bit vector data shifting, the

input vector data sample selectors 124(4X+3), 124(4X+2), 124(ZX+1), 124(2X) and

input vector data sample selectors 126(1), 124(2X+3), 126(0), 124(2X+2) are
configured to select the mput data flow paths 145(4X+3), 145(4X+2), 145{2X+1),
452X, 147(1), 145(2X+3), 147(0), 145(2X+2}, respectively. In this regard, as an
example, the vector data in primary pipeline register 120(2X+2} (i.e., By} is shifted on
output data flow path 141{2X+2) to primary pipeline register 120(2X) (i.e., Agg), a8
ilustrated m Figure 8. The vector data m shadow pipeline register 122(0) (ie., A'g) 18

shifted on cutput data flow path 143(0} to primary pipeline register 120(4X+2) (ie,

WO 2015/073915 PCT/US2014/065825
32

Bag), as illustrated in Figure 8. The vector data in primary pipeline register 128(2X+3)
(i.c., By} is shifted on output data flow path 141(2X+3} to primary pipeline register
120(2X+1) (i.e., Ay}, as illustrated in Figure 8. The vector data in shadow pipeline
register 122(1) (i.e., A’;} is shifted on output data flow path 143(1) to primary pipeline
register 120(4X+3) (i.e., Ba}, as iflustrated in Figure 8.

[B0E13) If 32-bit vector data shifting 1s desired in the primary and shadow tapped-
delay lines 78(03, 78(1), the vector data stored in the primary pipeline registers 120(0)-
120{4X+3) and the shadow pipeline registers 122(0}-122(4X+3) can be shifted in two
{2) 16-bit vector data shift operations, if desived.

160114} Note i Figure 7 that primary pipeline registers 120(4X+3), 120(4X+2) for
registers Bay and Bag, and primary pipeline registers 120(2X+1), 126{2X) for registers
Ay and Ay, are logically associated with each other to shified input vector dats sample
86S(X), but are vot physically adjacent o each other as iHlustrated in Figure 8. This
arrangement 18 provided in this example due to the storage pattern of the input vector
data sample set 86(0}-86(X} in the vector data files 82{0)-82(X), as dllustrated in Figure
6B. As also illustrated in Figure 6B, the input vector data saraple set 86(03-86(X) stored
in the vector data files B2(()-82(X) spans ADDRESS and ADDRESS 1. Note
however, that the disclosure herein is not Hmited to this storage patiern of the mput
vector sample set 86(0)-86{X) in the vector data files 82(0}3-82(X).

[60115] Further, with regard to Figure 8, the tapped-delay lues 78(03, 78(1) are
configurable to be selectively provided or not provided 1o the input data flow paths
80(0}-80(X} between the vector data files 82{03-82(X)} and the execution units 84(0)-
84{X) based on a programmable input dala path configuration for the tapped-delay lines
78(0), 78(1) according to a vector instruction to be exccuted. For example, if the vector
mstruction is not a filter vector processing mstruction and/or does not otherwise require
the tapped-delay lines 78(0), 7&(1} to shifi the input vector data sample sets 86(0})-
data sample sets 86(03-86(X). The mnput vector data sample sets 86(0)-86(X) can be
provided from the vector data files 82(0)-82(X} to the respective execution units 84(0)-
84(X) by bypassing the primary and shadow tapped-delay lines 78(0), 78(1). This
prograromable data path configuration further allows the primary and shadow tapped-
delay tines 78(0), 78(1) to be provided or not provided m the input data flow paths

8O(0)-806(X}. The primary and shadow tapped-delay lines 78(0), 78(1) can be

WO 2015/073915 PCT/US2014/065825
33

programmed to be provided or not provided in the input data flow paths S83{(0}-80(Xtor
cach vector instruction, as desired.

160116} TFigure 9A iHusirates an input vector data sample set 86(0)-86(X)} loaded
from the vecior data files 82{()-82(X} into the primary tapped-delay Hne 78(0) during a
first clock cycle (CYCLEQ) of a filter vector processing instruction. The primary
tapped-delay Tine 78(0) and the shadow tapped-delay hine 78(1) are shown in simplified
form from Figure 7. The global register file 40 1s also shown. The first input vector
data sample sct 86(0)-86(X} is loaded into the primary tapped-delay line 78(0) as input
vector data samples X0-X63. For cxample, a special vecior mstruction may be
supported to lead the first input vector data sample set 86{0)-86(X} mto the primary
tapped-delay line 78(0} {and also the shadow-tapped delay line 78(1}, as discussed in
more detail below). This first input vector data sample sct 86(0)-86(X) was stored in
ADDRESSES 0 and 1 1n the vector data files 82(0}-82(X} shown in Figure 6B. Note
that m this exarople, X0, X1, X32, and X33 {orm the frst input vector data sample
86(0)}, only because of the storage pattern of the vector data files 82{0}-82(X) i the
VPE 22(1) in Figure 4 for this example. Other input vector data saroples 86 are
similarly formed as shown in Figure 9A {e.g., 86(1), 86(2), ... 86(X}). Other patterns
could be provided to group the input vector data samples 86 together to form the mput
vector data sample set 86(03-86(X).

(60117 Figure 9B illustrates 2 next jnput vector data sample set BON{()-E86N(X)
loaded mto the shadow tapped-delay line 78(1} during a second clock cycle (CYCLED)
of a filter vector processing instruction. The next input vector data sample set 86N(()-
BON(X} 15 loaded mnto the shadow tapped-delay hine 78(1) after the first input vector
data sample set 86(0}3-86(X) from the vector data files 82(0}-82(X) 15 loaded into the
primary tapped-delay bine 78(0) to setup the execution of a filter processing operation.
This next input vector data sample set 86N{0}-86N(X) is loaded into the shadow tapped-
delay line 78(1) as input vector data samples X64-X127. This next input vecior data
sample set 86N{0)-86N{X} was stored in ADDRESSES 2 and 3 in the vector data files
82(0}3-82(X) shown in Figure 6B, Note that in this example, X64, X635, X96, and X97
form the first input vector data sample 86(0), only because of the storage patiern of the
vector data files 82{0)-82(X) m the VPE 22(1) in Figure 4 for this example. Other
patterns could be provided to group the input vector data samples 86 together to form

the input vector data sample set 86(0}-86(X). The first filter cocfficients 92(0) from the

WO 2015/073915 PCT/US2014/065825
34

global register file 40 are also shown as provided in a register (“C”) to the execution
units 84(0-84(X)} in Figure 98 for use in the filier vector processing operation 102,

166118} With reference back to Figure 7, as the input vector data samples 86 are
shifted in the primary tapped-delay line 73(0) during each processing stage of the filter
vector processing operation 102, the next inpwt vector data samples 86N stored in the
shadow pipeline registers 122 are also shifted in the shadow pipeline registers 122 of the
shadow tapped-delay line 78(1). The input vector data sample 86 stored in the first
shadow pipeline register 122(0) in Figure 7 is shifted into the last primary pipeling
register 120{4X+3) of the primary tapped-delay line 78(0) during cach shift. Thus, in
this manner, as the filier vector processing operation 102 processing stages progress in
the execution units 84((H-84(X)}, at least a portion of the next input vector data sample
set 86N{0}-86N(X) mitially stored in the shadow tapped-delay line 78(1) is shifted into
the primary tapped-delay line 78(0) to be provided to the execution units S4(0)-84(X)
for processmg. The number of shifis will be dependent on the number of filter taps
provided in the filier vector processing operation 102 in this example. I the number of
input vector data saroples 86 in the input vector data sample set 86(0)-86(X) fetched
into the primary tapped-delay Hne 78(0) and shadow tapped-delay line 78(1) from the
vector data files 82(0)-82(X 18 greater than the number of {ilter taps in the filter vector
processing operation 102, the execntion units €4{(01-84(X) can perform the filter vector
processing operation 102 without any further input vector data sarople sets 86(0)-86(X)
being re-fetched from the vector data files 82(03-82(X). However, if the number of
filter taps in the filter vector processing operation 102 is greater than the mpul vector
data saraplies 86 in the input vecior data sample set 86(0)-86(X) feiched into the primary
tapped-delay tine 78(0) and shadow tapped-delay lne 78(1} from the vector da files
R2(D)-82(X}, additional input vector data sample seis 86(0)-86(X} can be fetched from
the vector data files 82(0)-82{X)} as part of the filter vector processing operation 102,
After the filter vector processing operation 102 is complete on the shifted input vector
data sample set 865(0)-865(X), the execution units 84(0)-84(X) can then be provided
with the previous next input vector sample data set 86N{0)-86N(X) stored in the
primary tapped-delay line 78(0} as the shifted input vector data sample set S86S(()-
ROS(X) for a next vector processing operation if unprocessed input vector data sample

868 are present in the tapped-delay hnes 78(0), 78(1}.

WO 2015/073915 PCT/US2014/065825
35

136119 Anocther exemplary rationale for providing the shadow tapped-delay line
78(1} 1s as follows. If a current filter vector processing operation 102 inveolves more
input vector data samples 86 than can be provided 1o the width of the vector data lanes
100(0)-100(X3, an additional input vector data sample set 86(0)}-86(X) loaded into the
shadow tapped-delay Hne 78(1) will be available fo the exccution units 84{1)-84(X)
during the filier vector processing operation 102 without delay. As the filter vector
processing operation 102 progresses through the shifted input vector data sample sets
B6S(0)-865(X) during execution, as discussed above, additional next input vector data
saropic sets 86N(0-86N(X) loaded into the shadow tapped-delay hine 78(1) are shified
into the primary tapped-delay Hne 78(0). Thus in this manner, the next input vector data
sample set 86N(0)-86N(X) for use in vector processing by the execution units 84(0)-
84(X} is available without delay. The execution units 84(0}-84(X) can continie to be
fully utilized during the filter vector processing operation 102 regardiess of whether a
single fetched input vector data sample set 86(0)-86(X} of the width of the vector data
files 82(0)-82(X} is sufficient to perform the entire filter vector processing operation
102

1601208} After the first input vector data sample set 86(0)-86(X)} and next mput vector
data sample set 86N(}-86N{X) are loaded into the primary tapped-delay line 78(0) and
the shadow tapped-delay line 781}, respectively, the first input vector data sample set
86(03-86(X}) provided o the primary fapped-delay lne 78(0) is provided to the
respective execution units 84{0)-84(X) to be processed in a first processing stage of the
filter vector processing operation 102 (block 108 in Figure 5). The first inpul vector
data sample set 86(0}-86(X} is shifted in the primary tapped-delay line 78(0} 1o become
the shifted foput vector data sample set 865(0)-865(X)} to be processed by the execution
units 84¢03-84(X) after the first input vecior data sample set 86{0})-86(X) is processed by
the execution units 84(0)-84(X). The shifted input vector data sample &68(0} is
provided to the execution unit 84(0), the shified fmput vector data sample 865(1} is
provided to the execution unit 84(1), and so on, as illustrated 1n the VPE 22(1} in Figure
4.

186121} Next, the exccution units 84(0)-84(X) perform the filter vector processing
operation 102 (block 110 in Figure 53 More particularly, the execution units 84(0)-
84(X) multiply the first nput vector data sample set 86(0}-86(X) by the current filter

coefficient 92(0) in a first fteralion according to the operation: yin] = x[n-71*h7 in this

WO 2015/073915 PCT/US2014/065825
36

exarnple, where xfn-7} is the first input vector data sample set 86{0)-86(X) to provide
the resultant filter output vector data sample set 94(0)-94(X). In subsequent ieration of
the filter vector processing operation 102 (block 110 m Figure 3), subsequent shifted
mput vector data sample sets B865(0)-865(X) for the filter vector processing operation
102 arc multiplied by the current filter coefficient 92(1)-92(Y-1). The execution units
84(0}1-84(X) accumulate the resultant fher vector output vector data sample sct 94(0)-
34(X) with the prior resultant lter output vecior data sample set 94(0)-84(X} calculated
by the execution units 84(0)-84(X) to provide the new prior resultant filier output vector
data samaple set 94(03-94(X) (biock 112 in Figure 5). In the first processing stage of the
filter vector processing operation 102, there is no prior resultant filter output vector data
sample set.

(60822} it all processing stages of the filter vecior processing operation 102 have
been coropleted (block 114 m Figure 3}, the accunmudated prior resultant filter output
vector data saraple set 94(0)-94(X) is provided as the resultant filter output vector data
sample set 94{03-94(X) in the output data flow paths 98{0}3-98(X)} to be provided and
stored in the vector data files 82(0)-82(X) {block 116 in Figure 5). If all processing
stages of the filter vecior processing operation 102 have not been completed (block 114
in Figure 53, the samples stored in the tapped-delay lines 78(0) and 78(1} are shifted
within the tapped-delay lines 78({1}, 78(1) to provide a next shifted input vector data
samplie set 865(0)-868(X) for the filter vector processing operation 102 {(block 118 in
Figure 53 The shifted input vector data sample set 86S{0}-865(X) is provided for
calculating a next resultant filter output vector data sample set as an intermediate result
to be accumulated with the prior resultant filter output vector data saropic set until the
filter vector processing operation 102 is complete. The shifting of the input vector data
saroples 86 to provide the shifted mput vector data sample set 8658(0}-865(X) in the
tapped-delay lines 78(1}), 78(1} was previously described above in detail with regard o
Figwre 7. The final accunudation of the intermediate resulis provided by the execution
units 84{0}-84(X) for the filter vector processing operation 102 is provided as the
resultant filter output vector data sample set 94{03-94(X) from the execution units 84((})-
84(X), as illustrated tn Figure 4.

160123} Figure 9C illustraies the contents of the tapped-delay Hnes 78 when the toput
vector data sample set 88(0}-86(X) 1 shifled in a second processing stage of the filter

vector processing operation 102 {o become the next shifted input vector data sample sct

WO 2015/073915 PCT/US2014/065825
37

BOS(0-865(X) for the next filter processing operation y{n} = x[n-6} * hé. The shifted
input vector data sarople set 865(0)-865(X) in the primary tapped-delay Hne 78(0) 18
shifted in the primary pipeline registers 120(0}-120(4X+3) according to the width of
mput vector data sample shifling preseribed by the vector instruction being executed.
For example, sample X2 is shifted in shifted input vector data sample 865(0), as
tiustrated io Figure 9C. The new shifted input vector data sample set 865{0)-865(X} is
provided to the execution units 84(0}-84(X)} for execution for the next filter tap of the
filter vector processing operation 102, The filter coefficient 92 provided to the
execution units 84(0)-84(X) 15 also the next filter coefficient 92, which is “h6” i this
example.

[60824] With continuing reference to Figure 5, the process repeats by providing the
shifted input vector data sample set 865((0)-865(X) from the primary tapped-delay line
78(0} 1o the execution units 84(0)-84(X) (block 108 in Figure 5) to be multiplied with
the next filter coefficient 92 (block 110 m Figure 5). The resultant filter oulput vector
data sample set 94(03-94(X) is accumulated with the prior resulant filter output vector
data sample set 94{0}-94(X) (block 112 in Figure 5). Figure 913 illustrates the state of
the input vector data samples 86 present m the tapped-delay hines 78(0), 78(1) during
the last processing stage of the exemplary filter vecior processing operation 102, In this
example as shown in Figure 9D, there were eight (8) filter taps (Y) i the filter vector
processing operation 102, because of filter coefficients 92 “h77-"h0” (i.e., 92(0)-92(¥
1)), “hO” 1s the last filter coefficient 92 1n the filter vector processing operation 102 as
shown in Figure 9D. The shifted mput vector data sample set 865(0)-86S(X) has been
shifted seven (7} times {one time less than the number of filter taps) such that input
vector data sample X39 is stored in the shifted input vector data sm"p! 865(0}Y in the
primary tapped-delay Hine 78(10) in the final, eighth, processing stage for the filter vector
processing operation 102,

(601251 Note that while the example of the filter vector processing operation 102
described above employs each of the vector data lanes 100(0)-100(X) m the VPE 22(1)
te provide the filter vector processing operation 102, such 1s not required. The filter
vector processing operation 102 may only require a subset of the vector data langs
106(0)-100(X) to be employed for the filter vector processing operation 102, For
example, the width of the mput vector data sample set 86{0)-86(X) may be less than the

width of all vector data files 82(1)-82(X}, where it is desired to craploy the additional

WO 2015/073915 PCT/US2014/065825
38

vector data lanes 100 for other vector processing operations to be performed in paraliel
to the filter vector processing operation 102, in this scenario, the tapped-delay hines
T8(G), 78(1y o Figure 7 may need to be modified o shift the next mput vector data
sample set S6N{(1)-86N{X} from the shadow tapped-delay hne 78(1) to the primary
tapped-delay line 78(0) as shified input vector data sample set 86S{0}-865(X) in a
vector data lane 100 prior to reaching the end vector data lane 100(X}.
[80126] Figure 10 is a schematic diagram of contents of accomulators (Le., the
esultant {ilter output vector data samples 94} in the exccution units 84(0}-84(X) in the
VPE 22(1) of Figure 4 after the exemplary eight (R) tap filter vector processing stages in
the above example have been fully executed according to vin} = x[n}*h +x[n-17¥h1 +.
n-71*h7 Accomulators Acc0-Acc3 are shown in Figure 11}, because in this
example, each execution unit 84{0}-84(X} has four accumulators disposed in parallel for
each vector data lane 100(0)-100(X). The accumulated resultant output vector data
samples can be provided on the output data flow paths 98(0)-98(X) to the vector data
files 82(01-82(X} as the collective resultant filter sutput vector data sample set 94(0)-
94(X) to be stored therein for further analysis and/or processing. A specialized vector
mstruction moay be supported by the VPE 22(1} to move rows of the resultant filter
cutput vector data sample set 94(0)-84(X) from the vector data files 82(()-82(X} to the
vector unit data memeory 32 of Figure 2, if destred.
(601271 Other types of vector processing operations other than the filier vector
processing operation [02 can also enjoy processing efficiencies in a VPE by use of
tapped-delay lines 78 hke or similar to that provided in the VPE 22{1) in Figure 4
discussed above. For example, another specialized vector processing operation that
nvolves shifting of input vector data sample scts 86 in a VPE is a
cotrelation/covariance vector processing operation (veferred to herein as “correlation
vector processing operation”). As an cxarmpie, it may be desired to empioy vector
processing to pmvide correlation operations fo choose the direct spread-spectrum code
(DS5C) (i.e., chip sequence) for demodulating a user signal m a CDMA systern to
provide good separation between the user signal and signals of other users in the CDMA
system. The separation of the signals is made by correlating the received signal with the
locally generated chip sequence of the desired user. If the signal matches the desired
user's chip sequence, the correlation fimction will be high and the CODMA system can

extract that signal. I the desired user's chip sequence has hittle or nothing in common

WO 2015/073915 PCT/US2014/065825
39

with the signal, the correlation should be as ciose to zero as possible (thus eliminating
the signal), which is referred to as cross-correlation. If the chip sequence is correlated
with the signal at any time offset other than zero, the correlation should be as close to
zero as possible. This is referred to as aoto-correlation, and is used to reject multi-path
interference.

{60128 However, correlation operations may be difficult to parallelize in vector

processors due to the specialized data flow paths provided in vector processors. When

Ry

the input vector data samaple sel representing the signal to be correlated is shifted
hetween delay taps, the nput vector data saropic set s re-fetched from the vector data
file, thus mcreasing power consurnption and reducing throughput. To minimize re-
fetching of the input vector data sample set from memory, the data flow path could be
configured to provide the same nvmber of multiphiers as delay taps for efficient
paralichized processing. However, other vector processing operations may reguire fewer
multiphiers thereby providing mefficient scaling and underutilization of the multipliers
m the data flow path. I the number of multiphers is reduced to be fewer than the
number of delay taps to provide scalability, paraliehism is hmited by more re-fetches
being required to memory to obtain the same input vector data sample set for different
phases of the correlation processing.

[60829] in this regard, Figure 11 is a schematic diagram of another exemplary VPE
222} that can be provided as the VPE 22 o Figure 2. As will be described in more
detail below, the VPE 22(2} in Figure 11 is configured to provide precision correlation
vector processing operations in the VPE 22(2) with eliminated or reduced vector data
sarapic re-fetching and reduced power consumption. The precision correlation vector
processing operations can be provided wn the VPE 22(2) as compared to correlation
veotor processing operations that require storage of mtermediate results requiring vector
data sample re-foiching, thereby increasing power consumption as a resull, To
eliminate or rainimize re-fetching of input vecior data samples from a vector data file fo
reduce power consumption and improve processing efficiency, the tapped-delay lines 78
mcladed in the VPE 22{1) in Figure 4 are also mehided in the input data flow paths
B3(0}-80(X between the vector data files 82{0}3-82(X) and exccution units 84{03-84(X)
(also labeled “EU™) mn the VPE 22(2). ‘X’+1 is the maximum number of parailel input
data lanes provided in the VPE 22(2) for processing of vector data samples m this

example. As previcusly discussed above, the tapped-delay lines 7% are configured to

WO 2015/073915 PCT/US2014/065825
40

receive an input vector data sampie set 86{0}-86(X) on tapped-delay line inpuis 88(0)-
RE(X) as a subset or all of mput vector data saroples 86 of the input vector data sanple
set 86(0)-86(X} from a corresponding subset or all of the vector data files 82(0)-82(X).
All the input vector data samples 86 comprise the input vector data sample set 86(0})-
86(X). As will be discussed in more detail below, the input vecior data sample sat
86(0}1-86(X) from the vector data files 82{03-82(X) is correlated in the VPE 22(2) with a
reference vector data sample set 130(0)-1308(X} to provide a resultant correlated output
vector data sample set 132(0)-132(X}. The reference vector data sample set 130(0)-
130(X) 18 comprised of “X+1" reference vector data samples 130, which in this example
are 130(0), 130(1), ..., and 130(X). The resultant correlated output vector data sample
set 132(()-132(X} is comprised of X+ resultant correlated output vector data samples
132, which in this exarmaple are 132{0}, 132(1}, ... , and 132(X)}.

(601301 With contimuing reference to Figure 11, the tapped-delay lines 78 shift the
mput vector data sample set 86{0)-86(X) for each correlation delay tap (i.e., correlation
processing stage} of the correlation veclor processing operation according o a
correlation vector instruction to be executed by the VPE 22(2) to provide a shifted mput
vector data sample set 863(0)-86S8(X). All of the shifted input vector data samples 868
comprise the shifted input vector data sample set 865{03-865(X). The tapped-delay
hines 78 shift the input vector data sample set 86(1H-86(X) to provide a shifted input
vector data sarmaple set 86S(03-80S(X), o execution unit inputs 90(0)-90(X) of the
excoution units 84(0)-84(X) during a correlation vector processing operation. In this
manner, termediate correlation results based on the operations performed on the
shifted mput vector data sample set 865(()-865(X} do not have to be stored, shifted,
and re-fetched from the vector data files 82(03-82(X) during each processing stage of a
correlation vector processing operation performed by the VPE 22(2). Thus, the tapped-
delay tines 78 can reduce power consumption and increase processing efficiency for a
correlation vector processing operation performed by the VPE 22(2).

(60133 With continuing reference to Figure 11, the execution units 84(0)-84(X) also
receive the reference vector data sample 130 from among the reference vector data
sarapic set 13(0)-1306(X) stored i a sequence number gencrator (SNG)Y 134 for the
correlation vector processing operation. The execution units 84(0)-84(X) are configured
to correlate the reference vector data sarople set 130(0)-130(X) with the input vector

data sample set B6{0)-86(X) as part of the correlation vecior processing operation.

WO 2015/073915 PCT/US2014/065825
41

However, note that the sequence number generator 134 could also be a register or other
file. The sequence number generator 134 is provided 1n this embodirgent to provide the
reference vector data sample set 130(0}-130(X), because the correlation vecior
processing operation in this example is for a COMA correlation vector instroction. The
eference vector data sample set I30(0)-130(X) is provided as a generated chip
sequence {or use in signal extraction from the mput vector data sample set 86{0)-86(X)
if the correlation between the reference vector data sample set 138(03-130{X} and the
input vector data sample set 86(1)-86(X} is high.
160132] For example, the correlation vector processing operation for a CMA vector
cotrelation instruction could provide a comrelation between on-time mput vector data
samples 360 in the input vector data sample set 86(0})-86(X)} and late inpui vector data
sampies in the input vector data sampie set 86{0)-86(X)}. For cxample, the on-time nput
vector data sanples 86 in the input vector data sample set 86(0)-86(X) may be the even
myput vector data samples §6 m the input vector data sample set 86{0}-86(X) (e.g., 86(0},
86(2), B6(4), ... 86{X-1}). The late input vector data samples 86 in the input vector data
saropic set 86{0}1-86(X) may be the odd input vector data sarapies 86 in the put vector
data sample set 86(0)-86(X} {e.g., 86(1), 86(3}, 86(5}, ... 86(X}). Alternatively, the on-
time input vector data samples 86 may be the odd input vector data samples 86, and the
late input vector data samples €6 may be the even input vector data samples 86. The
results of the correlation vector processing operation, the resuliant correlated output
vector data sample set 132(0}-132(X) for the on-time input vector data samaples 86, and
the late mput vector data samples 86 may be used to determine whether to use the on-
time or late input vector data samples from the input vector data sample set 86{01-86{X)
for signal exfraction. For example, an on-time correlation vector processing operation
may be provided according to the {ollowing:

i=3

Ry [ny= 2 31201 5{21 +]

fod

™

=4

, where:

1t is the number of input signal samples;
x{nj s the digitized input signal 66;
y[nj is the reference signal; and

{ 18 the sample number.

WO 2015/073915 PCT/US2014/065825
42

188833} A late corrclation vector processing operation may be provided according to
the following:

=51t

R = };:";,{2,? +1* {20 + 1+ #]
=0

, where:
n is the number of mput signal samples;
x{n} s the digitized input signal 66;
v{njis the reference signal; and
I 1s the sample number.
The reference signal yv[n} (i.e., reference vector data samples) may be complex. In one
aspect, the VPE 22(2) may recetve a reference signal (e.g., from the sequence mumber
generator 1343, The VPE 22(2} may use the received reference signal divectly to
perform the on-time and late correlation operations, in which case the reference signal
v{n] m the above cquations may represent the received reference signal. Alternatively,
the VPE 22(2) may compute the complex conjugate of the received reference signal
hefore using the reference signal to perform the on-time and late correlation operations,
in which case the reference signal y[n] in the above equations may represent the
conjugate of the received reference signal.
(60834} With continuing reference to Figure 11, the execution units 84(0)-84(X) are
each configured to multiply the reference vector data sample set 130(0)-130(X) with the
shifted input vector data samples 865(0), 865(1}, ... R6S(X} of the shifted mput vector
data sample set 865{0}-865(X) during each processing stage of the correlation vector
processing operation to provide intermediate correlation output vector data samples in
the execution units 84{0}1-84(X). The mfermediate correlation output vector data sample
sets are accumulated i each of the execution umts 84(0)-84(X) (i.e., prior accunuilated
correlation ouiput vector data sample is added to current correlation output vector data
sampie). This provides the final, resultant correlated output vector data samople set
132(0)-1320X) provided by the execution umits 84(0)-84() on execution unit outputs
36(0)-96(X) on the output data flow paths 98(0)-98(X}, respectively, for each input
vector data sample set 86((1), 86{1}, ... 86{X) to be siored back in the respective vector
data files B2(()-82(X) for further use and/or processing by the VPE 22(2) without
having to store and shift intermediate correlation output vector data sample sets

generated by the execution umis 84{0}-84(X).

WO 2015/073915 PCT/US2014/065825
43

186835] Further, note that the same components and architecture provided mn the VPE
22{2y i Figwre 11 is provided in the VPE 22(1) m Figure 4. The sequence number
generator 134 18 added and multiplexed by a multiplexor 136 with the global register
file 40 that can provide the filter coefficients 92(0}-92(Y-1} or other data to be
processed with the reference vector data sample set 130(0)-130(X). Thus, the VPE
22(2y in Figure 11 can provide both the aforementioned filter vector processing
operations and correlation vector processing operations discussed here and in more
detail below by control of the multipiexor 136, The multiplexor 136 can be controlled
by a sclector signal 138 that is contrelled based on the vector istruction being execuied
by the VPE 22(2). For a filer vector instruction, the selector signal 138 can be
configured to provide filter coefficients 92(03-92(Y-1} from the global register file 40 to
be provided to the execution units 84(031-84{X). For a correlation vector instruction, the
sclector signal 138 can be configured to select the reference vector data sample set
130(0)-1300X) from the sequence number generator 134 to be provided to the execution
units 84(0)-84({X).

160136] With continuing reference to Figure 11 and as will be discussed in more
detai] below, the tapped-delay hines 78(0), 78(1} are prograromable to be controlled
according to the veclor mstruction being processed. If a correlation vecior instruction or
other instruction that does not empley the tapped-delay lines 7€ is not being processed,
the tapped-delay hines 78 can be programmed to not be included in the input data flow
paths 8O(D)-86(X) between the vector data files 82(0)-82(X) and the exccution units
84(0)-84(X). In this embodiment, as previously discussed, two tapped-delay lines 78
are provided, a primary tapped-delay line 78(0) and a shadow tapped-delay bine 78(1},
with the shadow-tapped delay hine 78(1) being optional in this cmobodiment. As
previously discussed, without the tapped-delay lines 78, a separate shifting process
weuld have to be performed to provide the shifted intermediate input vector data samaple
set again to the execution units 84{03-84(X), thereby increasing latency and consuming
additional power. Further, the efficiency of the input and cutput data How paths 80(()-
80(X), OB(D)-98(X} in the VPE 22(2} are nol Hmited by the re-fetching delay of the
shifted nput vector data sample set 865(0)-865(X} from the vector data files 8Z{0)-
R2(X) during a correlation vector processing operation. The shifted input vector data

sarople set 365(()-868(X) is provided by the tapped-delay lincs 78 locahized to the

WO 2015/073915 PCT/US2014/065825
44

execution units 84(G}-84(X3. The vector processing in the execution units 84{0}-84(X)
is ony himited by computational resources rather than by data flow limitations.

160137} Fusther, the correlation vector processing operations performed by the VPE
22(2y m Figure 11 may be made more precise by employing the tapped-delay lines 78,
because output accurulations for intermediate corrclation processing stages in the
exccution units 84(0)-84(X) do not have to be stored m the vector data files 82()-
82(X). Storing of intermediate vector data sample sets from the execution onits 84(0)-
84(X) in the vector data files 82(0)-82(X) may result in rounding. Thus, when the next
intermediate vector data sample set would be provided to the execution umits 84(0)-
84(X) for the vector processing operation, any rounding error would be propagated and
added during each multiplication phase of the vector processing operation. In contrast,
in the example of the VPE 22(2} in Figure 11, the intermediate correlation output vector
data sample sets calculated by the execution units 84{03-84(X) do not have to be stored
m the vector data files 82(0)-82(X). Prior mtermediate correlation output vector data
sample sets can be accumulated with intermediate correlation cutput vector data sample
sets for next correlation output vector data sample sets, because the tapped-delay hines
78 provide the shifted nput vector data sample sets 865(0)-885(X) to the execution
units 84{0}-84(X) during the vector processing operation to be processed, and the results
accumulated with prior vector data sample sets for prior correlation output vector data
samplie sets.

{60138 The previous discussion of the components provided in the VPE 22(1) in
Figure 4 above i3 equally applicable for the VPE 22(2} in Figure 11, and thus will not be
re-described.

160139] A further description of additional details and features of the VPE 22(2) in
Figure 11 and the tapped-delay hnes 78 for providing the shifted input vector data
sampie set 865(1)-865(X) to the exccution units 84(0-84(X) in the input data flow
paths 80{0}-80(X) in this embodiment will now be described. in this regard, Figures
12A and 128 are flowcharts illustrating an exeroplary correlation vector processing
operation 140 that can be performed in the VPE 22(2) in Figare 11 employing the
tapped-delay lines 7€ according fo an exemplary correlation vector instruction. Figures
12A and 128 are flowcharts dllustrating an exermaplary correlation/covariance vector

processing operations that can be performed in parallel m VPE 22(2) i Figure 11 with

WO 2015/073915 PCT/US2014/065825
45

fetched mterleaved on-time and late input vector data sample seis according to an
exemplary correlation/covariance vector processing operation.

1601408} The cxemplary tasks performed o the comelation vector processing
operation 140 in Figares 12A and 12B will be described with reference to examples
provided in Figures 13-178. With reference to Figure 12A, the input vector data saropie
set 86{0)-86(X) to be processed in a comrelation vector processing operation 140
according to a correlation vector instruction is feiched from the vector data files 82(()-
82(X) mto the mput data flow paths 83{0}-80(X) for a correlation vector processing
operation 140 (block 142). As discussed above with regard to the VPE 22(2) in Figure
11, the mput vector data sample set 86(0)-86(X)} is multiphied by the refercnce vector
data sample set 130(()-130(X} received from the sequence nomber generator 134 in the
execution units 84{0}-84(X). For example, Figure 13 illustrates the reference vector
data sample set 130(0)-130(X) in the sequence number generator 134, In this example,
there are sixteen {16) reference vector data samples 130(0), 130(1), ... 130{15) stored in
the global register file 40 to be correlated with sixteen (16) mput vector data samples
R6(0), 86(1), ... 86(15) i the mput vector data sample set 86(0)-86(X). Figure 6B
previously discussed above illustrated an exemplary input vector data sample set 86(0)-
86(X} stored in the vector data files 82(()-82(X}, which is also apphicable in this
example and thus will not be re-described here.

[60841] Either one, some, or all of the vector data lanes [00(0)-100(X) in the VPE
222y in Figure 11 can be employed to provide the correlation veclor processing
operation 140 according to the programming of the vector nstruction depending on the
width of the input vector data sample set 86(1H)-86(X)} and the refercnce vector data
saropic set 130(0)-130(X) 1o be correlated in the correlation vector processing operation
140, If the entive width of the vector data files 82(0}-82(X} 15 required, all vector data
lanes 100(()-100(X} can be cmployed for the correlation vector processing operation
140. Note that the correlation vector processing operation 140 may only require a
subset of the vector data lanes 100(0)- 100(X) that may be employed for the correlation
vector processing operation 140, This may be because the width of the input vector data
sarmple set €6{0)-86(X)} is less than the width of all vector data files 82{0)-82(X), where
it 18 desired to enploy the additional vector data lanes 100 for other vector processing
operations to be performed in parallel to the correlation vector processing operation 140,

For the purposes of discussing the current example, it is assumed that the input vector

WO 2015/073915 PCT/US2014/065825
46

data sample sct 86(0)-86(X) and the reference vector data sample set 130{03-13(X)
employed 1o the correlation vector processing operation 140 involves all vector data
anes 100(0)-100(X) inthe VPE 22(2).

