

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/081747 A1

(43) International Publication Date

30 May 2014 (30.05.2014)

WIPO | PCT

(51) International Patent Classification:

C03C 3/068 (2006.01) C03C 21/00 (2006.01)
C03C 3/095 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2013/070869

(22) International Filing Date:

20 November 2013 (20.11.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

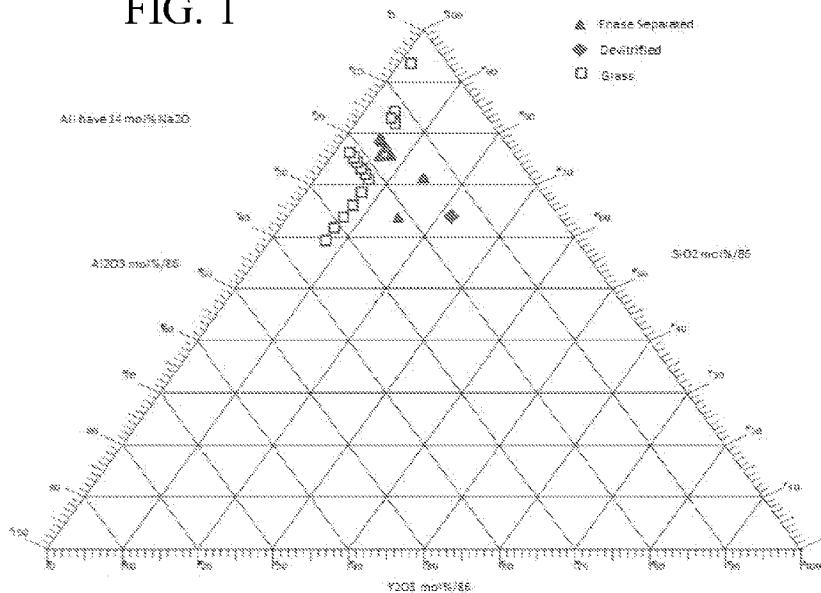
61/728,944 21 November 2012 (21.11.2012) US

(71) Applicant: CORNING INCORPORATED [US/US]; 1 Riverfront Plaza, Corning, New York 14831 (US).

(72) Inventors; and

(71) Applicants : BOOKBINDER, Dana Craig [US/US]; 2675 Davis Road, Corning, New York 14830 (US). GROSS, Timothy Michael [US/US]; 452 Fulton Street, Waverly, New York 14892 (US).

(74) Agent: SANTANDREA, Robert P; Corning Incorporated, Intellectual Property Department, SP-Ti-03-01, Corning, New York 14831 (US).


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: ION EXCHANGEABLE GLASSES HAVING HIGH HARDNESS AND HIGH MODULUS

FIG. 1

(57) Abstract: Ion-exchangeable glasses having high hardness and high elastic modulus. The base cover glass formulation includes Na₂O, Y₂O₃, Al₂O₃, and SiO₂. The glasses may further include P₂O₅, B₂O₃, and any of the alkali, alkaline earth, and rare earth oxides, as well as other divalent metal oxides. The ion-exchangeable glasses offer higher hardness, which provides more resistance to micro-ductile scratching damage. Ion-exchange of these glasses increases their resistance to cracking caused by frictive damage and increases retained strength following formation of surface damage.

WO 2014/081747 A1

ION EXCHANGEABLE GLASSES HAVING HIGH HARDNESS AND HIGH MODULUS

BACKGROUND

[0001] This application claims the benefit of priority under 35 U.S.C. 119 § of U.S. Application Serial No. 61/728944 filed on November 21, 2012 the content of which is relied upon and incorporated herein by reference in its entirety.

[0002] The disclosure relates to ion exchangeable alkali aluminosilicate glasses. More particularly, the disclosure relates to yttria-containing alkali aluminosilicate glasses. Even more particularly, the disclosure describes examples of yttria-containing alkali aluminosilicate glasses having high levels of hardness and elastic modulus.

[0003] Hard transparent cover materials such as single crystal sapphire are sometimes used as protective layers in glass articles such as cover glass or display windows for consumer electronic devices. While hard coatings can provide suitable increases in hardness, such coatings are susceptible to contact delamination.

SUMMARY

[0004] Ion-exchangeable glasses having high hardness and high elastic modulus are provided. The base cover glass formulation includes Na₂O, Y₂O₃, Al₂O₃, and SiO₂. The glasses may further include P₂O₅, B₂O₃, TiO₂, and any of the alkali, alkaline earth, and rare earth oxides, as well as other divalent metal oxides. The ion-exchangeable glasses described herein offer higher hardness, which provides more resistance to micro-ductile scratching damage. Ion-exchange of these glasses increases their resistance to cracking caused by frictive damage and increases retained strength following formation of surface damage.

[0005] Accordingly, one aspect of the disclosure is to provide an ion exchangeable glass comprising SiO₂, Al₂O₃, Na₂O, and up to about 7 mol% Y₂O₃, and having a molar ratio [Al₂O₃ (mol%)/Y₂O₃ (mol%)] of greater than 2.

