CORRECTED EUROPEAN PATENT SPECIFICATION

Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description Paragraph(s) 7, 37, 42, 48-51, 59, 63
Claims EN 26

Corrigendum issued on:
08.07.2009 Bulletin 2009/28

Date of publication and mention of the grant of the patent:
15.10.2008 Bulletin 2008/42

Application number: 99956822.3

Date of filing: 01.11.1999

MULTIPARTICULATE MODIFIED RELEASE COMPOSITION OF METHYLPHENIDATE
MULTIPARTIKULÄRE ZUSAMMENSETZUNG VON METHYLPHENIDAT MIT MODIFIZIERTER FREISETZUNG
COMPOSITION DE METHYLPHENIDATE A LIBERATION MODIFIÉE MULTIPARTICULAIRE

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Priority: 02.11.1998 US 106726 P

Date of publication of application: 29.08.2001 Bulletin 2001/35

Divisional application:
08013053.7 / 2 020 229

Proprietor: Elan Pharma International Limited
Athlone
County Westmeath (IE)

Inventors:
• DEVANE, John, G.
 Athlone, County Westmeath (IE)
• FANNING, Niall, M., M.
 Rathfarnham
 Dublin (IE)
• STARK, Paul
 County Westmeath (IE)
• GURVINDER, Singh Rekhi
 Suwanee, GA 30024 (US)

Representative: Ryan, Anne Mary
Anne Ryan & Co.
60 Northumberland Road
Ballsbridge
Dublin 4 (IE)

References cited:
US-A- 4 888 178
US-A- 5 837 284

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a multiparticulate modified release composition. In particular, the present invention relates to a multiparticulate modified release composition that in operation delivers an active ingredient in a pulsatile manner. The present invention further relates to solid oral dosage forms containing such a multiparticulate controlled release composition.

Description of the Prior art

[0002] The plasma profile associated with the administration of a drug compound may be described as a “pulsatile profile” in which pulses of high active ingredient concentration, interspersed with low concentration troughs, are observed. A pulsatile profile containing two peaks may be described as “bimodal”. Similarly, a composition or a dosage form which produces such a profile upon administration may be said to exhibit “pulsed release” of the active ingredient.

[0003] Conventional frequent dosage regimes in which an immediate release (IR) dosage form is administered at periodic intervals typically gives rise to a pulsatile plasma profile. In this case, a peak in the plasma drug concentration is observed after administration of each IR dose with troughs (regions of low drug concentration) developing between consecutive administration time points. Such dosage regimes (and their resultant pulsatile plasma profiles) have particular pharmacological and therapeutic effects associated with them. For example, the wash out period provided by the fall off of the plasma concentration of the active ingredient between peaks has been thought to be a contributing factor in reducing or preventing patient tolerance to various types of drugs.

[0004] Many controlled release drug formulations are aimed at producing a zero-order release of the drug compound. Indeed, it is often a specific object of these formulations to minimise the peak-to-trough variation in drug plasma levels associated with conventional frequent dosage regimes. However, some of the therapeutic and pharmacological effects intrinsic in a pulsatile system may be lost or diminished as a result of the constant or nearly constant plasma levels achieved by zero-order release drug delivery systems. Thus, a modified release composition or formulation which substantially mimics the release of frequent IR dosage regimes, while reducing the need for frequent dosing, is desirable.

[0005] A typical example of a drug which may produce tolerance in patients is methylphenidate. Methylphenidate, or α-phenyl-2-piperidine acetic acid methyl ester, is a stimulant affecting the central nervous and respiratory systems and is primarily used in the treatment of attention deficit disorder. After absorption from the gastrointestinal tract (GIT), drug effects persist for 3–6 hours after oral administration of conventional IR tablets or up to about 8 hours after oral administration of extended release formulations. The total dosage is typically in the range of 5–30 mg per day, in exceptional cases rising to 60 mg/day. Under conventional dosage regimes, methylphenidate is given twice daily, typically with one dose given before breakfast and a second dose given before lunch. The last daily dose is preferably given several hours before retiring. Adverse effects associated with methylphenidate treatment include insomnia and the development of patient tolerance.

[0006] WO 98/14168 (Alza Corp.) teaches a dosage form and a method of administering methylphenidate in a sustained and constantly ascending rate. The dosage form disclosed comprises a plurality of beads comprising a hydrogel matrix with increasing amounts of the active ingredient therein, coated with varying amounts of a release rate controlling material. Appropriate combinations of the active ingredient dose and the number and thickness coating layers can be selected to give an ascending release profile in which the plasma concentration of the active ingredient continually increases over a given period of time. In contrast to the present invention, an object of WO 98/14168 is to provide a dosage form to specifically avoid uneven blood levels (characterised by peaks and troughs) associated with conventional treatments using immediate release dosage formulations.

[0007] WO 97/03672 (Chiroscience Ltd.) discloses that methylphenidate exhibits a therapeutic effect when administered in the form of a racemic mixture or in the form of a single isomer (such as the RR d-threo enantiomer). Further, WO 97/03672 (Chiroscience Ltd.) discloses a sustained release formulation containing dtmp. This disclosure teaches the use of a composition comprising a coating through which the dtmp passes in order to attain sustained release and achieve serum levels (of the active ingredient) of at least 50% c_{max} over a period of at least 8 hours. Thus, this formulation does not deliver the active ingredient in a pulsatile manner.

[0008] Shah et al., J. Cont. Rel. (1989) 9:169-175 discloses that certain types of hydroxypropyl methylcellulose ethers compressed into a solid dosage form with a therapeutic agent may give a bimodal release profile. However, it was noted that while polymers from one supplier yielded a bimodal profile, the same polymers with almost identical product specifications obtained from a different source gave non-bimodal release profiles.

[0009] Giunchedi et al., Int. J. Pharm (1991) 77:177-181 discloses the use of a hydrophilic matrix multiple-unit formulation for the pulsed release of ketoprofen. Giunchedi et al. teach that ketoprofen is rapidly eliminated from the blood after dosing (plasma half-life 1-3 hours) and consecutive pulses of drug may be more beneficial than constant release.
for some treatments. The multiple-unit formulation disclosed comprises four identical hydrophilic matrix tablets placed in a gelatin capsule. Although the in vivo studies show two peaks in the plasma profile there is no well defined wash out period and the variation between the peak and trough plasma levels is small.

Accordingly, it is an object of the present invention to provide a multiparticulate modified release composition in which a first component containing the active ingredient, a barrier layer (the second layer) of semi-permeable material which is interposed between the first layer and a third layer containing an additional amount of active ingredient. The barrier layer and the third layer are housed in an impermeable casing. The first layer dissolves upon contact with a dissolving fluid while the third layer is only available after dissolution or rupture of the barrier layer. In such a tablet the first portion of active ingredient must be released instantly. This approach also requires the provision of a semi-permeable layer between the first and third layers in order to control the relative rates of delivery of the two portions of active ingredient. Additionally, rupture of the semi-permeable layer leads to uncontrolled dumping of the second portion of the active ingredient which may not be desirable.