(60842} With reference back to Figure 12A, a fetched mput vector data sample set
86(0}-86(X) is provided into the input data flow paths 80{0}-83{X)) from the vector data
files 82(0)-82({X} to be loaded mto the tapped delay-Hines 78 as a first input vector data
sample set 86S{0)-86(X) for the correlation vector processing operation 140 (block
144). An mput vector data sample set 86{01-86(X) is loaded into the primary tapped-
delay line 78(0) as the input vector data sample set 86(0)-86(X} to be processed by the
execution units 84(0}-84(X) for the correlation vector processing operation 140, The
mput vector data sample set 86{03-86(X) lvaded inlo the primary tapped-delay line
78(03) is not shifted for the first operation of the correlation vector processing operation
140, A next joput vector data sample set 86N(0)-86N(X) can also be loaded o the
shadow tapped-delay Hne 78(1} as a next input vector data sample set 86N(0)-86N{X) to
be processed by the execation units 84(0)-84{X}. As previously discussed above and
discussed n more detail below, the purpose of the tapped-delay hines 78 is fo provide
shifting of the input vector data sample set 86(0}-86(X) to provide a shifted input vector
data sample set 865(()-865(X} to the execution units 84(0}-84(X) for subsequent
correlation operations during operation of the correlation vector processing operation
140, During cach processing stage of the correlation vector processing operation 140
excouted by the execution umits 34(0)-84(X), the mput vector data samples 86 are
shifted in the primary-tapped delay line 7&(0} to provide the shifted input vecior daia
sarapic set 868(0}-865(X) to the cxecution units 84(0)-84(X). In this manner, the input
vector data sarople set 6(0)-86(X) does not have to be stored, shifted in the vector data
files 82(0}-82(X)}, and re-feiched for each correlation operation of the correlation vector
processing operation 140,

[60143] in this regard, Figure 14 ilhustrates the exemplary tapped-delay lines 78 that
can be provided in VPE 22(2) in Figure 11, In this embodiment, the tapped-delay hnes
78 comprise the shadow tapped-delay line 78(1) and the primary tapped-delay line
78(G). As previously discussed above, the primary-tapped delay Hne 78(0) in this
exarople is comprised of a plurality of 8-bif primary pipclive registers 120 o allow
resolation of input vector data samples 86 down to 8-bits in length. The first foput

vector data sample set 86(01-86{X) processed by the execution units 84(0}-84(X will be

WO 2015/073915 PCT/US2014/065825
47

un-shified in this example for the first correlation operation of the correlation vector
processing operation 140. As the execution units 84(0)-84(X) process subscquent
correlation operations for the correlation vector processing operation 140, the input
vector data samples 86 in the nput vector data sample set 86(0)-86(X) stored in the
primary tapped-delay Hne 78(0), arc shifted i the primary pipeline registers 128(0})-
120(4X+3}, as indicated by the arrows in Figure 14, to become the shifted input vector
data sample set 865(()-865(X). In this manner, the execulion units 84(0)-84(X} are
fully wtilized by receiving and performing the correlation vector processing operation
140 of the shifted input vector data sample set B6S(0)-86S(X) without having to store,
shift, and re-fetch the input vector data sample set 86 (0)-86 (X} from the vector data
files 82{01-82(X).

{60844} The nunber of shifts performed in the primary and shadow tapped-delay
hines 78(0), 78(1} for the correlation vector processing operation 140 will be dependent
on the number of samples to be correlated. If the number of fnput vector data samples
86 in the imput vector data sample set 836(0}-86(X) fetched into the primary tapped-delay
Hne 78(0) and shadow tapped-delay line 78(1) froms the vector data files 82(0)-82(X) is
greater than the number of correlation operations in the correlation vector processing
operation 140, the execution units &4(0)-84(X) can perform the correlation vector
processing operation 140 without any further input vector data sample sets 86(0)-86(X)
peing re-fetched from the vector data files 82(03-82(X). However, if the number of
correlation operations m the correlation vector processing operation 140 is greater than
the number of input vector data samples 86 in the input vector data sample set 86(0)-
86(X) fetched into the primary tapped-delay line 78{0} and shadow tapped-delay line
781} from the vector data files 82(0)-82(X), additional joput vector data sample sels
RO(O)-86(X) can be fetched from the vector data files 82(0)-82(X) as part of the
correlation vector processing operation 140,

(60145 In this ombodiment, the primary pipeline registers 120(0)-120{4X+3)
collectively are the width of the vector data files 82{0)-82(X). In the example of the
vector data files 82{0)-82(X) being 512-bits in width with “X” equal to fifteen (15},
there will be sixty-four {64) total primary pipeline registers 120(0)-120(63), cach cight
(R) bits in width to provide a total width of 512 bits (1.e., 64 registers X & bits each).
Thus, in this exarople, the primary tapped-delay line 78(0) is capable of storing the

entire width of one (1) input vector data sample set 86(0)-86(X}). By providing the

WO 2015/073915 PCT/US2014/065825
48

primary pipcline registers 120(0)-120(4X+3} of cight {8) bit widths in this example, the
size of eight {8) buts for #-bit correlation vector processing operations. I larger input
vector data sample 86 sizes are desired for a correlation vector processing operation
140, such as 16-bit or 32-bit samples for cxample, the input vector data sample set
86(0}1-86(X) can be shifted in the primary pipeline registers 120(03)-120(4X+3) by two
(2} primary pipeline registers 12{ at a time.

[80146] Figure 15A illustrates an input vector data sampic set 86(0)-86(X) loaded
from the vector data files 82{0})-82(X)}) into the primary tapped-delay hine 78(0) during a
first clock cycle (CYCLED) of a correlation vector processing instruction 140, The first
mput vector data sample set 36(0}-86(X) is loaded into the primary tapped-delay hine
78(0) as input vector data samples X1-X32, bui sixty-four (64) mpul vector data
sampies are provided. The primary pipeline registers 120(0)-120(2X+1) (sce also,
Figure 14} are loaded with on-time and late mput vector data samples 86 {rom the mput
vector data sample sel 86(0)-86(X). For example, a special vector instruction may be
supported to load the on-tiroe and late input vector data samples of the put vector data
saropie set 86(0)-86(X) into the primary tapped-delay hine 78(0) (and also the shadow-
tapped delay hine 78(1), as discussed m more detail later below). For example, primary
pipeline registers 122(03, 122¢1), 122(2X+2}, and 122{(2X+3) collectively contain input
vector data sarople 86(0). Primary pipeline registers 122(0), 122(1) contain on-time
mput vector data sample 860T(1), which are X{0) and X{(1}, where “O7T” means “on-
time.” Primary pipeline registers 122{2X+2), 122(2X+3} contain late input vector data
sarapics 861{0}, which are X{1) and X(Z}, where “L” means “late.” This input vector
data sarople 86 storage pattem io the primary tapped-delay line 78(0) 18 repeated for the
other primary pipeline registers [22(23-122(2X+1} and 12202X+43-122(4X+3) (sce
Figure 14},

(601471 With reference back to Figure 14, the shadow tapped-delay tine 78(1) is also
provided in the tapped-delay line 78. The shadow tapped-delay Tine 78(1) can be
employed to laich or pipeline a next input vector data sample set 86N{0)-86N{X} from
the vector data files S8Z{(0)-82(X} for a subscquent vector processing operation. The
shadow tapped-delay line 78(1) is also comprised of a plurality of 8-bit shadow pipeline
registers 122 to allow resolution of mput vector data samples down to 8-bits in length

similar to the primary tapped-delay Hne 78(0). The shadow pipcline registers 122

WO 2015/073915 PCT/US2014/065825
49

collectively are the width of the vector data files 82(0)-82(X, which is 312-bits in this
exarople, so that the shadow tapped-delay line 78(1} is also capable of storing the eutire
width of one (1} input vector data sample sct 86{0)-85(X) just Hike the primary tapped-
delay line 78(0). Thus m this embodiment, the nomber of shadow pipeline registers
122(0)-122(4X+3) included i the primary tapped-delay line 78(0) is four times the
number of vector data lanes 100{03-100(X), which total sixteen (16), cach vector data
lane 10(K0}-100(X} capable of supporting 32-biis cach in this example. Thus, the
number of primary pipeline registers 120 also totals sixty-four (64) in this example for a
total of 512 bits (i.c., 64 registers x § bits cach).

[60148] Tigure 158 ilustrates a next mput vector data sample set 36N{D)-86N{X)
loaded into the shadow tapped-delay line 78(1} during a second elock cycle (CYCLED)
of a correlation vector processing instruction 140, The next input vector data sample set
EEN{(-86N(1) is loaded wto the shadow tapped-delay fine 78(1) after the first mput
vector data sample set 86(0)-8600) from the vector data fles 82(0}1-82(X)) is leaded into
the primary tapped-delay line 78{0} to setup the execution of a correlation vector
processing operation 140, This next input vector data sarople set 86N(03-86N(X) 1s
loaded inio the shadow tapped-delay line 78(1) as mput vector data samples X(32)-
X{63), with both on-time and late mput vector data samples 860T, 86L. Note that in
this example, X(32) and X(33) form the on-time input vector data samples 860T of the
mput vector data sample 86(0), and X{33) and X(34) form the late input vector data
samples B6L of the input vector data samaple 86(0), like the storage pattern provided in
the primary tapped-delay Hine 78(0} discussed above. Other patterns could be provided
to group the input vector data samples 86 together to form the input vector data sample
set 86{0)-86(X). The reference vector data samples 130 correlated during a first
processing stage of the correlation vector processing operation 140 from the reference
vector data samaple set 130(0)-130(X} from the sequence number generator 134 (ie.,
Y{0) and Y(1)) are also shown as provided i a register (“C”) to the execution units
84(0}1-84(X}) in Figure 158 {or use in the correlation vector processing operation 140.
(801481 With reference back to Figure 14, as the input vector data samples 86 in the
input vector data sample set 86(0)}-86(X) arc shiffed in the primary tapped-delay ling
78(() during cach processing stage of the correlation vector processing operation 140,
the next mput vector data samples 86N stored m the shadow pipehine registers 122 are

also shifted in the shadow pipeline registers 122 of the shadow tapped-delay line 78(1).

WO 2015/073915 PCT/US2014/065825
50

Because in this example, the input vector data samples €6 of the input vector data
saropic set 86(0}-86(X} arc stored as ou-time and latc versions, the shiff patiern
provided between the tapped-delay lines 78(0) and 78(1) in Figure 14 1s different than
the shift pattern provided between the tapped-delay lines 78(0) and 78(1) i Figure 7.
As shown in Figure 14, the on-time input vector data sampies 860T are shifted from the
shadow pipehine register 122(0) in the shadow tapped-delay hne 78(1) to primary
pipeline register 120{2X+1) in the primary tapped-delay line 78{0). Likewise, the late
input vector data samples 861 are shifted from the shadow pipeline register 122(2X+2)
in the shadow tapped-delay line 78(1}) to primary pipeline register 120(4X+3) 1 the
primary tapped-delay line 78(0). In this manner, the on-time mput vector data samples
860T and late input vector data samples 860T are kept segregated from each other in
the tapped-delay lines 78(), 78(1} as the shifting of input vector data samples 86 occurs
during the correlation vector processing operation 140,

[80150] The correlation vector processing operation 140 processing stages progress
m the execution units 84(0}-84(X}, eventually, the entire next input vector data sample
set RON(G}-86N(X) initially stored in the shadow tapped-delay line 78(1} is shifted fudly
nto the primary tapped-delay line 78(0) to be provided to the execulion units 84(0)-
84(X} for processing. In this manner, afler the correlation vector processing operation
140 s complete on the current input vector data sample set 86{(0}-86(X), the exccution
units 84(0)-84(X) can then be provided with the previously next input vector saraple
data set 86N{0)-86N(X) stored in the primary tapped-delay line 78(0) as the current
mput vector data sample set 86{0}-86(X) for a next correlation veclor processing
operation 140, i desired, without delay.

160151] Afier the first input vector data sample set 86(0}-86(X} and next input vector
data sample set 8ON{()-86N{X) are loaded into the primary tapped-delay line 78(0} and
the shadow tapped-delay line 78(1), respectively, as shown in Figure 1358, the first input
vector data sample set 86{(1-86(X) provided in the primary tapped-delay Hne 78(0) is
provided to the respective execution units B4(0)-84(X) to be processed in a first
processing stage of the correlation vector processing operation 140 (block 146 in Figure
1ZA). The first input vector data sample set 86(0)-86(X} becomes the currentt input
vector data sarple set 86(0)-86(X) being processed by the execution units 84(0)-84(X),
The current mput vector data sample 86(0) is provided to execution unii 84(0), the

current input vector data sample 86(1) is provided to execution unit 84{1}, and so on, as

WO 2015/073915 PCT/US2014/065825
51

illusirated in the VPE 22(2} in Figore 11. The reference vector data input samples
130(0)-130(X) to be correlated with the input vector data sample set 86(0)-86(X) are
provided to the execution units §4(0)-84(X) in the cuwrrent processing stage of the
correlation vector processing operation 140 (block 148 in Figure 12A}.

186152} Next, the execution units 84(0)-84(X} perform the correlation vector
processing operation 140 (block 150 1o Figure 12A). More particularly, the execution
units 84(0}-84(X) muitiply the corrent input vector data sample set 86(0)-86(X} by the
reference vector data samples 130 during the first processing stage according io the
operation: R{OT)[ni = vi0] * x[n} for on-time foput vector data samples 8607 and
R[] = y{i] * x{i4n] for late mput vector data samples 861, where y[] is the
designated reference vector data sample 130, and x{n} is the current input vector data
sampie set 86(0)-86(X}. The result of the correlation is a current on-time correlation
output vector data sample set R{OT)[n] and a current late correlation output vector data
sample set R{L}n}l. The execution units 84(0)-84(X} then accumulate each current
resultant correlation vector data sample set with its corresponding prior resultant
correlation vector data sample set calculated by the exccution units 84(03-84(X) to
provide the new prior mput vector data sample sets 86(0)-86(X) (block 152 m Figure
12B). In the first processing stage of the correlation vecior processing operation 140,
there is no prior resuftant correlated output vector data sample set 132{0}3-132(X}. Thus,
the first/current resultant correlated output vector data sample set 132(0)-132(X) will
simply become the prior input vector data sample set 86(0)-86(X) for the second, next
processing stage of the correlation vector processing operation 140.

136883] if all processing stages of the correlation vector processing operation 140
have been completed (block 154 in Figure 12B), the accumulated prior resuliant
correlated oulput vector data samople set 132(0)-132(X) is provided as the resultant
correlated cutput vector data sample set 132{03-132(X) in the output data flow paths
O8(03-98(X) to be provided and stored in the vector data files 82(0G)-82(X) (block 157 1n
Figure 12B). If all processing stages of the correlation vector processing operation 140
have not been completed (block 154 in Figure 12A), the shifted input vector data sample
set 865(()-868(X) is shifted in the tapped-delay Hines 78((1), 78(1} to the next position
for the correlation vector processing operation 140 to provide the shifted input vector
data samaple set 868(0)-865(X} (block 156 in Figure 12B). The shifted mput vector data

sampie set 865{0}3-868(X) is provided for calculating a next resultant correlation output

WO 2015/073915 PCT/US2014/065825
52

vector data sample set 132(0)-132(X} to be accunmulated with the prior resuhant
correlation output vector data sample set 132(0)-132(X). The shifting of the input
vector data samples 86 in the tapped-delay lines 78(0}, 78(1) was previously described
above in detail with regard to Figure 14

[60854] Figure 15C illustrates the conterts of the tapped-delay lines 78 when the
mput vector data sample set 86(0)-86(X) is shified in a second processing stage of the
correlation vector processing operation 140 to become the new shifted input vector data
sarapic set 86S{0}-865(X} for a next correlation processing operation 140 R{OT){n} =
v[21* x[2+n]} for on-time input vector data saraples 86507 and R{L){n] = v{3] * x[3-+n]
for late mput vector data samples 8681, The input vector data sample set 86(0)-86(X)
in the primary tapped-delay line 78(0) is shifted by two inpuat vector data samples 86.
For example, input vector data sample 83607T(1) in Figure 158 of X(2) and X{3} is now
shifted into input vector data sample 86S(0) in Figure 15C. The shiffed input vector
data sample sct 865(0}-868(X) becomes the current nput vector data sample set 86(0)-
86(X). The reference vector data samples 130 provided to the exccution units 84(0)-
R4(X) are also the reference vector data samples 130, which are Y(2) and Y(3) in this
example.

[60855] With contimuing reference to Figure 128, the process repeats by providing
the next shifted input vector data samplie set 868(0)-865(X) from the primary tapped-
delay hine 78(0) (and from a portion of the shadow tapped-delay line 78(1}) to the
exccution units 84(0)-84(X}) to be multiphed with the next reference vector data samples
130 {block 150 in Figure 12A}, with the resultant correlated output vector data sample
set 132(0)-132(X} being accumifated with the prior resuliant correlated output vector
data sample set 132(0)-132(X) (block 152 in Figure 12B). Figure 15D illustrates the
state of input vector data samples 86 present in the tapped-delay lines 78(0), 78(1)
during the last processing stage of the exemplary correlation vector processing operation
140, In this example as shown in Figure 1503, there were sixtcen (16) processing stages
for the correlation vector processing operation 140, because the full data width of the
tapped-delay hines 78 were employed for the input vector data sample set 86(()-86(X},
but split among on-time and late input vector data samples 860T, 86L. Y{(30) and
¥{(31) are the last reference vector data samples 130(X} in the correlation vector
processing operation 140 as shown o Figure 15D, which s reference vector data

sampies 130(15) in the example of Figure 13. The shifted input vector data sampic set

WO 2015/073915 PCT/US2014/065825
53

B6S8(1)-865(X} has been shifted sixteen {16} times {the width of the vector data lanes
H00(-100(X) 1 this example) such that inputf vector data samples X(30) and X(31} are
stored in the shifted input vector data samople 8658(0} in the privoary tapped-delay hine
78(0) i the final, sixteenth, processing stage {or the correlation vector processing
operation 140,
[80156] Figure 16 is a schematic diagram of contents of accumulators (i.e., resultant
correlated output vector data samples 132) in the execution units 84{03-84(X) in the
22{2) of Figure 11 afier the exemplary sixteen (16) correlation vector processing
stages 1o the above example have been fully executed. The resultant correlated output
vector data sample set is shown as 132(0)-132(X). Accumulators Acel-Ace3 are shown
in Figure 16, because in this example, each execution unit 84(0)-834(X) has four
accumulators disposed in parallel for each vector data fane 100{(0)-106(X). The
accurnulated resultant output vector data samples can be provided on the output data
flow paths 98(0)-980X) to the vector data files R2(0)-82(X) as a collective resultant
correlated output vector data sample set 132(0)-132(X} to be stored therein for further
analysis and/or processing. A specialized vector instruction 1oay be supported by the
VPE 22(2} to move rows of the resuitant correlated outlput vector data sample set
132(0)-132(X) from the vector data files 82(1)-82(X} to the vector unit data memory 32
{(see Figure 23, if desired,
(60157 Resultant output vector data sample sets provided by the execution umits
84(0}1-84(X), inchuding the resultant filter vector output data sample sets 94{0)-94(X)
and the resultant correlated output vector data sample sets 132(0)-132(X} described
above, can be stored back in the vector data files 82{0}-82(X), 82(31} 1 different
interleaved formats depending on the vector mstruction executed by the VPE., X is
equal to thirty-one (31} in this example to provide the vector data files 82(0)-82(X),
cach thirty-two (32} bits width. For example, as illustrated in Figure 174, a resultant
output vector data samaple set 138(0)-158(X0, 158(31) can be stored 1 the vector data
files 82(0}-82(X) separated by thewr real (“g”") and ymaginary (1) components. The
resultant output vector data sample set [58(0)-158(X) is comprised of “X+17 resoltant
cuiput vector data samples 158, which in this example are 158(0), 158(1), ... , and
158(X). It may be more efficient to store the resultant oufput vector data sample set

(2R T2

1S8(1)-158(X), 158(31) separated by their real ("q”) and imaginary (7"} components

for efficiency purposes, such as if a3 next vector instruction operates on real and

WO 2015/073915 PCT/US2014/065825
54

imaginary components of the resultant output vector data sample set 158(0)-158(X]},
158(31) as an nput vector data sample set. Or, i may not be possible to store the
resultant output vector data sample 158 in a vector data file 82 such that separation of
the resultant output vector data sample 158 into its real and imaginary components. For
example, if a sixteen {16} bit vector data sample is multiplied by another sixicen (16) bit
vector data sample, a thirty-two (32} bit resultant vector data sample results. For
example, the thirty-two (32} bit resaltant output vector data sample 158 could be Y0 in
Figure 17A. The imaginary component of Y, Y0.1 158(1), can be stored in ADDRESS
‘0 of vector data file 82(0), and the real component of YO, Y0.q 158(Q}, can be stored
i another ADDRESS, such as ADDRESS A

[60858] The resultant output vector data sample set 158(0}-158(X), 158(31} in Figure
17A could be stored in the vector data files 82{0}-82(X), 82(31) mterleaved by cven and
odd resultant output vector data samples. This s illustrated by example in Figure 17B.
As illustrated i Figure 178, resultant output vector data sample YO-Y31 158(0)-
15&(X), 158(31) is stored in an interleaved format by even and odd vector data samples
among ADDRESS 07 and ADDRESS "A” in vector data files 82(03-82(31). Resultant
output vector data sample YO 158(0) s stored in ADDRESS 0 in vector data file
82(0}. Resultant output vector data sample Y1 158(1} is stored not in ADDRESS 6" in
vector data file 82(1), but in ADDRESS A’ in vector data file 82(0). Resultant output
vector data saropic Y2 1538(2) is stored in ADDRESS *(7 in vector data file 82(1), and
80 ON.

(801581 Certain wireless baseband operations require data samples to be format-
converted before being processed. For example, the resultant output vector data sample
sets 158(0)-158(X) stored in the vector data files 82(0)-82(X) in intericaved format in
Figures 17A and 178 may need to be de-interleaved for a next vector processing
operation. For example, if the resultant ocutput vector data samples 158(1)-158(X)
represent a CDMA sigoal, the resultant output vector data samples 158(0)-158(X) may
need to be de-interleaved to separate out oven and odd phases of the signal. The de-
mterleaved signal may also be correlated with a locally generated code or sequence
number in a correlation processing operation to determine if the CDMA system can
extract the signal, such as with the exemplary correlation vector processing operation
described above in regard to Figures [1-16. Conventional prograromable processors

implement format conversion of data samples in multiple steps, which add cycles,

WO 2015/073915 PCT/US2014/065825
55

power consumption, and data {low complications in vector data sample format
conversions. Vector processors can pre-process the vector data samples to provide
format conversions before the {ormat-converted vector data saroples are provided to
execulion untts. The format-converted vector data samples are stored in vector data
memory and re-feiched as part of & vector processing operation requiring data format
conversion (o be processed by execution umits. However, this format pre-processing of
the vector data samples delays the subseguent processing of the format-converted vector
data samples by the execution units, and causes computational components in the
execution units to be underutilized.

[63168] Embodiments disclosed herein and below provide for conversion of
mterleaved vector data sample sets, such as those iHustrated in Figures 18A and 18B.
For example, Figures 18A and 18AB illusivate a vector data sample set B(0-D{X)
stored in vector data files 82(0})-82(X) in different formats. Figure 18A illustrates the
vector data sample set D(0}-D{X) stored n signed complex (SC) sixteen-bit samples
(SC16) and format-interleaved by real and tmaginary components. The sixteen (16) bit
real and tmaginary components of thirty-two (32) bit vector data sample D(0) - D({OX(Q)
and D(G)1) are stored in thirty-two (32) bit vector data file 82(0). The sixicen (16} bit
real and tmaginary components of vector data sample DX} - D{XYQ) and D({X)1} are
stored i thirty-two (32) bit vector data file 82(X). Figurc 188 illustrates the vector data
sample set D(O-D(X) stored in SC eight-bit samples (SCR) and format-interleaved by
real and imaginary components. The eight (8} bit real and imaginary components of
sixieen {16} bit vector data sample D{OY(1) - D(OY13(Q), DY}, are stored in vector
data file 82{0). The cight (8) bit real and imaginary components of sixtcen (16) bit
vector data sample D00} - D{OWOWQ), D00, are also stored in thirty-two (32) bit
vector data file 82(0). Likewise, the eight (8) bit real and imaginary components of
sixteen {16} bit vector data samaple D) - DO Q) DEGA X, are stored in
thirty-two (32} bit vector data file 82(X). The eight (¥) bit real and imaginary
components of sixteen {16} bit vector data sample DOO(G) - DOOONQ), DEO0(),
are also stored in thivty-two {32} bit vector data file 82(X}.

36161} iIn this regard, Figure 19 is a schomatic diagram of another exemplary VPE
22(3} that can be provided as the VPE 22 m Figure 2. As will be described in more
detai] below, the VPE 22(3) in Figure 19 is configured to provide in-flight format

conversion {e.g., de-imtericaving) of input vector data sample sets provided fo execution

WO 2015/073915 PCT/US2014/065825
56

units for vector processing operations in the VPE 22(3) with climinated or reduced
vector data samople re-fetching and reduced power consumption. Io-fhHght format
conversion of input veclor data sarople sets means the mput vector data sample set
retrieved from vector data memory is format-converted without having to be stored and
re-fetched from vector data memory before being provided to exccution units for
exccution. To eliminate or munimize re-fetching of input vector data samples from a
vector data file to reduce power consumption and improve processing efficiency, format
conversion circuitry 15%(0)-159%(X) is included in cach of the vector data ianes 100(0)-
100(X) between the vector data files 82(03-82(X) and the execution units 84(0}-84(¥X).
As will be discussed i more detail below, the input vector data sarople set 86(0)-86(X)
from the vector data files 82(0)-82(X} is format-converied {e.g., de-interleaved) in the
format conversion circuitry 15HOF15HX) in the VPE 22(3) to provide a format-
converted input vector data sarople set B0F(0)-86F(X) to the execution units 84{0)-
84(X) for a vector processing operation that requires de-interleaving of the mput vector
data sample set 86(0)-86(X). All of the format-converted mput vector data samples 86F
comprise the format-converted input vector data sample set 86F(0)-86F (X m this
example. ‘X’+1 15 the maximum number of paralle] mput data lanes provided in the
VPE 22(3) {or processing of mpul vecior data samples 86 in this example.

(60862} in this manner, format conversion of the mput vector data sample sets 86(0}-
86(X) i the VPE 22(3) does not require pre-processing, storage, and re-fetching from
vector data files 82(0}-82(X), thereby reducing power consumption. Further, because
the format conversion of the input vector data sample sets 86{0})-86(X) does not require
pre-processing, storage, and re-feiching of the format-converted mput vector data
sarople sets RG{0)-86(X) from vector data file 82(0)-82(X), the exccution units 84(0)-
84(X) are not delayed from performing vector processing operations. Thus, the

cfficiency of the data flow paths in the VPE 22(3) are not limited by format conversion

[¢]

pre-processing delays of the mput vector data sample sets 86(0)}-86(X). The format-
converted {e.g., de-interleaved) imput vector data sample sets B6F(0}-86F(X) are
provided localized to the exccution onits 84(0)-84(X). The vector processing m the
execution units 84(0)-84(X) is only hmited by computational resources rather than by
data flow himitations.

160163} Note that while the primary and shadow tapped-delay Hues 78(0), 78(1} are

itfustrated m the VPE 22(3) in Figurce 19, including a tapped-delay line in the VPE 22(3)

WO 2015/073915 PCT/US2014/065825
57

in Figure 19 is not required. In this exampie as illustrated in Figure 19, the format
conversion cireuitty 159(03-159(X) can be inchluded 1o the optional primary tapped-
delay line 78(0). This arrangeroent provides the format conversion circuitry 159(0)-
159(X} in the input data flow paths 80(0}-80(X)} between the vector data files 82(0}-
82(X} and execution units 84{0}-84(X)} in the VPE 22(3) in Figurc 19. The operation of
the primary tapped-delay bine 78(0) was previously described above with regard fo
/PEs 22(1) and 22(2). As previously discussed above, the primary and shadow tapped-
delay lines 78(0), 7&(1) may be cmployed for the vector processing operation, requiring
format-converted input vector data sarople sets 86F((0)-86F(X) to be provided fo the
execution units 84(0)-84(X), which in turn also requires format-converted, shifted input
vector data sample sets, designated as 868F(0)-86SF(X).

[60i64] Notc that the same components and architecture provided in the VPE 22(3)
in Figure 19 are provided in the VPE 22(2) m Figure 1. Common components
between VPE 22(3) in Figure 19 and VPE 22(2) in Figure 11 are illustrated in Figure 19
with common element numbers with the components in Figare 11 of the VPE 22(2}.
The previous description and discussion of these common componenis for the VPE

5

i1 above are also apphicable to the VPE 22(3) in Figure 19, and thus

22(2y m Figure

will not be re-described here.

186165] A further description of additional details and features of the VPE 22(3) in
Figure 19 and the tapped-delay hines 78 for providing the format-converted input vector
data sample set 86F(0)-26F(X) to the execution units §4(0)-84(X) in the mput data flow
paths 806{03-80(X) in this embodiment will now be described. In this regard, Figure 20
is a flowchart illustrating an cxemplary de-interleaving format conversion vector
processing operation 160 that can be performed in the VPE 22(3) in Figure 19
employing the format conversion cireuitry 1539(0)-159(X) according to an exemplary
vector instruction requirtng format conversion of the input vector data sample sct 86{0})-
80166 With reference to Figure 20, the input vector data sample set 86(0)-86(X) for
a vector processing operation 160 according to a vector instruction is fetched from the
vector data files 82(0)-82(X} into the input data flow paths 80{0)-80(X) (block 162}
For exarople, the format conversion for the vector processing operation 160 oay be a
de-interleaving vector processing operation 160 where the mput vector data sample set

86(0)-86(X)} is de-interleaved from its interfeaved state in the vector data files 82(0)-

WO 2015/073915 PCT/US2014/065825
58

82(X) into de-interfcaved input vector data sample set B6F(0)-86F(X). Either one,
somg, or all of the vector data lanes 100(0)-100(X) in the VPE 22(3) in Figure 19 can be
employed to provide the vector processing operation 160 according to the programming
of the vector instruction depending on the width of the nput vector data sample set
86(0}-86{X) 10 be format-converted for the vector processing operation 160, I the
entire width of the vector data files 82(0)-82(X) is required, all vector data Janes 100{(})-
100(X) can be employed for the vector processing operation 160. The vector processing
operation 160 may only require a subset of the vector data lanes 106{03-106(X) that may
be employed for the vector processing operation 160, This may be because the width of
the mput vector data sample set 86(1)-86(X} is less than the width of all vector data fles
R2(M-E2(X), where 1t is desired to employ the additional vector data lanes 100 for other
vector processing operations to be performed in parallel to the vector processing
operation 160. For the purposes of discussing the current example, 1t 18 assumed that
the mput vector data sample set 86(0)-86(X) format-converted into input vector data
sample set 86F(0}-86F(X) for the vector processing operation 160 mvolves all vector
data fanes 100(0)-100(X} inthe VPE 22(3) n Figure 19,

160167 With continuing reference to Figure 20, the feiched input vector data sample
set 86(0)-86(X} is provided into the mputl data flow paths §6{0)-80(X) to the format
conversion circuitry 15%2(0)-159%(X) to be format-converted according to the vector
processing operation 160 (biock 164). As a non-limiting example, the current mput
vector data sample set 86(0)-86(X) may optionally be loaded into the primary lapped-
delay line 78(1}) as the mput vector data sample set 36(0)-86(X) o be formal-converted
before being provided to the exccution units 84(03-84(X) for the vector processing
operation 160, As previously discussed, a next input vector data sample set 86{0)-86(X)
may also be optionally loaded mto the shadow tapped-delay Hoe 78(1) as a next iput
vector data saraple set B6N{0}-86N{X} to be processed by the exccution units 84{0})-
84(X). As previously discussed above, the purpose of the tapped-delay Huoes 78 is to
shift the input vector data sample set 86(0}-86(X) to shifted input vector data samples
86S(0)-865(X} to be provided o the execution units 84(03-84(X) during operation of a
vector processing operation 160 operating on shifted input vector data samples 865, if
the format-converied input vector data sarople set 86F(01-86F(X) is also shifted in the
tapped-delay hines 78 during the vector processing operation 160, the shifted format-

converted input vector data sample sct is designated as 865F((0)-868F(X).

WO 2015/073915 PCT/US2014/065825
59

130168 With continuing reference to Figure 2{, the execution units 84(0)-84(X) may

~

next perform the vector processing operation 160 using the format-converted foput
vector data sample set 86F(()-86F (X)) (block 166). The execution units 34{0)-84(X)
may be configured to provide multiplications and/or accumulation using the format-
converted tnput vector data sample set 86F({0)-86F(X). If the tapped-delay hines 7€ arc
employed to shift the format-converted mput vector data sarmople set 86F(0}-86F(X)
during the vector processing operation 160, the execution unils 84(0)-84(X} can receive
the shified, format-converted input vector data sample sct 86SFQ)-865F(X) during cach
processing stage of the vector processing operation 160 until the vector processing
operation 160 is completed (block 168). Once the vector processing operation 160 has
been completed, a resultant output vector data sample set 172(03-172(X} based on
vector processing with a format-converted input vector data sample set 86F(0)-86F(X),
or shifted, format-converted mput vector data sample seis 868F(0}1-865F(X), is provided
m the output data flow paths 98(0)-98(X) 10 be provided and stored in the vector data
files B2{()-82(X} (block 1703, The resultant output vector data sample set 172(0)-
172(X) is comprised of “X+1" resultant ouiput vector data samples 172, which 1 this
example are [72(0y, 172(1), ..., and 172(X)).

[6086%9] TFigure 21 is a schematic diagram of exemplary format conversion circuiiry
159({1)-159(X) that receive shifted input vector data samplc set 868{0}-865(X) from the
primary tapped-delay line 78(0). In this cxample, the format conversion circuifry
159(0)-159(X) is provided on the cutput of the primary tapped-delay hine 78(0} in the
mput data flow paths 830}-80(X). The exemplary format conversion circuitry 158(0}-
159(X) will now be described.