[0006] A second aspect provides a glass comprising SiO₂, Al₂O₃, Na₂O, and Y₂O₃, and having a molar ratio [Al₂O₃(mol%)/Y₂O₃(mol%)] of greater than 2 and a Young's modulus of at least 75 GPa.

[0007] A third aspect of the disclosure is to provide a glass comprising SiO₂, Al₂O₃, Na₂O, and Y₂O₃, and having a molar ratio [Al₂O₃(mol%)/(Y₂O₃(mol%))] of at least 2 and a 200 gf Vickers hardness of at least 660 kgf/mm².

[0008] These and other aspects, advantages, and salient features of the present disclosure will become apparent from the following detailed description, the accompanying drawings, and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIGURE 1 is the ternary phase diagram for yttria alkali aluminosilicate glasses

DETAILED DESCRIPTION

[0010] In the following description, like reference characters designate like or corresponding parts throughout the several views shown in the figures. It is also understood that, unless otherwise specified, terms such as "top," "bottom," "outward," "inward," and the like are words of convenience and are not to be construed as limiting terms. In addition, whenever a group is described as comprising at least one of a group of elements and combinations thereof, it is understood that the group may comprise, consist essentially of, or consist of any number of those elements recited, either individually or in combination with each other. Similarly, whenever a group is described as consisting of at least one of a group of elements or combinations thereof, it is understood that the group may consist of any number of those elements recited, either individually or in combination with each other. Unless otherwise specified, a range of values, when recited, includes both the upper and lower limits of the range as well as any ranges therebetween. As used herein, the indefinite articles "a," "an," and the corresponding definite article "the" mean "at least one" or "one or more," unless otherwise specified. It also is understood that the

various features disclosed in the specification and the drawings can be used in any and all combinations.

[0011] As used herein, the terms "glass" and "glasses" includes both glasses and glass ceramics. The terms "glass article" and "glass articles" are used in their broadest sense to include any object made wholly or partly of glass and/or glass ceramic.

[0012] It is noted that the terms "substantially" and "about" may be utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. These terms are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.

[0013] Referring to the drawings in general and to FIG. 1 in particular, it will be understood that the illustrations are for the purpose of describing a particular embodiment and are not intended to limit the invention thereto.

[0014] Described herein are ion exchangeable and ion exchanged glasses having high hardness and high elastic modulus. These glasses comprise SiO_2 (silica), Al_2O_3 (alumina), Na_2O , and Y_2O_3 (yttria), wherein the molar ratio $\text{Al}_2\text{O}_3(\text{mol}\%)/\text{Y}_2\text{O}_3(\text{mol}\%)$ of the glass is greater than 2 and, in some embodiments, greater than 2.1. While not as hard as single crystal sapphire, the ion exchangeable glasses described herein are capable of being ion exchanged to achieve high surface compression and a deep depth of compressive layer. Ion exchange increases the resistance of the glass to cracking caused by frictive damage and increases the retained strength of the glass following formation of surface damage. The ion exchangeable glass is harder than many ion exchangeable or ion exchanged alkali aluminosilicate glasses, and is resistant to microductile scratching.

[0015] FIG. 1 is an isotherm of the ternary phase diagram for yttria sodium aluminosilicate glasses, showing compositions of samples that either formed glasses, separated into multiple phases, or devitrified. Each of the samples plotted in FIG.

contains 14 mol% Na₂O. The SiO₂, Al₂O₃, and Y₂O₃ components shown in FIG. 1 are divided by 86 in order to represent compositions on the ternary phase diagram. As seen in FIG. 1, sodium aluminosilicate glasses that contain yttria have large compositional ranges or areas where either phase separation or devitrification readily occur. In some embodiments, the glass described herein comprises up to 7 mol% Y₂O₃, thus avoiding such devitrification.

[0016] As seen in FIG. 1, phase separation appears to readily occur in those compositions in which the molar ratio of Na₂O to alumina (Na₂O(mol%)/Al₂O₃(mol%)) is 1:1, with the degree of such phase separation increasing with increasing yttria content. Glasses in which either Na₂O is present in excess with respect to alumina or alumina is present in excess with respect to Na₂O form high quality (i.e., highly transparent, clear) homogeneous glass. Accordingly, in order to avoid such phase separation, the glasses described herein, in some embodiments, the ratio (Na₂O(mol%)/Al₂O₃(mol%)) is greater than 1 and, in other embodiments, the ratio (Na₂O(mol%)/Al₂O₃(mol%)) is less than 1.

