A cleaning, maintenance, and servicing rest for accommodating either a long gun, a long gun having a scope and being inverted, or a long gun having an upper receiver pivoted to a lower receiver. The cleaning, maintenance, and servicing rest includes a frame, a first elevationally pivoting assembly, and a second elevationally pivoting assembly. The frame rests on a support surface. The first elevationally pivoting assembly is elevationally pivotably mounted to the frame, and releasably holds the stock or the forearm of the long gun. The second elevationally pivoting assembly is elevationally pivotably mounted to the frame, releasably holds the other of the stock or the forearm of the long gun, is coplanar with the first elevationally pivoting assembly so as to allow for accommodating the long gun, and is further elevationally pivotable separate from the first elevationally pivoting assembly so as to allow for accommodating either the long gun having the scope and being inverted or the long gun having the upper receiver pivoted to the lower receiver.
CLEANING, MAINTENANCE, AND SERVICING REST FOR ACCOMMODATING EITHER A LONG GUN, A LONG GUN HAVING A SCOPE AND BEING INVERTED, OR A LONG GUN HAVING AN UPPER RECEIVER PIVOTED TO A LOWER RECEIVER

1. BACKGROUND OF THE INVENTION

[0001] A. Field of the Invention

[0002] The embodiments of the present invention relate to a cleaning, maintenance, and servicing rest for accommodating a long gun, and more particularly, the embodiments of the present invention relate to a cleaning, maintenance, and servicing rest for accommodating either a long gun, a long gun having a scope and being inverted, or a long gun having an upper receiver pivoted to a lower receiver.

[0003] B. Description of the Prior Art

[0004] Numerous innovations for gun rests have been provided in the prior art, which will be described below in chronological order to show advancement in the art, and which are incorporated herein by reference thereto. Even though these innovations may be suitable for the specific individual purposes to which they address, nevertheless, they differ from the embodiments of the present invention in that they do not teach a cleaning, maintenance, and servicing rest for accommodating either a long gun, a long gun having a scope and being inverted, or a long gun having an upper receiver pivoted to a lower receiver.

(1) U.S. Pat. No. 3,358,504 to Freebairn.

(2) U.S. Pat. No. 4,007,554 to Helmstader.

(3) U.S. Pat. No. 6,931,777 to Krien.

(4) U.S. Pat. No. 7,086,192 to Deros.

(5) U.S. Pat. No. 7,356,960 to Knitt. U.S. Pat. No. 7,356,960—issued to Knitt on Apr. 15, 2008 in U.S. class 42 and subclass 94—teaches a vise for holding a gunstock, which is height and length are adjustable at several points. A vise bolt pulls a movable plate forward a fixed one, and traces out an arc at a top pivoting from a bottom as the bolt situated just above the pivot is turned. Within the movable plate a special cylinder is situated, which gives and turns freely in response to the bolt’s advance, and withdrawal in passing through a threaded tunnel within it. This action prevents the biting down or binding upon the bolt, which would otherwise occur because of the plate’s pivoted travel as the bolt is advanced or withdrawn. The support’s framework is made from tubular bar stock and is adjustable for leveling and leaning corrections, and includes anchoring blocks within the structure through which leveling bolts pass.

(6) U.S. Pat. No. 7,823,317 to Potterfield et al. U.S. Pat. No. 7,823,317—issued to Potterfield et al. on Nov. 2, 2010 in U.S. class 42 and subclass 94—teaches adjustable shooting rests and shooting rest assemblies. In one embodiment, a shooting rest includes a rest assembly for supporting a forestock of a firearm. The rest assembly includes a base member and first and second upright members extending from the base member. A position of each of the first and second upright members is independently adjustable with reference to the base member. The shooting rest also includes a support assembly coupled to the rest assembly to move the rest assembly in a first direction and in a second direction. The first and second directions are in a plane generally transverse to a longitudinal axis of the firearm. The shooting rest further includes a base coupled to the support assembly.

[0009] It is apparent that numerous innovations for gun rests have been provided in the prior art, which are adapted to be used. Furthermore, even though these innovations may be suitable for the specific individual purposes to which they address, nevertheless, they would not be suitable for the purposes of the present invention as heretofore described, namely, a cleaning, maintenance, and servicing rest for
accommodating either a long gun, a long gun having a scope and being inverted, or a long gun having an upper receiver pivoted to a lower receiver.