160178] The exemplary format conversion civcuitry 159(0)-159(X) will now be
described. Exemplary detail of the intemnal components of the format conversion
circuitry 159G} is provided in Figure 21, but such is also applicable for format
conversion circuitry 159(1)-159(X). Taking format conversion circuitry 159(0) in
Figure 21 as an example, the format conversion circuitry 1590} in this example is
configured to provide de-interleaving and sign extension of input vector data sample
86(0} or shifted input vecior data samples 865(1) {from the primary pipeline registers
120000, 12001 12002 X+2), 120(2¥+3) 1o vector data lane 100(0) to provide format-
converted foput vector data samples 861(0) or shifted, format-converted input vector

data samples 86SF(0), respectively. In this regard, four multiplexors 174(3}-174(0) arc

WO 2015/073915 PCT/US2014/065825
60

provided in this exaraple, which are arranged according to an assigned primary pipeling
register 120(03-120(2X+3), respectively. Each multiplexor 174(3)-174(0) 1s counfigured
to select either the portion of the shifted input vecior data sample 86S(0} in the assigned
primary pipeline register 120(0), 120(1), , 12H2X+2), [20(2X+3}, or the portion of the
shifted inpwt vector data sample 865(0} to store in a primary pipeline register 120
adjacent to the assigned primary pipeline register [120(0), 120(1), 120(ZX+2},
120(2X+3).

186871} For oxample, if primary pipeline registers 120(0), 120(1), 1206(2X+2),
120(2¥+3) store mterleaved shified input vector data sample 865(0) in complex,
interleaved form as real {15:8], wmaginary [15:8], real [7:0], tmaginary [7:0], and the
desired de-interleaved format is real [15:0] and imaginary [15:0} according to the veclor
instruction to be cxecuted, multiplexor 174(3)-174(0) sclections would be as foliows.
Multiplexor 174(3) would select the portion of the shified input vector data sample 868
stored in 1t assigned primary pipeline register 120(0). However, multiplexor 174(2)
would select the portion of the shifted input vector data sample 868 stored in primary
pipeline register 120(1). This would provide a de-interleaved real portion of the put
vector data sample 863(0) (e, real [15:0]) m adjacent input data flow paths 80(8)(3),
80N 2). Stmilarly, multiplexor 174(0} would select the portion of the shifted mput
vector data sample ¥6S stored in its assigned primary pipeline register 120(2X+3).
However, multiplexor 174(1) would select the portion of the shifted input vector data
sample 863 stored in primary pipeline register 120(2X+2). This would provide a de-
mterleaved imaginary portion of the shifted input vector data sample 86S{(0) (ic.,
imaginary [15:0}) in adjacent input data flow paths S8G(0)(1}), 8{(0)0). Multiplexors
176(1), 176{0) provide the ability, 1o each multiplexor 174(3)-174(0), 1o select a portion
of the shifted mput vector data sample §68(0} from a non-assigned, non-adjacent
primary pipeling registers 120(0), 1201}, 120(2X+23-120(2X+3), as ilustrated in
Figure 21.

(60172 With continuing reference to Figure 21, the format conversion circuitry
158(0}-15%(X) can also be configured to sign extend format-converted input vector data
sarapic sets 86F{0}-86F(X). For example, if the format conversion of the input vector
data sarople sets 86(0)-86(X) mvolves signed vector data samples converted from small
bit widths to large bit widths, the format conversion circustry 15%(()-159(X) can be

configured to sign exiend the de-interleaved vector data samples by extending the most

WO 2015/073915 PCT/US2014/065825
61

significant bits as ‘0”’s for non-negative numbers, and as “Fs for negative numbers.
The format conversion circuitry 15%0)-159(X) may have a sign extension (SC) mput
178(0)-178(X) set according to the vector instruction bemg executed o indicate if sign
extension 1s io be performed on the format-converted input vector data sample set
86F(0)-86F(X) or not. The SC inputs 178(03-178(X) can be provided fo sign extension
circuitry 180(0}-180(X) provided m the format conversion cireuitry 159(0)-159(X) to
perform the sign extension according io a programmmable data path configuration
provided by the SC inputs 178(()-178(X} according to the vecior instruction being
processed. The SC inputs 178(0)-178(X) can be configured and reconfigured for each
vector instruction to provide for flexibility m the veetor processing by the VPE 22(3).
For example, the programmable data paths in the format conversion circuitry 159(0)-
159(X) can be configured by the SC inputs 178(03-178(X} can be configured and
reconfigured for each clock-cyele of a vector instruction, on a clock-cycle-by-clock-
cycle basis if desired, to provide format conversion as desived, with full stilization of
the execution units 84(03-84(X), if desired.

160173} But as discussed above, the format conversion circustry 13%(0)-13%(X) does
not have to be provided as part of the primary tapped-delay hine 78(0). The primary and
shadow tapped-delay lines 78(0), 78(1) arc optional. The format conversion circaiiry
159({1)-159(X) could receive input vector data sample sots 86((1)-86(X} directly from the
vector data files 82(0)-82(X). In this scenario as an example, with reference to Figure
21, the mput vector data sample set 86(0)-86(X) could be loaded from the vector
register files 82(0}-82(X) directly nto the primary registers 120(0)-120(4X+3).

186174} Further, note that although the format conversion circuitry 159(0)-159(X} is
provided on the output of the primary tapped-delay tine 78(0} fo format converted nput
vector data sample sets 86(03-86(X), such is not required. The format conversion
circuitry 159((H-159(X) in Figure 21 could be provided on the input side of the primary
and shadow tapped-delay Hnes 78(0), 78(1), such that the toput vector data sample sets
86(0}1-86(X) {etched from the vector data {iles 82{()-82(X) are format converted m the
format conversion cireuilry 159(03-159(X) prior to being loaded mto the primary and
shadow tapped-delay lines 78(0), 78(1). In this exampie, the input vector data sample
ROF(D)-86F(X) (or B6SF(0)-868F(X) after shifling} m the primary and shadow tapped-

delay lines 78(0), 78(11. The format-converied mput vector data sample scis 86F(0)-

WO 2015/073915 PCT/US2014/065825
62

BOF(X) (or B6SF((1)-86SF(X) after shifting} could then be provided directly from the
primary fapped-delay line 78(0) directly o the cxecution units 84(()-84(X) for
execution n a veclor processing operation.

[60875] As discussed above, the input data flow paths 80{03-80(X) can be
progranumned according to a programmable input data path configuration to crploy the
format conversion circuitry 13%0)-159(X) according to the vector msiruction to be
exccuted. In this regard, Figure 22 is a chart 182 that provides an exemplary data
format of bits of a vector instruction to control progranuming of shifting and format
conversion of input vector data sample sets 86(0)-86(X m the VPE 22(3) in Figure 19
The data provided in the fields in the chart 182 provide programming to the VPE 22(3)
to control whether the format conversion cireuilry 159(0}-159(X) and/or tapped-delay
hines 78 are included in the input data flow paths 80(0)-80{X) depending on if their
functionality is needed for the vector instruction to be processed.

{60176 For example in Figure 22, a bias field 184 (BIAS 5C16) is provided in bits
[7:0] of a vector instraction or vector programuming to indicate if a shift bias for
arithmetic instructions is provided when using signed conplex sixteen (16} bit format
(SC16) by the tapped-delay Iines 78. A first source data format conversion field 189
(DECIMATE SRC1} 13 provided in bit [16] of the vecior instruction or vecior
programuning (o indicate if a first source data (i.¢., input vector data sample set 86(0})-
format or not. A second source data format conversion field 188 (DECIMATE SRC2)
18 provided i bit [17] of the vector mnstruction or vector programming to indicate if a
sccond source data (1.e., input vector data sample set 86{0}-86(X)) should be decimated
(i.c., de-interleaved) and converted from SCR to SC16 format or not. An output data
format ficld 190 (DEST FMT) is provided in bit [18] to indicate if an output source
data {c.g. resultant output vector data sample set 172{(0)}-172(X) in VPE 22(3} in Figure
19} should be stored m SC16 format or converted from SC16 to SCR format and re-
ordered when stored in the vector data files §2(0)-82(X). A phase format feld 192
(DECIMATE PHASE) is provided m bit [19] to indicate if input source data (i.e., input
vector data sample set 86(0)-86(X}) and output data (e.g., resultant output vecior data
saropic set 172(03-172(X) in VPE 22(3) in Figure 19} should be decimated (i.c., de-

interleaved) along even {e.g., on-time} and odd {e.g., late} samples, which may be useful

WO 2015/073915 PCT/US2014/065825
63

for CDMA-specific vector processing operations in particelar, as proviously described
above and 1 Figure 178,

186177} As discussed above, afier the execution units 84(0)-84(X) in the VPEs 22
perform vector processing on input vector data sample sets and provide resultant output

vector data sample seis on the outpul data flow paths 98(0)-98(X} as a resuls,

(ﬁ

subsequent vector processing operations may need to be performed on the resultant
culput vector data sample sets. However, the resoltant output vector data sample sets
may need to be reordered for subsequent vector processing operations. Thus, the
resultant output vector data sample sets resulting from previous processing operations
must be stored in the vector data files 82(03-82(X), fetched for reordering, and re-stored
in reordeved format in vector data files BZ(0)-82(X). For example, subsequent
processing operations may require previously processed vector data sampies to be
intericaved when stored in the vector data files 82(03-82(X), as discussed above 1o
Figures 17A and 178.
(801781 As ancther example, subseguent processing operations may reguire
previously processed vector data samples 1o be de-intericaved when stored in the vector
data files 82(0)-82(X). For example, n CDMA processing operations, data samples
represeniing a signal may need to be stored and interleaved according to even {on-time}
and odd (late} phases of the signal. To solve this issue, vector processors can inchude
circuitry that performs post-processing reordering of output vector data from execution
units after the output vector data is stored in vector data memory. The posi-processed
culput vector data samples stored in vector data memory are fetched from the vector
data memory, reordered, and stored back in the vecior data memory., This post-
processing delays the subsequent processing of the reordered vector data samples by the
xecution units, and causes compulational components in the execufion units io be
underutilized.
(60179 in this regard, Figure 23 is a schematic diagram of another exemplary VPE
22(4} that can be provided as the VPE 22 in Figure 2. As will be described i more
detail below, the VPE 22(4} in Figure 23 is configured to provide in-flight reordering of
esultant cutput vector data sample scts 194(03-194(X) provided by the execution units
R4{0)-84(X} for vector processing operations 1o he stored in the vector data files 82(0})-
2(X}y i the VPE 22(4) with eliminated or reduced vector data sample re-fetching and

reduced power consumption. The resultant output vector data sample set 194(0)-194(X)

WO 2015/073915 PCT/US2014/065825
64

is comprised of ‘X-+17 resultant output vector data samples 194, which in this example
are 194(0), 194(1), ..., and 194(X). For example, reordering could include interleaving
of the resultant output vector data sample sets 194(0)-194(X) before being stored in the
vector data files 82(0)-82(X}.

[8G188] As shown in Figure 23 and discussed in more detail below, reordering
circuitry 196(03-196(X) is provided in the output data flow paths 98{03-98(X) between
the execution units 84(0)-84(X) and the vector data files 82(03-82(X) in each of the
vector data lanes 100{03-100(X). The reordering circuitry 196(0}-196(X) is configured
hased on programming according to a vector justruction 1o be executed o provide
reordermg of resultant output vector data sample set [94(03-194(X) as reordered
resultant ouiput vector data sample set 194R(0)-194R(X) in the output data flow paths
O8(0)-98(X). In-tlight reordering of the resultant output vector data sarapie set 194(0}-
194X} in the VPE 22(4) in Figure 23 waeans the resultant output vector data saropie set
194(0)-194(X) provided by execution umits B4((H-B84(X}) 15 reordered as reordered
resultant cutput vector dala sample set 194R{03-194R(X} before being stored in vector
data files 82(0)-82(X). o this manner, the resuliant ouiput vector data sample set
194(1)-194(X) 1s stored in vector data files 82(0)-82(X) in reordered format as the
reordered resultant output vector data sample set 194R(0)-[24R(X}. As a non-limiting
example, the reordering of resultant output vector data sample sets 194{03-194(X) may
include mierleaving or de-inferfeaving of the resultant output vector data samople scts
194(0)-1940X) to be stored as the reorvdered resultant output vector data sample sets
194R{03-194R(X]} to in the vector data {iles 82{0}-82(X).

186181} Thus, with the reordering circuitry 196(0}-196(X) provided in the ouiput
data flow paths 98(0}-98(X), the resultant output vector data sample set 194(0)-194(X)
is not required to first be stored in the vector data files 82(0}3-82(X), and then fetched
from the vector data files 82(0)-82(X)}, reordered, and restored in vector data files 82{0}-
§2(X). The resultant output vector data sample set 194(0)-194(X} is reordered before
being stored in the vector data files 82(0)-82(X). In this manner, the resultant output
vector data sample sets 194(0)-194(X) are stored in the reordered format m the vector
data files 82(0}3-82(X) without requiring additional post-processing steps, which may
delay subsequent vector processing operations to be performed i the execution uniis
R4(0)-84(Xy. Thus, the efficiency of the data flow paths in the VPE 22{(4) are not

hirnited by the reordering of the resultant output vector data saraple sets 194(0)-194(X).

WO 2015/073915 PCT/US2014/065825
65

The subsequent vector processing in the execution units 84(0}-84(X) is only limited by
computational resources rather than by data flow limitations when the resultant output
vector data sample sets 194(0)-194(X) are 1o be stored in reordered format as reordered
resultant output vector data sample sets 194R{0)-194R{X} in the vector data files 82(0}-
82(X).

[B0I82] In this example as illustrated in Figure 23, the VPE 22(4) that inchides the
reordering circuitry 196{0}-196(X) can also optionally include the primary tapped-delay
line 78(0) and/or the shadow tapped-delay line 78(1). The operation of the tapped-delay
Hnes 78(0), 78(1) was previously described above with regard to VPEs 22(1) and 22(2).
As previouslty discussed above, the tapped-delay lines 78(0), 78(1) may be employed for
the vector processing operation requiring shifted input vector data sample sets 86S(0)-
868(X} io be provided to the execution units 84(1)-84(X}. Also, note that common
components are provided i the VPE 22{(4) i Figure 23 that are provided in the VPEs
22(13-22(3y m Figures 4, 11, and 19. Common components are illustrated in in the VPE
22¢4} in Figure 23 with common clement numbers. The previcus description and
discussion of these common components above with regard to VPEs 22(1)-22(3) arc
also applicable to the VPE 22(4) in Figure 23, and thus will not be re-described here.
[60883] With continuing reference to Figure 23, more specifically, the reordering
circuitry 196(0}-196(X} is configured to receive the resultant output vecior data sample
sets 194(03-194(X) on reovdering circuitry inputs 198(03-198(X) on the output data flow
paths 98(03-98(X). The reordering cireuitry 196(0)-196(X) 18 configured to reorder the
resultant cutput vector data sample sets 194((1)-194(X) to provide the reordered resuitant
culput vector data sample sets 194R{03-194R(X). The reordering circuitry 196(0)-
196(X) is configured to provide the reordered resubiant output vector data sample seis
T94R{0)-194R(X) on reorder circuitry outputs 200{0)-200(X) in the output data flow
paths 98(G}-98(X to be provided to the vector data files 82(0)-82(X) for storage.
[60184] A further description of additional details and features of the VPE 22(4) in
Figure 23 for providing the reordered resultant ouiput vector data sarople sets 194R{0)-
194R(X} to the vector data f{iles 82(0)-82(X} n the ouiput data Qow paths 98(03-98(X)
in this cmbodiment will now be described. In this regard, Figure 24 is a flowchart
illustrating an exemplary reordering of resultant output vector data sample sets 194(0)-
194(X) resulting from a veclor processing operation 202 that can be performed in the

VPE 22(4) in Figure 23 employing the reordering circuitry 196{0}-196(X) according to

WO 2015/073915 PCT/US2014/065825
66

an exemplary vector instruction requiring reordering of the resultant output vector data
sarpie set 194(0)-194(X).

1601858 With reference to Figures 23 and 24, the ioput vector data sample set 86(0)-
86(X} to be processed according to the vector processing operation 202 according to a
vector mstruction is fetched from the vector data files 82(0}-82(X) and provided in the
myput data fow paths 83(03-80(X) (block 204 in Figure 24). For example, the vector
processing operation 202 can imvolve any vector processing operation desired according
to the vector instruction o be exccuted. Non-himiting examples including the filter,
correlation, and the format conversion vector processing operations described above,
Either one, some, or all of the vector data lanes [00(0)-100(X} in the VPE 22(4) n
Figure 23 can be employed to provide the vector processing operation 202 according to
the programming of the vector instruction depending on the width of the input vector
data sample set 86(0)-86(X} for the vector processing operation 202, If the eotire width
of the vector data files 82(0}-82(X} is required, all vector data lanes 100{0)-100(X) can
be employed for the vector processing operation 202, The vector processing operalion
207 moay only require a subset of the vector data lancs 100(0)-100(X). This may be
because the width of the mput vector data sample set 86{0)-86(X} is less than the width
of all vector data files 82(0}-82(X), where it is desired to employ the additional vecior
data lanes 100 for other vecior processing operations {0 be performed in parallel to the
vector processing operation 202,

[B0186] With continuing reference to Figures 23 and 24, the fetched input vector data
sample set 86{03-86(X} 1s received from the mput data flow paths 80(1)-8H{X) at the
execution units 84(0)-84(X) (block 206 in Figare 24). The exccution units 84{0}-84(X)
perform vector processing on the received input vector data sample set 86(03-86(X)
according to the vector processing operation 202 provided according to a vector
instruction (block 208 in Figure 24). As a non-Hmiting example, the input vector data
sample set 86(0)-86(X) may optionally be loaded into the primary tapped-delay line
78(0} as the input vector data sample set 86(0)-86(X) o be shifted during execution of
the vector processing operation 202 during each processing stage of the vector
processing operation 202 executed by the execution unifs 84(0)-84{X) that mvolve
shifting of the mput vector data sample set 86{0}-86(X). As previously discussed, a
next input vector data sample set 86N{0)}-86N(X) may also be optionally loaded into the

shadow tapped-delay Hne 78(1) as a next input vector data sample set 86N({)-86N{X)} to

WO 2015/073915 PCT/US2014/065825
67

be processed by the execution units 84(0)-84(X}. As previously discussed above, the
purpose of the tapped-delay Hues 78 is to shift the input vector data sampie set 86(0)-
86(X) to shifted mput vector data samples B6S{0)-865(X} to be provided to the
execulion onits &H{0)-84(X) during operation of a veclor processing operation 202
operating on shified imput vector data samples 8685,

[B0I87] With continuing reference to Figures 23 and 24, the execution units 84{0)-
84(X) may be configured to provide multiphications and/or accuwmulation using the mput
vector data sampie set 86{0)-86(X). I the tapped-delay lines 78 are employed to shift
the format-converted input vector data sample set 86F(0)-86F(X) during the vector
processing operation 202, the execution umits 84(0)-84(X) can received the shifted mput
vector data sample set B65{03-86S(X) during each processing stage of the vector
processing operation 202 until the vector processing operation 202 is completed, as
previously described by example. Once the vector processing operation 202 has been
completed, a resultant output vector data sample set 194(0)-194(X) based on vector
processing of the input vector data sample set 86(0)-86(X), or shifted, formai-converted
input vector data sample scts 868(0)-865(X), 15 provided in the output data flow paths
OR(()-98(X]}.

[8G188] With continuing reference to Figures 23 and 24, before the resultant cutput
vector data sample set 194(0}-194(X) is stored in the vecior data files 82¢(0}-82(X}, the
resultant output vector data sample set 194{0)-194(X) 18 provided to the reordering
circuitry 196(0)-196(X} provided in the output data flow paths 98(0)-98(X) provided
between the execution units §4(03-84(X) and the vector data files 82(03-82(X). The
reordering circuitry 196(0)-196(X) is programmable to be included in the output data
flow paths 98(0)-98(X) according to the vector instruction being executed, and if the
vector instruction calls for reordering of the resultant output vector data sample set
194(11)-194(X) 1o be stored in the vector data files 82{0}1-82(X), as discussed below in
more detail. The reordering circuitty 196(0)-196(X) reorders the resultant output vector
data sample set 194(()-194(X) according to the reordering provided in the programming
according to the vector msiruction being executed without the resultant outpul vector
data sample set 194(03-194{X) being stored in the vector data files 8Z2(1)-82(X} (block
210 m Figure 24). In this manoer, the resultant output vector data sample set 194(0)-
194(X does not have to first be stored in the vector data files 82(0)-82(X}, re-fetched,

reordered n a posi-processing operation, and stored in reordered format in the vector

WO 2015/073915 PCT/US2014/065825
68

data files 82(0}-82(X), thereby providing delay in the execution units 84((3-84(X}. The
resultant output vector data saraple set 194(0)-194(X} is stored as the reordered resultant
output vector data sample set 194R(0)-194R{X) in the vector data files 82(0)-82(X)
without reordering post-processing required (block 212 in Figure 24). For example, the
esultant output vector data saraple set 194(0)-194(X) may appear in a format like that
provided in Figures 18A and 18B before being reordered by the reordering circuitry
196{(0}-196(X).

180189 An cxample of the reordering circuitry 196(0)-196(X} will now be described
with regard to Figure 25. Exemplary detail of the internal components of the reordering
circutiry 196(03-196(X) is provided for one instance of the reordering circuitry 196(0)
provided in vector data lane 106(0) is provided in Figure 25, but sach is also applicable
for reordering circuitry 196(13-196(X). Taking reordering circuitry 196{0} in Figure 25
as an cxample, the reordering circuitry 196(0) in this example is configured to reorder
the resultant output vector data sample 194(0) provided by the execution umt 84(0} in
the output data flow path 98(0) m vecior data lane 1680(0}) to provide the reordered
resultant output vector data sample 194R(0). In this regard, four ouiput vector data
saropie selectors 214(3)-214(0), provided m the form of multiplexors in this example,
are provided in this example, which are arranged according to the bit widths of the
execution unit outputs 96(G), which are four {4} in this example of cight (8} bit widths
each 96(0Y3)-96(0X0). Each output vector data sample selector 214(3)-214{(0) is
configured to select erther the portion of the resultant output vector data sarople 194(0)
m the assigned execulion unit output 96(0)3)-96(0X0), or a portion of the resultant
shifted output vector data samaple 194(0} from an execution unit ouiput 96 adjacent to
the assigned execution unit output 96(0H3)-96(01H D).

160150} For example, f execution unit outputs 96(0¥(3)-96(0){0) provide resuliant
output vector data sample 194(0) in sixtcen (16} bit signed complex format real [31:24],
real {23:16], imaginary {15:8], imaginary [7:0] and the desired reordered (c.g.,
mterleavedy format is veal [31:24], imaginary [23:16], real [15:8], tmaginary [7:0]
according to the vector msiruction to be executed, output vector data samiple selector
214{3%214{0} scloctions would be as follows. Ouiput vector data sample selector
2143} would select the resultant output vector data sample 194(0)3) from execution
unit output 96(0X(3) to provide on output data flow path 98(0)(3). However, output

vector data sample selector 214(2) would select the portion of the resultant output vector

WO 2015/073915 PCT/US2014/065825
69

data sample 194(0}1) on exccution unit output 96(0X 1) to provide on cutput data flow
path 98(0X2). This would provide an interleaved real portion of the resultant shified
output vector data sample 194(0) (.e., real [31:24], imagiary [23:16]) m adjacent
cutput data flow paths 98(0)3), 98(0X2), as reordered resoltant output vector data
sampie 194R{0}3), 194R{03(2) of rcordered resultant outpul vector data sarmple
194R{(0). Swmilarly, output vector data sample selector 214(0) would select the resultant
culput vector data sample 194(0X0) from execution unit output 96(1)0} to provide in
culput data flow path 98(G)03. However, output vector data sample selector 214(1)
would select the resultant output vector data sampie 194(0)(2) on execution unif ouiput
96(0)2) to provide on output data flow path 98(0)(1). This would provide a reordered,
mterleaved resultant ouiput vector data samples 194(0K2), 194(0X0) (i.e., real [15:8],
imaginary [7:01) i adjacent output data {low paths 9&{0)(1), 98(0}0), as reordered
resultant output vector data samples 194R(DY1), 194R{(0N0) of reordered resultant
output vector data sample 194R(0}. Ouiput vector data sample selectors 216(1},
216{0}, also provided in the form of multiplexors, provide the ability to select between a
resultant output vector data samople 194(0X)33-194(0K0) frorm a nov-assigned, non-
adjacent execution unit output 96(0)(3)-96(0X0), as lustrated in Figure 25.

{60891} With continuing reference to Figures 23 and 25, the reordering circuitry
196(1)-196(X) could be provided as being programumable o be configured or
reconfigured fo not reorder resultant ouiput vector data sample set 194(03-194(X)
according to the vector mstruction to be executed. In this example, the reordering
circuitry 196(0)-196(X) may be programmed to provide for the cutput data flow paths
98(0)-98(X} to flow siraight to the reordering circuitry 196(0)-196(X} without any
reovdering operations being formed. As previously discussed above and ihustrated in
Figure 22, the output data format feld 190 (DEST FMT) in chart 182 can be provided
in bit {18} of a vector instruction as a non-Hmiting example {o indicate if an output
source data (e.g., resultant output vector data sample set 194(0)- 194X in VPE 22(4) in
Figure 23} should be stored in SC16 format or converted from SC16 to SCB {format and
re-ordered when stored in the vector data files 82(03-82(30).

186192} in this regard, a programmable reordering data path configuration input
218(0) in Figure 25 can be provided 1o the reordering circuitry 196(0) fo program the
reordering circuitry 196(0) to either reorder or not reorder the resultant output vector

data samples 194(0}(3)-194{03(0) in the output data flow path 98(0). Programamable

WO 2015/073915 PCT/US2014/065825
70

reordering data path configuration inputs Z18(1)-218(X} (not shown} can also be

similarly provided to the reordering cirenitry 196(1)-1

96(X) to program the reordering
cireuttry 196{13-196(X} to either reorder or not reorder the resuliant output vector data
sample sets 194(1)-194(X} in the output data flow paths 98(1}-98(X), respectively. In
this manner, the reordering circuitry 196{(0)}-196(X)} can be programmed to not reorder
the resultant output vector data sample sets 194(0)-194(X) if the vector instruction does
not provide for such processing to be performed. The programmable reordering data
path configuration inputs 218{(0)-218(X} can be configured and reconfigured for cach
vector instruction to provide for flexibility in the vector processing by the VPE 22(4).
For example, the programmable reordering data path configuration mputs 2i8{0)-
218(X) can be configured and reconfigured for each clock-cycle of a vector instraction,
on a clock-cycle-by-clock-cycle basis, if desired, to provide reordering as desired, with
full utihzation of the execution units 84((1)-84(X), if desired.

[60193] Other vector processing operations can also be provided that involve in-
flight processing of resultant output vector data sample sets from the execution units
R4(0)-84 Xy without requiring additional post-processing steps, which moay delay
subsequent vector processing operations to be performed 1o the execation units 84(0-
84(X}). For example, COMA wircless baschand operations requiring despreading of
chip sequences according o spread signal data sequences of varying length may benefit
from in-fHght vector processing.

[60194] For example, a data signal 220 that can be modulated using CDMA 1
lustrated in Figure 26A. The data signal 220 has a period of 2T. The data signal 220
represents the data sequence 1010 in this example, where high signal levels represent a
fogical 17 and tow signal levels represent a Jogical ‘0, as illustrated in Figure 26A. In
CDMA modulation, the data signal 220 is spread by a chip sequence 222, such as chip
sequence 222 in Figure 268, which may be a pseudorandom code. The chip scquence
2272, m this example, has a period that 1s ten (10) times smaller than the period of the
data signal 220 to provide a chip sequence 222 having a spreading rate or factor of ten
{10} chips for each sample of the data signal 220 m this example. To spread the data
signal 220 in this cxample, the data signal 220 is exclusively ORed (e, XOR ¢d) with
the chip sequence 222 to provide a spread transroifted data sigoal 224, as illustrated in
Figure 260, Other data signals for other users transmitted in the same bandwidth with

the spread transmitted data signal 224 are spread with other chip sequences that are

WO 2015/073915 PCT/US2014/065825
71

orthogonal to cach other and the chip sequence 222, In this manoer, when the original
data signal 220 is to be recovered, the spread fransmitted data signal 224 is correlated
with the sequence numbers, as previously described above with regard to Figures 11-16.
If there i3 a high correlation between the sequence number and the spread transmitted
data signal 224, such as will be the casc with chip sequence 222, the original data signal
220 can be recovered using the chip sequence associated with the high correlation
sequence number. The spread transmitted data signal 224 1s despread with the highly
correlated chip sequence, which is chip sequence 222 in this exaropie, 1o recover the
original data signal 220 as recovered data signal 226 in Figure 26D,

160195} The despreading of the spread transnutted data signal 224 in Figure 260 can
be performed in a despreading vector processing operation as an inner product between
the spread transmitted data signal 224 and potential chip sequences, similar fo the
correlation vector processing operation described above with regard to the VPE 22(2) in
Figure 11, to determine a highly correlating chip sequence. The spread transmitied data

signal 224 can be despread with the chip sequence 222 determined to have been used to
CDMA modulate the original data signal 220, to provide the recovered data sigoal 226
in Figure 26D.

[60896] In vector processors that include CDMA processing operations, the vecior
processors can include circuitry that performs despreading of spread signal vector data
sequences after being output from execution units and stored in vector data memory. o
this regard, the spread signal vector data sequences stored in vector data memory are
fetched from vectior data memory in a post-processing operation, and despread with
correlated spread code scguence or chip sequence to recover the original data signal.
The despreaded vecior data sequences, which are the original data samples before
spreading, are stored back in vector data memory. This post-processing operation can
delay the subsequent vector operation processing by the execution units, and causes
computational components in the execution units to be underutilized. Further,
despreading of spread signal vector data sequences using a spreading code seguence 1s
difficalt to parallelize, since the spread signal vector data sequences to be despreaded
cross over different data flow paths from the execution units.

1661871 To address this issue, in embodiments disclosed below, VPEs that include
despreading circuitry provided in data flow paths between execution units and vector

data memory in the VPE are provided. The despreading circuitry is configured to

WO 2015/073915 PCT/US2014/065825
72

despread spread-spectrum sequences using an output vector data sample set from
execution units in-flight while the output vector data sample set is being provided over
the output data flow paths from the execution units to the vector data memory. In-flight
despreading of output vector data sample sets means that the output vecior data sample
set provided by execution units ig despread before being stored in vector data memory,
8o that the output vector data sample set is stored in vector data memory in a despread
format. The despread spread-spectrum sequences (DSSS) can be stored i despread
form in the vector data memory withoul requiring additional post-processing steps,
which may delay subsequent vector processing operations to he performed in the
xecution units. Thus, the efficiency of the data flow paths in the VPE may not be
hmited by the despreading of the spread-specirum sequences. The sobsequent vecior
processing in the execution units may only be himited by computational resources rather
than by data flow liwitations when despread spread-spectrum sequences are sfored in
vector data memory.
586198} In this regard, Figure 27 is a schematic diagram of another exemplary VPE
2(5} that can be provided as the VPE 22 i Figure 2. As will be described in more
detai] below, the VPE 22(5) in Figure 27 is configured to provide in-flight despreading
of resultant output vector data sample sets 228(0)-228(X} provided by the execation
units 8H{()-84(X} with a code sequence for vector processing operations to be stored in
the vector data files 82(0)-82(X) 1o the VPE 22(5) with climinated or reduced vector
data samople re-fetching and reduced power consumoption. The resultant output vector
data sample sets 228(03-228(X) are comprised of “X+17 input resultant cutput vector
data samples 228, which in this example are 228(0), 228(1}, ..., and 228(X). The code
sequence could be a spread-spectrumm CDMA chip sequence for a CDMA despreading
veclor processing operation, as a non-limiting example. In the VPE 22(5) in Figure 27,
the resultant output vector data sample set 228(0)-228(X) can be despread with a code
sequence before being stored in the vector data files 82(03-82(X).
[B019%] As shown in Figure 27 and discussed in more detail below, despreading
circaitry 230 s provided in the ouipwt data {low paths 98(1)-98(X) between the
execution units 84(0)-84(X) and the vector data files 82{0}-82(X) in cach of the vector
data lanes 100(0)-100(X). The despreading circuitry 230 is configured based on
programming according to 4 vector instruction io be executed to provide in-thight

despreading of the resultant output vector data sample sct 228(03-228(X} with a code

WO 2015/073915 PCT/US2014/065825
73

sequence provided as reference vector data sample set 130(0)-130(X) generated by
sequence murnber generator 134, as previously described above m Figures 11-16 with
regard to correlation vector processing operations. A despread resultant output vector
data sample set 229(03-229(Z) 1s provided by the despreading circuitry 23{ in the output
data flow paths 98(()-98(X). The despread resultant output vector data sample set
229(03-229(2) i3 comprised of ‘Z+1° despread resultant output vector data samples 226,
which i this example are 229(0), 229(1), ..., and 229(Z). In-flight despreading of the
resultant output vector data sample set 228(0-228(X) in the VPE 22(5) in Figure 27
means the resultant output vector data sample set 228(03-228(X) provided by execution
units 84(0)-84(X) is despread with a code sequence in the resultant vector data sample
set 228(0)-228(X} before being stored in vector data files 82(0)-82(X). In this manner,
the resultant output vector data sample set 228{03-228(X) is stored in vector data files
82(03-82(X) in despreaded form as despread resultant output vector data sample set
229(03-229(X).
(802601 Thus, with the despreading civcuttry 230 provided in the output data flow
paths 98(03}-98(X), the resultant output vector data sample sot 228(03-228(X) is not
required to first be stored in the vector data files 82(0}3-82(X), and then feiched from the
vector data files 82(0)-82(X), despread, and restored in despreaded form in the vector
data files 82((1)-82{X}. The resultant output vector data sample set 228(0)-228(X) is
despreaded before being stored in the vector data files 82(0)-82(X0. o this manner, the
despread resultant output vector data sample set 228(0)-22%(2) is stored in the vector
data files 82(0}-82(X} without requiring additional post-processing steps, which may
delay subsequent vector processing operations to be performed in the execution units
R4(0)-84(X). Thus, the efficiency of the data flow paths in the VPE 22(5) arc not
himited by the despreading of the resultant output vector data sarople set 228(03-228(X).
The subsequent vector processing in the execution units 84(0)-84(X} is only limited by
computational resources rather than by data flow hmitations when the resultant output
vector data sample sets 228(0)-228(X) are stored in despreaded form as despreaded
resultant output vector data sample sets 229(0)-22HZ) n the vector data files 82(0)-
82(X).
160261] Further, by providing the despreading circuitry 230 in the ouiput data flow
paths 98(0}3-93(X) between the execution units 84(0)-84(X} and the vector data files
82(M-82(X), the resultant output vector data sample set 228(6)-228(X) does not have o

WO 2015/073915 PCT/US2014/065825
74

cross vector data lanes 100 in the input data Qow paths 80(0)-80{X)} between the vector
data files 82(0)-82(X) and the execution units 84(0)-84(X). Providing data flow paths
for despreading of mput vector data samples 86 in an input vector data sarople set 86(0)-
86(X} between different vectior data lanes 10 would increase routing complexities. As
a resull, execution units §4{0)-84(X) may be underutilized while despreading operations
are being performed in the input data flow paths 80(0}-80(X). Also, as discussed above,
despreading of the resultant output vector data sample set 228(0)-228(X) in the input
data flow paths S83{0}-80(X}) would require the resuliant output vector data sample set
228(0)-228(X) to first be stored in the vector data files 82(03-82(X) in the VPE 22(5) in
Figure 27, thereby increasing power consumiption when re-fetched and despread and/or
risking onderutibization of the execution units 84(0)-84(X} that may be delayed while
despreading operations are being performed.