Another object of the invention is to provide a multiparticulate modified release composition capable of releasing methylphenidate in a pulsatile manner.

It is a further object of the invention to provide a multiparticulate modified release composition which in operation produces a plasma profile substantially similar to the plasma profile produced by the administration of two or more IR dosage forms given sequentially.

Another object of the invention is to provide solid oral dosage forms comprising a multiparticulate modified release composition having a first component containing particles and a second component comprising a second population of methylphenidate-containing particles. The methylphenidate-containing particles of the second component

Brief Description of the Invention

The above objects are realised by a multiparticulate modified release composition having a first component comprising a first population of methylphenidate-containing particles and a second component comprising a second population of methylphenidate-containing particles. The methylphenidate-containing particles of the second component
are coated with a modified release coating. Alternatively or additionally, the second population of methylphenidate-containing particles further comprises a modified release matrix material. Following oral delivery, the composition in operation delivers the methylphenidate in a pulsatile manner.

[0023] In a preferred embodiment of a multiparticulate modified release composition according to the invention the first component is an immediate release component.

[0024] The modified release coating applied to the second population of methylphenidate containing particles causes a lag time between the release of methylphenidate from the first population of methylphenidate containing particles and the release of methylphenidate from the second population of methylphenidate containing particles. Similarly, the presence of a modified release matrix material in the second population of methylphenidate containing particles causes a lag time between the release of methylphenidate from the first population of methylphenidate containing particles and the release of methylphenidate from the second population of methylphenidate containing particles. The duration of the lag time may be varied by altering the composition and/or the amount of the modified release coating and/or altering the composition and/or amount of modified release matrix material utilised. Thus, the duration of the lag time can be designed to mimic a desired plasma profile.

[0025] Because the plasma profile produced by the multiparticulate modified release composition upon administration is substantially similar to the plasma profile produced by the administration of two or more IR dosage forms given sequentially, the multiparticulate controlled release composition of the present invention is particularly useful for administering methylphenidate for which patient tolerance may be problematical. This multiparticulate modified release composition is therefore advantageous for reducing or minimising the development of patient tolerance to the methylphenidate in the composition.

[0026] The composition in operation delivers the methylphenidate in a bimodal or pulsed manner. Such a composition in operation produces a plasma profile which substantially mimics that obtained by the sequential administration of two IR doses as, for instance, in a typical methylphenidate treatment regime.

[0027] The present invention also provides solid oral dosage forms comprising a composition according to the invention.

[0028] The present invention further provides use of a multiparticulate modified release composition as hereinabove defined in the preparation of a medicament for the treatment of attention deficit disorder.

[0029] Advantages of the present invention include reducing the dosing frequency required by conventional multiple IR dosage regimes while still maintaining the benefits derived from a pulsatile plasma profile. This reduced dosing frequency is particularly advantageous in the case of children in that it eliminates the need for dosing during the middle of the school day which can be both disruptive and embarrassing for the patient. It is also advantageous in terms of patient compliance to have a formulation which may be administered at reduced frequency. The reduction in dosage frequency made possible by utilising the present invention would contribute to reducing health care costs by reducing the amount of time spent by health care workers on the administration of drugs. In the case of methylphenidate, and other controlled substances, the use of a once-daily formulation (in place of multiple IR doses) reduces or eliminates the need for the storage of controlled substances on the premises of schools or other institutions.

Description of the Drawings

[0030] Figure 1 shows methylphenidate plasma profiles following oral administration of the following three formulations to human volunteers: A - 20 mg methylphenidate formulation having an immediate release component comprising particles containing a total of 10 mg methylphenidate (according to Table 1 (ii)) and a modified release component comprising particles containing a total of 10 mg methylphenidate (according to Table 2 (viii)); IR particles coated to a 30% weight gain); B - 20 mg methylphenidate formulation having an immediate release component comprising particles containing a total 10 mg methylphenidate (according to Table 1 (ii)) and a modified release component comprising particles containing a total of 10 mg methylphenidate (according to Table 2 (vii)); IR particles coated to a 30% weight gain); and Control - two doses of 10 mg Ritalin® Hydrochloride (IR) tablets administered at times 0 and 4 hours (total of 20 mg methylphenidate administered).

Detailed Description of the Invention

[0031] The term "particulate" as used herein refers to a state of matter which is characterised by the presence of discrete particles, pellets, beads or granules irrespective of their size, shape or morphology. The term "multiparticulate" as used herein means a plurality of discrete, or aggregated, particles, pellets, beads, granules or mixture thereof irrespective of their size, shape or morphology.

[0032] The term "modified release" as used herein in relation to the composition according to the invention or a coating or coating material or used in any other context means release which is not immediate release and is taken to encompass...
controlled release, sustained release and delayed release.

[0033] The term "time delay" as used herein refers to the duration of time between administration of the composition and the release of the methylphenidate from a particular component.

[0034] The term "lag time" as used herein refers to the time between delivery of methylphenidate from one component and the subsequent delivery of methylphenidate from another component.

[0035] The multiparticulate modified release composition of the invention may have more than two methylphenidate containing components. In this case the release of active ingredient from the second and subsequent components is modified such that there is a lag time between the release of methylphenidate from the first component and each subsequent component. The number of pulses in the profile arising from such a composition in operation will depend on the number of methylphenidate containing components in the composition. A composition containing three methylphenidate containing components will give rise to three pulses in the profile.

[0036] The invention combines the advantages of a pulsatile plasma profile with a reduced frequency dosage regime. The pharmacological and therapeutic effects of methylphenidate benefit from having a wash-out period between plasma concentration peaks, such methylphenidate is susceptible to the development of patient tolerance.

[0037] The methylphenidate present in one component of the composition may be accompanied by, for example, an enhancer compound or a sensitisier compound in another component of the composition, in order to modify the bioavailability or therapeutic effect of the drug compound.

[0038] As used herein, the term "enhancer" refers to a compound which is capable of enhancing the absorption and/or bioavailability of by promoting net transport across the GIT in an animal, such as a human. Enhancers include medium chain fatty acids; salts, esters, ethers and derivatives thereof, including glycerides and triglycerides; non-ionic surfactants such as those that can be prepared by reacting ethylene oxide with a fatty acid, a fatty alcohol, an alkylphenol or a sorbitan or glyceryl fatty acid ester; cytochrome P450 inhibitors, P-glycoprotein inhibitors and the like; and mixtures of two or more of these agents.