2. SUMMARY OF THE INVENTION

[0010] Thus, an object of an embodiment of the present invention is to provide a cleaning, maintenance, and servicing rest for accommodating either a long gun, a long gun having a scope and being inverted, or a long gun having an upper receiver pivoted to a lower receiver, which avoids the disadvantages of the prior art.

[0011] Briefly stated, another object of an embodiment of the present invention is to provide a cleaning, maintenance, and servicing rest for accommodating either a long gun, a long gun having a scope and being inverted, or a long gun having an upper receiver pivoted to a lower receiver. The cleaning, maintenance, and servicing rest includes a frame, a first elevationally pivoting assembly, and a second elevationally pivoting assembly. The frame rests on a support surface. The first elevationally pivoting assembly is elevationally pivotally mounted to the frame, and releasably holds the stock or the forearm of the long gun. The second elevationally pivoting assembly is elevationally pivotally mounted to the frame, releasably holds the other of the stock or the forearm of the long gun, is coplanar with the first elevationally pivoting assembly so as to allow for accommodating the long gun, and is further elevationally pivotable separate from the first elevationally pivoting assembly so as to allow for accommodating either the long gun having the scope and being inverted or the long gun having the upper receiver pivoted to the lower receiver.

[0012] The novel features considered characteristic of the embodiments of the present invention are set forth in the appended claims. The embodiment of the present invention itself, however, both as to their construction and to their method of operation together with additional objects and advantages thereof will be best understood from the following description of the specific embodiments when read and understood in connection with the accompanying figures of the drawing.

3. BRIEF DESCRIPTION OF THE FIGURES OF THE DRAWING

[0013] The figures of the drawing are briefly described as follows:

[0014] FIG. 1 is a diagrammatic perspective view of the cleaning, maintenance, and servicing rest of the embodiments of the present invention accommodating a long gun;

[0015] FIG. 2 is a diagrammatic perspective view of the cleaning, maintenance, and servicing rest of the embodiments of the present invention accommodating a long gun having a scope and being inverted;

[0016] FIG. 3 is a diagrammatic perspective view of the cleaning, maintenance, and servicing rest of the embodiments of the present invention accommodating a long gun having a scope and being inverted;

[0017] FIG. 4 is a diagrammatic front perspective view of the cleaning, maintenance, and servicing rest of the embodiments of the present invention identified by ARROW 4 in FIGS. 1, 2, and 3, and

[0018] FIG. 5 is a diagrammatic rear perspective view of the cleaning, maintenance, and servicing rest of the embodiments of the present invention identified by ARROW 5 in FIGS. 1, 2, and 3.

4. LIST OF REFERENCE NUMERALS UTILIZED IN THE FIGURES OF THE DRAWING

A. General

[0019] 10 cleaning, maintenance, and servicing rest of embodiments of present invention for accommodating either long gun 12, long gun 14 having scope 16 and being inverted, or long gun 18 having upper receiver 20 pivoted to lower receiver 22

[0020] 12 long gun

[0021] 14 long gun having scope 16 and being inverted

[0022] 16 scope of long gun 14

[0023] 18 long gun having upper receiver 20 pivoted to lower receiver 22

[0024] 20 upper receiver of long gun 18

[0025] 22 lower receiver of long gun 18

B. Overall Configuration of Cleaning, Maintenance, and Servicing Rest 10

[0026] 24 frame for resting on support surface 30

[0027] 26 first elevationally pivoting assembly for releasably holding stock 32 or forearm 34 of long gun 12, 14, or 18

[0028] 28 second elevationally pivoting assembly for releasably holding other of stock 32 or forearm 34 of long gun 12, 14, or 18

[0029] 30 support surface

[0030] 32 stock of long gun 1204, or 18

[0031] 34 forearm of long gun 12, 14, or 18

C. Specific Configuration of Frame 24

[0032] 35 base of frame 24 for resting on support surface 30

[0033] 36 central internally threaded intersection of pair of intersected feet 37 of base 35 of frame 24

[0034] 37 pair of intersected feet of base 35 of frame 24

[0035] 38 free ends of pair of intersected feet 37 of base 35 of frame 24, respectively

[0036] 40 corner leveling assemblies of base 35 of frame 24 for ensuring that base 35 of frame 24 is level on support surface 30