(602021 Note that conmmon components are provided in the VPE 22(5) mn Figure 27
that are provided in the VPEs 22(1)}-22{4) in Figures 4, 11, 19, and 23. Common
componenis are ilustraled i the VPE 22(5) In Figure 27 with common element
numbers. The previous description and discussion of these coramon compounenis above
in the VPEs 22(1)-22(4) are also applicable to the VPE 22(5} m Figure 27, and thus will
not be re-described here.

(602837 With contimuing reference to Figure 27, more specifically, the despreading
circuitry 230 is configured to receive the resultant output vector data sample set 228(0)-
228{X) on despreading civcuitry inputs 232(0)-232(X) on the output data flow paths
98(0)-98(X). The despreading circuitry 230 is configured to despread the resultant
cuiput vector data sample set 228{0)-228(X) to provide the despread resultant oulput
vector data sample set 229(0)-229(2). As discussed in more detail below, the number
of despread resultant output vector data samples 229 18 “Z+1” in the despread resultant
output vector data sample set 229(1)-229(2). The number of despread resultant output
vector data samples 229 in the despread resultant output vector data sarople set 229(0)-
229(Z} ia dependent on the spreading factor used to despread the resultant output vector
data sample set 228(0}-228(X}. The despreading circuitry 230 s configured to provide
the despread resultant output vector data sample set 229(0)-229(2) on despreading
circuttry outputs 234(0)-234(X) in the oufput data flow paths 98(()-98(X) to be

arovided to the vector data files R2(0)-82(X) for storage.
¥ { } &

WO 2015/073915 PCT/US2014/065825
75

1806284] A further description of additional details and features of the VPE 22{(5} in
Figure 27 for providing the despread resultant output vector data sample set 229(0)-
229(Z} to the vector data files 82(()-82{X} m the output data flow paths 98(0)-08(X) in
this embodiment will now be described. In this regard, Figure 28 ds a flowchart
itfustrating an cxemplary despreading of resuitant output vector data sample sets 228(0)-
228{X) resulting from a despread vector processing operation 236 that can be performed
m the VPE 22(5) in Figure 27 employing the despreading circuifry 230 according to an
exemplary vector imstruction requiring despreading of the resultant output vecior data
sarpie set 228(0)-228(X).

160265} With reference to Figures 27 and 28, the ioput vector data sample set 86(0)-
86(X} to be processed according to the despread vector processing operation 236
according to a vector instruction is fetched from the vector data files 82(0)-82(X} and
provided in the input data flow paths 80(0)-80(X) (block 238 wn Figure 28). Hither one,
some, or all of the vector data lanes [00(0)-1000X) in the VPE 22(5) in Figure 27 can be
employed to provide the despread vector processing operation 236 according to the
prograroming of the vector nstruction depending on the width of the resultant output
vector data sample set 228(0)-228(X) for the resultant despread vector processing
operation 236, I the despread vector processing operation 236 involves performing
despreading of all the resultant output vector data samples 228 in the resultant output
vector data sample set 228(0}1-228(X), all vector data lanes 100(0)-100(X) in the output
data flow paths 98(0)-98(X) from the execution units 84(()-84(X) can be erployed for
the despread vector processing operation 236, Ahernatively, the despread vector
processing operation 236 may only involve despreading a subset of resultant outpuat
vector data samples 228 in the resultant output vector data sample set 228(0)-228(X),
thus only involving the vector data lanes 100 in the output data flow paths 98
corresponding to the subset of resultant output vector data samples 228.

(60266 With continuing reference to Figures 27 and 28, prior to the despreading
vector processing operation performed by the despreading circuiiry 230 in the VPE
22(5} i Figure 27, the fetched mput vector data sample set 86{0}-86(X)} is received
from the input data flow paths 80{0}-80(X) at the execution units 84(0}-84(X} (block
240 in Figure 28). The execution umits 84(0)-84(X)} perform one or more vector
processing operations on the received mput vector data sample set 86{0)-86(X)

according o the vector processing operation provided according to a vecior instruction

WO 2015/073915 PCT/US2014/065825
76

{block 242 in Figure 28). For example, the execution units 84({})-84(X} provide
multiphications and/or accunlations using the input vector data sample set 86{0}1-86(X)
and the code sequence in the reference vector data sample set [30(03-130(X) for
performing a vector processing operation to provide the resuliant output vector data
sampie set 228(0)-228(X). For example, the resuliant output vecior data sample set
228{03-228(X) may be based on vector processing of the input vector data sample set
86(0}-86(X}y with the reference vector data sample set 130(0)-130(X} 1s provided in the
cuiput data flow paths 98(0}-98(X) of the VPE 22(5} in Figure 27.

1602677 With continuing reference to Figures 27 and 28, if it is desired to despread
the resuliant output vector data sample set 228(0)-228(X), the despreading vector
processing operation 236 can be performed before the resultant oulput vector data
sampie set 228(0)-228(X) 1s stored in the vector data files 82((}-82(X). In this exanmple,
the resultant output vector data sample set 228(0)-228(X) is provided to the despreading
circuitry 230 provided in the output data ow paths 98(0}1-98(X) provided between the
exccution units 84((1)-84(X} and the vector data files 82(0}-82(X) in the VPE 22(3} in
Figure 27. The despreading circuitry 230 is programmable to selectively despread
resultant outputl vector data sample set 228(03-228(X) in the ouiput data flow paths
O8(0)-98(X} according to the veclor instruction being executed, and if the vector
instruction calls for despreading of the resultant output vector data sample set 228(0)-
228(X) to be stored in the vector data files 82(03-82(X). The despreading circuitry 230
despreads the resultant output vector data sample set 228(0)-228(X) according to the
despreading programming according to the vector instruction being executed without
the resultant output vector data sample set 228(0}-228(X) being stored in the vector data
files 82(0)-82(X) (block 244 in Figure 28).

160268] In this manner, the resultant output vector data sample set 228(()-228(X)
dogs not have to first be stored in the vector data files 82{0}-82(X), re-fetched, despread
i a post-processing operation, and stored in despreaded format in the vector data files
82(0}-82(X} thereby providing delay in the execution units 84(0)-84(X). The resultant
culput vector data sample set 228(03-228(X) is stored as the despread resultant output
vector data sample set 22%0}-22%7} in the vector data files 82{()-82(3 without
despreading post-processing required (block 246 1o Figure 28).

166269] Figure 29 is a schematic diagram of an exemplary despreading cireuttry 230

that can be provided in the output data flow paths 38(0)-98(X} between the executions

WO 2015/073915 PCT/US2014/065825
77

units 84{0}-84(X} and the vector data files 82(0}-82{X) in the VPE 22(5) of Figure 27.
The despreading circuttry 230 is configured to provide despreading of the resulant
output vector data sample set 228{(0)-228(X) to provide the despread resultant output
vector data sample set 229(0)-229(Z) for different spreading factors of repeated code
sequences in the reference vector data sample set 130(0)-130(X). The resultant output
vector data sample set 223(0)-228(X)) is provided from the execution unit outputs 96(0)-
36(X) to the despreading circuitry 230, as illustrated in Figure 27. It may be desired to
despread the resultant output vector data sample set 228(0)-228(X) with different
spreading factors of repeating sequence numbers in the reference vector data sample set
130(0)-130(X) generated by the sequence number generator 134 in Figure 27, because
the spreading factor of the resultant output vector data sample set 228(1)-228(X)) may be
unknowt.
(602101 For cxample, if the resultant oulput vector data sample set 228((0)-228(X)
contained thirty-two saroples, and the entire vesultant output vector data sample set
228{03-228(X) was despread assuming a spreading factor of fowr (4}, the despread
resultant output vector data sample set 228(0)-229(¥) would contain eight (R) despread
saroples (i.e., 32 samples / spreading factor of 4) after despreading of the resultant
cutput vector data sample set 228(03-228(X) is performed. However, m this same
example, if the cntire resuliant output vector data sample set 228(0)-228(X} was
despread assuming a spreading factor of eight (8), the despread resubtant output vector
data sample set 229(0)-229(Z) would contam four (4) despread samples (1.e., 32 samples
/ spreading factor of 8) after despreading of the resultant output vector data sample set
228{03-228(X) is performed.
160214] Thus, with continuing reference to Figure 29, the despreading circuiiry 230
is configured to despread the resultant output vector data sample set 228(0)-228(X) for a
different mumber of spreading factors. The despreading circuitry 236 in this
embodiment is configured fo provide despread vesultant oufput vector data sample set
229(03-229(¢) for different spreading factors in one vector processing operation/one
vector instruction. In this regard, the despreading circuitry 230 contains an adder tree
248 coupled to the execution unit outputs 96(0})-96(X) to receive the resultant output
vector data sample set 228(03-228(X). The adder trec 248 of the despreading circuitry
230 1s configured to receive cach sample 228 of resultant output vector data sample set

228()-228(X) in their respective vecior data lanes 106{03-100(X). A first adder tree

WO 2015/073915 PCT/US2014/065825
78

fevel 248(1) is provided in the adder tree 248, The first adder tree level 248(1) is
comprised of adders 250(0)-250(((X+1y*2)-1}, 250(7) to be able to spread the samples
228 m the resuliant output vector data sample set 228(0)-228(X) by a spreading factor
of four {4). Latches 25H{0)-251(X) are provided in the despreading circuitry 230 to
latch the resultant output vector data sample set 228{01-228(X) from the outpui data
flow paths 98(()-98(X)}.

(802121 For example, if each sample 228 in the resultant output vecior data sample
set 228(0)-228(X) is 32 bits wide and comprised of two (2} 16-bit complex vector data
(i.c., first vector data according to format 1808 and second vector data according to
format 18QR8}, a spreading fuctor of four {4) could be apphied to despread the four (4)
vector data samples in two (2} resaltant output vector data samples 228 in the resulant
output vector data samaple set 228((H-228(X} into one despread resultant output vector
data sample. For example, as illustrated in Figure 29, adder 250(0) is configured fo
despread resultant output vector data saroples 228(0) and 228(1) by a spreading factor of
four {4) for those samples. Likewise, adder 250(1} s configured to despread resultant
output vector data samples 228(2) and 228(3) by a spreading factor of four (4) for those
saroples. Adder 230(((X+1)2)-1), 250(7) 1s configured {o despread resultant output
vector data sample set 228(X-1) and 228(X) to provide a despread vector data sample
set 252{0)-252({({X+1)/2)-1}, 252(7) with a spreading factor of four (4). A despread
vector data sample set 252(0)-252(((X+1y23-13, 252(7) from despreading performed by
the adders 250(((X+1)/2)-1), 250(7) is latched ito latches 255(0)-2535({((X+1)/2)-1},
253(7).

186213] if the despread vector processing operation 236 requires a despreading of the
resultant output vector data saraple set 228(0)-228(X) by a spreading factor of four (4},
as will be discussed m more detail below, the despread vector data sample set 252{0)-
252(({(X+1¥23-1), 252(7) can be provided as the despread resuliant outpul vector data
samplie set 229(0)-229(7), wherein *Z’ 18 seven (7). However, if the despread vector
processing operation 236 calls for a higher spreading factor {e.g., 8, 16, 32, 64, 128,
256}, the despread vector data sample set 252(03-252(((X+1y2)-13, 252(7) is not
provided as despread resultant output vector data sample set 229(03-229(Z) The
despread vector data sample setf 252(0-25X{((X+1V/2)-1), 252(7) is provided to a second
adder tree level 248(2) 1o adders 254(0)-254(((X+1)/4)-1), 254(3). In this regard, adder

254(1) is configured to performing despreading on despread vector data samples 252(0)

WO 2015/073915 PCT/US2014/065825
79

and 252(1} to provide a resultant despread vector data sample 256{0) with a spreading
factor of eight (8) for those samples. Likewise, adder 254(1} is configured to perform
despreading on despread vector data samples 252(2) and 252(3) to provide a resultant
despread vector data sample 256(1) having a spreading factor of eight (§) for those
sampies. Adder Z54({({X+1y/4)-1}, 254(3) is configured to perform despreading on
despread vector data sample set 252{((X-+1)/4)-2), 252(({(X+1)/4)-1}, 2523} to provide a
resultant despread vector data sample 256(({X+1}/4)-1), 256(3) with a spreading factor
of eight (€}, The resultant despread vecior data sample set 256(0)-256(((X+1¥4)-1},
256(3) from despreading performed by the adders 254(0)-234(((X+1¥/43-1), 254(3) is
latched into latches 257(0)-257(((X+1)/4)-1), 257(3).

[60214] With continuing reference to Figure 29, if the despread vector processing
operation 236 requires a despreading of the resubtant output vector data sample set
228(0)-228(X) by a spreading factor of eight (8), as will be discussed in more detail
below, the despread vector data sample set 256(0)-256(({X+11/4)-1), 256(3) can be
provided as the despread resullant output vecior data sample set 229(0)-229(Z), wherein
‘27 1s three (3}, However, if the despread vector processing operation 236 calls for a
higher spreading factor than eight (8) {e.g., 16, 32, 64, 128, 256), the despread vector
data sample set 256{03-256({(X+1y4)-1), 256(3} is not provided as despread resultant
output vector data sample set 229(03-229(Z). The despread vector data sample set
256(0)-250(((X+14)-1), 256(3) is provided to a third adder tree level 248(3) to adders
258{01-258(((X+1)/8)-1), 258(1). o this regard, adder 258{0) 1s comfigured to
performing despreading on despread vector data samples 256(0} and 256(1) to provide a
spreading factor of sixteen {16} for those samples. Likewise, adder 258(1} is configured
to perform despreading on despread vector data samples 256(2) and 256(3) to provide a
despread vector data samaple set 260(0)-260(((X+1)/8}3-1}, 260(1) with spreading factor
of sixteen (16). The despread vector data sample set 260{C)}-260{({X+1¥/8}-1), 266(1)
from despreading performed by the adders 238(0)-238(((X+1¥8)-1), 258(1) is latched
mio latches 259(0)-250(({(X+1)/8)-1), 259(2).

(802181 With continuing reference to Figure 29, if the despread vector processing
operation 236 requires a despreading of the resuliant owtput vector data sample set
228(0)-228(X) by a spreading factor of sixteen (16), as will be discussed mn more detail
below, the despread vector data samople set 260(0)-260(((X+1Y/8)-1), 256(1) can be

provided as the despread resultant output vector data sample set 22%03-229(7), wherein

WO 2015/073915 PCT/US2014/065825
80

‘27 is one (1). However, if the despread vector processing operation 236 calls for a
higher spreading factor than sixteen (16} (e.g., 32, 64, 128, 256}, the despread vector
data sample set 260(0)-260({(X+1y/8)-1}, 260(1) is not provided as despread resultant
cutput vector data sample set 228(03-228(Z2). The despread vector data sample set
260(0)-260(((X+1¥/8)- 1), 2601} is provided to a fourth adder tree level 248(4) to adder
262. In this regard, the adder 262 is configured to performing despreading on despread
vector data samples 260(0) and 260(1) to provide a despread vector data sample 264
with a spreading factor of thirty-two (32). The despread vector data sample 264 from
despreading performed by the adder 262 1s latched into latches 266 and 268,

[60216] With continuing reference to Figure 29, if the despread vector processing
operation 236 requires a despreading of the resultant output vector data sample set
228(M)-228(X) by a spreading factor of thirty-two (32), as will be discussed in more
detail below, the despread vector data sample 264 can be provided as a despread
resultant output vector data sample 229. However, if the despread vector processing
operation 236 calls for a higher spreading factor than thirty-two (32) (e.g., 64, 128,
256}, the despread vector data sample 264 is not provided as a despread resultant ouiput
vector data sample set 229, The despread vector data sample 264 remains latched into
latch 268 without having to be stored in a vector data file 82. Another resultant output
vector data sample set 228{03-22&(X) is loaded into latches Z5HO-251{X) over
additional processing cycles to be despread using @ spreading factor of thirty-twe (32},
as described above. The resulting despread vector data sample 264° is added by adder
270 m a fifth adder tree 248(5) to the previous despread vector data sample 264 to
provide a despread vector data sample 272 having a spreading factor of sixty-four (64},
Selector 273 controls whether the despread vector data sample 264 having a spread
factor of thirty-two (32) or the despread vecior data sample 2647 having a spread factor
of sixty-four (64} is laiched as despread vector data sampie 272 is latched into latch 274,
This same process of latching additional resultant output vector data sample seis 228(0)-
228{X) and despreading of same can be performed to achieve spread lactors greater than
sixty-four (64), if destred. The despread vector data sample 272 will eventaally be
latched into latch 274 as the desired despread resuliant output vector data sample 229
according to the desired spreading factor for the despread vector processing operation

236.

WO 2015/073915 PCT/US2014/065825
81

1862177 With continuing reference to Figure 29, no matter what spreading factor s
called for in the despread vector processing operation 236, the despread resultant output
vector data sample set 229(0%-229%(Z) will need to be stored in the vector data files
82(0}-82{X) in Figure 27. As will now be discussed, the despreading circaitry 230 in
Figure 29 is also configured to load the despread resultant output vector data samples
229 provided as a result of performing the despreading vector processing operation 236
on reseltant output vecior data samples 228{03-228(X) mnto latches 276{(0}-276(X), to
form the despread resultant output vector data sample set 229(0)-229(Z). The despread
resultant output vector data sample set 229(03-229(2) can be provided to the vector data
files R2{0}-82(X) to be stoved. In this manner, only one (1) write s required to the
vector data files 82(0}-82(X) to store the despread resultant output vector data sample
set 229(0)-229(Z} created by the despreading civcwitry 238, The adder trees 248(1)-
248(5) n the despreading circuitry 230 in Figure 29 can geperate despread resultant
output vector data samples 229 for all of spreading factors 4, §, 16, and 32 regardless of
what spreading factor is called for in the despread vector processing operation 236.
Alernatively, adders o adder trees not unecessary fo perform the despread vector
processing operation 236 according to the desived spreading factor can be disabled or
configured to add s, However, to determune which of these despread resultant output
vector data samples 229 will be provided o the latches 276{(0)276(X) to be stored,
seloctors 278(0)-278({{X+1)/4)-13, 278(3) are provided, as will now be discussed,
[80218] In this regard, with continumg reference to Figure 29, selector 278{0) can
select despread resultant culput vector data samples 229 for any of spreading factors 4,
8, and 16 from adders 250(0), 254(03, 258(0), respectively, and spreading factors 32, 64,
128, 256 from adders 262, 270 based on the despread vector processing operation 236
being executed. Selector 278(1) can select despread resultant output vector data
sampies 229 for spreading factors 4, 8, and 16 from adders 256{1), 254(1), and Z5&(1)
respectively, based on the despread vector processing operation 236 being executed.
Selector 278(2) can select despread resultant output vector data samples 229 for
spreading factors 4 and 8 from adders 250(2} and 254(2), respectively, based on the
despread vector processing operation 236 being executed. Selector 278(3) can select
despread resultant output vector data samples 229 for spreading factors 4 and 8 from
adders 250(3) and 254(3), respectively, based on the despread vector processing

operation 236 being exccuted. Selector 278(4) can select despread resultant output

WO 2015/073915 PCT/US2014/065825
82

vector data samples 229 for spreading factors 4 and 8 from adder trees 448(1 and

executed. Selectors are not provided to control the despread resultant output vector data
samples 229 provided from adders 250(4)-250(7), because providing a spreading factor
of eight {8} can be fully satisfied by selectors 278(0}-278(3).

(60218 With continuing reference to Figure 29, a series of data sheers 280(0)-
280{({X+1y2)-1), 280(7} are provided to receive the despread resullant cutpul vector
data samples 229 selected by the selectors 278(03-278(((3(+1y4)-1}, 278(3) and adders
250{4¥-2500((X+1y/23-1), 250(7), respectively. Data slicers 280(0)-280(((X+1)/2)-1},
280(7y are configured to select whether its received despread resultant output vector
data samples 229 will be characterized as a logical high level (e.g., a logical ‘1Y ora
logical low level (e.g., a logical ‘0”). The despread resultant output vector data samples
229 are then routed through connections o a crossbar 282 to the desired latch 276
among latches 276(0)-276(X) to be stored. The crossbar 282 provides for the flexibility
te provide the despread resultant output vector data samples 229 according to the
despread vector processing operation 236 o different latches 276(03-276(X). o this
manner, despread resultant output vector data samples 229 can be stacked in latches
276(()-276(X}y among different terations of despread vector processing operations 236
betore being stored in the vector data files 82(0)-82(X). For cxample, a despread
resultant output vector data sample set 229(0)-229%(7) can be stacked in latches 276(0)-
276{X) among different iterations of despread vector processing operations 236 before
being stored m the veclor data files 82(0)-82(X}). In this manner, accesses to the vector
data files 82(0)-82(X) to storc despread resultant output vector data sample set 229(0)-
2292y can be minimized for operating efficiency.

18G228] For example, as llustrated in Figore 29, selectors 284((1)-284(X) coupled to
crossbar 282 can be controlled to store the despread resultant output vector data saraple
229 from data slicer 280(0) in any of latches 276{03-276(X). Sclectors 284(1), 284(3},
284(5y, 284(7), 284(9), 284(11), 284(13), 284(15) coupled to crossbar 282 can be
controlled to store despread resultant output vector data sample 229 from data slicers
280(1} to be stored in latches 276(13, 276(3), 276(5), 276(7), 276(9), 276{11}, 27613},
and 276(15). Selectors 284(2), 284(6), 284{10), 284(14) coupled to crosshar 282 can be
controlled to store a despread resultant output vector data sample 229 from data shicer

280(2) in latches 276(2), 276(6), 276{10), and 276(14). Seclectors 284(3}, 284(7),

WO 2015/073915 PCT/US2014/065825
83

284{1 1), 284{15} coupled to crosshar 282 can be conirolled to store a despread resultant
output vector data sample 229 from data shicer 280(3}) i latches 276(3}, 276(7},
276(11), and 276(15). Selectors 284{4} and 284(12) coupled to crossbar 282 can be
controlled to store a despread resultant output vector data sample 229 from dala slicer
280(4) in latches 276(4) and 276(12). Selectors 284(5) and 284(13) coupled to crossbhar
282 can be controlled to store a despread resultant output vector data sample 229 from
data slicer 280{5) to be stored in latches 276(5) and 276{13). Seclectors 284(6} and
284{14) coupled to crossbar 282 can be controlled to store a despread resultant outpat
vector data sample 229 from data slicer 280(6) in latch 276{(6) or 276(14). Sclectors
2847y and 284(15) coupled to crossbar 282 can be controlled to store a despread
resultant output vector data sample 229 from data shcer 280(7}) in latches 276(7) or
276(15).

(602231 With continuing reference to Figure 29, the despreading circuitry 230 can be
programmed to be configured to perform or not perform despreading operations on the
resultant ootput vector data samples 228(0)-228(X} according to the vector instruction
to be exccuted. In this regard, a despread configuration input 286 in Figure 29 can be

provided to the despreading civcuitry 230 fo perform despread operations on the

=

resultant output vector data samples 228(03-228(X) or to simply provide the resulian
output vector data samples 228{031-228(X) 1o the latches 276{0)-276(X), respectively, to
be stored in the vector data files 82(03-82(X). In this manner, the despreading circuitry
230 can be programmed to not despread the resultant output vector data sample sets
228{03-228(X) it the vector imstruction does not provide for such processing to be
performed. The despread configuration input 284 can be configured and reconfigured
for each vector instruction to provide for flexibility in the vector processing by the VPE
22(5y o Figure 27. For example, the despread configuration input 284 can be
configired and reconfigured for each clock-cycle of a vector insiruction, on a clock-
cyele-by-clock-cycle basis, #f desired, fo provide despreading as desired, with full
utilization of the execution units 84(0)-84(X), if desired.

(802221 Certain other wireless baseband operations require merging of data samples
determined from previous processing operations for reasons other than despreading of
spread spectrum data sequences. For example, it may be desired to accumulate vector
data samples of varying widths that are wider than the data flow paths for the execution

units 84(0}-84(X) provided by the vector data lanes 100(0)-106{X). As another

WO 2015/073915 PCT/US2014/065825
84

example, it may be desired to provide a dot product multiplication of cutput vector data
saropies from different execution units 84{03-84(X) 1o provide merging of output vector
data in vector processing operations. The vector data lanes 100(0)-100(X) in the VPE
could inchude complex routing to provide intravector data paths for crossing over vector
data lanes 10({0)-100(X} to provide merged vector processing operations. However,
this increases complexity and can reduce efficiency of the VPE, because of
parallehization difficolties in the cutput vector data to be merged crossing over different
vector data lanes. Vector processors could mchide circuitry that performs post-
processing merging of output vector data stored in vector data mergory from execufion
units. The post-processed output vector data samples stored m vector data mwemory are
fetched from vector data memory, merged as desired, and stored back in vector data
memory. However, this post-processing can delay the subscguent vector processing
operations of the VPE, and cause computational components in the execution units to be
underutilized.

1
i

[#6223] For example, a two inpul vector data samples 290{0), 290(1} provided in
vector data files 82(0), 82(1) in a VPE previously described are shown in Figure 30, It
may be desired to add these two input vector data samples 290(0}, 290(1) together. In
this example, the sum of the two input vector data samples 290(0), 280(1) is
‘0x112506314E, which has a data width farger than either vector data lane 100{0} or
100(1). Data flow paths could be provided in the VPE 22 to provide vector data routing
between vector data lanes 100(0), 100(1) to allow execution units 84((), 84(1} to
perform the execution of the sum of the two input veclor data samples 290{0), 280(1)
together, including providing carry logic between the two cxecution units 84(03, 84(1)
across the vector data lanes 100(0), 100(1). The ability to cross all vector data lanes
100(1)-100(X) may be required to provide a scalar result of merged vector data samples,
which may further increase cormplexity in data flow paths. However, as discussed
above, this would add complexity 1o data flow paths thereby nereasing complexity, and
possibly reducmg efficiency.

[86224] To address this issue, the embodiments disclosed below inciude VPEs that
include merging circuitry provided in output data flow paths between execution units
and vector data memory in a VPE, The merging cireunitry is configured to merge output
vector data saroples from an output vector data sample set provided by the exccoution

uniis in-fhight while the output vector data sample sct is being provided over the output

WO 2015/073915 PCT/US2014/065825
85

data flow paths from the execution units to the vector data memory. In-flight merging
of output vector data samples mceans the output vecior data samples provided by
xecution units can be merged before being stored in vector data memory, so that the
resulting outputl vector data sample set is stored in vector data memory in a merged
format. The merged ouiput vector data samples can be stored in vector data files
without requiring additional post-processing steps, which may delay subsequent vector
processing operations to be performed in the execution units, Thus, the efficiency of the
data flow paths in the VPE is not fimited by vector data merging operations. The
subsequent vector processing in the exccution units is only limited by computational
resources rather than by data flow Hmitations when merged vector data samples are
stored m vector data memory.
(60225} in this regard, Figure 31 is a schematic diagram of another exemplary VPE
22(6) that can be provided as the VPE 22 in Figure 2. As will be described in more
detail below, the VPE 22(6) in Figure 31 is configured to provide in-thight merging of
resultant cutput vector data sample sets 292(0}-292(X} provided by the execution units
R4(0)-84(Xy with a code sequence for vector processing operations to be stored i the
vector data files 82(03-82(X) n the VPE 22(6} with eliminated or reduced vector data
sample re-fetching and reduced power consumption. The resultant output vector data
sampie set 292{0)-292(X) is comprised of resultant output vector data samples 292(0),
, 292(X). As pon-hmiting examples, a merge vector processing operation could
melude adding resultant output vector data samples 292, determining 8 maximoum vector
data sample value among a plorality of resultant oulput vector data samples 292, or
determining a minimuom vector data sample value among a plurality of output vector
data samples 292, In the VPE 22(6) in Figure 31, the resultant output vector data
saroples 292 among the resultant output vector data sample set 292(0)-292(X) can be
merged before being stored in the vector data files 82(03-82(X).
(60226 The merging circuitry 294 is configured based on prograroming according o
a vector instruetion to be executed to provide in-flight merging of the resultant output
vector data samp}es 228 among the resultant output vector data sample set 223(0)-
228(X). Merged resultant output vector data sarapies 296(1)-296(Z) are provided by
the merging circuitry 294 in the cutput data fow paths 98(0)-98(X). ‘2’ in the merge
resultant output vector data samples 296(0)-296(2) represents the number of merged

resultant output vector data samples 296 in the merged resuftant output vector data

WO 2015/073915 PCT/US2014/065825
86

sarapic sets 296(0)-296(Z). The merged resultant output vector data sarapie set 296(0)-
2962} is comprised of resultant output vector data samples 296, which are 296(0}, ...,
and 296(7) in this example. The number of mwerged resultant output vector data samples
296 i the merged resultant cutput vector data sample set 296{0)-296(Z) is dependent on
the merging operations performed on the resultant output vector data sample set 292{(0)-
292{X). In-flight merging of the resuliant output vector data samples 292 m the VPE
22(6} in Figure 31 means that resultant output vector data samples 292 in the resultant
cuiput vector data samaple set 292(0)-292 (X)) provided by execution units 84{0}-84(X)
can be merged together before being stored n vector data files 82(0)-82(X). To this
manner, the merged resultant cutput vector data samples 296 of the merged resuliant
cutput vector data sample set 296(03-296(Z) can be stored m vector data files 82(0)-
82(X} in merged form as merged resultant output vector data sample set 296(0)-296(Z).
(602271 Thus, with the merging circuitry 294 provided in the output data flow paths
O8(0)-98(X), the resultant output vector data sample set 292{0)-292(X) is not required to
first be stored in the vector data files 82{0})-82(X), and then fetched from the vector data
files 82(0)-82(X). Desired resultant output vector data samples 292 are merged, and the
resultant output vector data saroples 292 are restored in merged form in the vector data
files 82((1)-82(X}. Resuliant output vector data samples 292 from the resultant output
vector data sample set 292(0)-292(X) can be merged before being stored in the vector
data files 82(0)-82(X}. Tn this manner, merged resultant output vector data samples 296
from the merged resuliant output vector data sample set 296{(03-296(Z) are stored in the
vector data files 82(0)-82(X} without requiring additional post-processing steps, which
may delay subsequent vector processing operations 1o be performed in the cxecution
units 84{031-84(X). Thus, the cfficiency of the data flow paths in the VPE 22(6) are not
himited by the merging of the resultant output vector data samples 292, The subsequent
vector processing in the execution units 84(()-84(X} is only Hmited by computational
resources rather than by data fow limitations when the resultant output vecior data
samples 292 are stored i merged form in the vector data files §2(0)-82(X).

(802281 Further, by providing the merging circuilry 294 in the output data flow paths
98(0}-98(X} between the execution units 84(1)-84(X} and the vector data files 82(0)-
R2(X), the resultant output vector data sample set 292(0)-292(X) does not have fo cross
vector data lanes 100 i the input dats flow paths 80(0}-80(X) between the vector data

files 82(()-82(X) and the exccution units 84{0)-34(X). Providing data flow paths for

WO 2015/073915 PCT/US2014/065825
87

merging of input vector data samples 86 in an input vector data sample set 86{0}-86(X)
hetween different vector data lanes 100 would increase routing complexitics. As a
result, execution units §4(0)-84(X) may be underatilized while merging operations are
being performed in the input data flow paths 30(0)-80(X). Also, as discussed above,
merging of resultant output vector data sampics 292 from the resultant output vector
data sample set 292(03-292(0) in the nput data flow paths 80(0)-80(X) would require
the resuliant output vector data sample set 292(0)-292(X) to first be stored in the vector
data files 82{C}-82(X} in the VPE 22(6) in Figure 31, thercby imcreasing power
consumption when re-feiched and merged and/or risking underutibization of the
execution units 84(0)-84(X} that may be delayed while merging operations are being
performed.

(60229} Note that comunon components are provided in the VPE 22(6) in Figure 31
that are provided n the VPEs 22(13-22(5) i Figures 4, 11, 19, 23, and 27. Common
components are illustrated in the VPE 22(6) in Figure 31 with common element
numbers. The previcus description and discussion of these commmon componenis above
in the VPEs 22{1}-22(5) arc also applicable to the VPE 22(6} in Figure 31, and thus will
not be re-described here.

(6023081 With contimuing reference to Figure 31, more specifically, the mergmg
circuitry 294 is configured to receive the resultant output vector data sample set 292(0)-
292(X) on merging circuitry nputs 300(03-3006(X) on the output data flow paths 98(0)-
O8(X). The merging circuitry 294 is configured to merge desired resultant output vector
data samples 292 from the resoltant output vector data sample set 292(0)-292(X) to
provide the merged resoltant output vector data sample set 296(0)-296(2). ‘27 in the
merged resultant output vector data sample set 296(0)-296(¥), represents the bit width
of the merged resultant output vector data sample set 296(0)-296(7). *Z° may be less
than the bit width of resultant output vector data sample set 292{0}-292(X), represented
by ‘X, due to merging operations. As discussed in more detail below, the number of
merged resuliant output vector data samples 286 ‘Z+17 in the merged resultant output
vector data sample set 296{0)-296{Z) is dependent on the resultant cutput vecior data
sarapics 292 from the resultant output vector data sample set 292(0)-292(X) to be
merged together. The merging circuitry 294 is configured to provide the werged

resultant output vector data sample set 296(0)-296(4) on merging circuitry outputs

WO 2015/073915 PCT/US2014/065825
88

301{0)-301{X) in the output data flow paths 98(1)-98(X} to be provided fo the vector
data files 82(0)-82(X)} for storage.