[0039] The proportion of methylphenidate contained in each component may be the same or different depending on the desired dosing regime. The methylphenidate may be present, in the first component individually or in combination with the methylphenidate in the second component, in any amount sufficient to elicit a therapeutic response. The methylphenidate, when applicable, may be present either in the form of one substantially optically pure enantiomer or as a mixture, racemic or otherwise, of enantiomers. The methylphenidate is preferably present in a composition in an amount of from 0.1 - 500 mg, preferably in the amount of from 1-100 mg. The methylphenidate is preferably present in the first component in an amount of from 0.5 - 60 mg; more preferably the methylphenidate is present in the first component in an amount of from 2.5 - 30 mg. The methylphenidate is present in the subsequent components in an amount within a similar range to that described for the first component.

[0040] The time release characteristics for the release of the methylphenidate from each of the components may be varied by modifying the composition of each component, including modifying any of the excipients or coatings which may be present. In particular the release of the methylphenidate may be controlled by changing the composition and/or the amount of the modified release coating on the particles, if such a coating is present. If more than one modified release component is present, the modified release coating for each of these components may be the same or different. Similarly, when modified release is facilitated by the inclusion of a modified release matrix material, release of the methylphenidate may be controlled by the choice and amount of modified release matrix material utilised. The modified release coating may be present, in each component, in any amount that is sufficient to yield the desired delay time for each particular component. The modified release coating may be present, in each component, in any amount that is sufficient to yield the desired time lag between components.

[0041] The lag time or delay time for the release of the methylphenidate from each component may also be varied by modifying the composition of each of the components, including modifying any excipients and coatings which may be present. For example the first component may be an immediate release component wherein the methylphenidate is released substantially immediately upon administration. Alternatively, the first component may be, for example, a time-delayed immediate release component in which the methylphenidate is released substantially immediately after a time delay. The second component may be, for example, a time-delayed immediate release component as just described or, alternatively, a time-delayed sustained release or extended release component in which the methylphenidate is released in a controlled fashion over an extended period of time.

[0042] As will be appreciated by those skilled in the art, the exact nature of the plasma concentration curve will be influenced by the combination of all of these factors just described. In particular, the lag time between the delivery (and thus also the onset of action) of the methylphenidate in each component may be controlled by varying the composition and coating (if present) of each of the components. Thus by variation of the composition of each component (including the amount and nature of the methylphenidate) and by variation of the lag time, numerous release and plasma profiles may be obtained. Depending on the duration of the lag time between the release of methylphenidate from each component and the nature of the release from each component (i.e. immediate release, sustained release etc.), the pulses in the plasma profile may be well separated and clearly defined peaks (e.g. when the lag time is long) or the pulses may be...
superimposed to a degree (e.g. in when the lag time is short).

In a preferred embodiment, the multiparticulate modified release composition according to the present invention has an immediate release component and at least one modified release component, the immediate release component comprising a first population of methylphenidate containing particles and the modified release components comprising second and subsequent populations of methylphenidate containing particles. The second and subsequent modified release components may comprise a controlled release coating. Additionally or alternatively, the second and subsequent modified release components may comprise a modified release matrix material. In operation, administration of such a multiparticulate modified release composition having, for example, a single modified release component results in characteristic pulsatile plasma concentration levels of the methylphenidate in which the immediate release component of the composition gives rise to a first peak in the plasma profile and the modified release component gives rise to a second peak in the plasma profile. Embodiments of the invention comprising more than one modified release component give rise to further peaks in the plasma profile.

Such a plasma profile produced from the administration of a single dosage unit is advantageous when it is desirable to deliver two (or more) pulses of methylphenidate without the need for administration of two (or more) dosage units. Additionally, in the case of some disorders it is particularly useful to have such a bimodal plasma profile. For example, a typical methylphenidate treatment regime consists of administration of two doses of an immediate release dosage formulation given four hours apart. This type of regime has been found to be therapeutically effective and is widely used. The plasma profile produced by such an administration regime is illustrated by the "Control" curve in Figure 1. As previously mentioned, the development of patient tolerance is an adverse effect sometimes associated with methylphenidate treatments. It is believed that the trough in the plasma profile between the two peak plasma concentrations is advantageous in reducing the development of patient tolerance by providing a period of wash out of the methylphenidate. Drug delivery systems which provide zero order or pseudo zero order delivery of the methylphenidate do not facilitate this wash out process.

Any coating material which modifies the release of the methylphenidate in the desired manner may be used. In particular, coating materials suitable for use in the practice of the invention include polymer coating materials, such as cellulose acetate phthalate, cellulose acetate trimellitate, hydroxy propyl methylcellulose phthalate, polyvinyl acetate phthalate, ammonio methacrylate copolymers such as those sold under the Trade Mark Eudragit®RS and RL, poly acrylic acid and poly acrylate and methacrylate copolymers such as those sold under the Trade Mark Eudragit® S and L, polyvinyl acetaldehyde amino acetate, hydroxypropyl methylcellulose acetate succinate, shellac; hydrogels and gel-forming materials, such as carboxyvinyl polymers, sodium alginate, sodium carmellose, calcium carmellose, sodium carboxymethyl starch, poly vinyl alcohol, hydroxyethyl cellulose, methyl cellulose, gelatin, starch, and cellulose based cross-linked polymers -in which the degree of crosslinking is low so as to facilitate adsorption of water and expansion of the polymer matrix, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinylpyrrolidone, crosslinked starch, microcrystalline cellulose, chitin, aminoacryl-methacrylate copolymer (Eudragit® RS-PM, Rohm & Haas), pullulan, col- lagen, casein, agar, gum arabic, sodium carboxymethyl cellulose, (swellable hydrophilic polymers) poly(hydroxyalkyl methacrylate) (m. wt. ~5 - 5,000k), polyvinylpyrrolidone (m. wt. ~10k - 360k), anionic and cationic hydrogels, polyvinyl alcohol having a low acetate residual, a swellable mixture of agar and carboxymethyl cellulose, copolymers of maleic anhydride and styrene, ethylene, propylene or isobutylene, pectin (m. wt. ~30k - 300k), polysaccharides such as agar, acacia, karaya, tragacanth, algin and guar, polyacrylamides, Polyox® polyethylene oxides (m. wt. ~100k - 5,000k), AquaKeep® acrylate polymers, diesters of polyglucan, crosslinked polyvinyl alcohol and poly N-vinyl-2-pyrrolidone, sodium starch galactate (e.g. Expolab®, Edward Mandell C. Ltd.); hydrophilic polymers such as polysaccharides, methyl cellulose, sodium or calcium carboxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, nitro cellulose, carboxymethyl cellulose, cellulose ethers, polyethylene oxides (e.g. Polyox®, Union Carbide), methyl ethyl cellulose, ethylhydroxy ethylcellulose, cellulose acetate, cellulose butyrate, cellulose propionate, gelatin, collagen, starch, maltodextrin, pullulan, polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl acetate, glycerol fatty acid esters, polyacrylamide, polyacrylic acid, copolymers of methacrylic acid or methacrylic acid (e.g. Eudragit®, Rohm and Haas), other acrylic acid derivatives, sorbitan esters, natural gums, lecithins, pectin, alginates, ammonia alginate, sodium, calcium, potassium alginate, propylene glycol alginate, agar, and gums such as arabic, karaya, locust bean, tragacanth, carrageens, guar, xanthan, sclerogluca and mixtures and blends thereof. As will be appreciated by the person skilled in the art, excipients such as plasticisers, lubricants, solvents and the like may be added to the coating. Suitable plasticisers include for example acetylated monoglycerides; butylphthalat butyl glycolate; dibutyl tartrate; diethyl phthalate; dimethyl phthalate; ethyl phthalat ethyl glycolate; glyceria; propylene glycol; triacetin; citrate; tripropionio diace- tin; dibutyl phthalate; acetyl monoglyceride; polyethylene glycols; castor oil; triethyl citrate; polyhydric alcohols, glycerol, acetate esters, glycerol triacetate, acetyl triethyl citrate, dibenzyl phthalate, dihexyl phthalate, butyl octyl phthalate, diisononyl phthalate, butyl octyl phthalate, dioctyl azelate, epoxidised tallate, trisocetyl trimellitate, diethylhexyl phthalate, di-n-octyl phthalate, di-i-octyl phthalate, di-i-decyl phthalate, di-n-undecyl phthalate, di-n-tridecyl phthalate, tri-2-ethylhexyl trimellitate, di-2-ethylhexyl adipate, di-2-ethylhexyl sebacate, di-2-ethylhexyl azelate, dibutyl sebacate.