[0037] 42 locking knobs of corner leveling assemblies 40 of base 35 of frame 24

[0038] 44 central threaded shaft of frame

[0039] 46 main yoke of frame 24

[0040] 48 transverse piece of main yoke 46 of frame 24

[0041] 50 pair of upright pieces of main yoke 46 of frame 24

[0042] 52 central through bore in transverse piece 48 of main yoke 46 of frame 24

[0043] 54 pair of vertically aligned through bores in pair of upright pieces 50 of main yoke 46 of frame 24, respectively

[0044] 55 adjustment plate of frame 24

D. Specific Configuration of First Elevationally Pivoting Assembly 26

[0045] 56 pin

[0046] 58 first pivot collar of first elevationally pivoting assembly 26
The present invention accommodating a long gun having an upper receiver 20 pivoted to a lower receiver 22 (FIG. 3).

B. Overall Configuration of the Cleaning, Maintenance, and Servicing Rest 10

The overall configuration of the cleaning, maintenance, and servicing rest 10 can best be seen in FIGS. 4 and 5, which are, respectively, a diagrammatic front perspective view of the cleaning, maintenance, and servicing rest of the embodiments of the present invention identified by ARROW 4 in FIGS. 1, 2, and 3, and a diagrammatic rear perspective view of the cleaning, maintenance, and servicing rest of the embodiments of the present invention identified by ARROW 5 in FIGS. 1, 2, and 3, and as such, will discussed with reference thereto.

The cleaning, maintenance, and servicing rest 10 comprises a frame 24, a first elevationally pivoting assembly 26, and a second elevationally pivoting assembly 28. The frame 24 is for resting on a support surface 30. The first elevationally pivoting assembly 26 is elevationally pivotably mounted to the frame 24, and is for releasably holding the stock 32 or the forearm 34 of the long gun 12 (FIG. 1), 14 (FIG. 2), or 18 (FIG. 3). The second elevationally pivoting assembly 28 is elevationally pivotably mounted to the frame 24, is for releasably holding the other of the stock 32 or the forearm 34 of the long gun 12 (FIG. 1), 14 (FIG. 2), or 18 (FIG. 3), is coplanar with the first elevationally pivoting assembly 26 so as to allow for accommodating the long gun 12 (FIG. 1), and is further elevationally pivotal separate from the first elevationally pivoting assembly 26 so as to allow for accommodating either the long gun 14 having the scope 16 and being inverted (FIG. 2) or the long gun 18 having the upper receiver 20 pivoted to the lower receiver 22 (FIG. 3).

C. Specific Configuration of the Frame 24

The frame 24 comprises a base 35. The base 35 of the frame 24 is for resting on the support surface 30, and comprises a pair of intersected feet 37. The pair of intersected feet 37 of the base 35 of the frame 24 are horizontally oriented, cross each other to form a generally X-configuration for stability, have a central internally threaded intersection 36, and terminate in free ends 38.

The base 35 of the frame 24 further comprises corner leveling assemblies 40. The corner leveling assemblies 40 of the base 35 of the frame 24 are disposed at the free ends 38 of the pair of intersected feet 37 of the base 35 of the frame 24, respectively, are operated by locking knobs 42, respectively, and are for assuring that the base 35 of the frame 24 is level on the support surface 30.

The frame 24 comprises a central threaded shaft 44. The central threaded shaft 44 of the frame 24 threads vertically into, and extends up from, the central internally threaded intersection 36 of the pair of intersected feet 37 of the base 35 of the frame 24.

The frame 24 further comprises a main yoke 46. The main yoke 46 of the frame 24 is generally U-shaped, and as such, has a transverse piece 48 and a pair of upright pieces 50.

The transverse piece 48 of the main yoke 46 of the frame 24 has a central through bore 52. The central through bore 52 in the transverse piece 48 of the main yoke 46 of the
frame 24 rotatably and height adjustably receives the central threaded shaft 44 of the frame 24 so as to allow the main yoke 46 of the frame 24 to pivot 360° relative to the base 35 of the frame 24 and be at a desired elevation on the central threaded shaft 44 of the frame 24.

[0074] The pair of upright pieces 50 of the main yoke 46 of the frame 24 have a pair of vertically aligned through bores 54, respectively.

[0075] The frame 24 further comprises an adjustment plate 55. The adjustment plate 55 of the frame 24 is generally rectilinear-shaped, and is affixed to one upright piece 50 of the main yoke 46 of the frame 24.