160231} A further description of additional details and features of the VPE 22(6) n
Figure 31 for providing the merged resultant oulput vector data sample set 296(0)-
296(X} to the vector data files 82(01-82(X) in the cuiput data flow paths 98(03)-98(X) in
this embodiment will now be described. In this regard, Figure 32 is a flowchart
lustrating an exemplary merging of resultant output vector data samples 292 of the
resultant output vector data sample sets 292(0)-292(X) resulting from a vector
processing operation 302 that can be performed in the VPE 22(6) in Figure 31
employing the merging civcuitryy 294 according to an exemplary vector instruction
regquiring merging of the resuitant output vector data samples 292,

160232} With reference to Figures 31 and 32, the input vector data sample set 86(0})-
vector mstruction is fetched from the vector data files 82(0)-82(X) and provided in the
mput data {low paths 80(03-80(X) (block 304 in Figure 32). Either one, some, or all of
the vector data lanes 100{03-100(X) in the VPE 22(6} in Figure 31 can be employed to
provide the vector processing operation 302 according to the programming of the vector
mstruction depending on the width of the input vector data sample set 86{0)-86(X) for
the vector processing operation 302, If the entire width of the vector data files 82(0}-
§2(X) 18 required, all vector data lanes 100{0}3-100{X) can be coployed for the vector
processing operation 302, The vector processing operation 302 may only require a
subset of the vector data lanes [100{0)-100(X). This may be because the width of the
input vector data sample set 86{0}-86(X)} is less than the width of all vecior data files
R2(0Y-82(X}, where #t is desired to enploy the additional vector data lages 100 for other
vector processing operations to be performed in parallel to the vector processing
operation 302

(602331 With continuing reference to Figures 31 and 32, the fetched input vector data
sample set 86(03-86(X) 1s received from the input data flow paths 8O(1)-80(X) at the
exccution units 84(0)-84(X) (block 306 in Figure 32). The execution units 84{0}-84(X)
perform the vector processing operation 302 on the received input vector data sample
set 86(()-86{ X} according to the vector processing operation 302 provided according to
a vector fnstruction (block 308 n Figure 32). The exccution units 84{0}-84(X} can

provide muliiplications and/or accurnulation wsing the input vector data sample set

WO 2015/073915 PCT/US2014/065825
89

86(0}-86(X} for the vector processing operation 302 to provide the resultant output
vector data sample set 292(0)-292(X). Once the vector processing operation 302 has
been completed, a resultant output vector data sample set 292(0)-292(X} based on the
vector processing operation 302 carried out on the input vector data sample set 86(0)-
86(X} is provided in the culput data flow paths 98(0)-98(X) of the VPE 22(6) in Figure
31

(802341 With continuing reference to Figures 31 and 32, before the resultant oulput
vector data sample set 292(0)-292(X} is stored in the vector data files 82(03-82{X), the
resultant output vector data sample set 292(0)-292(X) is provided to the merging
circuttry 294 provided in the output data flow paths 98(0)-98(X} provided between the
execulion units 34(0)-84(X} and the vector data files BZ{(H-82(X}. The wmerging
circuitry 294 is programunable to be included in the output data flow paths 38(1)-98(X)
according to the vector insfruction being executed, and if the vector mstruction calls for
merging of the resultant output vector data samples 292 from the resultant output vector
data sample set 292{01-292(X) to be stored in the vector data files 82(0}-82(X), as
discussed below n more detail. The merging circuitry 294 merges the resultant output
vector data saroples 292 from the resultant output vector data sample set 292{0)-292(X)
according to the vector instruction being exccuted without the resultant output vector
data sample set 292(0}-292(X) being stored in the vector data files 82(0)-82(X) (block
310 m Figure 32). In this manner, the resultant output vector data sample set 292{0)-
292{X) does not have to first be stored in the vector data files 82{0}-82(X)}, re-fotched,
merged in a post-processing operation, and stored in merged {format in the vector data
files 82(0)-82(X), thereby providing delay in the execution units 84(0}-84(X). The
resultant output vector data sample set 292(0)-292(X) is stored as the merged resultant
output vector data sarople set 296(0}-296(7) in the vector data files 82(0)-82(X) without
merge post-processing required (block 312 in Figure 32}

(602351 Figure 33 is a schematic diagram of an exemplary merging circuitry 294 that
can be provided in the output data flow paths 98(0}-98(X) between the execution units
84(0}-84(X} and the vector data files §2(03-82(X) in the VPE 22(6) of Figure 31. The
merging circuitry 294 is configured to provide merging of the resultant output vector
data sample set 292(0)-292(X) to provide the merged resuftant output vector data

sarople set 296(0)-296(Z). The resultant output vector data sarople set 292(0}-292(X) is

WO 2015/073915 PCT/US2014/065825
90

provided from the execution uvnit outputs 96(0})-96(X} to the merging circuiiry 294, as
ilustrated in Figure 31,

166236} With continuing veference to Figure 33, the merging circuitty 294 1s
configured to merge the resultant output vector data sample sel 292(0)-292(X}). The
merging circuitry 294 in this embodiment is configured to provide a merged resuliant
output vector data sample set 296(0)-296(Z). In this regard, the merging circuitry 294
contains an adder tree 318 coupled to the execution umt outputs 36(0)-96{X) to receive
the resultant output vector data sample set 292(1H-292(X). The adder trec 318 of the
merging circnitry 294 1s configured to reccive each sample 292 of resultant output
vector data sample set 292{0)-292(X) n their respective vecior data lanes 100(0})-
100(X3}. A first adder tree lovel 318(1) 1s provided in the adder tree 318, The first adder
tree fevel 318(1}) is comprised of merge circuits 320(0)-320(((X-+1)/2)-1), 32((7) to be
able to merge adjacent samples 292 in the resultant ouiput vector data saraple set
292{03-292(X). Latches 321{0}-321(X) arc provided m the merging cirauiry 294 fo
latch the resultant outpul vector data sample set 292(0)-292(X) from the ouiput data
flow paths 98(031-98(X),

160237} For example, if cach sample 292 in the resultant oulput vector data sample
set 282(0)-282(X} 1s 32 bits wide and comprised of two (2} 16-bit complex vector data
{(i.c., first vector data according to format ISQS and second vector data according to
format 180Q%), a merging operation could be applied to merge the four (4) vector data
samples m two (2) resultant output vector data samples 292 in the resultant output
vector data sample set 292(0)-292(X) into one merged resultant output vector data
sarapic 296. For example, as illustrated in Figure 33, adder 320(11) is configured to
merge resuliant output vector data samples 292(0) and 292(1). Likewise, adder 320(1)
is configured to merge resultant output vector data samples 292(2) and 292(3) for those
sampies. Adder 320({(X+1Y2)-1}, 326(7) is configured to merge resuliant output vector
data sample set 292(X-1) and 292(X) to provide a merge vector data sample set 322{0)-
I22(((X+1W2)-13, 322(7). A merge vector data sample set 322(0)-322({({X+1)/2)-1},
322(7} from merging performed by the adders 320({{(X+1)/2)-1}, 320(7} is latched into
latches 325(0)-325(((X-+1)/23-1), 325(73.

160238] i the merge vector processing operation 302 requires 2 merging of the
resultant output vector data sample set 292{0)-292(X), as will be discussed in more

detail below, the merge vector data sample set 322(0)-322¢((X+1)/2)-1), 322{7} can be

WO 2015/073915 PCT/US2014/065825
91

provided as the merge resultant output vector data sampie set 296(0)-296(Z), wherein
‘27 1s seven (7). However, if the merge vector processing operation 302 calls for a
merging of non-adjacent resultant output vector data samples 292 in resuliant output
vector data sample set 292(03-292(X), the merge vector data sample set 322{0})-
322(((X+1y23-13, 322(7) is not provided as merge resultant output vector data sample
set 296(0)-296(2). The merge vector data sample set 322(0)-322(((X+1)72)-1), 322(7)
18 provided to a second adder tree level 318(2) to adders 324(03-324({((X+1)/4)-1},
324(3). In this regard, adder 324{0) is configured to perform merging on merge vector
data saroples 322(0) and 322(1} to provide a resultant merge vector data sample 326(0).
Likewise, adder 324(1) is configured to perform merging on merge vector data samples
322(2y and 322(3) to provide a resullant merge vector data sample 326{1}). Adder
324(({(X+1y43-1), 324(3) is configured to perform merging on merge vector data sample
I22(((X+1W4)-23, 322(((X+1¥/4)-1), 322(3) to provide a resultant merge vector data
sample 326{((X+1)/4)-1), 326(3). The resultant merge vector data sample set 326(0)-
I26({({X+1)/4)-1}, 326(3) from merging performed by the adders 324{0)-324(({X+1)/4)-
1), 3243} 18 latched o latches 327(0)-327(((X+1)Y/43-1), 327(3).
16023%9] With continuing reference to Figure 33, if the merge vector processing
operation 302 requires a merging of the resultant output vector data sample set 292(0)-
292(X) by a merge factor of ecight (&}, as will be discussed in more detail below, the
merge vector data saraple set 326(0)-326{(({X+1¥/4)-1), 326(3) can be provided as the
merge resultant oulput vector data sample set 296(0)-296(%), wherein "2 is three (3).
However, if the merge vector processing operation 302 calls for a higher merge factor
than cight (8) (e.g., 16, 32, 64, 128, 256}, the merge vector data sample set 326(0)-
ZO(((X+1Y4)-1), 32603} is not provided as merge resultant output vector data sample
set 286(0)-296(7). The merge vector data sample set 326(0}1-326(((X+1)/4)-1), 326(3)
is provided to a third adder tree level 318(3) to adders 32&(01-328({{X+1)/8)-13, 328(1).
o this regard, adder 328(0} is configured to performing merging on merge vector data
samples 326(0) and 326(1) to provide a merge factor of sixteen (16} for those samples.
Likewise, adder 328(1) is configured to perform merging on merge vector data samples
326(2) and 326(3) to provide a merge vector data sample set 330(0)-330(((X+1y8)-11,
330(1) with merge factor of sixteen (16). The merge vector data sample set 330(0)-
330(({X+1)8)-13, 330(1) from merging performed by the adders 328(0)-328(({X+1)/8)-
1}, 328(1} is fatched into latches 329(0)-329(((X+1 Y€1), 329(1}.

WO 2015/073915 PCT/US2014/065825
92

180240] With continuing reference to Figure 33, if the merge vector processing
operation 302 requires a merging of the resultant output vector data sample set 292(0)-
292(X) by a merge factor of sixteen (16}, as will be discussed o more detail below, the
merge vector data sample set 336(0)-330({((X+1)/8)-1}, 330(1) can be provided as the
merge resultant output vector data sample set 296(0)-296(Z), wherein ‘Z7 is one (1}
However, it the merge vector processmg operation 236 calls for a higher merge factor
than sixteen (16} (e.g., 32, 64, 128, 256}, the merge vector data sample set 330(0)-
33G(((X+1)8)-1), 330(1) is not provided as merge resultant output vecior data sample
sel 296(0)-296(%). The merge vector data sample set 330(0)-330(((X+1V/8)-13, 3306(1)
is provided to a fouwrth adder trec level 318(4) to adder 332, In this regard, the adder
332 is configured to perform merging on merge vector data samples 3306(0) and 330(1)
o provide a merge vector data sample 334 with a merge factor of thirty-two (32), The
merge vector data sample 334 from merging performed by the adder 332 is latched into
latches 336 and 338.

#3241 With continuing reference o Figure 33, if the merge vector processing
operation 302 requires a merging of the resultant output vector data sample set 292(0)-
292(X) by a merge factor of thi}‘ty—iW(} (32}, as will be discussed in more detail below,
the merge vector data sample 334 can be provided as a merge resultant output vector
data sample 296. However, if the merge vector processing operation 302 calls for a
higher merge factor than thirty-two (32) {c.g., 64, 12§, 256), the merge vector data
sample 334 is not provided as a merge resuliant output vector data sample set 296. The
merge veclor data sample 334 remains latched into lateh 338 without having to be
stored m a vector data file 82. Another resultant cutput vector data sample set 292(0)-
292X} 1s loaded into latches 321(0)-321(X) over additional processing cycles to be
merged using a merge factor of thirty-two (32), as described above. The resulting
merge vector data sample 3347 is added by adder 340 in a fifth adder tree 318(5) to the
previous merge vector data sample 334 to provide a merge vector data sarople 342
having a merge factor of sixty-four (64}, Selector 343 controls whether the merge
vector data sample 334 having a merge factor of thirty-two (32) or the merge vector data

"}’7
‘.‘

saraplc ’ having a merge factor of sixty-four (64} is latched as merge vector daia

saropic 342 1s latched into latch 344, This same process of latching additional resultant
L

output vector data sample sets 292(0)-292(X)) and merging of same can be performed to

achieve merge factors greater than sixty-four (64), if desired. The merge vector data

WO 2015/073915 PCT/US2014/065825
93

sarapic 342 will eventually be latched into laich 344 as the desired merge resuliant
output vector data sarople 296 according to the desired merge factor for the merge
veclor processing operation 302,
(60242} With continuing reference to Figure 33, no matter what merge vecior
processing operation is called for in the merge vector processing operation 302, the
merge resultant oulput vector data sample set 296{0)-296(7} will need to be stored in
the vecior data files 82{03-82(X). As will now be discussed, the merging circuitry 294
i Figure 33 is also configured to load the merge resultant output vector data samples
286 provided as a result of performing the merging vector processing operation 302 on
resultant output vector data saroples 292(0)-292(X) mto latches 346(0}-346(X), to form
the merge resuliant cutput vector data sample set 296(0)-296{(Z). The merge resulant
output vector data sample set 296{03-296(7) can be provided to the vector data files
82(01-82(X) to be stored. In this manner, only one (1) write is required to the vector
data files 82(0)-82(X) to store the merge resultant output vector data sample set 296(0)-
296{Z} created by the merging circuitry 294, The adder trees 318(13-318&(5} in the
merging cireuitty 294 ju Figure 33 can generate merge resultant output vector data
saroples 296 for all of merge factors 4, 8, 16, and 32 regardless of what merge factor is
called for in the merge vector processing operation 302, Alternatively, adders in adder
trees it necessary to perform the merge vector processing operation 302 according o
the desired moerge factor can be disabled or configured to add O's. However, fo
determine which of these merge resultant output vector data saroples 296 will be
provided to the latches 346(03-346{X) to be stored, selectors 348(0)-348(((X+1}/4)-1},
344(3) are provided, as will now be discussed.
160243} in this regard, with countinuing reference to Figure 33, selector 348(0) can
select merge resultant output vector data saroples 296 {or any of merge factors 4, ¥, and
16 from adders 320{0}, 324(0), 328(0), respectively, and merge factors 32, 64, 128, 256
from adders 332, 340 based on the merge vector processing oporation 302 being
excouted. Selector 348(1) can select merge resultant output vector data samples 296 for
merge factors 4, 8, and 16 from adders 320(1}, 324(1), and 328(1) respectively, based
on the merge vector processing operation 302 being exccuted. Selector 348(2) can
select merge resultant cutput vector data samples 296 for merge factors 4 and 8 from
adders 320(2} and 324(2), respectively, based on the merge vector processing operation

302 being exccuted. Sclecior 348(3) can select merge resultant output vector data

p=3

WO 2015/073915 PCT/US2014/065825
94

sarapics 296 for merge factors 4 and & from adders 320(3) and 324(3), respectively,
hased on the merge vector processing operation 302 being execcuted. Selectors are not
provided to control the merge resultant output vector data samples 296 provided from
adders 320(4)-320(7), because providing a merge factor of eight (8) can be fully
satisfied by selectors 348(()-348(3}.

[80244] With continuing reference to Figure 33, the data sheers 350(0)-
IS0({((X+1)/2)-1}, 350(7) provided for merge vector processing operations could be
bypassed or configured to not perform data splicing on the received merge resultant
output vector data samples 296 sclected by the selectors 348(0)-348(({X+1Y/4)-1},
343(3) and adders 320(4)-320(((X+1)/2)-1}, 320(7), respectively. The merge resultant
cutput vector data samples 296 are then routed through connections to a crossbar 352 {o
the desired laich 346 among latches 346(0)-346(X) to be stored. The crossbar 352
provides for the flexibility to provide the merge resuitant output vector data samples
296 according to the merge vector processing operation 302 1o different latches 346(0)-
346(X). In this manner, merge resoltant output vector data samples 296 can be stacked
in latches 346(0)-346(X) among different iterations of merge vecior processing
operations 302 before being stored in the vector data files 82{0)-82(X)}. For example, a
merge resuliant output vector data sample set 296(0)-296(Z) can be stacked m latches
346(0)-346(X) among different iterations of merge vector processing operations 302
beiore being stored in the vector data files 82(0)-82(X}. In this manner, accesses 1o the
vector data files 82(()-82(X)} to store merge resultant output vector data sample set
296{0}1-296(Z) can be minimized for operating efficiency.

1B80245] For example, as illustrated in Figure 33, selectors 354{0}3-354(X) coupled to
crossbar 352 can be conirolled to store the merge resuliant output vector data sample
296 from selector 348(0) in any of laiches 346(0)-346(X). Selectors 354(1), 354(3),
354(5), 354(7), 354(9), 354(11), 354(13), 354(15) coupled to crossbar 352 can be
controlled to store merge resultant output vector data sample 296 from sclector 348(1)
to be stored in latches 346(1), 346(3), 346(5), 346(7), 346(9), 346(11}, 346(13), and
346(15). Selectors 354(2), 354(6), 354(10}, 354(14) coupled to crossbar 352 can be
controlled to store a merge resultant cutput vecior data sample 296 from selector 348(2)
in latches 346(2), 346(6), 346(10), and 346(14). Selectors 354(3), 354(7), 354(11),
354(15) coupled to crossbar 352 can be controlled to store a merge resultant output

vector data sample 296 from selector 348(3) in latches 346(3), 346(7}, 346{(11}, and

WO 2015/073915 PCT/US2014/065825
95

346(15). Selectors 354(4) and 354(12} coupled to crossbar 352 can be controlled to
store a merge resultant output vector data sample 296 from adder 320(4) i latches
346(4) and 346(12). Selectors 354(5) and 354(13) coupled to crossbar 352 can be
controlled to store a merge resuliant output vector data sample 296 from adder 320(5) to
be stored in latches 346(5}) and 346(13). Selectors 354(6) and 354(14) coupled to
crossbar 352 can be controlled to store a merge resubtant output vector data sample 296

46(14). Selectors 334(7) and 354(15} coupled to

(sl

from adder 320¢6} in latch 346(6) or .
crossbar 352 can be controlled to store a merge resultant output vector data sample 296
from adder 320(7} in latches 346(7) or 346{15).

160246} Note that in the mergmg circuitry 294 in Figure 33, the adders could be
configured to allow non-adjacent resultant output vector data samples 282 i the
resultant output vector data sample set 292(0)-292(X} 1o be merged. For example, if it
is desired to merge resultant output vector data saraples 292(0) with resultant output
vector data samples 292(9), adders in adder tree levels 318(13-318(3} could be
configured to simply pass merge resultant output vector data samples 292(0) with
resultant output vector data saroples 292(9) to adder tree level 318(4). The adder 332 in
adder tree level 318(4) could then merge resultant output vector data sample 292(0) with
resultant output vector data samples 292(9) to provide merged output vector data
sampies 296.

1602471 Merging circuitry could also be provided 1o the output data flow paths 98(()-
O8(X) between the execution units 84(()-84(X) and the vector data files 82(0)-82(X)
that provide other types of vector merging operations other than vector and/or scalar
adding. For example, the merging circuiiry 294 in Figure 33 could be configured to
provide maximum or minfnwm vector and/or scalar merging operations. For exarople,
the adders in the adder tree levels 318(1)-318(5) in the adder tree 318 m Figure 33 could
be replaced with maximuim or minimum function circuitry. In other words, the circuitry
would select 1o pass either the larger or the lesser of two resultant output vector data
samples 292 from the resultant ouiput vector data sample set 292(0)-292(X). For
example, if the two resultant output vector data samples 292 from the resultant output
vector daia sample set 292(0)-292(X} were the two input vector data samples 290(0},
2890(1) 1o Figure 30, the merging circuitry 294 could be configured to select vector data
saroples 290(1) if the merging cireuitry 294 s configured to select the maximum vector

data sample.

WO 2015/073915 PCT/US2014/065825
96

183248] in this regard, with reference to Figure 34, adders 320(0)-3206{((X+1V2)-1},
320(7) in the first adder tree level 318(1) in Figure 33 could be replaced with maximum
or miniroum merge selectors adders 320°(0)-320°(((X+1)2)-1), 320°(7), as illustrated in
Figure 34, Adders 324(()-324(((X+1)/43-13, 324(3) in the second adder tree level
318(2) could be replaced with maximum or minimum selectors 324703324 (((X+1y/4)-
1}, 324°(3), as llustrated in Figure 34, Adders 328{0)-328(((X+1¥&)-1), 328(1) i the
third adder tree level 31&(3) could be replaced with maximum or minimum selectors
3287{0)-328(({(X+1¥8)-1), 328°(1}, as illustrated in Figure 34, Adder 332 in the fourth
adder tree level 318(4) could be replaced with maximum or minfoum selector 3327, as
iHustrated in Figure 34, Adder 340 in the fifth adder tree level 318(5) could be replaced
with maximuam or minimum selector 3407, as illustrated in Figure 34, Note that in the
merging circuitry 294 in Figure 34, the adders could be configured to select a maximum
or romnimum resuftant output vector data sample 292 between non-adjacent resultant
output vector data samples 292 in the resuliant output vector data sample set 292(0)-
292{X) to be merged. For example, if it is desired to maximum merge resullant oulput
vector data samples 292(0) with resultant output vector data samples 292(9}, adders in
adder tree levels 318(1)-318(3) could be configured to simply pass merge resultant
cutput vector data samples 292(01) with resultant output vector data samples 292(9) to
adder tree fevel 318(4). The adder 3327 in adder tree fovel 318(4) could then maximum
merge the resuliant output vector data sample 292(0) with resultant output vector data
samples 292(9) to provide merged output vector data saroples 264,

(802481 As discussed above, the execution onits 84(0)-84(X} are provided in the
VPEs 22(1}1-22(6) to perform vector processing operations on input vector data sample
sets BO{0)-86(X). The execution units 84{0)-84(X) also include programmable data path
configurations that allow the execution units 84(0)-84(X) to provide multiple modes of
operation with common circuilry and hardware for different vector processing
operations. More exemplary detail regarding the execution units 84(0)-84(X} and their
programmable data path configurations for providing multiple modes of operation with
common cirouitry and hardware are now discussed.

1862507 in this regard, Figure 35 illustrates an exemplary schematic diagram of an
excroplary execution unit that can be provided for each of the execution units 84(0)-
84(X) m the VPEs 22(1)-22(6). As illustrated in Figure 35 and as will be described in

more detail below in Figures 36-39, the execution unit 84 includes a plurality of

WO 2015/073915 PCT/US2014/065825
97

exemplary vector pipeline stages 460 having excroplary vector processing blocks that
may be configured with prograromable data path configurations. As will be discussed
in more detail below, the programmable data path configurations provided in the vector
processing blocks allow specific circuits and hardware to be programmed and
reprogrammed {0 support performing different, specific vector processing operations on
the vector data 30 received from the vector unit data memory 32 in Figure 2.

(802531 For example, certain vector processing operations may commeonly require

multiplication of the vecior data 30 followed by an accumwlation of the multiplied
vector data results, Noun-Hnuting examples of such vector processing mcludes filtering
operations, correlation operations, and Radix-2 and Radix-4 buiterfly operations
commonly used for performing Fast Fourier Transform (FFT) operations for wireless
communications algorithms, where a series of parallel multiplications are provided
followed by a series of parallel accumulations of the multiphication results. As will also
be discussed i more detail below with regard to Figures 39 and 40, the execution unit
84 in Figure 35 also has the option of fusing moltiphiers with carmry-save accumulators to
provide a redundant carry-save format fo the carry-save accunuators. Providing a
redundant carry-save format in the carry-save accuwmulators can chiminate a need to
provide & carry propagation path and a carry propagation add operation during each step
of accumulation.

(602521 in this regard, with further reference to Figure 35, a MO multiply vecior
pipeline stage 460(1) of the VPE 22 will first be deseribed. The MO multiply vector
pipehine stage 460(1} is a second vector pipeline stage containing a plurality of vector
processing biocks in the form of any desired number of multiplier blocks 462(A)-
4620}, each having programmable data path configurations. The multiplier blocks
462{A)-462(0) are provided 1o perform vector muliiply operations in the execution unit
84. The plurality of multiphier blocks 462{A)-462(0) are disposed in parallel to each
other in the MO multiply vector pipeline stage 460(1) for providing multiphication of up
to twelve (12} nuiltiply vector data sarople sets 34(Y)-34(0}. In this embodiment, ‘A’ 1s
equal to three (33, meaning four (4) multiphier blocks 462(3}-462(0) are included in the
MO multiply vector pipeline stage 460(1) in this example. The muoltiply vector data
saropic sets 34(Y)-34(0) are loaded into the exccution unit 84 for vector processing into
a plurality of latches 464(Y)-464(0) provided in an ioput read (RR} vector pipeline

stage, which is a first vector pipeline stage 460{0} in the exccution unit 84. There arc

WO 2015/073915 PCT/US2014/065825
98

twelve {12) latches 464(11)-464(1) 1 the exccution unit 84 in this embodiment,
meaning that “Y’ is equal to eleven (11} in this embodiment. The latches 464(11)-
464(0) are configwed to latch the multply vector data sample seis 34(11)-34(0)
retrieved from the vector registers (see the vector data files 28 of Figure 2) as vector
data input sarmple sets 466(1131-466(0}. In this example, cach latch 464¢11}3-464(0) is 8-
bits wide. The latches 464(11)-464(0) are each respectively configured to latch the
multiply vector data input sample sets 466(11)-466{0), for a total of 96-bits wide of
vector data 36 (i.c., 12 laiches x 8 bits each).

1602531 With continuing reference to Figure 35, the plurabity of multiphier blocks
462{3)-462(0} are configured to be able to receive certain combinations of the vector
data mput sample sets 466(11)-466(0} for providing vector multiply operations, wherein
Y’ is equal to eleven (11) i this example. The multiply vector data input sample sets
466(1 1)-466(0) arc provided 1 a plurality of input data paths A3-A0, B3-B0, and C3-
0 according to the design of the execcution unit 84, Veclor data imput sample sets
466{33-466(0} correspond to input data paths C3-C0 as illustrated in Figure 35. Vector
data mput sample sets 466(7)-466{4} correspond fo jnpul data paths B3-B0 as illustrated
in Figure 35, Vector data mput sample sets 466(11)-466(8) correspond to mput data
paths A3-A0 as illustrated in Figure 35. The plurality of mwltipher blocks 462(3)-
462(3) are configured to process the received vector data input sampie sets 466(11)-
466(0) according to the input data paths A3-A0, B3-B0, C3-C0, respectively, provided
te the plurality of multiplier blocks 462(3}-462(1)), to provide vector muliply
operations.

186254] As will be discussed in more detail below with regard to Figures 37 and 38,
prograromable internal data paths 467(3)-467(0) provided in the mwliphier blocks
462(3)-462(1) in Figure 35 can be programmed fo have different data path
configurations. These different data path configurations provide different combinations
and/or different bit lengths of multiplication of particular received vector data mput
sample sets 466(11)-466{0) provided o the multiphicr blocks 462(3)-462(0) according
te the particular inpul data paths A3-A0, B3-BO, C3-C0 provided to cach multiplier
block 462(3)-462(0). In this regard, the plurality of multipiier blocks 462(3)-462((h)
provide vector pwltiply output sample seis 468(3)-468(0) as a vector result ouiput
sarople set comprising a nuiltiplication result of multiplying 4 particular combination of

the vector data input sample scts 466(11)-466({}) together.

WO 2015/073915 PCT/US2014/065825
99

186255] For example, the programmable internal data paths 467(3}-467(() of the
multipher blocks 462(3)-462(0) roay be progranuued according to sctiings provided
from a vector instruction decoder in the instruction dispatch circuit 48 of the baseband
processor 20 in Figure 2. In this embodiment, there are four {4} programmable internal
data paths 467(3)-467(0) of the multiphicr blocks 462(3)-462(0). The vector instruction
specifies the specific type of operation to be performed by the exccution unit 84. Thus,
the execution unit 84 can be programmed and reprogrammed to configure the
programmable internal data paths 467(3)-467(0) of the nwiltiplier blocks 462(3)-462(1h)
to provide different types of vector multiply operations with the same common circuitry
in 4 highly efficient maoner. For example, the execution unit 84 may be programmed (o
configure and reconfigure the programmable internal data paths 467(3)-467(0) of the
mulftiplicr blocks 462(3)-462() on a clock-cycle-by-clock-cycle basis for each vector
mstruction executed, according to decoding of the vector mstructions i an instruction
pipehine 0 the mnstruction dispateh circunit 48. Thus, if the MO multiply vector pipeline
stage 460(1}) m the execution unit 84 is configured to process vector data input sample
sets 466 every clock cycle, as a result, the multiphier blocks 462(3)-462(0) perform
vector multiply operations on every clock cyele according to decoding of the vector
mstructions in an instruction pipeling in the instruction dispatch cireuit 48.

[60256] The multiplier blocks 462 can be programmed to perform real and complex
nultiplications. 'With contimuing reference to Figure 35, in one vector processing block
data path configuration, a nuiitiplier block 462 may be configured to nuiltiply two 8-bit
vector data input sample sets 466 together. In one multiply block data path
configuration, a rauitiplier block 462 may be configured to multiply two 16-bit vector
data input sample sets 466 together, which arc formed from a fivst pair of 8-bit vector
data input sample sets 466 multiphicd by a second pair of 8-bit vector data input sample
sets 466. This is illustrated in Figure 38 and discussed in more detail below. Again,
providing the programmable data path configurations in the multiplier blocks 462(3)-
462{0) provides flexability in that the mltipher blocks 462(3)-462(1}) can be configured
and reconfigured to perform different types of multiply operations to reduce area in the
execution unit &4 and possibly allow fower execution units 84 1o be provided in the
hascband processor 20 to carry out the desired vector processing operations.

166257} With reference back to Figure 35, the plurality of nultiplier blocks 462(3)-

462(11) is configured to provide the vector multiply output sample sets 468(3)-468(0) in

WO 2015/073915 PCT/US2014/065825
100

programmable output data paths 470(3}-470(0) to either the next vector processing stage
460 or an output processing stage. The vector rounltiply output sample sets 468(3)-
468((3) are provided in the programmable ocutput data paths 470(33-470(0} according to a
programmed configuration based on the vector instruction being executed by the
plurality of multiplier blocks 462(3)-462((3). In this example, the vector multiply output
sample sets 468(33-468(0) in the programmable ouiput data paths 470(3)-470(0) are
provided to the MI accumulation vecior pipeline stage 46(0(2) for accumulation, as will
be discussed below. In this specific design of the exccution unit 84, it is desired to
provide the plurality of multipher blocks 462(3)-462(0) followed by accumulators to
support specialized vector instructions that call for multipheations of vector data inputs
followed by accumulation of the multiplied resolts. For exampie, Radix-2 and Radix-4
butterfly operations commonly used to provide FFT operations inchide a series of
oultiply operations followed by an accumulation of the wmultiplication results.
However, note that these combmations of vector processmg blocks provided in the
exccution unit 84 are exemplary and not hmiting. A VPE that has programmable data
path configurations could be configured to melude one or any other number of vector
processing stages having vector processing blocks. The vector processmg blocks could
be provided to perform any type of operations according o the design and specific
vector instractions desiganed to be supported by an execution unit.

[B0258] With continued reference to Figure 35, in this embodiment, the vector
multiply output sarople sets 468(33-468{0) are provided to a plurality of accumulator
blocks 472(3y-472(0) provided in a next vector processing stage, which is the Mi
accumulation vector processing stage 46{0(2). Each accumulator block among the
plurality of accumulator blocks 472(A-472(0) comtains two accumulators 472(X3(1)
and 472(XX0) (.e., 47203}y, 4720310y, 4720231, 472020, 472(1H){(1), 472(1)0y,
and 472{03(1), 472(0x03. The plurality of accumulator blocks 472(33-472(0)
accurnulate the results of the vector multiply output sample sets 468(3)3-468(0). As will
be discussed in more detail below with regard to Figures 39 and 40, the plurality of
accamulator blocks 472(3)-472(0) can be provided as carry-save accomulators, wherein
the carry product is in essence saved and not propagated during the accumulation
process until the accumulation operation is completed. The phlurality of accumulator
blocks 472(3)-472(0} also have the option of being fused with the plurality of nulupher

blocks 462{33-462(0} in Figures 35 and 37 to provide redundant carry-save format in the

WO 2015/073915 PCT/US2014/065825

101
plurality of accumulator blocks 472(3}-472(0). Providing redundant carry-save format
in the plurality of accurnulator blocks 472(3)-472(0) can eliminate a need to provide a

carry propagation path and a carry propagation add operation during each siep of
accumulation in the plurality of accumulator blocks 472(3)-472(0). The Ml
accumulation vector processing stage 460(2) and its plurality of accumulator blocks
472(33-472(0y will now be introduced with reference to Figure 35,
(802581 With reference to Figure 35, the phurahty of accumulator blocks 472(3)-
472(Cy in the M1 accumulation vector processing stage 460(2) is configured to
accuntdate the vector multiply output sarople sets 468(3)-468(0) m progranynable
output data paths 474(33-474(0) (e, 47431}, 4740)0), 4742 1), 4740,
474001, 47410}, and 474(0X{(1}, 474(0X0}), according to programmable output data
path configurations, o provide accumulator output sample sets 476(3)-476{(0) (e,
476(3)(1y, 476(3)0), 476(2)(1), 476(2(0), 476011y, 476(1X0), and 476(03(1),
476{0)(0}} in either a next vector processing stage 460 or an outpul processing stage. In
this example, the accumulator cutput sample sets 476(3)—476(0) are provided to an
oulput processing stage, which 15 an ALY processing s 460(3). For cxample, as
discussed 1 more detail below, the accumulator output sampie sets 476(3)-476(0} can
also be provided to the ALU 46 in the scalar processor 44 in the baseband processor 20
in Figure 2, as a non-limiting example. For example, the ALU 46 may take the
accuroulator output sample 476(3-476(0) according to the specialized vector
msiructions executed by the execution unit 84 to be used in more general processing
operations.
1862607 With reference back to Figure 35, programmable input data paths 478(3)-
478(0) and/or programmable internal data paths 480(3)-480(0) of the accumulator
blocks 472(3)-472(0) can be prograromed to be reconfigured to receive different
combinations and/or bit fengihs of the vector multiply output sampie sets 468(33-468(0)
provided from the multipher blocks 462(33-462(0) to the accuroulator blocks 472(3)-
472(0). Because each accumulator block 472 4s comprised of two accunuidators
4721}, 472(X¥D), the programmable input data paths 478(A)-478(0) are shown in
Figure 35 as 478(3)(1, 4780, 478(2)(1}, 478(2)D), 478(1)1}, 478(1)((}), and
478(0¥(1), 478(00). Stmilarly, the programroable nternal data paths 480(33-480(0) are
shown in Figure 35 as 480(3)(1), 480(3)(0), 480(2)(1}, 480(2)0), 480(1)(1), 480(1)1,
480(0H(1), 480{0}0). Providing programmable input data paths 478(31-478(0} and/or

WO 2015/073915 PCT/US2014/065825
102

programmable internal data paths 480(3)}-483{(0} in the accumulator blocks 472(3)-
47X0) is discussed in move detail below with regard to Figures 39 and 40. In this
manner, according to the programmmable mput data paths 478(3)-478(1) and/or the
programmable internal data paths 430(3)-480(1}) of the accumulator blocks 472({3}-
472(3), the accumulator blocks 472(3)-472(0) can provide the accumulator output
sample sets 476(33-476(0) according io the programmed cornbination of accurnnlated
vector multiply output sample sets 468(3}-468(0). Again, this provides flexibihity in
that the accumulator blocks 472(3)-472({}) can be configured and reconfigured to
performo different types of accumulation operations based on the progranuming of the
programmable input data paths 478(33-478(0) and/or the programmable internal data
paths 480{3)-480{0} to reduce area in the execution unit 84 and possibly allow fewer
execution units 84 to be provided in the baseband processor 20 to carry out the desired
VeCtor processing opetations.

o~

802611 For example, m one accumulator mode configuration, the prograromable
mput data path 478 and/or the programmable internal data paths 480 of two accumulator
blocks 472 may be progranmumed o provide for a single 40-bit accumulator as a non-
hmiting example. In another accumulator mode configuration, the prograromable fnput
data path 478 and/or the programmable internal data path 480 of two accomulator
blocks 472 may be programmed to provide for dual 24-bit accumulators as a non-
hmiting example. In another accumulator mode configuration, the progranumable nput
data path 478 and/or the programmable internal data path 480 of two accumulator
blocks 472 may be programmed to provide for a 16-bit carry-save adder {ollowed by a
single 24-bit accumulator. Specific, different combinations of multiplications and
accuntulation operations can also be supportted by the execution unit 84 according to the
programming of the multiplier blocks 462(33-462(0} and the accomulator blocks 472(3)-
472(0) {(e.g., 16-bit complex nultiplication with 16-bil accumulation, and 32-bit
complex rultiplication with 16-bit accumulation).