When the modified release component comprises a modifier release matrix material, any suitable modified
A multiparticulate modified release composition according to the present invention may be incorporated into any suitable dosage form which facilitates release of the methylphenidate in a pulsatile manner. Typically, the dosage form may be a blend of the different populations of methylphenidate containing particles which make up the immediate release and the modified release components, the blend being filled into suitable capsules, such as hard or soft gelatin capsules. Alternatively, the different individual populations of methylphenidate containing particles may be compressed (optionally with additional excipients) into mini-tablets which may be subsequently filled into capsules in the appropriate proportions. Another suitable dosage form is that of a multilayer tablet. In this instance the first component of the multiparticulate modified release composition may be compressed into one layer, with the second component being subsequently added as a second layer of the multilayer tablet. The populations of methylphenidate containing particles making up the composition of the invention may further be included in rapidly dissolving dosage forms, such as an effervescent dosage form or a fast-melt dosage form.

The composition according to the invention comprises at least two populations of methylphenidate containing particles which have different in vitro dissolution profiles.

Preferably, in operation the composition of the invention and the solid oral dosage forms containing the composition release the methylphenidate such that substantially all of the methylphenidate contained in the first component is released prior to release of the methylphenidate from the second component. When the first component comprises an IR component, for example, it is preferable that release of the methylphenidate from the second component is delayed until substantially all the methylphenidate in the IR component has been released. Release of the methylphenidate from the second component may be delayed as detailed above by the use of a modified release coating and/or a modified release matrix material.

More preferably, when it is desirable to minimise patient tolerance by providing a dosage regime which facilitates wash-out of a first dose of methylphenidate from a patient's system, release of the methylphenidate from the second component is delayed until substantially all of the methylphenidate contained in the first component has been released, and further delayed until at least a portion of the methylphenidate released from the first component has been cleared from the patient's system. In a preferred embodiment, release of the methylphenidate from the second component of the composition in operation is substantially, if not completely, delayed for a period of at least two hours after administration of the composition.

In the case of methylphenidate, release thereof from the second component of the composition in operation is substantially, if not completely, delayed for a period of at least about four hours, preferably about four hours, after administration of the composition.

In the following Examples all percentages are weight by weight unless otherwise stated. The term "purified water" as used throughout the Examples refers to water that has been purified by passing it through a water filtration system.

Example 1. Multiparticulate modified release composition containing methylphenidate.

A multiparticulate modified release composition according to the present invention comprising an immediate release component and a modified release component and containing methylphenidate as the active ingredient is prepared as follows.

(a) Immediate release component.

A solution of methylphenidate HCl (50:50 racemic mixture) is prepared according to any of the formulations given in Table 1. The methylphenidate solution is then coated onto non-pariel seeds to a level of approximately 16.9% solids weight gain using, for example, a Glatt GPCG3 (Glatt, Protech Ltd., Leicester, UK) fluid bed coating apparatus to form the IR particles of the immediate release component.
(b) Modified release component.

Methylphenidate containing delayed release particles are prepared by coating immediate release particles prepared according to Example 1 (a) above with a modified release coating solution as detailed in Table 2. The immediate release particles are coated to varying levels up to approximately to 30% weight gain using, for example, a fluid bed apparatus.

Table 1: Immediate release component solutions

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount, % (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylphenidate HCl</td>
<td>13.0</td>
</tr>
<tr>
<td>Polyethylene Glycol 6000</td>
<td>0.5</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone</td>
<td>3.5</td>
</tr>
<tr>
<td>Purified Water</td>
<td>83.5</td>
</tr>
</tbody>
</table>

Table 2: Modified release component coating solutions

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount, % (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)</td>
</tr>
<tr>
<td>Eudragit® RS 12.5</td>
<td>49.7 42.0 47.1 53.2 40.6 - - 25.0</td>
</tr>
<tr>
<td>Eudragit® S 12.5</td>
<td>- - - - - 54.35 46.5 -</td>
</tr>
<tr>
<td>Eudragit® L 12.5</td>
<td>- - - - - - - 25.0</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone</td>
<td>- - - 0.35 0.3 - - -</td>
</tr>
<tr>
<td>Diethylphthalate</td>
<td>0.5 0.5 0.6 1.35 0.6 1.3 1.1 -</td>
</tr>
<tr>
<td>Triethylcitrate</td>
<td>- - - - - - - 1.25</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>39.8 33.1 37.2 45.1 33.8 44.35 49.6 46.5</td>
</tr>
<tr>
<td>Acetone</td>
<td>10.0 8.3 9.3 - 8.4 - - -</td>
</tr>
<tr>
<td>Talc¹</td>
<td>- 16.0 5.9 - 16.3 - 2.8 2.25</td>
</tr>
</tbody>
</table>

¹Talc is simultaneously applied during coating for formulations in column (i), (iv) and (vi).