D. Specific Configuration of the First Elevationally Pivoting Assembly 26

[0076] The first elevationally pivoting assembly 26 is elevationally pivotably mounted to the pair of upright pieces 50 of the main yoke 46 of the frame 24, via a pin 56 in the pair of vertically aligned through bores 54 in the pair of upright pieces 50 of the main yoke 46 of the frame 24.

[0077] The first elevationally pivoting assembly 26 comprises a first pivot collar 58. The first pivot collar 58 of the first elevationally pivoting assembly 26 extends pivotally from one upright piece 50 of the main yoke 46 of the frame 24 pivotally to the other upright piece 50 of the main yoke 46 of the frame 24, and communicates with the pin 56 so as to allow the first elevationally pivoting assembly 26 to pivot elevationally.

[0078] The first elevationally pivoting assembly 26 further comprises a first pair of rods 60. The first pair of rods 60 of the first elevationally pivoting assembly 26 are spaced apart from each other, are parallel to each other, and extend normally outwardly and fixedly from the first pivot collar 58 of the first elevationally pivoting assembly 26 to free ends 62, respectively.

[0079] The first elevationally pivoting assembly 26 further comprises a first vise assembly 64. The first vise assembly 64 of the first elevationally pivoting assembly 26 is for releasably holding the stock 32 or the forearm 34 of the long gun 12 (FIG. 1), 14 (FIG. 2), or 18 (FIG. 3), and moves axially along the first pair of rods 60 of the first elevationally pivoting assembly 26.

[0080] The first vise assembly 64 of the first elevationally pivoting assembly 26 further comprises a first pair of vise face plates 65. The first pair of vise face plates 65 of the first vise assembly 64 of the first elevationally pivoting assembly 26 move axially along the first pair of rods 60 of the first elevationally pivoting assembly 26, and are self-centering for releasably holding the stock 32 or the forearm 34 of the long gun 12 (FIG. 1), 14 (FIG. 2), or 18 (FIG. 3).

[0081] The first vise assembly 64 of the first elevationally pivoting assembly 26 further comprises a first pair of lock knobs 66. The first pair of lock knobs 66 of the first vise assembly 64 of the first elevationally pivoting assembly 26 lock the first pair of vise face plates 65 of the first vise assembly 64 of the first elevationally pivoting assembly 26 at a desired position along the first pair of rods 60 of the first elevationally pivoting assembly 26.

[0082] The first vise assembly 64 of the first elevationally pivoting assembly 26 further comprises a first hand wheel 68. The first hand wheel 68 of the first vise assembly 64 of the first elevationally pivoting assembly 26 is operatively connected to the first pair of vise face plates 65 of the first vise assembly 64 of the first elevationally pivoting assembly 26, and when rotated, spaces the first pair of vise face plates 65 of the first vise assembly 64 of the first elevationally pivoting assembly 26 from each other a desired amount for releasably holding the stock 32 or the forearm 34 of the long gun 12 (FIG. 1), 14 (FIG. 2), or 18 (FIG. 3).

[0083] The first elevationally pivoting assembly 26 further comprises that portion of the adjustment plate 55 of the frame 24 extending from the one upright piece 50 of the main yoke 46 of the frame 24 in a direction of the first vise assembly 64 of the first elevationally pivoting assembly 26 having a first elevational adjustment curved through slot 70 and a first plurality of elevational adjustment through bores 72 that are disposed spaced from and in a pattern to mimic that of the elevational adjustment curved through slot 70 in the adjustment plate 55 of the frame 24.

[0084] The first elevationally pivoting assembly 26 further comprises a first elevational locking knob 74. The first elevational locking knob 74 of the first elevationally pivoting assembly 26 is threadably connected to one first rod 60 of the first elevationally pivoting assembly 26, by first passing through either the first elevational adjustment curved through slot 70 in the adjustment plate 55 of the frame 24 when tight tolerance in positioning is needed for the first elevationally pivoting assembly 26 or passing through a desired one first elevational adjustment through bore 72 in the adjustment plate 55 of the frame 24 when tight tolerance in positioning is not needed for the first elevationally pivoting assembly 26, and then being tightened to lock the first elevationally pivoting assembly 26 at a desired elevation by sandwiching the adjustment plate 55 of the frame 24 between the first elevational locking knob 74 of the first elevationally pivoting assembly 26 and the one first rod 60 of the first elevationally pivoting assembly 26.