802621 The prograromable input data paths 478(3)-478(0} and/or the prograromable
mternal data paths 480(33-480{0) of the accumulator blocks 472(3)-472(0) may be
programmed according o settings provided from a vector instruction decoder in the
mstruction dispatch circutt 48 of the baschand processor 20 in Figure 2. The vector
mstruction specifies the specific type of operation to be performed by the execution unit

84. Thus, the execution unit 84 can be configured to reprogram the programamable mput

WO 2015/073915 PCT/US2014/065825
103

data paths 478(3}-478(0) and/or the progranunable internal data paths 480{3)-480{0} of
the accumulator blocks 472(3)-472(0) for each vector mstruction executed according to
decoding of the vector mstruction n an mstruction pipeline in the instruction dispatch
circuit 48. A vector instruction may execule over one or more clock cycles of the
execution unit 84, Also in this example, the exccution unit 84 can be configured to
reprogram the programmmable mput data paths 478(3)-478(()) and/or the programmable
mternal data paths 480(3}-48({0) of the accwmulator blocks 472(33-472(0} for cach
clock cycle of a vector instruction on a clock-cycle-by-clock-cycle basis. Thus, for
exarople, if a vector justruction executed by the M1 accumulation vector processing
stage 460(2) in the execution unit 84 processes the vector multiply output sample sets
468(3)-468(0) every clock eycle, as a result, the programmable input data paths 478(3)-
478((3) and/or the programmable internal data paths 480(3)-480(0) of the accumulator
blocks 472(3)-472(0} can be reconfigured cach clock cycle during exccution of the
vector instruction.

(802631 Figure 36 1s a flowchart iHlustrating exemplary vector processmg of the
multipher blocks 462(A)-462(0} and the accumulator blocks 472(A)(1)-472{0)0} in the
execution unit 84 1 Figures 2 and 35 to provide additional Hlustration of the exemplary
vector processing. The wmultiphier blocks 462(A)-462{0) and accumulator blocks
47Z{AX1}-472(0)}0) each have programmable data path configurations and are provided
in different vector processing stages in the excroplary execution unit 84 of Figures 2 and
35, For example, FFT vector operations involve multiply operations followed by
accomulale operations.

186264] In this regard, with regard to Figure 36, the vecior processing involves
recetving a plurality of multiply vector data sample sets 34(Y)-34(0) of a width of &
vector array in an mput data path among a4 plorality of mput data paths A3-C0O v an
input processing stage 460({) (block 501}, The vector processing then includes
receiving the multiply vector data sample sets 34(Y)-34(0) from the plurahity of input
data paths A3-C0 in a plurality of multiphier blocks 462{A}-462(0) (block 503}, The
vector processing then includes multiplying the multiply vector data sample sets 34{(Y)-
34(G} o provide multiply vector result output sample sets 468(A-468(0} in mukiply
output data paths 470(A)-470(0) among a plurality of multiply output data paths
470(A-470(0), based on prograromable data path configurations for the multplier

blocks 462(A462(0) according to a vecior instruction executed by the vector

WO 2015/073915 PCT/US2014/065825
104

processing stage 460(1) (block 505). The vector processing next includes receiving the
multiply vector result output sample sets 468(A-468(0) from the plurality of oudtiply
output data paths 470(A)-47(0) n a plurality of accuwmulator blocks 472(A)1)-
47HN0) (block 507). The vector processing next includes accumulating the multiply
vector result output sample seis 468(A-468(0) together o provide accumulator output
sample sets 476{AY}1}-476(0)0} based on progranunable input data paths 478(A)1)-
478{03(0), programmable nternal data paths 480{A}11-480(0)0), and programmable
culput data paths 474(AY 147400} configurations for the accumulator blocks
47HAN1-472(0K0} according to a vector mstruction exceuted by the second vector
processing stage 460(2) (block 509). The vector processing then includes providing the
accumulator output sample sets 476(AX11-476(0)() in the programmable output data
paths 474(AN1)-474(0X0) {(block 511}, The vector processing then includes receiving
the accumulator output sample sets 476{A N 1-476{(0X0) from the accumulator blocks
4T2{ A} 11-472(0}{0} 1 an culput vector processing stage 460(3) (block 513}

(802651 Now that the overview of the exemplary execution unit 84 of Figure 35 and
vector processing fo Figure 36 employing vector processing blocks having
programmable data path configurations have been described, the remainder of the
description describes more exemplary, non-limiting details of these vector processing
blocks in Figures 37-40.

(60266 in this regard, Figure 37 is a more detailed schematic diagrama of the
plurality of multipher blocks 462(3)-462(0) in the M0 multiply vector processing stage

460(1y of the execution unit 84 of Fisure 35. Fieure 38 is a schematic diagram of
S o pavd &

internal components of a multiphier block 462 in Figure 37. As illustrated 1n Figure 37,
the vector data input sample sets 466{1 13-466(0} that are received by the nultiphier

blocks 462(3)-462(0} according to the particular mput data paths A3-A0, B3-B0, C3-C0
are shown. As will be discussed in more detail below with regard to Figure 3¥, cach of
the owltiplier blocks 462(3)-462(0) in this examople include four {4) §-bit by &-bit
multiphiers. With reference back to Figure 37, each of the multiphier blocks 462(3)-
462{0y in this example are configured to multiply a multiplicand input ‘A’ by either
multiplicand mput ‘B” or multiplicand input *C.” The nwltiplicand inpuis ‘A,” and ‘B’
or *(C” that can be multiplied together in a multiphicr block 462 are controlled by which
input data paths A3-AQ, B3-B0, C3-CO are connected to the multiplier blocks 462(3}-
462((}), as shown in Figure 37. A multiplicand selector input 482(3)-482(0} is provided

WO 2015/073915 PCT/US2014/065825
105

as an input 1o cach multiplier block 462(33-462(0) to control the programmable internal
data paths 467(3)-467(0) in cach multipher block 462(3)-462(0) to select whether
multiphcand input ‘B’ or multiplicand input *C s selected to be multiphied by
multiphcand input ‘A In this mamner, the multiplier blocks 462(3)-462(0) are
provided with the capability for their programmable internal data paths 467{3}-467(0} to
be reprogrammed to provide different nuiltiply operations, as desired.

(802671 With continuing reference to Figure 37, using multipher block 462(3) as an
exarnple, input data paths A3 and A2 arc connected to inpuis AH and AL, respectively.
Input AH represents the high bits of multiplicand input A, and AL means the low bits of
nput muoltiphicand mput “A° Input data paths B3 and B2 are connected to joputs BH
and BL, respectively. Input BH represents the high bits of multiplicand input *B,” and
AL represents the low bits of input multiphicand input ‘B.” Input data paths C3 and C2
are connected o puts CI and CQ, respectively. Input Cl represents the real bits
portion of input multiphicand mput ‘C° i this example. CQ represents the imaginary
bits portion of inpot multiplicand nput *C° in this example. As will be discussed in
more detatl below with regard to Figure 38, the multiphicand selector input 482(3) also
controls whether the prograromable fnternal data path 467(3) of multiphier block 462(3)
is configured to perform &-bit multiplication on muoltiplicand mpuwt ‘A7 with
mulftiplicand input ‘B’ or multiplicand fnput ‘C,” or whether multipiier block 462(3) is
configured to perform 16-bit multiplication on multiplicand nput ‘A’ with nwidtiplicand
myput ‘B or multiphcand input *C° in this example.

(802681 With continuing reference to Figure 37, the multiplier blocks 462(3)-462((h)
are configured to each generate vector multiply output sample sets 468(3)-465(0) as
carry ‘(7 and sum ‘S’ vector output sample sets of the multiphication operation based on
the conliguration of their programmable nternal data paths 467(33-467(0). As will be
discussed in more detail below with regard to Figures 39 and 40, the carry ‘C” and sum
5" of the vector multiply output sample sets 468(3}-468(0) are fused, meaning that the
carty ‘C’ and the sum ‘S’ are provided io redundant carry-save format io the plurality of
accomulator blocks 472(3)-472(0) to provide redondant carry-save format in the
plurality of accumulator blocks 472(3)-472(0). As will be discussed in more detail
below, providing a redundant carry-save format 1o the plurality of accumulator blocks

472(3)-472(1) can eliminate a need to provide a carry propagation path and a carry

WO 2015/073915 PCT/US2014/065825
106

propagation add operation during accuraulation operations performed by the plurality of
accuntuator blocks 472(3)-472(0).

160269 Examples of the multiplier blocks 462(3}-462(0) generating the vector
multiply outpul sample scts 468(3)-468(0) as carry ‘C° and sum ‘S’ vector output
sampie sets of the muliiphication operation based on the configuration of their
programmable intemnal data paths 467(3)-467(() are shown in Figure 37. For example,
muliiplier block 462(3) is configured to generate carry COU and som SO0 as 32-bit
vahies for 8-bit multiplications and carry C01 and sum S01 as 64-bit values for 16-bit
multiphcations. The other multiphier blocks 462(23-462(0) have the same capability in
this example. In this regard, multipher block 462(2) 18 configured to generate carry C10
and sum S10 as 32-bit values for 8-bit multiphications and carry C11 and sum S as
64-bit values for 16-bit multiphcations. Multiplier block 462(1) is configured fo
generate carry C20 and sum 520 as 32-bit values for 8-bit multiplications and carry
21, and sum 521 as 64-bit values for 16-bit multiphications. Multiphier block 462(0) 1s
configured to generate carry €30 and sum S30 as 32-bit values for 8-bit multiphcations
and carry C31 and sum 831 as 64-bit values for 16-bit nuldtiplications.

1602708} To explain more exemplary detail of programmable data path configurations
provided in a multiphier block 462 i Figure 37, Figure 38 is provided. Figure 38 is a
schematic diagram of internal components of a multiplier block 462 in Figure 37 having
programynable data path configurations capable of multiplyving 8-bit by §-bit vector data
myput sample set 466, and 16-bit by 16-bit vector data mput sample set 466, In this
regard, the multiplier block 462 includes four &x8-bit multipliers 484(33-484(0} in this
example. Any desired number of multipliers 484 could be provided. A first multiplier
484(3) is configured to receive 8-bit vector data input sarople set 466 A[H] {which 15 the
high bits of nput multiplicand mput ‘A’ and multiply the vector data fnput sample set
466ATH] with cither 8-bit vector data input sample set 466B[H] (which is the high bits
of input multiphicand input ‘B") or §-bit vector data input saraple set 466C[1} (which is
the high bits of input nuiltiphcand input “C”). A multiplexor 486(3) 1s provided that is
configured to select either 8-bit vecior data input sample set 466B{H] or 8-bit vector
data input sample set 466C[H] being providing as a multiplicand to the multiphier 484(3).
The multiplexor 486(3) is controlled by multiplicand sclector input 482{3], which is the
high bit mn the roaltiplicand selector input 482 in this embodiment. In this manner, the

mulftiplexor 486(3) and the multipficand selector input 4823} provide a programmabic

WO 2015/073915 PCT/US2014/065825
107

internal data path 467[0] configuration for the multiplier 484(3) to control whether 8-bit
vector data jnput sample set 466B{H] or 8-bit vector data input sample set 466C[1] 18
multiphed with received vector data input sample set 466AH].

(60271} With continuing reference to Figure 38, the other multiphiers 484(2})-484(0)
also include similar programmable internal data paths 467[21-467[0] as provided for the
first multipher 484(3). Multipher 484(2) includes the programmable internal data path
467[27 having a programmable configuration to provide either 8-bit vector data input
sarapic set 466B[H] or 8-bit vector data input sample set 466C{] in the programumable
internal data path 46711} fo be multipbied with 8-bit vector data input sample set
466A1L], which is the low bits of multiplicand imput *A.” The selection is controlled by
multiplexor 486(2) according to the muitiplicand selector input 482{2} i the
mulftiplicand selector input 482 in this cmbodiment. Multiplier 484(1) includes
programmable internal data path 467{1] prograromabie to provide either 8-bit vector
data input sample set 466B[L], which 1s the low bits of multiphicand input ‘B, or 8-bit
vector data tnput sample set 466C[Q], which is the low bits of multiphcand nput *C’ in
the programmable nternal data path 467[1] to be multiphed with 8-bit vector data mput
sarople set 460A[H]. The selection s controlled by multiplexor 486(1) according to the
multiphicand selector inpot 482[1] i the multiphicand selector input 482 in this
embodiment. Further, roultiphier 484(0) mcludes programomable internal data path
467107 programmable to provide either 8-bit vector data input sample set 466B[1L] or §-
bit vector data input sample set 466C[(Q1 in the programmable internal data path 467[0],
te be multiplied with 8-bit vector data input sample set 466A[L]. The selection is
controlled by nwltiplexor 486(0) according to the multiplicand selector bit input 482[]
in the nmuttiplicand selector input 482 1o this embodiment.

160272} With continuing reference to Figure 38, as discussed above, the multipliers
484(3)-484(03 can be configured to perform different bit length nwitiplication
operations. In this regard, cach multiphier 484(3}-484(0) includes bit length multiply
mode inputs 488(3)-488(0), respectively. In this example, cach multipher 484(3)-484((h)
can be programmed in 8-bit by 8-bit mode according o the inputs that control the
configuration of programunable data paths 490(33-490(0), 491, and 492{33-492(0},
respectively. Each multiplicr 484(33-484(0) can also be progranumed to provide part of
a larger bit multiplication operation, including 16-bit by 16-bit mode and 24-bit by 8-bit

maode, according to the inputs that conirol the configuration of programunable data paths

WO 2015/073915 PCT/US2014/065825
108

490(31-490(0}, 491, and 492(3)-492(0}, respectively. For example, if each mwultiplier
484(31-484(() 15 configured in 8-bit by R-bit multiply mode according to the
configuration of the programmable data paths 490(3)-490(0)), the plurality of multiphers
484(3)-484(1)) as a unit can be configured to comprise two {2) individual 8-bit by 8-bit
mulftiplicrs as part of the multiplier block 462, If cach multiplier 484(3)-484(0) is
configured in 16-bit by [6-bit multiply mode according to configuration of the
programmable data path 491, the plorality of multipliers 484(3)-484(0) as a unit can be
configured to comprise a single 16-bit by 16-bit multiplier as part of the multiplicr block
462, i the moultiphers 484(3)-484(0) are configured in 24-bit by 8-bit multiply mode
according to configuration of the programmable data paths 492(3)-492((), the plurality
of multipliers 484(33-484(0} as a unit can be configured to comprise one (1) 16-bit by
24-bit by 8-bit multiplier as part of the multiphier block 462.

(602731 With continuing reference to Figure 38, the nultiplicrs 484(33-484(0) 1o this
example are shown as bemg configured m 16-bit by 16-bit nmltiply mode. Sixteen
{16)-bit mput sums 494(3), 494(2) and input camies 496(3), 496(2) are generated by
cach multipher 484(3), 484(2), respectively. Sixteen {16)-bit nput suros 494(1}, 494(0)
and mput carries 496(1), 496(0) are generated by cach multiphier 484(1), 484(0),
respectively. The 16-bit input sums 494(3}, 494(2) and input carries 4963}, 496(2) are
also provided to a 24-bit 4:2 compressor 515 along with 16-bit sums input 494(1),
494(0)y and 1oput carries 496(1), 496(0) to add the input sums 494(3)-494(0) and nput
carries 496(3)-496(0) together. The added mput sums 494(3)-494(0) and input carries
496{33-496(0} provide a single sum 498 and single carry 500 in 16-bit by 16-bit
muliiply mode when the programmable data path 491 is active and gated with the nput
sums 494(3)-494(0) and jopwt carries 496(3-496{0). The progranumnable data path 491
is gated by a fivat AND-based gate 502(3) with combined input sams 494(3}, 494(2)as a
16-bit word, and by a sccond AND-based gate 502(2) with combined input carries
496(3), 496(2) as a 16-bit word to be provided to the 24-bit 4:2 compressor 515, The
programmable data path 491 15 also gated by a third AND-based gate 302(1) with
combined input sums 494¢1}, 494(1) as a 16-bit word, and by a fourth AND-based gale
502(0} with combined input carries 496(1}, 496(0) as a 16-bit word to be provided fo the
24-bit 4:2 compressor 515, The progranimable oufput data path 47010} is provided with

the vector multiply output sample set 468{0] as a compressed 32-bit sum S0 and 32-but

WO 2015/073915 PCT/US2014/065825
109

carry CU partial product if the muoltiplier biock 462 is configured in a 16-bit by 16-bit or
24-bit by 8-bit multiply mode.

186274} The programmable output data path 470[1] configuration is provided as the
16-bit input surms 494(33-494(0} and corresponding 16-bit input carries 496{3)-496{0) as
partial products without compression, if the multiphiers 484(3}-484(0) in the multiplier
block 462 are configured in 8-bit by 8-bit multiply mode. The programmable output
data path 470[1] is provided as the 16-bit mput sams 494(33-494(0) and corresponding
16-bit input carries 496(33-496(0) as the vector multiply ouiput sample sets 468[1]
without conpression if the multipliers 484(33-484(0} in the multiplier block 462 are
configured in 8-bit by 8-bit multiply mode. The vector multiply output sample sets
468[01], 468[1], depending on a multiplication mode of the multiplier block 462, are
provided to the accumuiator blocks 472(3)-472(0) for accumulation of sum and carry
products according to the vector mstruction being executed.

{60275 Now that the multiplier blocks 462(3)-462(0) in Figures 37 and 38 having
programmable data path configurations have been described, features of the multiplier

23"

blocks 462(33-462(0) in the execution unit 84 fo be fused with the accumulator blocks
472(3y-472{01) configured 1 redundant carry-save format will now described in general
with regard to Figure 39.

[60276] in this regard, Figure 39 is a generalized schematic diagram of a multiplier
block and accumulator block in the execution units 84(0)-84(X} described above,
wherein the accumulator block employs a carry-save accumulator structure employing
redundant carry-save {ormat to reduce carry propagation. As previously discussed and
illustrated i Figure 38, the multiplier blocks 462 are configured to mubiiply
multiphcand inputs 466[H] and 466{L} and provide at least one mput sum 494 and at
least one input carry 496 as a vector multiply output sample sets 468 in the
programunable output data path 470 To chiminate the need to provide a carry
propagation path and a carry propagation adder in the accunwlator block 472 for each
accumulation step, the at least one put sum 494 and the at least one foput carry 496 in
the vector multiply output sample sets 468 o the programmable oulput data path 470
are fused in redundant carry-save format to at least one accumulator block 472, In other
words, the carry 496 in the vector multiply output sample sets 468 is provided as vector
input carry 496 in carry-save formoat to the accumulator block 472, In this manner, the

input sum 494 and the input carry 496 in the vector multiply output sample sets 468 can

WO 2015/073915 PCT/US2014/065825
110

be provided fo a compressor 308 of the accumulator block 472, which in this
embodiment i1s a complex gate 4:2 compressor. The compressor 308 is configured to
accumulate the input sum 494 and the input carry 496 together with a previous
accumulated vector output sum 512 and a previcus shifted accumulated vector output
carry 517, respectively. The previous shifted accumulated vector output carry 517 is in
essence the saved carry accumulation during the accumulation operation.

(862771 In this manner, only a single, final carry propagate adder is required to be
provided in the accumulator block 472 to propagate the received input carry 496 to the
input sum 494 as part of the accumulation generated by the accumulator block 472,
Power consumption associated with perfornming a carry propagation add operation
during each step of accumulation i the accamulator block 472 is reduced in this
embodiment. Also, gate delay associated with performing a carry propagation add
operation during ecach step of accumulation in the accumulator block 472 18 also
ehmunated in this embodiment.

(802781 With contimung reference to Figure 39, the compressor 50§ is configared to
accuntdate the imput sum 494 and the input carry 496 in a redundant form with the
previous accunudated vector output sum 512 and previous shifted accomulated vector
output carry 517, respectively. The shifled accumulated vector output carry 517 is
generated by an accuraulated vector output carry 514 generated by the compressor 508
by shifting the accumulated vector output carry 514 before the next accumulation of the
next received mput sum 494 and input carry 496 18 perforred by the compressor 508.

~
i
i

The final shifted accomulated vector output carry 517 is added to the {inal accomulated
vector output swm 512 by a single, final carry propagate adder 519 provided in the
accuntdator block 472 to propagate the carry accurulation in the final shiffed
accumulated vector oulput carry 517 to convert the final accunuilated vector cutput sum
512 to the final accomulator cutput sample set 476 27s complement notation. The final
accurnulated vector output suro 312 1s provided as accuroulator cutput sample set 476 in
the prograromable output data path 474 {see Figure 35).

(802781 Now that Figure 39 illustrating the fusing of a multiplier blocks 462 with an
accuntulator block 472 configured in redundant carry-save format has been described,
more exemplary detail regarding the accunudator blocks 472(3)-472(0) are now
described in general with regard to Figure 40. Figure 40 is a detailed schematic diagram

of cxemplary iniernal componenis of an accumulator block 472 provided in the

WO 2015/073915 PCT/US2014/065825
111

gxecution unit 84 of Figure 35, As previously discussed and discussed in more detail
below, the accumulator block 472 1s configured with programmable joput data paths
478(3)-478(1}) and/or the programmable internal data paths 480(33-480(0), so that the
accumulator block 472 can be programmed to act as dedicated circuitry designed o
perform specific, different types of vector accumulation operations. For example, the
accumulator block 472 can be programmed to provide a number of different
accomulations and additions, including signed and wnsigned accumulate operations.
Specific examples of the programmable input data paths 478(3)-478(0) and/or
prograromable fotemal data paths 480(3)-480(0} in the accumulator block 472 being
configured to provide different types of accumulation operations are disclosed. Also,
the accumulator block 472 is configured to include carry-save accumulators 472{0],
472[1] to provide redundant carry arithmetic fo avoid or reduce carry propagation {o
provide high speed accumulation operations with reduced combinational logic.

(602801 Exemplary internal components of the accunuilator block 472 are shown in
Figure 40, As illustrated therein, the accumulator block 472 in this embodiment is
configured to receive a first input sum 494[0] and first input carry 496[0], and a second
nput sum 494[1] and second mput carry 496{1] from a multipher block 462 to be
accumulated together. With regard to Figure 40, the input sums 494{0], 494[1] and
input carries 496[0], 496[1] will be referred to as vector nput sums 494{0}, 494{1] and
vector foput carries 496[01, 496{11. As previously described and illustrated in Figure
39, the vector input sums 494[0], 494{1] and vector tnput carrics 496[0], 496{1] in thas

embodiment are cach 16-bits in length. The accumulator block 472 in this example is
provided as two 24-bit carry-save acoumulator blocks 472{0}, 472[1], ¢ach containing
similar components with convnon element nwmbers with *{0} being designated for
carry-save accumulator block 472{0], and with {1} being designated for carry-save
accumulator block 472{1]. The carry-save acconmlator blocks 472[(], 472{1] can be
configured to perform vector accumulation operations concurrently.

(602811 With reference to carrv-save accumuldator block 472[0] 1o Figure 40, the
vector nput sum 494[0] and vector input carry 496[07 are input in a multiplexor 504(()
provided as part of the programnmable intermnal data path 440[{0]. A negation circuit
506(0), which may be comprised of exclusive OR-based gates, is also provided that
generates a negative vector nput sum 494{07 and negative vector input carry 496[07

according to an input 521{0}, as inputs inic the multiplexor 504{0} for accumulation

WO 2015/073915 PCT/US2014/065825
112

operations requiring a negative vector imput sum 494{0} and negative vector input carry
496107 . The multiplexor 504(9) s configured to select cither vector input sum 494[0]
and vector input carry 496{0] or the negative vector mput sum 494[0] and the negative
vector input carry 496[071 to be provided to a compressor 508(0) according to a selector
imnput S10(0) generated as a result of the vector instruction decoding, In this regard, the
selector input 510(0) allows the programmable mput data path 478[0] of carry-save
accamulator block 472{0} to be programmable to provide either the vector input sam
494101 and vector input carry 496[0, or the negative vector input sum 494{0} and the
negafive vector ioput carry 496[0), to the compressor 308(0) according t© the
accumulation operation configured to be performed by the accumulator block 472.
(60282} With continuing reference to Figure 40, the compressor S08(0) of the carry-
save accumulator block 472{0} in this embediment is a complex gate 4:2 compressor.
o this regard, the compressor S08(0) is configured to accwmulate sums and carries in
edundant carry-save operations. The compressor 503(1) is configured to accumulate a
current vector input sum 494[0] and vector input carry 496[0], or a current negative
vector foput sum 49401 and negative vector input carry 496[01, together with previous
accumulated vector input sum 494{0] and vector mput carry 496{0], or accumulated
negative vecior input sum 494{0} and negative vecior input carry 496[{1]°, as the four
{4} inputs to the compressor 508(0). The compressor 508(0) provides an accumulated
vector output sum 512(0) and accumulated vector output carry 514(0) as the
accumulator output sample set 476{0] m the programmable output data path 474[0] (see
Figure 35} to provide accumulator ocutput sample sets 476(33-476(0}. The accumulated
vector output carry 514(0} is shifted by a bit shifter 516(0) during accomulation
operations to provide a shifted accurulated vector output carry 517(0) to control bit
width growth during cach accumulation step. For exarople, the bit shafter $16(0} in this
embodiment is a barrel-shifier that is fused to the compressor 508(0) in redundant carry-
save format. o this manoer, the shifled accumulated vector output carry 517(0) 15 in
essence saved without having to be propagated to the accomulated vector output sum
S$12(0} during the accumulation operation performed by the accumulator block 47201
In this manner, power consumption and gate delay associated with performing a carry
propagation add operation during each step of accumulation in the accumulator block

472{07 is eliminated n this embodiment.

WO 2015/073915 PCT/US2014/065825
113

180283} Additional follow-on vector input sums 494{0} and vector inpwt carries
49601, or negative vector input sums 494[0] and negative vector input carries 496{01,
can be accumulated with the current accumutdated vector output sum 512(0} and current
accumulated vector output carry 517(0). The vector input sums 434{0] and vector input
carries 4960}, or negative vector input sums 494{0] and negative vector input carries
496[07, are sclected by a multiplexor 518(1) as part of the programmable internal data
path 480[0] according to 8 sum-carry selector S20((}) generated as a resolt of the vector
instruction decoding. The current accunwlated vector output sum 512(0) and current
shified accunmudated vector output carry 517(0) can be provided as inpuis to the
compressor 308(0) for carry-save accumulator block 472[0] to provide an updated
accumulated vector output sum 512{(0) and accamulated vector output carry 514(8). In
this regard, the sum-carry selector 52(K0) allows the programamable internal data path
480[0] of accumulator block 472{0] to be programmable to provide the vector input sum
49407 and vector input camry 496[0] fo the compressor 508(0) according to the
accamulation Operation configured to be performed by the accumulator block 472
Held gates 522(0}, 524(0) are also provided 1o this embodiment to cause the multiplexor
518(0) to hold the current state of the accumulated vector ouiput sum 512(0} and shifted
accumulated vector output carry S17(0) according to a hold state mput 526(0) to control
operational timing of the accumulation in the carry-save accuraulator block 472{0].
[80284] With continuing reference to Figure 40, the accumulated vector oulput sum
512(0) and shifted accumulated vector output carry 517(0) of carry-save accumulator
block 472{0], and the accumulated vector output sum 512(1) and shifled accumulated
vector output carry 517(1) of carry-save accumulator block 472[1], are gated by control
ates 534(0), 536(0) and 534(1), 536(1), respectively. The control gates 534(0), 536(0)
and 534(1), 536(1) control the accumulated vector ouiput sum 512(0) and shifted
accumulated vector output carry 517(0), and the accumulated vector output sum 5i2(1)
and shifted accumulated vector output carry 517(1), respectively, being returned fo the
compressors S08(0), SO8(1}.
(8028581 In summary, with the programmable input data paths 478[0], 478{1] and
programmable internal data paths 480[C], 480[1] of the accumulstor blocks 472{6],
472[17 of the accumulator block 472 in Figure 40, the accumaulator block 472 can be

configured in different modes. The accumulator block 472 can be configured to provide

WO 2015/073915 PCT/US2014/065825
114

different accumulation operations according o a specific vector processing instruction
with common accumulator circuttry 1llustrated in Figure 40,

163286] The VPEs according to concepts and embodiments discussed herein, may be
provided in or integrated inio any processor-based device. Examples, without
hmitation, include a set top box, an entertainment unit, a2 navigation device, a
communications device, a fixed location data unit, 2 mobile location data unit, 8 mobile
phone, a cellular phone, a computer, a portable computer, a deskiop compuler, a
personal digital assistant {(PDA), a monitor, a computer monitor, a television, a tuner, a
radio, a satellite radio, a music player, a digital music player, a portable music player, a
digital video player, a video player, a digital video disc (DVD) player, and a portable
digital video player.

(60287} in this regard, Figure 41 illustrates an example of a processor-based sysiem
550, In this example, the processor-based system 550 mcludes one or more processing
umits (PUs) 552, cach including one or more processors or cores 5534, The PU(s) 552
may be the baseband processor 20 in Figure 2 as a non-himiting example. The
processor 554 may be a vector processor like the baschand processor 20 provided in
Figure 2 as a non-bimiting example. In this regard, the processor 554 may also include a
VPE 556, inchiding but not himited to the execution unit 84 in Figure 2. The PU(s) 552
may have cache memory 53¢ coupled to the processor{s) 554 for rapid access to
temporarily stored data. The PU(s) 552 is coupled to a systers bus 560 and can
mitercouple master and slave devices meladed in the processor-based system 550, As s
well known, the PU{s) 552 commumnicates with these other devices by exchanging
address, controd, and data information over the system bus 560. For example, the PU(s)
552 can communicate bus transaction requests to a memory condroller 562 as an
example of a slave device. Although not illustrated in Figure 41, multiple system buses
560 could be provided, wherein cach system bus 560 constituies a different fabric.
[80288] Other master and slave devices can be connected to the system bus 560. As
tlustrated in Figure 41, these devices can include a memory system 564, one or more
mput devices 566, one or more oulput devices 568, one or more network mterface
devices 570, and onc or more display controilers 572, as examples. The memory
system 564 can inchude memory 565 accessible by the memory controller 562. The
nput device(s) 566 can nclude any type of input device, including but not hnuted to

imput keys, switches, voice processors, eic. The output device(s) 568 can include any

WO 2015/073915 PCT/US2014/065825
115

type of output device, including but not limited to audin, video, other visual indicators,
cte. The vetwork interface device(s) 570 can be any devices configured to allow
exchange of data to and {rom a network 574. The network 574 can be any tvpe of
network, including but not himited to a wired or wireless network, a private or pubhic
network, a local area network (LAN), a wide local arca network (WLAN), and the
Internet. The network interface device(s) 570 can be configured to support any type of
communication protocol desired.

180289 The PUs 552 may also be configured to access the display controller(s} 572
over the system bus 560 to control information sent to one or more displays 378, The
display controller(s) 572 sends information to the display(s} 578 to be displayed via one
or more video processors 580, which process the information to be displayed inic a
format suitable for the display(sy 578. The display{s) 578 can include any type of
display, including but not mited to a cathode ray tube (CRT), a lquid crystal display
(LCD), a plasma display, etc.

(802901 Those of skill in the art will further appreciate that the various illustrative
logical blocks, modules, circuits, and algorithms described in comnection with the
embodiments of dual voltage domain memory buffers disclosed herem may be
implemented as electromic hardware, instructions stored in memory or in another
computer-readable medium and executed by a processor or other processing device, or
combinations of both. The arbiters, master devices, and slave devices described herein
may be employed m any circuit, hardware component, integrated cireuit (JC), or IC
chip, as examples. Memory disclosed herein may be any type and size of memory and
may be configured to store any type of information desired. To clearly iHustrate this
interchangeability, various illustrative coroponents, blocks, modules, circuits, and steps
have been described above generally in terms of their functionality. How such
functionality is iroplemented depends upon the particular application, design choices,
and/or design constraints imposed on the overall system. Skilled artisans wmay
mplement the described functionality in varving ways for each particular apphication,
but such implementation decisions should not be interpreted as causing a departure from
the scope of the present disclosure.