(c) Dissolution testing

pH independent coated components ((i) to (v) Table 2) are tested in vitro in USP Type 1 apparatus (100 rpm) according to the following protocol: the sample is placed in 0.01 N HCl (900 ml), pH 2.0, 37°C for all of the sampling time points.

pH dependent coated components (vi) to (viii) Table 2) are tested in USP Type 1 apparatus (100 rpm) according to a modified version of the United States Pharmacopoeia method for enteric protection (USP 23, 1995, p.1795): the sample is placed for 2 hours in 0.01 N HCl and then transferred to phosphate buffer pH 6.8 for the remainder of the sampling time points.

IR components were formulated using three different sizes of non-pareil seeds having diameter dimensions of 0.5 - 0.6, 0.6 - 0.71 and 0.71 - 0.85 mm, respectively. The IR particles formed by coating 0.5 - 0.6, 0.6 - 0.71 and 0.71 - 0.85 mm non-pareil seeds were found to release 100% of the active ingredient within 20 minutes in aqueous media.

Dissolution data for the modified release components prepared according to Example 1 (b) above are shown in Tables 3 (a) to 3 (c): This data shows that release characteristics of the modified release component can be varied by changing the composition and thickness of the coating applied.
Table 3 (a): Dissolution data for modified release components formulated with coating solutions given in Table 2

<table>
<thead>
<tr>
<th>Coating formulation</th>
<th>(i)</th>
<th>(i)</th>
<th>(i)</th>
<th>(ii)</th>
<th>(ii)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating level (% weight gain)</td>
<td>4% 6% 10%</td>
<td>4% 6%</td>
<td>8% 4%</td>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (hr)</td>
<td>% Active ingredient released</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.5</td>
<td>1.3</td>
<td>1.4</td>
<td>6.1</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>3.3</td>
<td>0</td>
<td>36.9</td>
<td>7.1</td>
<td>3.7</td>
<td>21.3</td>
<td>8.2</td>
</tr>
<tr>
<td>4</td>
<td>51.5</td>
<td>22.1</td>
<td>0</td>
<td>80.0</td>
<td>40.3</td>
<td>15.1</td>
<td>62.3</td>
<td>26.3</td>
</tr>
<tr>
<td>6</td>
<td>75.8</td>
<td>46.5</td>
<td>0</td>
<td>92.8</td>
<td>72.4</td>
<td>31.2</td>
<td>82.1</td>
<td>52.6</td>
</tr>
<tr>
<td>8</td>
<td>86.0</td>
<td>65.5</td>
<td>10.2</td>
<td>97.5</td>
<td>83.0</td>
<td>47.5</td>
<td>91.3</td>
<td>73.0</td>
</tr>
<tr>
<td>10</td>
<td>91.3</td>
<td>76.5</td>
<td>17.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>97.7</td>
<td>86.5</td>
</tr>
</tbody>
</table>

(the notation "-" indicates no measurement taken)

Table 3 (b): Dissolution data for modified release components formulated with coating solutions given in Table 2

<table>
<thead>
<tr>
<th>Coating formulation</th>
<th>(iv)</th>
<th>(iv)</th>
<th>(iv)</th>
<th>(v)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating level (% weight gain)</td>
<td>10% 15% 20%</td>
<td>10%</td>
<td>12.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (hr)</td>
<td>% Active ingredient released</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>0.9</td>
<td>1.1</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>13.4</td>
<td>5.4</td>
<td>2.9</td>
<td>6.1</td>
<td>2.9</td>
</tr>
<tr>
<td>4</td>
<td>47.1</td>
<td>22.5</td>
<td>13.8</td>
<td>42.4</td>
<td>21.2</td>
</tr>
<tr>
<td>6</td>
<td>80.0</td>
<td>52.0</td>
<td>36.9</td>
<td>77.5</td>
<td>54.4</td>
</tr>
<tr>
<td>8</td>
<td>94.8</td>
<td>70.3</td>
<td>61.0</td>
<td>92.4</td>
<td>79.7</td>
</tr>
<tr>
<td>10</td>
<td>103</td>
<td>81.5</td>
<td>76.1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(the notation "-" indicates no measurement taken)

Table 3 (c): Dissolution data for modified release components formulated with coating solutions given in Table 2

<table>
<thead>
<tr>
<th>Coating formulation</th>
<th>(vi)</th>
<th>(vi)</th>
<th>(vi)</th>
<th>(vii)</th>
<th>(vii)</th>
<th>(viii)</th>
<th>(viii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating level (% weight gain)</td>
<td>5% 10% 15%</td>
<td>15%</td>
<td>15%</td>
<td>20%</td>
<td>20%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Time (hr)</td>
<td>% Active ingredient released</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>33.2</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>3.9</td>
<td>0.6</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>80.6</td>
<td>9.8</td>
<td>0</td>
<td>0.5</td>
<td>52.0</td>
<td>12.4</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>92.2</td>
<td>43.5</td>
<td>10.1</td>
<td>44.0</td>
<td>85.0</td>
<td>61.6</td>
<td>43.7</td>
</tr>
<tr>
<td>6</td>
<td>93.9</td>
<td>61.6</td>
<td>29.9</td>
<td>80.2</td>
<td>89.9</td>
<td>75.3</td>
<td>72.4</td>
</tr>
<tr>
<td>8</td>
<td>94.3</td>
<td>67.5</td>
<td>48.4</td>
<td>69.0</td>
<td>91.4</td>
<td>79.6</td>
<td>79.2</td>
</tr>
</tbody>
</table>
(d) Encapsulation of immediate and delayed release particles.

The immediate and delayed release particles prepared according to Example 1 (a) and (b) above are encapsulated in size 2 hard gelatin capsules to an overall 20 mg dosage strength using, for example, a Bosch GKF 4000S encapsulation apparatus. The overall dosage strength of 20 mg methylphenidate was made up of 10 mg from the immediate release component and 10 mg from the modified release component.

Table 4 shows the dissolution profiles for two multiparticulate modified release compositions prepared using the immediate release coating solution given in Table 1 (ii) and the modified release coating solutions given in Table 2 (vii) and (viii). These results indicate that approximately 50% of the methylphenidate HCl active ingredient was released within the first half hour with release from the modified release component being delayed for about four hours.

Example 2. Multiparticulate modified release composition containing methylphenidate.

The dissolution profiles shown in Table 4 indicate that the compositions containing the pH dependent coated components release the methylphenidate active ingredient in a pulsed manner. A first pulse occurs before 1 hour followed by a plateau region where the release of further amounts of the active ingredient is suppressed. The plateau region is in tum followed by a second pulse of active ingredient release as indicated by the increase in drug concentration from 4 hours onward.

Example 2. Multiparticulate modified release composition containing methylphenidate.