E. Specific Configuration of the Second Elevationally Pivoting Assembly 28

[0085] The second elevationally pivoting assembly 28 is elevationally pivotably mounted to the pair of upright pieces 50 of the main yoke 46 of the frame 24, oppositely from and coplanarly with the first elevationally pivoting assembly 26, via the pin 56, and is pivotally independent from the first elevationally pivoting assembly 26. The second elevationally pivoting assembly 28 comprises a second pivot collar 76.

[0086] The second pivot collar 76 of the second elevationally pivoting assembly 28 extends pivotally from the one upright piece 50 of the main yoke 46 of the frame 24 pivotally to the other upright piece 50 of the main yoke 46 of the frame 24, and communicates with the pin 56 so as to allow the second elevationally pivoting assembly 28 to pivot elevationally.

[0087] The second elevationally pivoting assembly 28 further comprises a second pair of rods 78. The second pair of rods 78 of the second elevationally pivoting assembly 28 are spaced apart from each other, are parallel to each other, and extend normally outwardly and fixedly from the second pivot collar 76 of the second elevationally pivoting assembly 28 to free ends 80, respectively, oppositely from the first pair of rods 60 of the first elevationally pivoting assembly 26.

[0088] The second elevationally pivoting assembly 28 further comprises a second vise assembly 82. The second vise assembly 82 of the second elevationally pivoting assembly 28 is for releasably holding the other of the stock 32 or the forearm 34 of the long gun 12 (FIG. 1), 14 (FIG. 2), or 18
The second vise assembly 82 of the second elevationally pivoting assembly 28 further comprises a second pair of vise face plates 84. The second pair of vise face plates 84 of the second vise assembly 82 of the second elevationally pivoting assembly 28 move axially along the second pair of rods 78 of the second elevationally pivoting assembly 28, and are self-centering for reassembly holding the other of the stock 32 or the forearm 34 of the long gun 12 (FIG. 1), 14 (FIG. 2), or 18 (FIG. 3).

The second vise assembly 82 of the second elevationally pivoting assembly 28 further comprises a second pair of lock knobs 86. The second pair of lock knobs 86 of the second vise assembly 82 of the second elevationally pivoting assembly 28 lock the second pair of vise face plates 84 of the second vise assembly 82 of the second elevationally pivoting assembly 28 at a desired position along the second pair of rods 78 of the second elevationally pivoting assembly 28.

The second vise assembly 82 of the second elevationally pivoting assembly 28 further comprises a second hand wheel 88. The second hand wheel 88 of the second vise assembly 82 of the second elevationally pivoting assembly 28 is operatively connected to the second pair of vise face plates 84 of the second vise assembly 82 of the second elevationally pivoting assembly 28, and when rotated, spaces the second pair of vise face plates 84 of the second vise assembly 82 of the second elevationally pivoting assembly 28 from each other a desired amount for reassembly holding the other of the stock 32 or the forearm 34 of the long gun 12 (FIG. 1), 14 (FIG. 2), or 18 (FIG. 3).

The second elevationally pivoting assembly 28 further comprises that portion of the adjustment plate 55 of the frame 24 extending from the one upright piece 50 of the main yoke 46 of the frame 24 in a direction of the second vise assembly 82 of the second elevationally pivoting assembly 28 having a second elevation adjustment curved through slot 90 and a second plurality of elevation adjustment through bores 92 that are disposed spaced from and in a pattern to mimic that of the second elevation adjustment curved through slot 90 in the adjustment plate 55 of the frame 24.

The second elevationally pivoting assembly 28 further comprises a second elevationally locking knob 94. The second elevationally locking knob 94 of the second elevationally pivoting assembly 28 is threadably connected to one second rod 78 of the second elevationally pivoting assembly 28, by first passing through either the second elevation adjustment curved through slot 90 in the adjustment plate 55 of the frame 24 when tight tolerance in positioning is needed for the second elevationally pivoting assembly 28 or passing through a desired one second elevation adjustment through bore 92 in the adjustment plate 55 of the frame 24 when tight tolerance in positioning is not needed for the second elevationally pivoting assembly 28, and then being tightened to lock the second elevationally pivoting assembly 28 at a desired elevation by sandwiching the adjustment plate 55 of the frame 24 between the second elevationally locking knob 94 of the second elevationally pivoting assembly 28 and the one second rod 78 of the second elevationally pivoting assembly 28.