160291] The various illustrative logical blocks, modules, and circuits described in
comnection with the embodiments disclosed herein may be implemented or performed

with a processor, a DSP, an Application Specific Integrated Circuit {ASIC), an FPGA or

WO 2015/073915 PCT/US2014/065825
116

other programimable logic device, discrete gate or transistor logic, discrete hardware
componenis, or any combination thercof designed to perform the functions described
herein. A processor may be a mucroprocessor, but in the alternative, the processor may
be any conventional processor, controller, microcountroller, or state machine. A
processor may alse be implemented as a combination of computing devices, ¢.g., a
combination of a DSP and a microprocessor, a phlurality of microprocessors, one or
MOoTe MICroprocessors in conjunction with a D8P core, or any other such configuration.
186292 The embodiments disclosed herein may be embodied in hardware and in
instructions that are stored i hardware, and roay reside, for example, in Random Access
Memory (RAM), flash memory, Read Only Memory (ROM), Electrically
Programmable ROM (EPROM), Electrically FErasable Programmable ROM
{(EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of
computer readable mediuro known in the art. An exeraplary storage mediur is coupled
to the processor such that the processor can read information from, and wriie
miormation to, the storage mediom. In the alternative, the storage medium may be
integral 1o the processor. The processor and the storage moedinm may reside in an ASIC,
The ASIC may reside in a remote station. In the alternative, the processor and the
storage medium may reside as discrete components in a remote station, base station, or
Server.
(602931 it is also noted that the operational steps described in any of the exemplary
embodiments herein are described to provide exarmples and discussion. The operations
described may be performed in nomerous different sequences other than the Hustrated
sequences. Furthermore, operations described in a single operational step may actually
be performed in a number of different steps. Additionally, one or more operational
steps discussed in the exeroplary embodiments moay be combined. It is to be understood
that the operational steps illustrated in the flow chart diagrams may be subject to
numercus different modifications as will be readily apparcot to one of skill in the art.
Those of skill in the art will also understand that mformation and signals may be
represented using any of a variety of different technologies and techmiques. For
example, data, instructions, commands, information, signals, bits, symbeols, and chips
that moay be referenced throughout the above description may be vepresenied by
voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or

L

particles, or any combination thercof.

WO 2015/073915 PCT/US2014/065825
117

1862984] The provious description of the disclosure is provided to enable any person
skilled 1o the art to make or use the disclosure. Vartous modifications to the disclosure
will be readily apparent to those skilled in the art, and the generic principles defined
herein may be applied to other variations without departing from the spinit or scope of
the disclosure. Thus, the disclosure ig not intended to be limited to the examples and
designs described herein, but is to be accorded the widest scope consistent with the

principles and novel features disclosed herein.

WO 2015/073915 PCT/US2014/065825
118

What is claimed is:
A vector processing engine (VPE) configured to in-tlight merge a resultant
cutput vector data sample sel generated by at least one execution unit executing a vector
Processing operation, comprising:
at least one vector data file configured to:
provide a fetched input vector data sample set in at least one imput data
flow path for a vector processing operation; and
receive at least one merged resultant output vector data sample set from
at least one output data flow path to be stored;
at least one execution anit provided in the at least one nput data fow path, the at
least one execution unit configured to:
receive the input vector data sample set on the at least one foput data
flow path; and
execute the vector processing operalion on the input vector data sample
set to provide a resultant output vector data sample set on the at
least one output data {low path; and
at least one merging circuitry configured to:
receive the resultant output vector data sample set;
merge the resultant cutput vector data saraple set to provide at least one
merged resultant output vector data sample set without the
resultant output vector data sample sel being stored in the at least
one vector data file; and
provide the at least one merged resuitant output vector data sample set on

the at least one output data flow path.

2. The VPE of claim 1, wherein the at least one vector data file is configured 1o
provide the input vector data sample set of a width of the at least one vector data

file in the at least one input data {low path for the vector processing
operation; and

receive the at least one merged resultant output vector data sanple sct of the
width of the at least one vector data file from the at least one output data

flow path to be stored.

WO 2015/073915 PCT/US2014/065825
119

3. The VPE of claim 1, wherein:
the at least one vector data file 1s further configured to:
provide the input vector data sample set on at least one vector data file
cuiput i the at least one input data flow path; and
receive the at least one roerged resultant output vector data sample set on
at least one vector data file nput in the at least one output data
flow path;
the at ieast one execution unit configured to:
receive the input vector data sample set on al least one execution unit
mput in the at least one input data flow path; and
muitiply the tnput vector data sample set with the code sequence vector
data sample set fo provide the resultant output vector data saraple
set on at least one execution unit output in the at least one mput
data {flow path; and
the at ieast one merging circuitry is further configured to:
receive the resuliant oulput vector data sample set on at least one
merging cireudtry nput in the at least one put data flow path
from the at least ong exccution unit; and
provide the merged resultant output vector data sample set on af least one

merging circuitry output in the at least one output data flow path.

4. The VPE of claim 1, wherein the merging circuitry is comprised of at least one
adder configured o merge at least two resultant output vector data samples in the
resultant output vector data sample set to provide the at least one merged resultant

output vector data sample set.

5. The VPE of claim 4, wherein the at least one adder 1s comprised of a plurality of
adders provided in an adder tree, each of the phwrahity of adders configured to provide a

plurality of add merged resultant output vector data sample sets each having a different

bit width.

WO 2015/073915 PCT/US2014/065825
120

fr. The VPE of claim 1, wherein the merging circuitry is comprised of at least one
maxinum vector data sampie selector configured o maximum merge a resultant oufput
vector data sample between two resultant output vector data samiples in the resuliant
cutput vector data sample set having the larger vector data valoe to provide the at Jeast

one merged resultant output vector data sample set

7. The VPE of clatm 6, wherein the at least one maximum veclor data sample
selector is comprised of a plorality of maximum value data sample selectors cach
configured to provide a phwality of maximum merged resultant output vector data

saropie sets each baving a different bit width.

8. The VPE of claim 1, wherein the merging circuitry is comprised of at least one
nunimum vector data sample selector configured to minimum merge a resultant output
vector data sample between two resultant output vector data samples in the resultant
culput vector data sample set having the lesser vector data value to provide the at least

one merged resultant output vector data saraple set.

9. The VPE of claim 3, wherein the at least one minimum vector data sample
sclector is comprised of a pluarality of minimum value data sample selectors cach
configured to provide a phuality of wunimum merged resuftant output vector data

sample sets each having a different bit widih.
=

1. The VPE of claim 4, wherein the merging circuitry further comprises a merge
selector configured to select one of the at least ove of merged resultant output vector

data sample sets.

1. The VPE of claimm 1, wherein the code sequence vector data sample set is

comprised of at least one CBMA chip code sequence.

12, The VPE of ¢laim 1, wherein the at least one merging circuitry is contigurable to
be reconfigured based on a prograromable merge data path configuration input to

selectively merge the resultant output vector data sample set.

WO 2015/073915 PCT/US2014/065825
121

13. The VPE of claim 12, wherein the at least one merging circuitry is further
configured to be reconfigured based on the programmable merge data path
configuration input to selectively merge the resaltant outpui vector data sample set on
each clock cycle of the VPE to be exccuted by the at least one execution unit.

14, The VPE of claim 12, wherein the at least one merging circuitry is further
configured to be rveconfigured based on the programmuable merge data path
configuration input to selectively merge the resultant output vector data sample set on a

next vector insiruction to be executed by the at least one exccution unit.

15. The VPE of claim 1, wherein the at least one merging circuitty further comprises
a phirality of latches, wherein the at least one merging cirauitry is further configured to
store the at least one merged resultant output vector data sample set in the phurality of

fatches.

i6. The VPE of claim 15, wherem the at least one merging circuitry s further
configured to store the at least one merged resultant output vector data sample set jn a
selected latch among the plurality of latches.

17 The VPE of claim 16, wherein the at least one merging circuitry further
corprises a plurality of selectors corresponding to the plurality of latches, wherein the
at least one merging civcuitry is configured to control a sclector among the phurality of
selectors to store the at least one merged resultant oulput vector data saraple set in the

selected latch among the plurality of latches.

18. The VPE of claim 17, wherein the at least one merging circuitry is further
configured to store the at least one merged resultant output vector data sample set in the
plurality of latches before providing the at least one merged resultant output vector data
sample set in the at least one output data How path to be stored in the at least one vector

data file.

19, The VPE of claim 1, whercin the at least one execution unit is configurable to

process different bit widths of mmput vector data samples from the input vector data

WO 2015/073915 PCT/US2014/065825
122

sarapic set based on a programmable input data flow path configuration for the at least
one execution unit,

ge a resultant

20, A vector processing engine (VPE) configured to in-flight merg
output vector data sample set generated by at least one execution unit executing a vector
processing operation, comprising:

at least one vector data file means, comprising:

a means for providing a fetched mput vector data sample set in at least
one input data flow path means for a vector processing operation;
and

a means for receiving at least one merged resultant output vector data
sarapic set from at least onc output data flow path means to be
stored;

at least one execution unit means provided o the at least one input data flow
path means, comprising:

a means for recetving the mput vector data sample set on the at least one
mypnit data flow path means; and

an execution means for executing the vector processing operation on the input
vector data sample set to provide a resuliant output vector data sample set on the at
least one nput data flow path means; and at least one merging cireuifty means,
comprising:

a means for receiving the resultant output vector data sample set ;

a merging means for merging the resultant output vector data sample set
with the code sequence vector data sample set fo provide at least
one merged resultant oulput vector data sample set without the
resultant output vector data sample set being stored in the at least
one veotor data file means; and

a means for providing the at least one merged resultant output vector data

sample set on the at least one output data fow path means.

1. A method of n-fhight merging of a resultant output vector data sample set

N2

generated by at least one exccution unit executing a vector processing operation,

comprising:

WO 2015/073915 PCT/US2014/065825
123

providing a fetched input vecior data sample set in at least one input data flow
path for a vector processing operation from at least ong vector data file;
receiving the input vector data sample set on the at least one input data {low path
i at least one execution unit provided in the at least one input data flow
path;
executing the vector processing operation on the input vector data sample set to
provide a resubtant cotput vector data sample set on the at least one put
data tfiow path;
merging the resubtant output vector data sample set to provide at least one
merged resultant output vector data sample set without the resultant
oulput vector data sample set being stored in the at least one vecior data
file; and
storing the at lcast one merged resultant oufput vector data sample set from the
at least one output data flow path in the at least one vector data file.
22 The methed of claim 21, wherein the merging the resultant output vector data
sarople set 18 further comprised of adding merge samples in the resultant output vector
data sample set in at least one adder to provide the at least one merged resultant output

vector data sample set.

23. The method of claim 22, wherein the at least one adder is comprised of a
plurality of adders provided in an adder tree, each of the phurality of adders configured
to provide a plurality of merged resuliant output vector data sample seis each having a
different bit width.

24. The method of claim 23, further comprising selecting one of the plurality of
resultant output vector data sample sets fo provide as the at least one resulfant output

vector data sample set m the at least one output data flow path.

25. The method of claim 21, further comprising:
receiving a prograramable merge data path configuration fnput; and
selectively merging the resultant output vector data samople set based on the

programinable merge data path configuration input.

WO 2015/073915 PCT/US2014/065825
124

26. The method of claim 25, further comprising selectively merging of the resultant

output vector data sample set on each clock cycle of 2 VPE 1o be executed by the at
least one execution unit.

~§ 1

7. The method of claimn 25, further comprising selectively mergmg the resultant

culput vector data sample set for a next vector instruction to be execuied by the at least

one execution unit,

WO 2015/073915
1/44

PCT/US2014/065825

o
o
\ -
- crnenenocoiie
}.
;.g T
q g
\ e~ 5y
. e
‘ . et
“
&
7
e
i
&= o
2 &
>y
R
‘E:F w—
=3 %/
Ji
/
~ :]
5 | /
oo~
o . S
= =)
& o
S
e m—
e

FiG. 1

PCT/US2014/065825

WO 2015/073915

2/44

¢ 'Old

AHOWIN NYED0Hd
05 ~
Y
74 LINOHID
HOLYdSId NOILONYLSNI
gy
8 ¥ 68
MITIONINGD | o « « _
AHOWIN 2 i
{29} SH1vd v1vd {9p) N1 nov 7))
F A, ﬁ A A A A A J
: e YY Yy Y Yy [-%
09) #5 {ov) (95) (9)
SuALSIOR | L1 Isuaision € (A7 e B (29 8 %
” - SH3LSIHTY SHIISIDTY | | SYILSIHTY
HITIOHINGD 350dHNd | HIISIO3Y | | ST VIVA HOLDAA
HOWEA TAINIS €T sS3uady 01D ILANANGDYE | NOILIGNDD
A A A
EMEQ (Ope-(A —> m<m ¥ S
&mmﬁmzﬁ oo —7> (naw)
SIS LN AHOWIW YLY(
g —1 se . LINNHOLO3A

om.\\

PCT/US2014/065825

WO 2015/073915

3/44

Ul

£ Old

0=l

-wx«()y K =[ulh
[-A=1

PCT/US2014/065825

WO 2015/073915

4/44

¥ Old

0=1
(NOILYH3dO ¥3L7H i 31390810) (7-w)x = (Dy = [u]4
I-X=1 .
(sog 0%
4
(X)96 (v | X106 (L)va (0)v8 (0)06
Y {(x)n3 {106 — e on3 ‘g
— (1196 ~=p > — : {0)e6
—] - (X508 X IR
()86 D - \S (1)v6 /@wm};muu % V4 Dt (01308
§98 1ty s N é ¢ . -
006~y o > - (0}t
. / (0}82 3NN AY130-03ddVYL -~y
o AWM . o
i i . (o) (1-AJze-{0)z6
i | {1)8Z NI AYTIQ-Q3ddYL n B3 el
Axam;\h,,,flﬁ Fu/ / MOQVHS \NM :\C \ nA DL (0100
RSN AL ==l 0
@@ 7 ve e i ~ =
,fl;V. ()08 mﬁmm e AA;I},/ ov\\
// (1}08 = (1198 , ()98
{x)z8 3714 {L)zg 314 (0ize 34 ‘
Yiva H0LD3A YLYO HOLOIA Y1YG HOLD3A
(0001 YANYIA {LJ001 LaNYIA (0}ooL 03NV IA

WO 2015/073915

5/44

102
yal

PCT/US2014/065825

FETCHING AN INPUT VECTOR DATA SAMPLE SET 5 V\;@ %%(8 FROM
VECTOR DATA FILES ':(82 DESZ&%INTO INPUT DATA FLOW PAT
FOR A FILTER VECTOR PROCESSING OPERATION

Y

RECEIVING THE FETCHED INPUT VECTOR DATA SAMPLE SET (86(0)-86 X))
IN THE INPUT DATA FLOW PATHS (80(T) H}) FROM THE VECTOR DATA
FILES (82(0)-82(X)) INTG THE TAPP gS)r
PROVIDED IN THE INPUT DA A FE.OW PATHS (80{0)- 8%)8 } BETWEEN THE VECTOR
DATAFILES 55824_0? 'I) AND THE EX CU ION UN
AS CURRENT INPU

r

PROVIDING THE SHIFTED VECTOR DATA SAMPLE SET 868&?}\]868 X&
TO THE EXECUTION UNITS (84(0)-84(X}) IN A CURRENT PIPELI

Y

PERFORMING THE FILTER VECTOR PROCESSING OPERATION
ON THE SHIFTED INPUT VECTOR DATA SAMPLE SET (86S(0 R-SSS(I_ 23
IN THE EXECUTION UNITS (84(0)-8 {S&) INTHE CURRENT PIPE AGETO
GENERATE RESULTANT FILT RV CT

ACCUMULATING THE SHIFTED INPUT VECTOR DATA
SAMPLE SET 868 0)-865(X}} WITH A PRIOR RESULTANT FILTER QUTPUT VECTOR
DATA SAMPL A941{0|2 4&)2) IN THE CURRENT PIPELINE STAGE TO PROVIDE
THE PRIOR RESULT ILTER VECTOR QUTPUT DATA SAMPLE SET (94(0}-84(X)}
FOR THE FILTER VECTOR PROCESSING OPERATION

L 106
DELAY LINES
ETS 84)i 84g 1
ECTOR DATA SAMPLE SET (86{0)-86(X}}
Y 108
L — 110
NE 8
QUTPUT DATA SAMPLE SET (84(0}-94(X})
L 112

NO

ANOTHER PIPELINE STAGE
FOR FILTER VECTQR PROCESSING OPERATION COMPRISING
THE NUMBER OF FILTER TAPS OF THE FILTER VECTOR PROCESSING
OPERATION (102}, REMAINING TQ PROCESS?

116
4

SHIFTING THE SHIFTED INPUT VECTOR DATA SAMPLE SET ges_lngsssg[E)&
TO THE NEXT FILTER TAP IN THE TAPPED-DELAY LINE (7 FIL
VECTOR PROCESSING OPERATION TO PROVIDE THE Sf EF £D INPUT VECTOR
DATA SAMPLE SET (865(0)-86S(X)) AS THE CURRENT INPUT VECTOR DATA
SAMPLE SET (86(0}-86(X))

PROVIDING THE PRIOR RESULTANT FILTER VECTOR DATA SAMPLE SET
AS THE RESULTANT FILTER VECTOR QUTPUT DATA SAMPLE SET (94(0)-94(X))
IN THE QUTPUT DATA FLOW PATHS ngaéo gagr {%TO THE VECTOR DATA
FILES (82(0)-82(X)} TO BE STORED IN THE VECTOR DATA FILES (82(0)-82(X))

118

FIG. 5

PCT/US2014/065825
6/44

WO 2015/073915

g9 "S-
(x)o8 {0ee
/V\s!ll:lf /\v\.\l‘i;/

INTHMAD (0ga-(oead (VX OEX h6ZX 82X | +-+ | GX VX | EX ZX {IX O0X v 0
NSOX ZOX ¥ LOX 09X | eee D ZEX OEX | SEX PEX NEEX 26X |
SoNoe) GEX VBX | €6X 26X | e+ | 69X 89X | J9X 99X | SO FOX Z
LXINXINGBIOINGBY 17518 0ZEX 1 SZIX PZLX | <o« | LOVX 001X | 66X 86X | 46X 96X e
BGLXY 8SLX 1 ZSIX 9GLX | -e¢ TEEIX ZELX 1 IELX OBIX | 621X 8ZiX ¥
LBLX 0BLX 1 681X 881X | «++ | GOLX POIX | €OLX ZOLX | 18LX 091X G
CZEX ZZTX 1 VTTX QTZX | +e | IBVX OBLY I G6LX PBIX | €BLY ZBLYX 9
CGTX YGZX | £6TX ZGTX | «»+ | BZZX QZTX | LZTX 9TZX | SZZX ¥ITX i
187X 982X 1 6ReX ¥eEX | «+ | 192X 082X | 662X 8SIX | LGTZX 98T 8
{GLzg {(vi)z8
Tele A {@izs {1)z8 (0Jz8 $S340aY
(xize-(ojze .\\ V0 "84
{1)26 (026
'S oy 24 \\\@\

, FATAS
(£)26 ~ vy U e

—t GY 1247 B &
(ees T e e
(1)26 "] T — (o)zs

(oF) 44D / 88I4QaY

(1-AJzs-(0)zs

PCT/US2014/065825

WO 2015/073915

7/44

4 °9OId

(XIr8-{0)¥8 SLINM NOILNOIAXI OL

Axsﬁeg\%

{X)s98-(0)su8
A
N
X)S98 (1-%)S08 {L-xzioz) (Z)sag (eloz m 1)598 {0Js98
() QNF \ (2o, / ; (2)ozt / (1oz)
(14+X2)021 ~~ ,/, /M pe y \Ax (0)ozt
v 54 yﬂ b W&q.v. e hm,q > fVT,q > Nd«y VY PT L eeaioz
“ g {08 % Zay |82 mLN G p me / F\\\Q\ e
g e re o B SRR 3 m% i
M?xwweﬁ g g d d g wﬂ g d d d g QA, (zexZloz
ZEXYI0Z) N =gzl
(exzizzi—1y S P Wﬂ%ﬂ? WN_AW Hypl Fees> P .vﬁ Ey =S Pt b {0 (022
44 \ {1)8L
8 _‘m.m *cm N_m mm_m \.N.m 3o I - T, Wﬁm,m 3 Nh %_m - o_m
aﬁgws N P y /,/U///a;%ﬂ
(eexrizas—"_ (%) X222 (e+xzizzL
() z%)
o A Hiv0nes - (1xd)zzs (1)N98 (0INgg
A
7 {xjool (L)oot Olooy

{1-x}001 L
{(xog-{0)os

(x)28-0)28 8314 VAV HOLDIA WOHS

{x)e8-{0)o8

4

8 Old

PCT/US2014/065825

{olgs
0tg by lEg
§§§ \@%E (XDl oyl
(Z+xpi0zL \ [
\ VX210
n\ \ _/
NP 5T | Ly wm_ |

Y
e e

8/44

WO 2015/073915

;\r A A 3 T 4 M 4

(¥zlsy =
Vel / \
Mx WM {Zpivzl (E+xpish)
XTI M (Z+xvlec) (C+3pILE)

, fx%ﬁ {L+%Z)es)

{hexziel (oamz “eswiz
(001
81

am (gL {LgL
Oy lg by
22z \émz (E+xzhivl Emzsi |
; 0lzz 00:20]
:Z e fien |—Ileogll
/ \ \ —{91:¢2]
o LL m ~[v2:18]
lgcll 1| lokgal 1 | Wziiel |
\|+) - t e 1 —)
3 \ A . & A A A / 4
y A £ L {1)se)
i& I 14
&\ @\N), (0 |
LBEL | T~
fm_) L \vin ez)
fa Ghl ‘
(eaxziel/ EXTWZL Meaxzleel
(oloos

PCT/US2014/065825

WO 2015/073915

9/44

86 "Old

Y GEX ¥BX || €6X 26X | +++ | 69X 89X | J9X 99X llgoX Exw_
ek gzix)iszix vziX | v+ [LOLX 00LX | 86X 86X |IUBX 98X
op —>1 U 70 | Y JU | oeee | Y Ju_ | 2 T
Lsnid (0)ay flex oex \lfeex gex)| -« |[sx ¥X Y £X X w_s r
- £9X__ 29X JIUOX 09X J| -+- JlieX 98X JISEX veX JIEEX me
\ (X)001 \:..xvoa \ (200} \ (1)ooL \ (0)00L
(X)o8 (1-¥)o8 (z)og (1)og (0jog
V6 D
(1)L
Q.V.\Xw\ e - tss P P e -
Lot (g, 4 LEEX oex Jf6zX 8EX }| - ;mx vX |l £ ZxX I I 0xX |
TLReox zox JRlox 09X j| -e+ JlEX 9EX JRGEX PEX JIEEX ZEX)
\ (X)001 \ﬁ-xv@ow \ (2)001 \ (1001 \ (0)o0L
{(X)og {(1-X)o8 (2)os (1)o8 (0)os

g

H318193d
L34710AD

H31S103
0310AD

PCT/US2014/065825
10/44

WO 2015/073915

as6 "9id (1INg8 (0)Ngg

/ /

P N -

{ A\ 14

COLX LOLX 100LX 866X | = 194X GIX §ViIX CIX | 2LX LIX] A4
ee 180X 201X 190LX SOLX/Ip0LX €0LX) 4
oy —> QY 0y | 0y oy cee 1 QY oy oy ou_ | oy oy 0

9eX ZeX WoEX seX)| <+~ WziX X JoiX ex [9x X) V¥
04X 69X J189X Z9X)| e+ WX ebX levx upx JlopX eex)| @

o N, o o AR o N y

Ixan{ies

aaLdiHs (0)8L

\ (X)001 \:-xag \ (2004 \ (1)o01 \ (0)001 H315193Y
(X)598 (1-%)s98 (2)598 (1)598 (0)s98 83710A0
{1-¥IN98 96 ‘Ol (1)N98 (oINos

_/ []

X

96X G6X |[weX eBX | -cc losx z9x [89x s9x lfeox sox || ¥
LZUX 19ZLX SZLX)| cc+ {ZOLX LOLX JoOLX 66X /(86X i6X)| 8
oy — oy | of Imm., oo | Oy oy | oy oy | 9y gy 0
A § immx gex | -ec fox wvx) ex Zx)l 2x X WV
- £9X ZOX JLIOX 09X J| ee¢ fl1EX 9eX JlsEX ¥EX _,M,mx ¢ceX | 9

P >4 N, JU R) e o

\ (X)001 \3-508 \ (2001 \ (1004 \ (0)001 REIREL
(x)s98 (1-X)s98 (2598 (1)s98 (0)s98 ¢310AD

DEnN ez

-~

PCT/US2014/065825

0L "9Oid

11/44

WO 2015/073915

(1-X)¥6 (0)v6
/. _/
CeoA YL [9A) | eee LEA (6eA VI [geAn) £ooy
COA 08A see 9cA VEA CEA Y
LEA 6CA see GA EA LA L3I0V
C 0EA] L ogea)] .. vA L 2hA J 1L oA) 020y
M (x)ve (10%8 (28 J (v {)}4¢ HOLVINWNOOY
(X}¥8 (L)v6

Axvqm-avwm\

PCT/US2014/065825

WO 2015/073915

12/44

LE"OId

XJ0EL-0

JOEL

Y

0=l
3V (U HOX - (140K K =)y
F1e=]
: : : 0= (.
FNIL-NO (U7X« JOA = (u)! mx
F16=]
i
(X196 v | L Xoe (1p8 (b0 (0)06
N &Dm {1)06 —H VU3 (oin3 \\\ mﬁ
AN {196 ~L&=p A T K {
- A v ‘ %X,) Ay |~ (0) wm
86—t P m%\\ 8L (Ueel ./@mm b P's nnv!\x\M (0598 }
m.mm.l.i.l.l.ﬁ A ces S & &
(e~ e TP ~— oizet
\ {0182 3NIT AYT30-03ddvL
o Ve . e oEl
AT LY FRL .
Fi (1)8Z 3INIT AY130-03ddvl \\ T \
W=l | _ g |\ MOQvHS Lo 4D AL
(] A A e |
A o
% /KV: wo (s~ I <
LJog - ,
{x)z8 3714 / (1)zg 4 (0zg 314 (0lgs
Y1YO HOLDAA YiVa HOLO3A VIV HOLO3A
{001 SLINYIA (1}000 LINYIA {olo01 03NYIA

WO 2015/073915 PCT/US2014/065825
13/44

140
rel

FETCHING AN INPUT VECTOR DATA SAMPLE SET (86(0)-86(X)) — 142
FROMVECTOR DATAFILES (82(0-820X) INTO INPUT DATA FLOW FATHS
(80{0)-80(X)) FOR A CORRELAT TOR PROCESSING OPERATION

!

RECEIVING THE FETCHED INPUT VECTOR DATA SAMPLE SET (86(0186(0X)) |~ %4
IN THE INPUT DATA FLOW PATHS (80(0)-80(K) INTO THE TAPPED-DELA
LINES (78) PROVIDED IN THE INPU LOW PATHS (80(0)-80(X))
ETWEEN VECTOR DATA FILES éaz (0)-82(X)) AND
THE EXECUTION UNITS (84%)% é AS | PUT
VECTOR DATA SAMPLE SET

‘l'«

146
PROVIDING THE SHIFTED INPUT VECTOR DATA SAMPLE SET 863 0)-865(X)) é
FROM THE PRIMARY TAPPED-DELAY LINE q%l\}) INTHE ENPU FLO
PATHS (80(0)-80(X)} TO THE EXECU UNITS (84(0)))
N'A'CURRENT PIPELINE STAGE

!

PROVIDING A NEXT REFERENCE VECTOR DATA SAMPLE SET (1 (Il:) 13082 148
TO THE EXECUTION UNITS (84(0)-84(X)) IN THE CURRENT PIPELINE STA

!

CORRELATING THE SHIFTED INPUT VECTOR DATA SAMPLE SET 8868 g -86S(X)) b 150
WITH THE NEXT REFERENCE VECTOR DATA SAMPLE SET (13 iglg
[N THE EXECUTION UNITS (84(0)-84(X)) IN THE CURREN LIN
STAGE TO GENERATE A CURRENT CORRELATION OUTPUT VECTOR

DATA SAMPLE SET
®
FROM
TOFIG. 128 FIG.128

FIG. 12A

WO 2015/073915

14/44

140
»

FROM
FIG. 12A

? /152

ACCUMULATING THE CURRENT CORRELATION QUTPUT VECTOR DATA
SAMPLE SET WITH A PRIOR RESULTANT CORRELATION QUTPUT VECTOR DATA
SAMPLE SET IN THE CURRENT PIPELINE STAGE TO PROVIDE THE PRIOR
RESULTANT CORRELATION VECTOR DATA SAMPLE SET

¢ 154

ANOTHER PIPELINE STAGE
REMAINING FOR THE CORRELATION VECTOR

NO

PROCESSING OPERATION?

SHIFTING THE CURRENT INPUT VECTOR DATA SAMPLE SET (86 0258682%
TO THE NEXT CORRELATION SAMPLE IN THE SHIFTED INPUT VECTOR DATA
SAMPLE SET (865(0)- GSéX) TO PROVIDE THE SHIFTED INPUT
VEC OR ATA SAMPLE SET (865(0)-86S(X))

PCT/US2014/065825

TO
FIG. 12A

E

PROVIDING THE PRIOR RESULTANT CORRELATION VECTOR DATA SAMPLE SET
AS THE RESULTANT CORRELATION OUTPUT VECTOR DATA SAMPLE

SET _[(13253'&132?(2 N OUTPUT DATA FLOW PATHS (98(0)- QBH_) TOTHE

VECTOR DATA FILES (8 FILI(:'g)TO BE STORED I TH VECTOR DATA

FIG. 12B

WO 2015/073915 PCT/US2014/065825
15/44

/134

ADDRESS //130(X), 130(15)
15 |CY30 Y3DS|)
14 Y28 Y29
13 Y26 Y27
12 Y24 Y25
11 Y22 Y23
10 Y20 Y21
g Y18 Y189
8 Y16 Y17 | $1300)-130(X)
7 Y14 Y15
6 Y12 Y13
5 Y10 Y11
4 Y8 Y8
3 Y6 Y7
2 Y4 Y5
1 Y2 YD
0 0 YD
/ A

130(1) \1300)

FIG. 13

PCT/US2014/065825

WO 2015/073915

16/44

i Old

(X}8-{0}p8 SLINM NOILNDIXI OL

QE@SV%\»

(sos{oisos
A
N
mmm/ 1-X)S60 (1-xz)ozL 11508 (0)s98 ozt
(x2)0zL i Eomm / / - (0021
T AN TAN U0gy
o (exaiozi~, 198 / P (011098
(x)1098 oyl & Ymmq 7791 ™ R S N m,< >y B &y bl oy Bl Ty)} (0198
{198 v I
A I e | W “““ m “““““““““ w (m = k w > (8L
12 bee{ 02 BZa bae{ B2 J17%% O I O Ymv,mme.Y mwzm
M?ﬁoﬁ — g m\ d g 3 = L (Z+X2)021
AN SIVALS | : ‘ ~(1)zzi
(LX2)zz1— ey ey B0y BTy bt Loy el eeeimd el el by e Gy el by — (00221
221 3 \ - (1)8L
_\m,m e Qm,m mmm » mw_m > o Nm.m - - % ¢ ¢ Yoo . - i m,m oo N,m Yo w_m .- Q_m
(e+x)22} " ﬂ‘ /// (z+x2)22)
(z+xvizzl ((
VAATAA) (e+XZ)zZ1
E\
. A
 {xlooi (L)ool ooy

{1001 L
{x)og-{0los

{xjoa-{0)e8

A

{¥)ze-{0)z8 8314 YIVG HOLDIA WOHAS

PCT/US2014/065825

WO 2015/073915

17/44

g51 "9Old

{x)98
ME&@ Ax_%ﬁ “ {)og (1)ozt \ Ve {0)oz!
() eee | (1) (o) (1) (0 { (0 2
,w/m; / A) LA A | AN N \ (a4 f Yo
(GEX S| eee | (X ox {(te)x @O)|[€x X)) v
) = (0198
e Lo Qe | eee | OX (X (x| @VQ \f@x__Gx Wﬁ 8 -
Mwm ?N (o X)| eoe |GeX (o0 | TG\ \ GEKX ﬁ [CEX A&X/ ¥
) , (o || eoo |8 (X | leX| NseX | eX (e / 8
\ ook @00k ()18 :.ae/ / (oo \/ Y¥31SI9FY
(111098 | (0)Ng8 {zex@iogk 1310AD
{(xX)Ng8 .
{e+xzioz)
Vel "Old
MMMWMW (x)98 Axwoﬁ @8) oo (1)o8 iz (0)o8
| {ojoes
) ; \ 7 c N //\ \ S x“Naﬁa%
GEX (0OX)] | eee || (9 x| & @O ICOx O AT v
(ol8L - (exe)ozy
Wzex GO0 eee || (X (5)x r@x O X 3 g
(e+xvlozt] / \ LN AL A (oo
(1)8L / / / |
\ [3 % 2 \ \ _m
(xneg -~ (¥ool (200l (0)oot

HILSID3Y

(e (Moot \
03T0AD

{e+xz)0zs

PCT/US2014/065825

WO 2015/073915

18/44

asi "oid

0)0Z4 // wmw
\. 0)10.98

0l {L+xZlozL {(x)s98 \\c&gﬁ {tJozt
() S.wW/Y (@ D) f foe | e A | (gl (o)A ,em; ,/) 9
» 1 ; | ——(0)1898
a3L4ims (ole; (19X 0OIHT eoe | 5N (pEIX 159 (zelx cﬁx a@@u ¥
— Wl B9 | oo |l x| GeX x| BEX__ meX g
N (Vs (J ﬂ (calx @x,_ ¥
ﬁ & e ﬂ (ealx ; 4
) {x)00} - {Z)oos {1)oot f\ {0)oot . Y3819y
) (0ING8 GL971040
XING8
. 961 "9id
{xz)ozL (598 | 0see
{1+xz)0zL] {(1)ozt ~ (0)ozt \\
08— N Y
(1oses—=1 ©A] \ @k JI oo | (e @h | (4 (A fm; /\ h Aoﬁommm
BT VGOK)| | eee | UK (9ix (e b jQelx__ Mk ¥
a3L4IHS (0)8L - . _ : {07598
s (v Y| eee |l x| ok e |{Clox)] g
e (s s Y| eee | (e e | (e e |[G @mwx,‘# _<
N % eee | (0P (BE)X (861X (Ze)X (9g)x (geix M 8
{x)oo} {Z)ooi {1)oot \ {000t ¥3LS193Y
@Z@m 21040

PCT/US2014/065825

WO 2015/073915

19/44

9t "Oid

owmﬁ
(117 Y . (G)L7 ¥ (€)1 (117 ¥
L (e)Loy)] .- (6)LO ¥ (£)LO Y (1)LO Y
(0£)17 ¥ . ()17 o (2)L7 o (01T ¥
0elod | -- ().LO @104 || (1o
(X)%8 (2)v8 (L)v8 Towe

gIdv
s
| 30Y
093y

HOLVINWNOOY

PCT/US2014/065825

WO 2015/073915

20/44

i1 O

{ocies w\ﬁ.‘xvmﬁ (z) \@ @\m&
{[(eR) gz | oo vA (ZA) Cor) 0
COA 09A o gcA VEA ZEA b
{1 Qen) 6ZA SA LeA) ALA) v
| / E€9A LOA LEA [GEA [€A L+
Axvmmw-ﬂemmw\\ \ \
(1eess et (1€)28 (X} (1-X)zg (z)zg /(s /{0
16128 ()28 (0)28
Amvmmw Q\wmmw SSI-aay
mxwmm-@wm\\
(BLeiagL (B008s1 vii 9l ({oras
\ (0)egt
(DG0ssy (o) wml (LEA) YOSA | VBZA 18ZA | «rr 116A twA |VEA rZA | TLA \(TOA) 0
FUEOA 1Z9A | FLOA I'D9A | =+ |VJEA TOEA |ISGEA FPEA |IEEA //mdw k
(bX1giag) (b)(x)egt
0est (Xowsidf {016y DOCA |bszA bgza | ««« |bga by [bega bza (DA \@%@ v
(©008sL (OXoest{ OCOA BZOA [B'Loa bogA | »o- ozgh bogh bgeA BEA IbegA/ bZeA |+
(elggiixiesi-lojest (1ekze (ze {t-X)z8 AT {1)28 \. (0)z8 ssadaay
0Jest

Mxvmm,svmm\\

PCT/US2014/065825

WO 2015/073915

21/44

80S

910S

g81 "Oid

oXxa ©o)xa (H(xa ©Oxa
-3 —> 48— €«8—>«—8—>»

V8l "oid

N(x)a (O)XX)a
- 9l - 9l >

(Ho)o)a XoXoa (oa ©)oa
-€—3 —p-—3 —>€—3 —p<—8 >

(1Xo)a (©)o)a
~-€ 9l > 91 >

PCT/US2014/065825

WO 2015/073915

22/44

X)oeL-0

/

JOEL

6L "Oid
0 (0)86
(1)4598 (1)498 (0)06
) f \ (0)4998 _srmm
ee~J| gys X6 (1)v8 awvw /
N oS m (1)06 — N3 (on3
= |~ (X)4598 (x)-408 (1)96 L =>—25p> A5 wﬁ
(086 —~ (1)86 — -~ % N - \
D \ 8L (L)eLs ~ ~p o
4598 .m@ml.}ilﬁ 7 o << 1 A w
(2L~ e ™ < 0)zL1
(084 3NIT AV13Q-Q3ddVL
(x)eg) \ ALY (egr (0l6s} %l
P 74 TR
= Z . (0)g8 \\
L | / (18 INIT AVTIQ-Q3ddVL \ i el
chm\ A;W MOQVYHS \\m\./ AD L nHvI...v..Svom 6
\ﬁ AT / \\.\\ B rL\.._\
o] 1 //V MFW%\ Z A.Mw@m ‘ iy
1)08
{X)z8 3114 / O ERE (0)z8 3714 (0)g8
Y1Va HOLO3A Y1VG HOLD3A Y1Va HOLDIA
{(3)00t SLINVIA {£)00L L3ANYIA {0J0D1 03NYTIA

(L-A)z6-(0)26

449

WO 2015/073915 PCT/US2014/065825

23/44

160
rel

FETCHING INPUT VECTOR DATA SAMPLE SET V\SOI-)’ (ﬁx
FROMVECTOR DATA FILES E&Z_%—SZ%(@ IN INPUT DATA FL AT
FOR AVECTOR PROCESSING OPERATION

!