Multiparticulate modified release methylphenidate compositions according to the present invention having an immediate release component and a modified release component having a modified release matrix material are prepared according to the formulations shown in Table 5 (a) and (b).
In vivo release

In a human cross-over bio-study, fasted healthy volunteers were dosed with 20 mg methylphenidate HCl compositions according to the present invention to compare the bioavailability of methylphenidate HCl in these compositions relative to Ritalin® (Novartis; 10 mg dosed twice at a four hour interval). Pharmacokinetic assessment was based on the plasma levels of methylphenidate measured by blood sampling at regular intervals up to 48 hours after administration. Blood samples were also taken for pre- and post-study screening.

Referring now to Figure 1, the plasma profiles labelled “A” (modified component comprises IR particles coated with coating Table 2 (viii) at 30%) and “B” (modifies component comprises IR particles coated with coating Table 2 (vii) at 30 %) correspond to the plasma concentrations of methylphenidate observed in human volunteers after oral administration of the multiparticulate modified release compositions prepared according to Example 1: In both cases the plasma profile is qualitatively similar to the control, typical of prior art treatments (labelled “Control” in Figure 1), which consists of two doses of Ritalin® IR given sequentially, four hours apart.

For the multiparticulate modified release composition according to the present invention prepared according to Example 1 above, the first peak in the plasma profile associated with the immediate release component is similar in terms of c_{max} and peak width to the peak associated with the first dose of Ritalin® in the control profile. Profile A shows that the trough characteristic of the conventional twice daily administration (as exemplified by the control profile) is mimicked by the composition prepared according to the invention. Profile B also shows a significant fall off after the initial peak in plasma concentration. For both multiparticulate modified release compositions, the effect of the modified release component is to increase plasma concentrations four hours after administration resulting in a second peak level. This observed effect again mimics the control.

In a separate study, 34 children with ADHD were dosed with 20 mg methylphenidate HCl compositions according to the present invention a typical twice daily treatment (represented by the control) in terms of the plasma profile achieved upon administration. This in vivo release of methylphenidate from compositions according to the invention was achieved without any loss in bioavailability compared to Ritalin® dosed twice daily.

In a separate study, 34 children with ADHD were dosed with 20 mg methylphenidate HCl compositions according to the present invention. A simulated classroom design was used to compare formulations “A” and “B” (corresponding to the “A” and “B” formulations described above) with placebo. Pharmacodynamic assessments were conducted over a 9 hour time period which measured both attention and deportment as measured on the SKAMP scale and functional outcome as measured by the number of math problems attempted and the number of correct answers. Each formulation demonstrated a statistical difference from placebo on all efficacy measurements. The individual efficacy evaluations showed that the “A” and “B” formulations proved to be similar with regard to deportment. With regard to attention and functional outcome, the children on the “A” formulation appeared to focus more on the tasks at hand and attempted more math problems more quickly between 4 and 6 hours than the children taking the “B” formulation.
Claims

1. A multiparticulate modified release composition containing methylphenidate and having a first component comprising a first population of methylphenidate-containing particles and at least one subsequent component, each subsequent component comprising a subsequent population of methylphenidate-containing particles; wherein the at least one subsequent population of methylphenidate-containing particles further comprises a modified release coating or, alternatively or additionally, a modified release matrix material, such that the composition following oral delivery to a subject delivers the methylphenidate in a pulsatile manner, so as to produce periods of high blood plasma concentrations of methylphenidate interspersed with periods of low blood plasma concentrations of methylphenidate, wherein the periods of low blood plasma concentrations provide wash-out of methylphenidate.

2. The multiparticulate modified release composition according to claim 1, wherein the composition comprises a first component and one subsequent component.

3. The multiparticulate modified release composition according to claim 2, wherein the first component an immediate release component and the subsequent component is a modified release component.

4. The multiparticulate modified release composition according to claim 3, wherein the modified release component comprises particles having a modified release coating.

5. The multiparticulate modified release according to claim 3, wherein the modified release component comprises a modified release matrix material.

6. The multiparticulate modified release composition according to claim 1, wherein the methylphenidate comprises substantially one optically pure enantiomer or a mixture, racemic or otherwise, of enantiomers.

7. The multiparticulate modified release composition according to claim 1, wherein at least one of the first and subsequent components further comprise an enhancer.

8. The multiparticulate modified release composition according to claim 1, wherein the amount of methylphenidate contained in the first and subsequent components is the same or different.

9. The multiparticulate modified release composition according to claim 8, wherein the amount of methylphenidate contained in each component is from 0.1 mg to 500 mg.

10. The multiparticulate modified release composition according to claim 1, wherein the methylphenidate is in the form of pharmaceutically acceptable salt thereof an enantiomer or mixtures thereof or mixtures thereof.

11. The multiparticulate modified release composition according to claim 1, wherein the first and subsequent populations of methylphenidate containing particles have different in vitro dissolution profiles.

12. The multiparticulate modified release composition according to claim 1, wherein the first component is an immediate release component and the at least one subsequent component is a modified release component.

13. The multiparticulate modified release composition according to claim 12, which in operation releases substantially all of the methylphenidate from the first population of methylphenidate containing particles prior to release of the methylphenidate from the subsequent population of methylphenidate containing particles.

14. The multiparticulate modified release composition according to claim 1, wherein the in vivo release of the methylphenidate in the subject mimics the in vivo release of methylphenidate administered in the form of two or more doses of immediate release forms of methylphenidate.

15. The multiparticulate modified release composition according to claim 10, wherein the in vivo release of the methylphenidate in the subject mimics the in vivo release of methylphenidate administered in the form of two or more doses of immediate release forms of methylphenidate.

16. The multiparticulate modified release composition to claim 13, wherein the mean in vivo dissolution profile measured in USP Type I apparatus (100 rpm) in 0.01 N HCl, pH 2.0 and 37°C is such that about 50 to 100 % of the methylphenidate...
EP 1 126 826 B9

contained in the first population of methylphenidate containing particles is released within four hours of administration of the composition, and about 30 to 100 % of the methylphenidate contained in the subsequent population of methylphenidate containing particles is released between four and eight hours after administration of the composition.

17. The multiparticulate modified release composition according to claim 16, wherein the mean in vivo dissolution profile measured in USP Type I apparatus (100rpm) in 0.01N HCl, pH 2.0 and 37°C is such that about 80 to 100 % of the methylphenidate contained in the first population of methylphenidate-containing particles is released within four hours of administration of the composition and about 60 to 100 % of the methylphenidate contained in the subsequent population of methylphenidate-containing particles is released between four and eight hours after administration of the composition.

18. A solid oral dosage form comprising a multiparticulate modified release composition according to claim 1.

19. The solid oral dosage form according to claim 18 comprising a blend of first and subsequent methylphenidate-containing particles filled into hard gelatin or soft gelatin capsules.