F. Impressions

It will be understood that each of the elements described above—or two or more together—may also find a useful application in other types of constructions differing from the types described above.

While the embodiments of the present invention have been illustrated and described as embodied in a cleaning, maintenance, and servicing rest for accommodating either a long gun, a long gun having a scope and being inverted, or a long gun having an upper receiver pivoted to a lower receiver, nevertheless, they are not limited to the details shown, since it will be understood that various omissions, modifications, substitutions, and changes in the forms and details of the embodiments of the present invention illustrated and their operation can be made, by those skilled in the art without departing in any way from the spirit of the embodiments of the present invention.

Without further analysis, the foregoing will so fully reveal the gist of the embodiments of the present invention that others can by applying current knowledge readily adapt them for various applications without omitting features that from the standpoint of prior art fairly constitute characteristics of the generic or specific aspects of the embodiments of the present invention.

The invention claimed is:

1. A cleaning, maintenance, and servicing rest for accommodating either a long gun, a long gun having a scope and being inverted, or a long gun having an upper receiver pivoted to a lower receiver, wherein the long gun has a stock and a forearm, comprising:
 a) a frame;
 b) a first elevationally pivoting assembly; and
 c) a second elevationally pivoting assembly;
 wherein said frame is for resting on a support surface;
 wherein said first elevationally pivoting assembly is elevationally pivotably mounted to said frame;
 wherein said first elevationally pivoting assembly is for reassembly holding the stock or the forearm of the long gun;
 wherein said second elevationally pivoting assembly is elevationally pivotably mounted to said frame;
 wherein said second elevationally pivoting assembly is for reassembly holding the other of the stock or the forearm of the long gun;
 wherein said second elevationally pivoting assembly is coplanar with said first elevationally pivoting assembly so as to allow for accommodating the long gun; and
 wherein said second elevationally pivoting assembly is elevationally pivotable separate from said first elevationally pivoting assembly so as to allow for accommodating either the long gun having the scope and being inverted or the long gun having the upper receiver pivoted to the lower receiver.
2. The rest of claim 1, wherein said frame comprises a base; and
 wherein said base of said frame is for resting on the support surface.
3. The rest of claim 2, wherein said base of said frame comprises a pair of intersected feet.
4. The rest of claim 3, wherein said pair of intersected feet of said base of said frame are horizontally oriented;
 wherein said pair of intersected feet of said base of said frame cross each other to form a generally X-configuration for stability;
 wherein said pair of intersected feet of said base of said frame have a central internally threaded intersection; and
wherein said pair of intersected feet of said base of said frame terminate in free ends.

5. The rest of claim 4, wherein said base of said frame comprises corner leveling assemblies.

6. The rest of claim 5, wherein said corner leveling assemblies of said base of said frame are disposed at said free ends of said pair of intersected feet of said base of said frame, respectively;

wherein said corner leveling assemblies of said base of said frame are operated by locking knobs, respectively; and wherein said corner leveling assemblies of said base of said frame are for assuring that said base of said frame is level on the support surface.

7. The rest of claim 4, wherein said frame comprises a central threaded shaft.

8. The rest of claim 7, wherein said central threaded shaft of said frame threads vertically into said central internally threaded intersection of said pair of intersected feet of said base of said frame; and

wherein said central threaded shaft of said frame extends up from said central internally threaded intersection of said pair of intersected feet of said base of said frame.

9. The rest of claim 7, wherein said frame comprises a main yoke.

10. The rest of claim 9, wherein said main yoke of said frame is generally U-shaped, and as such, has:

a) a transverse piece; and

b) a pair of upright pieces.

11. The rest of claim 10, wherein said transverse piece of said main yoke of said frame has a central through bore; and wherein said central through bore in said transverse piece of said main yoke of said frame rotatably and height adjustably receives said central threaded shaft of said frame so as to allow said main yoke of said frame to pivot 360° relative to said base of said frame and be at a desired elevation on said central threaded shaft of said frame.

12. The rest of claim 10, wherein said pair of upright pieces of said main yoke of said frame have a pair of vertically aligned through bores, respectively.

13. The rest of claim 12, wherein said frame comprises an adjustment plate.

14. The rest of claim 13, wherein said adjustment plate of the frame is affixed to one upright piece of said main yoke of said frame.