FORMAT CONVERTING (E.G., DE-INTERLEAVE) THE INPUT VECTOR DATA SAMPLE
SET (88(0)86(X)) FROM THE INCUT DATA FLOW PATHS gso 0)-80(X))
IN FORMAT CONVERSION CIRCUITRY é159 8)
INTHE INPUT DATA FLOW PATHS (80(0) 80(X
T0 PROVIDE A FORMAT-CONVERTED INPUT VECTOR DA SAMPLE SET
(86F(0} 85 (gxgz WITHOUT THE INPUT VECTOR DATA SAMPLE SET (gﬁ& -86(X))
EING RE-FETCHED FROM THE VECTOR DATA FILES (82(0

!

PROVIDING THE FORMAT-CONVERTED INPUT VECTOR DATA SAMPLE
SET (86F(0)-86F (X)) ON THE INPUT DATA FLOW PATHS (80(0)-80(X))
TO THE EXECUTION UNITS (84(0)-84(X))

Y

EXECUTING A VECTOR PROCESSING OPERATION ON THE FORMAT-CONVERTED
INPUT VECTOR DATA SAMPLE SET (86F(0)-86F(X)) IN THE EXECUTION UNITS
(E)ra4(] 2) 7O PROVIDE A RESUL ANT o TPUT VECTOR DATA
SAMPL 0)-172(X)) ON THE OUTPUT DATA FLOW PATHS (98(0)-98(X))

|_— 168

Y

STORING THE RESULTANT QUTPUT VECTOR DATA SAMPLE SET (172(0)-172(X))
FROM THE OUTPUT DATA FLOW PATHS (98§%—98(X))
IN THE VECTOR DATA FILES (82(0)-82(X))

FIG. 20

PCT/US2014/065825

WO 2015/073915

24/44

L€ 'Oid

(0)os
(0498~ 4 4 4 4 ~ 4 ()ojoe~ 4 (@Holos~ A A (0)498
SVSOWM > (oogy ~08~G \ . > oks
(x)og (1x)08 (208 (£)00)08 ~
RNV RN N RN
@EU* (xlos} @eTV oA Alolisi 4 A [odd4é Atlzolisid 4
98 08
b4 : :
ALINOYID z%_wvmm\,zoo LYWHO4 _ﬁ_l__) smm_J«/
‘ r ‘ (091~ K& A ~(1)9L}
k. A A k. A—
o%g/ y P y\éwg
[00:20] et
[B0:c)] =
[9):57] <
[hZ1g] <
\T o 1 Tleal | [Toved | [Tzl Q T a1 (el | [Toued | [Tzl ;/
(x)s98 S \ S _/ S _/ A\ _/ ()98
o N o 4L . A RN (Wozt oot

PCT/US2014/065825

WO 2015/073915

25/44

¢ "Old

DIl PBAISSOY

[oz:1¢]

POAISSSY

{918 ‘£x ‘LX) SOIAWES PPO SYB | |
(218 ‘Zx ‘ox) sejdwies usAa 83| -
TUOHBUNSSR DU S80N08s Ujog Jof aseyd sjeunos(]

61

et

ISYHd ILYWID3A

761

pis ISYHJ 3LYINIDIA

s} Ul paynads S uoheso] IndiNG ppo Jo usaa 8y)

JBUNS Ul 8JLM PUE 808 0 G178 WOl INdINg UsAUO - |
1BULIOL G} 1S Ul PBIOIS SI UORBUISS(<— ()

elep ndino Jo 1eLLoL 8U) 106jeS

14 1830

"~ (061}

G108 01 808 WO LBAUCD PUR S1BUASS(J~— |
LIOISISALCD JBULIO) IO B1BLUITSD ON-=— ()
BIED 90IN0S PUOSSS 0} 1IG LOISISAUND JBULIO| PUB SIRLUIS(]

ZouS FLYINIDAEQ

- 88}

GLOS 0] §0S WO LSAUCD PUB S1BUWINS(J-— |
LIOISIBALOD JEULIO) JO BJBUIDED ON<e- ()
‘BIEP B3UN0S JSH) 10} UG UOISIBAUOD JBULIO) pUE SjeWIne(]

[oi]

LOMS FLVINIDAC

- 98}

pisy paniosey]

[g:61]

DOAISSEY

iys wibu e sejeoipur snjea eaebau e ‘Jys ysi e
sejesipu; snjea sasod y vl 01 v~ OF pauwy si efuel seig ey
1BULIOY BIED §108 Buisn usym SUCHDNISUI JBWYILE 0] sBIg

[0:4]

9108 svig

T pg1

uogduosa

obuey ug

PRl

8l 7

PCT/US2014/065825

WO 2015/073915

26/44

£C "Old

- {0)86
(1)s98 /7 (0)es \\s.sm
Fd
(x)96 |~ (X106 (1)p8 0w /Y
N J:\IR . M_,wom T VN3 {oin3 XJ0eL-{0J0eL
= (x)s98 90 N = > mmw
es—L L | T« (e ~ee~T T T AT Jon +
o (D 4 (1)861 D a1 ||
B /,,f. 3
s — <= S innd TS
(6! RG] N 7
o %xwme AMLINDNID ONIEAH03Y ._\M,%g _onwmm»_ oz e
X002 —4 1T ooz —H1 T TT~<—4 760
s 1)002 et {546 | (L-AJzB- (0126
()6} (Vb5 \
(118 {0)es 26
o SINIT AYT30-03ddyL -— (098
\ I ¥, . ——— Y] Y - 4H9
(x)es dh (188117 Wi LH——{0)o8
.‘\\\h i \\ ov\\
98 (og 174 4 B 3 Ami//
// , {1)98 (0)og
(X)zg 3114 {1)28 314 {0)z2 314
YLYQ HOL1D3A Y1¥0 HOLI3A YLYQ HOLO3A
(G001 GLANYTIA (1J004 LINYIA {0001 03NVIA

WO 2015/073915 PCT/US2014/065825

27/44

202
»

PROVIDING FETCHED INPUT VECTOR DATA SAVPLE SET (860)86(X)
EROM AT LEAST ONE VECTOR DATA FILE (82(0)-820X) IN NP
FLOW PATHS (80(0)-80(X)) FOR A VECTOR PROCESSING OPERATION

204

!

RECEIVING THE INPUT VECTOR DATA SAMPLE SET (86(0)-86(X)) ON THE
INPUT DATA FLOW PATHS (80(0) O{xg) IN THE EXECUTION UNITS (84(0)-84(X)
PROVIDED IN THE INPUT DATA FLOW PATHS (80(0)-80(X))

— 206

!

EXECUTING A VECTOR PROCESSING OPERATION ON THE RECEIVED
INPUT VECTOR DATA SAMPLE SET g;e (0)-86(X)) TO PROVIDE A RESULTANT
OUTPUT VECTOR DATA SAMPLE s T (194(0)-194(X))

ON THE OUTPUT DATA FLOW PATHS ((98(0)-98(X)) }

L~ 208

Y

REORDERING THE RESULTANT QUTPUT VECTOR DATA SAMPLE SET
(194(0}- 194(3%) INTO A REORDERED RESULTANT QUTPUT VECTOR DATA
SA PLE V(é94R -194R X WITHOUT THE RESULTANT OUTPUT

DATA SAMPLE SET s_ FLEMEXB)
BEING STORED IN THE VECTOR DATA -82(X

Y

STORING THE REORDERED RESULTANT FILTERED OUTPUT VECTOR DATA
SAMPLE SET (194R1 |\R 9413/(E 8 IN THE QUTPUT DATA FLOW PATHS (98(0)-98(X))
THE VECTOR DATA FILES (82(0)-82(X))

FIG. 24

PCT/US2014/065825

WO 2015/073915

28/44

Ge 'O
(0)z8 3114 YLva ¥OLD3IA OL

D

(1)(00rel ~ 4 @)0)drsl ~ 1
0 X

(1){0)gs ~

SN

5 @ssm}o

(01812 >

. E:wv

I A

~SR

\

ieg/
V]

./

(0)¥8 LINN NOILNO3X3

(0)g6

~——— (0)312

(0)86

PCT/US2014/065825

WO 2015/073915

29/44

(9z2)
TYNDIS VIV
EREINORE

(vz2)

TYNDIS

VIVa G3LLIWSNYSL
av3yds

(zz2)
JON3IND3S
dIHD

(0z2)
TYNOIS Viva

o_;oo__‘_o_ Ll E L E :‘_o__‘ 00

a9c "oid

1
|
|
k.
|
|
|
|
|
|
|

J9¢ 'Ol

|_
N

o; 00 _F_om L

o F_Q_F_ 00 _F_i L

89¢ "Old

va¢ ‘Oid

_OT_Q__‘_ 00 T_QA L

I

10L/1

T_F_O_F_oo

S
__._e_ _._‘_o_;

— <

12

PCT/US2014/065825

WO 2015/073915

30/44

L€ "B
/ {0)986
(1)598 (0 \@%
Vi
(X)96 oy L (006 (1)vg e Y
Y (XIN3 o wmm - LN3 {oin3 mmv xX)ogi-(0loet
X}568 ~NES
- N, = %X P 7 AL
(5086 —_ I - (1182 ~ 86~ T
X8 I A (Vzee-\. [P K g [0 «
w@mll..llh von /,N/JF & & NS
(oszz— 1L =0 S = 2T
(xjzez 5 + (0)gzz o
o %x‘mmm AMLINDYIO DNIGYIHASIQ Waﬁ_ 00ec] ez
s 2t () -1 TT<—L A)z6-
i ez ———{0)622 {1-AVze-(0)z8
(Z6zz 6oz~) \\
{18 (0las 26
. SANIT AYIIG-03ddYL - (088 145
(x)es :,.\.\\me\v” Emm-‘\\‘i\.‘MmW MWv’llevom
% {x)o8 {1)og 1] -~ .
. N] (1)e8 , (0)og
()28 3114 ()08 {1)Z8 314 {ojze 314
Y1YQ HOLO3A Y1¥Q HOLO3A Yi¥a HOLD3A
{(X)00l SLINYIA {LI00L LINYIA {0)o0L 0aNYIA

@NN\

WO 2015/073915 PCT/US2014/065825

31/44

236
re

PROVIDING FETCHED INPUT VECTOR DATA SAMPLE SET (86(0)-86(X
IN INPUT DATA FLOW PATHS @OH_)) FORAVE TO
PROCESSING OPERATION FROM OR D TA FILES (82(0

!

RECEIVING THE INPUT VECTOR DATA SAMPLE SET ﬁ?}h? B6(X)2 ON THE
INPUT DATA FLOW PATHS (80(0)-80(X)) IN EXECUTIO i
PROVIDED IN THE INPUT DATA FLOW PATHS (80(0 ()

Y

EXECUTING THE VECTOR PROCESSING OPERATEON
ON THE INPUT VECTOR DATA SAMPLE SET {8668 ﬁ-n g)
IN EXECUTION UNITS (84(0 &M? IN THE INPUT DATA FLOW PATHS (80(0)-8
TO PROVIDE A RESUL AN UT VECTOR DATA SAMPLE SET (228()
ON THE OUTPUT DATA FLOW PATHS(98(0)-98(X))

Y

DESPREADENG THE RESULTANT QUTPUT VECTOR DATA SAMPLE SET
é E,& -228(X}) IN THE DESPREADING CIRCUITRY (230) TO PROVIDE
A DESPREAD RES LTANT QUTPUT VECTOR DATA SAMPLE SET (229(0)-229(2))
[N QUTPUT DATA FLOW PATHS }&98&0)-98(X)) WITHOUT THE
RESULTANT OUTPUT VECTOR DATA SAMPLE S 228 -228)} BEING
STORED [N THE VECTOR DATA FILES 82

Y

STORING THE DESPREAD RESULTANT OUTPUT VECTOR DATA
SAMPLE SET (229(0)-229(Z)) FROM THE OUTPUT DATA FLOW PATHS (98(0)-98(X))
IN THE VECTOR DATA FILES (82(0)-82(X))

FIG. 28

WO 2015/073915 PCT/US2014/065825
32/44

|
st 2B g S5 250
‘Si\uf : r//maz) Bl
i(Ralutvllnlululnlululnlnlulwh~Quilug
‘ ¥ WED e AR SRS +/- - [.
TR zsecof“&zﬁaa;{kzso(z)ﬁtzsa(e} e /{'25’2;\-
e [« I WAV
B~ - ' ' : e Al 0
TSF4 TSFE TS SF4 |
50 T &h 2540) he Jz4a(2‘;
. = : L
\\%rg 258{0) E\:LFS -~ i \i])‘L‘;.?(;
K] e r \hg* Wi
By I
" e R i T -)
g | = 2444
%K) }
0 34,5 RN
26— 755}1; -
i }248(5}"
i) 4\ E\;‘m’Max:Acc!
4 \ L JSFee O
\ '\L \«M L] — 2?83?3
7 : E] 1 L TN,
Mt B B B @@ o
i)

R — 80

iy R, BB /
2002080

240K, 24008

PCT/US2014/065825

WO 2015/073915

33/44

0€ "9Old

(1)062 (0)062
¥ rd

IPLEOGZLINO = 08€4/£81X0 + JOGEBLYAXO
(1Jog (0)og
{t)z8 (0)z8
3114 314
VLVQ HOLD3IA VLYQ HOLD3A
(L)ool (0Jool

PCT/US2014/065825

WO 2015/073915

34/44

X)0EL-(0

/

gL

LE "9
(0)g6
{1)398 ya (0)os \asm
) V4
Wes~{| |~ (Xlog 1 N o /Y
N (0n3 Zm/ e (oin3
\|A (1)267 ~_ (1186 . mﬁ
(x =TSP (1)oos N T P
[1 { 3
” S8~ vee //,/!r & .
X)z6z —¥~ N]
()00 — T 5 ety b f.f@NmN
o n AMLIOOHID ONIDEIN — e (0106 9¢1
X108 —4 T { uf TT~<—1
Smmm_ﬂ 1087 — (01962
{1)o62
(1)aL (o)8L 26
. SINIT AYTIC-03ddYL =)1
(X188 —+T T &h (es 1T & oL (0
99 A 1=
(x)o (Los T, -~ g o
/ (visg ()98
{x)zg 214 {)ee 34 {0jzg 314
Y1¥a HOLD3A Y1YQ HOLO3A Y1VQ HOLOIA
(008 GLINYTIA {11000 L3NYIA {0J00L DANVIA

{1-Aze-{0lze

449

WO 2015/073915 PCT/US2014/065825

35/44

302
rel

PROVIDING FETCHED INPUT VECTOR DATA SAMPLE SET (86(0)-86(X
IN INPUT DATA FLOW PATHS @OH_)) FORAVE TO
PROCESSING OPERATION FROM OR D TA FILES (82(0

!

RECEIVING THE INPUT VECTOR DATA SAMPLE SET ﬁ%ﬁ 2)} ON THE
INPUT DATA FLOW PATHS (80(0)-80(X)) IN EXECUTIO ETS 4(X))
PROVIDED IN THE IN UT DA A FLOW PATHS (80(0

!

EXECUTING THE VECTOR PROCESSING OPERATION ON THE INPUT VECTOR
DATA SAMPLE SET (86(0)- G\A;(B IN EXECUTION UNITS (84(E84
INTHE INPUTD TA LOW PATHS (8 &0 SOI(EX%) TO PROVIDE
A RESULTANT QUTPUT VECTOR DATA SAMPL 58292)-292(X))
ON THE QUTPUT DATA FLOW PATHS (98(0

Y

MERGING THE RESULTANT QUTPUT VECTOR DATA SAMPLES 292
FROM RESULTANT QUTPUT VECTOR DATA SAMPLE SET é BE 92(X
[N THE MERGING CIRCUITRY (294(0)-294(XQTO PROVI
A MERGED RESULTANT QUTPUT VECTOR DA A SAMPLE SET (296(0)-296(Z
[N QUTPUT DATA FLOW PATHS 1&98&0)-98(X)) WITHOUT TH
RESULTANT QUTPUT VECTOR DATA SAMPLE S 292 -292) BEING
STORED N THE VECTOR DATA FILES 82

Y

STORING THE MERGED RESULTANT OUTPUT VECTOR DATA
SAVIPLE SET (296(0)-296(2)) FROM THE OUTRUT DATA FLOW PATHS (38(0}98(X)
IN THE VECTOR DATA FILES (82(0)-82(X))

FIG. 32

9&){‘

3+
3B 4

3040

WO 2015/073915

{\u

36/44

TR 200
R (=X+hf2) }

PCT/US2014/065825

e

fQEXM 106K} 1
QQQ(X It \(1:

2

S

X
2 00

N
=

\?

L {zgz(e}-zgzm
N {ﬂ&'i}
Kﬂaﬁ %\X*r WL

Ej 32:) “}G ‘fg 1, 3297}

FSF4
31

2>

+é L
['}g\lé:mu(\v 240,340
; RBRH, 2800
SFO i]

™ 32K

344\{_{_]SF32+

m} Max/Ace!

- 338

oo™

[TV %

TS), 8
.'\

il &
uﬁhfﬁ(*ﬂ&; 11,3300
K

29:&&\%1 1),
34‘1{1

34865

W)
o 343}3; &

35@}{%1;2)4),

il

A A

I

3450

34h1

Ké 342)

36

363

My

kSt
'P

FIG. 33

ﬁ@@ﬁﬁ‘@

Gt

5 <

LJ

>(1\

R

B

W60

0200

350, 349

WO 2015/073915 PCT/US2014/065825
37/44

9
rel

00 | 040 okl 0
R . A
agl | ﬁyﬂ/&m el L ngxﬁ \‘gﬁ a0t
gl i, g >
| | ¥ /1 . W SN i
il 0 D\J oo n 5\{1 SN
, aa AWM (9N oo o 0 o DEDd I8
322§@}-\:kaﬂ*(e?(’“\szwmf\" 32@'(2;*&%329*(3,2 @ M D /E%M}\m’:}
W Ao | , - = : o “»;,
It . SN O O N O O £
| Sre Tor4 TSm TSR TSR TSFe TSR TSR
0 Tt B U0 e) R & 315
:..2-.\ H ! 1y PN — 1y]
0 \\g;} 280 ™ f%?&ﬂ“ 3040 CETN e,
IHREENS SFE | 33363y oF8 - Tere \g;&;’if\i(-r ;’;’31 %5-??
08 & = (G Ty,
E P — EIRisEH, 28
3 ﬁ] b
20— TSH& ~é30{€(3{+ L 0
g | i3 , }3@3(4%
5
| - 1)
)
345
g TR AL L
A L i g&ﬁm A
" 23, ‘\ 3 E e 3
34&0 m 3 H o »’»-E/ >>>>> = Yoo W D b 336 x+
M mom om om B W
357
354{ = o i X '.\ SRR, e S “‘r“ e OFF O BT
FEEDOG 0038800 0 g
) aggen \ B4} S U, £
g \DOLLT i \ B 9 M g ﬁ%’ééh/ Y
Wy 5 M /o
5801251

FIG. 34

PCT/US2014/065825
38/44

WO 2015/073915

g€ O

(0iolpsy —*

m § b (L)(g :&l
) (LXDpLy w @ viy ~l0Melosy {0 f&
N \ sm 9.7 -
(O)olazy .. {Viosey (0acy oy W9y VOdelay (Livwasy
ARV YL A ki w zj, SRERRN 1 VA RV (
Ozzel |olzzy] o)Wz Wz loez] e 4
il A__,w_z_i_: _ el M i - oo
ology xaasmv x (o)1Jogy x x (0iziosy w (1(z)og * e |
gy (oey (0L m@ EE§ OTiay (O2esy
m \ﬁ 18i%
0o % 0 (oMelay (o xﬁm@,\ L) sm%
(oo \ | am@ i (28 elozy (vlosy

\

—a
e

mmnmnneane
mmmmmmnmaney
.
PUSUIG
RO |

‘\
a4
P
amasmnnsake N
E—
e
———)
3

w
¢
¢
¢
¢
¢

T
T

/
Yijap!

{ohigy {1)iov)19 W) 1SY P
ey oy e OO PBY (A8
AT R T S (gor-(ey (Wegp
a;mimgw\ \ f/gw%ﬁg
vg—"" (Olooreoor 777 AN (isart isor

N (Oe e (e

{1)ooy

(Djogy

JOYLE
NFEdld
v

S, 067
A0YLS
SN T dld
LA

JOVLE
INIdid
Ol

A0V1S

AN

ANITEdld
fta

WO 2015/073915 PCT/US2014/065825

39/44

RECEIVING A PLURALITY OF MULTIPLY VECTOR DATA SAMPLE
SETS (34(Y)-34(0)) OF AWIDTH OF A VECTOR ARRAY

IN AN INPUT DATA PATH AMONG A PLURALITY OF INPUT DATA
PATHS (A3-CO) IN AN INPUT PIPELINE STAGE (460(0))

Y

RECEIVING THE MULTIPLY VECTOR DATA SAMPLE SETS (34(Y)-34(0))
FROM THE PLURALITY OF INPUT DATA PATHS (A3-C0)
IN A PLURALITY OF MULTIPLIER BLOCKS (462(A)-462(0))

Y

MULTIPLYING THE MULTIPLY VECTOR DATA SAMPLE SETS (34(Y)-34(0))
TO PROVIDE MULTIPLY VECTOR RESULT OUTPUT SAMPLE SETS
(468(A)-468(0)) IN MULTIPLY OUTPUT DATA PATHS (470(A)-470(0))

AMONG A PLURALITY OF MULTIPLY OUTPUT DATA PATHS (470(A)-470(0)),
BASED ON PROGRAMMABLE DATA PATH CONFIGURATIONS
FOR THE MULTIPLIER BLOCKS (462(A)-462(0))
ACCORDING TO A VECTOR INSTRUCTION EXECUTED
BY THE VECTOR PIPELINE STAGE (460(1))

Y

RECEIVING THE MULTIPLY VECTOR RESULT OUTPUT SAMPLE
SETS (468(A)-468(0)) FROM THE PLURALITY OF MULTIPLY
OUTPUT DATA PATHS (470(A)-470(0)) IN A PLURALITY
OF ACCUMULATOR BLOCKS (472(A)(1)-472(0)(0)

Y

ACCUMULATING THE MULTIPLY VECTOR RESULT OUTPUT SAMPLE
SETS (468(A)-468(0)) TOGETHER TO PROVIDE ACCUMULATOR
OUTPUT SAMPLE SETS (476(A)(1)-476(0)(0)) BASED ON PROGRAMMABLE
DATA PATH CONFIGURATIONS FOR THE ACCUMULATOR
BLOCKS (472(A)(1)-472(0)(0)) ACCORDING TO A VECTOR INSTRUCTION
EXECUTED BY THE SECOND VECTOR PIPELINE STAGE (460(2))

Y

PROVIDING THE ACCUMULATOR QUTPUT SAMPLE SETS (476(A)()-476(0)(0))
IN THE PROGRAMMABLE OUTPUT DATA PATHS (474(A)(1)-474(0)(0))

Y

RECEIVING THE ACCUMULATOR QUTPUT SAMPLE SETS
(476(A)(1)-476(0)(0)) FROM THE ACCUMULATOR BLOCKS
(472(A)(1)-472(0)(0)) IN AN OUTPUT VECTOR PIPELINE STAGE (460(3))

FIG. 36

PCT/US2014/065825

WO 2015/073915

40/44

L€ "Old

—
=
PN
oo

(e ve (e

» {Ljoay

> (0)9op-(11)99¢

. : . fed
aums N A:m% ey) Qm% J (2)999 \ (€locy , (¢)30p
nUG <o e [L} g s Lo X] e o Xouwr) g e
38 38 88 88 4 88 55 88 83
& & A4 % , 4 A &
]
L HOLYT 135 s1nd <] (o) Jgpt L1 357 Nd < ()igp _ zu&..m.mm.s&& w\ 1207 | Ig.ﬁ wm.sa&
0800 1810 0800 1810 0800 1SLD 0500 1810
{0zoy {1z AT (cizgy
easnn 10 19 HE W Hylioshasno 8 HE Y MY (I0ChESDD 0 Y8 HE W OHY [shho 1 8 HE W MY
A A & 3 A 4 %, 3 b, 5. y. r A 5. 3 4 A -
\ml I'e £ i I S 4 um I d r 4 4 ¢ 4 ' \mUI.. b 4 4 I 4 F g \‘ I 4 f 4 £ 4 ' 4
o 3 3 e
.Lm ..Lm ..Lw l..__
7 7 & &
N Nu, ! !
=2 (O <L <L o o0 NCCAABQ LD {2 O oy < =g R O T O B o 5 S « & TR AL
(Lizay - (2izey o, ey
onoesl {oaugzess oy qu £t
4 4 Wor-(L 4 vor (A)par
[HoLv1 mwg&& [HOLYT38Nd <] | HOlYT m%@
sgw- wmv \ %/ %_w- %@m (8)09v-(11)99¥ (AJogy
ojosy-{ciosy xm@ L)ooy

PCT/US2014/065825

WO 2015/073915

41/44

8¢ "9l [oloy
’ 0S 05) Emz
089% ~a SOW opw SLW OJW SZW ozw SCW ogw
@mv mmv 2@
@@J , N AN AN
LN f y m@ $
o5} 4 86V (ol
oom\s v/w%
- (S1S) MOSSAYANOD 7 LIg ¥T
(€)z08
{1205 2)208
(0)e0g @ I /467
\ {06y ; _7/,€§) (@)ver L w/ﬁgv
(0)9bY T \. /T
(1)96% {2)96 (€)oY
(0)vey :v%v A%wv {C)yey
g v ’ g m ¥
3 -y &
o6 75§ ~J ‘\9 7 2oy ~] \\z/azv + H 7
(0)osy oesr LA (esy (@osr— 226y \ - (©)z6y
(0)88y (1)o6Y 1 v ()o6y - /
(0)98y A , (€)
p 1)ogY _ {Z)ogy €98y
I (1)gsy (2)asy B (¢)88y
[lagey ~— [Hlvooy
“ \
lolzey — [1]z8y = [zlzsy lelzgy ~ [Hlggoy
lol73s WEsoo e~ [oloeey [eh3s \ ﬁ__omﬁa\wa HE HY

:_%%

4 L1189y

A

9y

WO 2015/073915 PCT/US2014/065825
42/44

84

MULTIPLIER
BLOCK
(462)

460(1)<)

C S
496 ~ |~ 494

470 < 468

ACCUMULATOR
BLOCK (472)

478 <

! cy YS

4:2 COMPRESSOR
(508)
G 3 512

1804 514~ 512 /
517

460(2) < Y X |/
BIT SHIFTER
(516)

C S /51
a4 T~

517 ~_ | 512

cy YS

CARRY PROPAGATE
ADDER
(519)

S

\-476
Y

FIG. 39

PCT/US2014/065825
43/44

WO 2015/073915

Blozy

0F o4 | z 5 § —)
- =] Q_ M —./
5 (s~ g2 :
5 8 1 S~ mm N
E® [@ o @
ol 4 28 % i s 3 ity
* 2 s B
BT ALY (s 2
- \, 2y ez AP AT ﬂ A z
(olzs (= |
ﬁﬁﬁl R {0 jfr 0 ’
o 3 sl R ks
o Joies o8 g \,emmm & 0// (O ¢ \Msmwm @ 9™ {is
T A B N (olz)s e e
i Wi & L i ?N sy WS vey 4t '
i e 2 O (Dlois ()9 - liogr
T@ TQ 8@% s B _ M‘,\x\\\\\A_ %rmm /@ § \\ ﬂ\\ﬁﬁm
B .
SR NI | %zej P
0 pofotlh-r—y {080 , {1180 O2uF
" %ﬁ:\% z ol
f Ll A LI T] 91 .+ 9l iy
(ML P - — S| b
s | T (L5 =
N~ A XN <
““QHW Movvmm\ o ..l.“ "~ ,nQ:
f {nivic DD
o' {0l . % TN
s o & e o s 8 (1o0s K~ B8y | (pj0sc ™
2 2 o TH I L =9 22 2% |/
N 8 8XEY % | Iy [
AN s € 9% S b M BE R |3
(b gy (00888 \ o N ﬂ;f/meé g 55% ™ =
i Wos [b . olgsh l1 o6 \ (12 /
ET\ : v A \ - A ¥)
lole2p [z ooz Lzt [slozy ol

PCT/US2014/065825

WO 2015/073915

44/44

by "OId

m p—
| Gog M
{ IHOVO :
M :
m
m :
M]
- — 0.5 ;| HITIONINOD AYOWIN ;
§9% 535 (8)301A3a m |
(§)301A30 (§)301A30 JOVAILNI 556 |
indino LNdN| MHOMLIN SRS i . A J
095 SNg W3LSAS
(s) &
e
956~ ¥ o
(S)40SSI00Md 1 IHOVD Y
7% (SIndo 8l¢ (s) %3
()Avidsia SiH0SeI0kd

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/065825

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/38 GO6F15/80
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F GO5F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2006/106342 A2 (ICERA INC [GB]; KNOWLES 1,2,4,6,
SIMON [GB] ICERA INC [GB]; KNOWLES SIMON 8,10,12,
[GB];) 12 October 2006 (2006-10-12) 13,15,
17-22,
24-26
the whole document
X US 2007/061550 Al (BARLOW STEPHEN [GB] ET 1,6,8,
AL) 15 March 2007 (2007-03-15) 20,21
paragraph [0041] - paragraph [0061]
paragraph [0081] - paragraph [0082]
X US 2008/140750 Al (KERSHAW DANIEL [GB] ET 1,20,21
AL) 12 June 2008 (2008-06-12)
paragraph [0014] - paragraph [0015]
paragraph [0025]
paragraph [0073] - paragraph [0074]
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 February 2015

Date of mailing of the international search report

27/02/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Klocke, Lynn

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

AL) 1 September 2005 (2005-09-01)
the whole document

PCT/US2014/065825
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 2 455 854 Al (CEVA D S P LTD [IL]) 1,20,21
23 May 2012 (2012-05-23)
paragraph [0038]
paragraph [0040]
paragraph [0057]
A WO 2009/144683 Al (NXP BV [NL]; SMRITI 1,20,21
MAHIMA [NL]; SMEETS JEAN-PAUL CHARLES
FRANC [NL];) 3 December 2009 (2009-12-03)
the whole document
A US 2008/077768 Al (INOUE HIROSHI [JP] ET 1,20,21
AL) 27 March 2008 (2008-03-27)
the whole document
A US 2005/193185 Al (TAUNTON MARK [GB] ET 1,20,21

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/065825
Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2006106342 A2 12-10-2006 BR PI0609742 A2 18-10-2011
CA 2600744 Al 12-10-2006
CN 101208658 A 25-06-2008
CN 103744639 A 23-04-2014
EP 1866744 A2 19-12-2007
JP 5047944 B2 10-10-2012
JP 2008535115 A 28-08-2008
KR 20070118623 A 17-12-2007
US 2006227966 Al 12-10-2006
WO 2006106342 A2 12-10-2006

US 2007061550 Al 15-03-2007 GB 2382887 A 11-06-2003
US 2003154361 Al 14-08-2003
US 2007061550 Al 15-03-2007

US 2008140750 Al 12-06-2008 NONE

EP 2455854 Al 23-05-2012 CA 2758366 Al 18-05-2012
EP 2455854 Al 23-05-2012
US 2012131308 Al 24-05-2012

WO 2009144683 Al 03-12-2009 CN 102047219 A 04-05-2011
EP 2300911 Al 30-03-2011
US 2011314254 Al 22-12-2011
WO 2009144683 Al 03-12-2009

US 2008077768 Al 27-03-2008 US 2008077768 Al 27-03-2008
US 2009222644 Al 03-09-2009
US 2013042092 Al 14-02-2013

US 2005193185 Al 01-09-2005 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - claims
	Page 120 - claims
	Page 121 - claims
	Page 122 - claims
	Page 123 - claims
	Page 124 - claims
	Page 125 - claims
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - wo-search-report
	Page 171 - wo-search-report
	Page 172 - wo-search-report