20. The solid oral dosage form according to claim 18, wherein the first and subsequent components are separately and independently compressed into mini-tablets and filled into hard or soft gelatin capsules.

21. The solid oral dosage form according to claim 18, wherein the first component is compressed into the first layer of a multilayer tablet and the at least one subsequent component is compressed into a subsequent layer of the multilayer tablet.

22. The solid oral dosage form according to claim 18, wherein the first and subsequent components are incorporated in a rapidly dissolving dosage form.

23. The solid oral dosage form according to claim 22, wherein the rapidly dissolving dosage form is a fast-melt tablet dosage form.

24. Use of a multiparticulate modified release composition according to claim 1 in the preparation of a medicament for the treatment of attention deficit disorder.

25. Use of a multiparticulate modified release composition according to claim 10 in the preparation of a medicament for the treatment of attention deficit disorder.

26. A use as claimed in claim 24 or 25 wherein the disorder is characterised by the build up of patient tolerance to methylphenidate administered in the treatment of the condition.

27. The composition according to claim 3, wherein the modified release component comprises a pH dependent polymer coating that release a pulse of methylphenidate from the modified release component following a delay time.

28. The composition according to claim 27, wherein the pH dependent polymer coating comprises methacrylate copolymers.

29. The composition according to claim 27, wherein the pH dependent polymer coating comprises a mixture of methacrylate and ammonio methacrylate copolymers in a ratio sufficient to achieve a pulse of active ingredient from the modified release component following a delay time.

30. The composition according to claim 29, where the ratio of methacrylate to ammonio methacrylate copolymers is 1:1.

Patentansprüche

1. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung, enthaltend Methylphenidat und eine erste Komponente aufweisend, umfassend eine erste Population methylphenidathaltiger Partikel und mindestens eine nachfolgende Komponente, wobei jede nachfolgende Komponente eine nachfolgende Population methylphenidathaltiger Partikel umfasst; wobei die mindestens eine nachfolgende Population methylphenidathaltiger Partikel ferner eine Beschichtung mit modifizierter Freisetzung aufweist oder alternativ oder zusätzlich ein Matrixmaterial mit modifi-
ziert der Freisetzung, so dass die Zusammensetzung nach der oralen Zufuhr an ein Subjekt das Methylphenidat pulsiert abgibt, um Phasen mit hoher Blutplasmakonzentration an Methylphenidat, durchsetzt von Phasen mit geringer Blutplasmakonzentration an Methylphenidat zu erzeugen, wobei die Phasen mit geringer Blutplasmakonzentration für das Ausschwemmen des Methylphenidats sorgen.

2. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 1, wobei die Zusammensetzung eine erste Komponente und eine nachfolgende Komponente umfasst.

3. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 2, wobei die erste Komponente eine Komponente mit sofortiger Freisetzung umfasst, und die nachfolgende Komponente eine Komponente mit modifizierter Freisetzung ist.

5. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 3, wobei die Komponente mit modifizierter Freisetzung ein Matrixmaterial mit modifizierter Freisetzung umfasst.

7. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 1, wobei mindestens eine der ersten und nachfolgenden Komponenten ferner einen Enhancer umfassen.

8. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 1, wobei die in der ersten und nachfolgenden Komponente/n enthaltene Menge an Methylphenidat dieselbe oder eine andere ist.

9. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 8, wobei die in jeder Komponente enthaltene Menge an Methylphenidat zwischen 0,1 mg und 500 mg beträgt.

10. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 1, wobei das Methylphenidat in der Form eines pharmazeutisch zulässigen Salzes davon, eines Enantiomers oder deren Gemische, oder Gemischen davon vorliegt.

11. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 1, wobei die erste und nachfolgende Populationen methylphenidathaltiger Partikel unterschiedliche in vitro Lösungsprofile aufweisen.

12. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 1, wobei die erste Komponente eine Komponente mit sofortiger Freisetzung ist, und die mindestens eine nachfolgende Komponente eine Komponente mit modifizierter Freisetzung ist.

16. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 13, wobei das mittlere in vivo Lösungsprofil, gemessen in einer USP-Einrichtung vom Typ 1 (100 U/min), in 0,01 N HCl, pH 2,0 und 37 °C so ist, dass etwa 50 bis 100 % des in der ersten Population methylphenidathaltiger Partikel enthaltenen Methylphenidats innerhalb von vier Stunden nach Verabreichen der Zusammensetzung freigesetzt wird, und etwa 30 bis 100 % des
in der nachfolgenden Population methylphenidathaltiger Partikel enthaltenen Methylphenidats zwischen vier und acht Stunden nach Verabreichung der Zusammensetzung freigesetzt wird.

17. Multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 16, wobei das mittlere \textit{in vitro} Lösungsprofil, gemessen in einer USP-Einrichtung vom Typ 1 (100 U/min), in 0,01 N HCl, pH 2,0 und 37°C so ist, dass etwa 80 bis 100 % des in der ersten Population methylphenidathaltiger Partikel enthaltenen Methylphenidats innerhalb von 4 Stunden nach Verabreichung der Zusammensetzung freigesetzt wird, und etwa 60 bis 100 % des in der nachfolgenden Population methylphenidathaltiger Partikel enthaltenen Methylphenidats zwischen vier und acht Stunden nach Verabreichung der Zusammensetzung freigesetzt wird.

18. Feste orale Dosierungsform, umfassend eine multipartikuläre Zusammensetzung mit modifizierter Freisetzung nach Anspruch 1.

20. Feste orale Dosierungsform nach Anspruch 18, wobei die erste und nachfolgenden Komponenten getrennt und unabhängig voneinander sind, und in Hartgelatine- oder Weichgelatinekapseln eingefüllt sind.

21. Feste orale Darreichungsform nach Anspruch 18, wobei die erste Komponente in die erste Schicht einer mehrschichtigen Tablette gepresst ist, und die mindestens eine nachfolgende Komponente in eine nachfolgende Schicht der mehrschichtigen Tablette gepresst ist.

22. Feste orale Dosierungsform nach Anspruch 18, wobei die erste und nachfolgende Komponenten in eine schnell auflösende Dosierungsform integriert sind.

23. Feste orale Dosierungsform nach Anspruch 22, wobei die schnell auflösende Dosierungsform eine schnell schmelzende Tablettendarreichungsform ist.

27. Zusammensetzung nach Anspruch 3, wobei die Komponente mit modifizierter Freisetzung eine pH-abhängige Polymerbeschichtung umfasst, welche einen Methylphenidatimpuls aus der Komponente mit modifizierter Freisetzung im Anschluss an eine Verzögerungszeit freisetzt.