15. The rest of claim 13, wherein said first elevationally pivoting assembly is elevationally pivotably mounted to said pair of upright pieces of said main yoke of said frame via a pin in said pair of vertically aligned through bores in said pair of upright pieces of said main yoke of said frame.

16. The rest of claim 15, wherein said first elevationally pivoting assembly comprises a pivot collar.

17. The rest of claim 16, wherein said pivot collar of said first elevationally pivoting assembly extends pivotally from one upright piece of said main yoke of said frame pivotally to the other upright piece of said main yoke of said frame; and wherein said pivot collar of said first elevationally pivoting assembly communicates with said pin so as to allow said first elevationally pivoting assembly to pivot elevationally.

18. The rest of claim 16, wherein said first elevationally pivoting assembly comprises a first pair of rods.

19. The rest of claim 18, wherein said first pair of rods of said first elevationally pivoting assembly are spaced apart from each other;

wherein said first pair of rods of said first elevationally pivoting assembly are parallel to each other; and wherein said first pair of rods of said first elevationally pivoting assembly extend normally outwardly and fixedly from said pivot collar of said first elevationally pivoting assembly to free ends.

20. The rest of claim 18, wherein said first elevationally pivoting assembly comprises a first vise assembly.

21. The rest of claim 20, wherein said first vise assembly of said first elevationally pivoting assembly is for releasably holding the stock or the forearm of the long gun; and wherein said first vise assembly of said first elevationally pivoting assembly moves axially along said first pair of rods of said first elevationally pivoting assembly.

22. The rest of claim 20, wherein said first vise assembly of said first elevationally pivoting assembly comprises a first pair of vise face plates.

23. The rest of claim 22, wherein said first pair of vise face plates of said first vise assembly of said first elevationally pivoting assembly move axially along said first pair of rods of said first elevationally pivoting assembly; and wherein said first pair of vise face plates of said first vise assembly of said first elevationally pivoting assembly are self-centering for releasably holding the stock or the forearm of the long gun.

24. The rest of claim 22, wherein said first vise assembly of said first elevationally pivoting assembly comprises a first pair of lock knobs.

25. The rest of claim 24, wherein said first pair of lock knobs of said first vise assembly of said first elevationally pivoting assembly lock said first pair of vise face plates of said first vise assembly of said first elevationally pivoting assembly at a desired position along said first pair of rods of said first elevationally pivoting assembly.

26. The rest of claim 22, wherein said first vise assembly of said first elevationally pivoting assembly comprises a first hand wheel.

27. The rest of claim 26, wherein said first hand wheel of said first vise assembly of said first elevationally pivoting assembly is operatively connected to said first pair of vise face plates of said first vise assembly of said first elevationally pivoting assembly; and wherein said first hand wheel of said first vise assembly of said first elevationally pivoting assembly, when rotated, spaces said first pair of vise face plates of said first vise assembly of said first elevationally pivoting assembly from each other a desired amount for releasably holding the stock or the forearm of the long gun.

28. The rest of claim 20, wherein said first elevationally pivoting assembly comprises that portion of said adjustment plate of said frame extending from said one upright piece of said main yoke of said frame in a direction of said first vise assembly of said first elevationally pivoting assembly having:

a) a first elevation adjustment curved through slot; and

b) a first plurality of elevational adjustment through bores that are disposed spaced from and in a pattern to mimic that of said elevational adjustment curved through slot in said adjustment plate of said frame.

29. The rest of claim 28, wherein said first elevationally pivoting assembly comprises a first elevationally locking knob.
30. The rest of claim 29, wherein said first elevational locking knob of said first elevationally pivoting assembly is threadably connected to one first rod of said first elevationally pivoting assembly, by first passing through either said first elevational adjustment curved through slot in said adjustment plate of said frame when tight tolerance in positioning is needed for said first elevationally pivoting assembly or passing through a desired one first elevational adjustment through bore in said adjustment plate of said frame when tight tolerance in positioning is not needed for said first elevationally pivoting assembly, and then being tightened to lock said first elevationally pivoting assembly at a desired elevation by sandwiching said adjustment plate of said frame between said first elevational locking knob of said first elevationally pivoting assembly and said one first rod of said first elevationally pivoting assembly.

31. The rest of claim 15, wherein said second elevationally pivoting assembly is elevationally pivotably mounted to said pair of upright pieces of said main yoke of said frame, oppositely from and coplanarly with said first elevationally pivoting assembly via said pin; and

wherein said second elevationally pivoting assembly is pivotally independent from said first elevationally pivoting assembly.

32. The rest of claim 18, wherein said second elevationally pivoting assembly comprises a second pivot collar.

33. The rest of claim 32, wherein said second pivot collar of said second elevationally pivoting assembly extends pivotally from said one upright piece of said main yoke of said frame pivotally to said other upright piece of said main yoke of said frame; and

wherein said second pivot collar of said second elevationally pivoting assembly communicates with said pin so as to allow said second elevationally pivoting assembly to pivot elevationally.

34. The rest of claim 32, wherein said second elevationally pivoting assembly comprises a second pair of rods.

35. The rest of claim 34, wherein said second pair of rods of said second elevationally pivoting assembly are spaced apart from each other;

wherein said second pair of rods of said second elevationally pivoting assembly are parallel to each other; and

wherein said second pair of rods of said second elevationally pivoting assembly extend normally outwardly and fixedly from said second pivot collar of said second elevationally pivoting assembly to free ends, respectively, oppositely from said first pair of rods of said first elevationally pivoting assembly.

36. The rest of claim 34, wherein said second elevationally pivoting assembly comprises a second vise assembly.

37. The rest of claim 36, wherein said second vise assembly of said second elevationally pivoting assembly is for releasably holding the other of the stock or the forearm of the long gun; and

wherein said second vise assembly of said second elevationally pivoting assembly moves axially along said second pair of rods of said second elevationally pivoting assembly.

38. The rest of claim 36, wherein said second vise assembly of said second elevationally pivoting assembly comprises a second pair of vise face plates.

39. The rest of claim 38, wherein said second pair of vise face plates of said second vise assembly of said second elevationally pivoting assembly move axially along said second pair of rods of said second elevationally pivoting assembly; and

wherein said second pair of vise face plates of said second vise assembly of said second elevationally pivoting assembly are self-centering for releasably holding the other of the stock or the forearm of the long gun.

40. The rest of claim 38, wherein said second vise assembly of said second elevationally pivoting assembly comprises a second pair of lock knobs.

41. The rest of claim 40, wherein said second pair of lock knobs of said second vise assembly of said second elevationally pivoting assembly lock said second pair of vise face plates of said second vise assembly of said second elevationally pivoting assembly at a desired position along said second pair of rods of said second elevationally pivoting assembly.

42. The rest of claim 38, wherein said second vise assembly of said second elevationally pivoting assembly comprises a second hand wheel.

43. The rest of claim 42, wherein said second hand wheel of said second vise assembly of said second elevationally pivoting assembly is operatively connected to said second pair of vise face plates of said second vise assembly of said second elevationally pivoting assembly; and

wherein said second hand wheel of said second vise assembly of said second elevationally pivoting assembly, when rotated, spaces said second pair of vise face plates of said second vise assembly of said second elevationally pivoting assembly from each other a desired amount for releasably holding the other of the stock or the forearm of the long gun.

44. The rest of claim 13, wherein said second elevationally pivoting assembly comprises that portion of said adjustment plate of said frame extending from said one upright piece of said main yoke of said frame in a direction of said second vise assembly of said second elevationally pivoting assembly having:

a) a second elevational adjustment curved through slot; and
b) a second plurality of elevational adjustment through bores that are disposed spaced from and in a pattern to mimic that of said second elevational adjustment curved through slot in said adjustment plate of said frame.

45. The rest of claim 36, wherein said second elevationally pivoting assembly comprises a second elevational locking knob.

46. The rest of claim 45, wherein said second elevational locking knob of said second elevationally pivoting assembly is threadably connected to one second rod of said second elevationally pivoting assembly, by first passing through either said second elevational adjustment curved through slot in said adjustment plate of said frame when tight tolerance in positioning is needed for said second elevationally pivoting assembly or passing through a desired one second elevational adjustment through bore in said adjustment plate of said frame when tight tolerance in positioning is not needed for said second elevationally pivoting assembly, and then being tightened to lock said second elevationally pivoting assembly at a desired elevation by sandwiching said adjustment plate of said frame between said second elevational locking knob of said second elevationally pivoting assembly and said one second rod of said second elevationally pivoting assembly.