Revendications

1. Composition multiparticulaire à libération modifiée contenant du méthylphénidate et ayant un premier composant comprenant une première population de particules contenant du méthylphénidate et au moins un composant sub-
séquent, chaque composant subséquent comprenant une population subséquente de particules contenant du méthylphénidate ; dans laquelle la au moins une population subséquente de particules contenant du méthylphénidate comprend en outre un enrobage à libération modifiée ou, en variant ou en plus, une matière de matrice à libération modifiée, de sorte que la composition, à la suite de l’administration par voie orale à un sujet, délivre le méthylphénidate par bouffées de façon à produire des périodes de fortes concentrations de méthylphénidate dans le plasma sanguin entrecoupées de périodes de faibles concentrations de méthylphénidate dans le plasma sanguin, dans laquelle les périodes de faibles concentrations dans le plasma sanguin permet une élimination du méthylphénidate.

2. Composition multiparticulaire à libération modifiée selon la revendication 1, dans laquelle la composition comprend un premier composant et un composant subséquent.

3. Composition multiparticulaire à libération modifiée selon la revendication 2, dans laquelle le premier composant comprend un composant à libération immédiate et le composant subséquent est un composant à libération modifiée.

4. Composition multiparticulaire à libération modifiée selon la revendication 3, dans laquelle le composant à libération modifiée comprend des particules ayant un enrobage à libération modifiée.

5. Composition multiparticulaire à libération modifiée selon la revendication 3, dans laquelle le méthylphénidate comprend essentiellement un énantiomère optiquement pur ou un mélange, racémique ou autre, d’énantiomères.

6. Composition multiparticulaire à libération modifiée selon la revendication 1, dans laquelle la première population et la population subséquente de particules contenant du méthylphénidate ont des profils de dissolution in vitro différents.

7. Composition multiparticulaire à libération modifiée selon la revendication 1, dans laquelle le méthylphénidate se présente sous la forme d’un sel de celui-ci acceptable sur le plan pharmaceutique, d’un énantiomère ou de mélanges d’énantiomères de celui-ci ou de mélanges de ceux-ci.

8. Composition multiparticulaire à libération modifiée selon la revendication 1, dans laquelle la quantité de méthylphénidate contenue dans le premier composant et dans le composant subséquent est identique ou différente.

9. Composition multiparticulaire à libération modifiée selon la revendication 8, dans laquelle la quantité de méthylphénidate contenue dans chaque composant est de 0,1 mg à 500 mg.

10. Composition multiparticulaire à libération modifiée selon la revendication 1, dans laquelle la libération in vivo du méthylphénidate chez le sujet imite la libération in vivo du méthylphénidate administré sous la forme de deux doses ou plus de formes de méthylphénidate à libération immédiate.

11. Composition multiparticulaire à libération modifiée selon la revendication 10, dans laquelle la libération in vivo du méthylphénidate chez le sujet imite la libération in vivo du méthylphénidate administré sous la forme de deux doses ou plus de formes de méthylphénidate à libération immédiate.

12. Composition multiparticulaire à libération modifiée selon la revendication 13, dans laquelle le profil moyen de dissolution in vitro mesuré dans un appareil USP type 1 (100 tr/min) dans HCl 0,01 N, pH 2,0 et 37 °C, est tel qu’environ...
50% à 100% du méthylphénidate contenu dans la première population de particules contenant du méthylphénidate sont libérés dans les quatre heures suivant l’administration de la composition, et environ 30% à 100% du méthylphénidate contenu dans la population subséquente de particules contenant du méthylphénidate sont libérés entre la quatrième et la huitième heure suivant l’administration de la composition.

17. Composition multiparticulaire à libération modifiée selon la revendication 16, dans laquelle le profil moyen de dissolution \textit{in vitro} mesuré dans un appareil USP type 1 (100 tr/min) dans HCl 0,01 N, pH 2,0 et 37°C, est tel qu’environ 80% à 100% du méthylphénidate contenu dans la première population de particules contenant du méthylphénidate sont libérés dans les quatre heures suivant l’administration de la composition, et environ 60% à 100% du méthylphénidate contenu dans la population subséquente de particules contenant du méthylphénidate sont libérés entre la quatrième et la huitième heure suivant l’administration de la composition.

18. Forme pharmaceutique orale solide comprenant une composition multiparticulaire à libération modifiée selon la revendication 1.

19. Forme pharmaceutique orale solide selon la revendication 18, comprenant un mélange de premières particules et de particules subséquentes contenant du méthylphénidate introduits dans des gélules ou des capsules molles.

20. Forme pharmaceutique orale solide selon la revendication 18, dans laquelle le premier composant et le composant subséquent sont comprimés séparément et indépendamment en mini-comprimés et introduits dans des gélules ou des capsules molles.

21. Forme pharmaceutique orale solide selon la revendication 18, dans laquelle le premier composant est comprimé en une première couche d’un comprimé multicouche et le ou moins un composant subséquent est comprimé en une couche subséquente du comprimé multicouche.

22. Forme pharmaceutique orale solide selon la revendication 18, dans laquelle le premier composant et le composant subséquent sont incorporés dans une forme pharmaceutique à dissolution rapide.

23. Forme pharmaceutique orale solide selon la revendication 22, dans laquelle la forme pharmaceutique à dissolution rapide est une forme pharmaceutique de comprimé fondant rapidement.

24. Utilisation d’une composition multiparticulaire à libération modifiée selon la revendication 1 pour la préparation d’un médicament destiné au traitement du trouble déficitaire de l’attention.

25. Utilisation d’une composition multiparticulaire à libération modifiée selon la revendication 10 pour la préparation d’un médicament destiné au traitement du trouble déficitaire de l’attention.

26. Utilisation selon la revendication 24 ou 25 dans laquelle le trouble est caractérisé par le développement de la tolérance du patient au méthylphénidate administré dans le cadre du traitement de l’état.

27. Composition selon la revendication 3, dans laquelle le composant à libération modifiée comprend un revêtement de polymère dépendant du pH qui libère une bouffée de méthylphénidate à partir du composant à libération modifiée après un certain délai.

28. Composition selon la revendication 27, dans laquelle le revêtement de polymère dépendant du pH comprend des copolymères de méthacrylate.

29. Composition selon la revendication 27, dans laquelle le revêtement de polymère dépendant du pH comprend un mélange de copolymères de méthacrylate et d’ammonio-méthacrylate dans un rapport suffisant pour obtenir une bouffée de principe actif par la libération modifiée d’un composant après un certain délai.

30. Composition selon la revendication 29 dans laquelle le rapport des copolymères de méthacrylate aux copolymères d’ammonio-méthacrylate est de 1:1.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9814168 A [0006] [0006]
- WO 9703672 A [0007] [0007]
- US 4728512 A [0012]
- US 4794001 A [0012]
- US 4904476 A [0012]
- US 5837284 A, Mehta [0013]
- US P231995 A [0057]

Non-patent literature cited in the description