[0017] The glasses described herein, in some embodiments, comprise from about 40 mol% to about 82 mol% SiO₂ and, in some embodiments, from about 50 mol% to about 80 mol% SiO₂. The glasses described herein also comprise from about 4 mol% to about 40 mol% Al₂O₃ and, in some embodiments, from about 4 mol% to about 30 mol% Al₂O₃. The glasses described herein also comprise from about 4 mol% to about 26 mol% Na₂O, and, in some embodiments, from about 12.5 mol% to about 18 mol% Na₂O. Finally, in some embodiments, the glasses described herein comprise from about 1.5 mol% to about 7 mol% Y₂O₃. In some embodiments, the glass comprises: from about 40 mol% to about 82 mol% SiO₂; from about 4 mol% to about 40 mol% Al₂O₃; from about 4 mol% to about 26 mol% Na₂O; and from about 1.5 mol% to about 7 mol% Y₂O₃. In other embodiments, the glass comprises from about 50 mol% to about 80 mol% SiO₂; from about 4 mol% to about 30 mol% Al₂O₃; from about 12.5 mol% to about 18 mol% Na₂O; and from about 1.5 mol% to about 7 mol% Y₂O₃.

[0018] In some embodiments, the glass may further comprise at least one alkali metal oxide other than Na₂O; i.e., Li₂O, K₂O, Rb₂O, and/or Cs₂O. In certain embodiments, the glass may be substantially free of lithia (Li₂O). In some embodiments, the glass may further comprise at least one alkaline earth oxide and/or other oxides of divalent metals (e.g., ZnO). The glass, in some embodiments, may also further comprise at least one additional rare earth (i.e., La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc) oxide such as, for example, La₂O₃ and/or Sc₂O₃, other than yttria. In some embodiments, the glass may further comprise at least one of B₂O₃, P₂O₅, and TiO₂.

[0019] Examples of the yttria-containing glasses described herein are listed in Table 1. Values of the Al₂O₃/Y₂O₃ molar ratio determined for various examples and physical properties (density, molar volume, Young's modulus, shear modulus, Poisson's ratio, strain point, anneal point, and softening point) of these glasses are also listed in Table 1.

[0020] In some embodiments, the glass described herein has a viscosity dependence on temperature that enables the glass to be manufactured using down-draw methods, such as fusion draw and slot draw methods, that are known in the art. For example, the glass may have a 160 kP (kilopoise) temperature of about 1154°C, a 200 P temperature of about 1539°C, and a 35 kP temperature of about 1213°C. Alternatively, the glass may be formed by other methods known in the art, such as, for example float and casting methods.

[0021] The glass described herein, in some embodiments, may be strengthened by ion exchange. The glasses may, for example, be ion exchanged by immersion in a molten salt bath comprising or consisting essentially of KNO₃ at a temperature of about 450°C for a period of about 24 hours, although other potassium salts (e.g., KCl, K₂SO₄, or the like), different temperatures (e.g., 300°C-500°C), different ion exchange times (e.g., 1-48 hours), and successive immersion in multiple ion exchange baths may be used. In the ion exchange process, a portion of the sodium ions at or near the surface of the glass are exchanged for potassium ions in the salt bath to a depth in the glass, resulting in a layer of the glass that is under compressive

stress (also referred to as the compressive layer) and extends from the surface to a depth (depth of layer) into the bulk of the glass. As a result of the exchange of K^+ ions for Na^+ ions in the glass, the compressive layer may be enriched in potassium. In some embodiments, the potassium concentration has a maximum value at the surface, and decreases following a modified error function.

[0022] Compressive stress and depth of layer are measured using those means known in the art. Such means include, but are not limited to, measurement of surface stress (FSM) using commercially available instruments such as the FSM-6000, manufactured by Luceo Co., Ltd. (Tokyo, Japan), or the like, and methods of measuring compressive stress and depth of layer are described in ASTM 1422C-99, entitled “Standard Specification for Chemically Strengthened Flat Glass,” and ASTM 1279.19779 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully-Tempered Flat Glass,” the contents of which are incorporated herein by reference in their entirety. Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC is in turn measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2008), entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method. Multiple images are obtained using the FSM-6000 and combined in order to access the higher refractive indices of the yttria-containing glasses.

[0023] Unlike scratch resistant coatings such as diamond-like carbon and sapphire, which provide damage and scratch resistance above the glass surface, and are prone to delamination, the compressive layer of the glass provides compressive stress at the actual surface of the glass. The glasses described herein may be ion exchanged to produce a compressive layer having a compressive stress of at least about 800 MPa and a depth of layer of at least 40 μm . Table 2 lists compressive stress and depth of layer obtained for glasses listed in Table 1 when ion exchanged at 450°C in a KNO_3 molten salt bath for 24 hours.

[0024] The glasses described herein also have strain points that are significantly higher than those observed for other ion exchangeable alkali aluminosilicate glasses. In one embodiment, the glass has a strain point of at least about 700°C and, in some embodiments, at least about 760°C. In comparison, glass code 2317, manufactured by Corning® Incorporated, has a strain point of less than about 640°C.

[0025] The glasses described herein possess enhanced hardness and Young's modulus. Hardness values typically decrease as the indentation cracking resistance increases, and the hardness of the glass typically decreases with decreasing packing density, which is also reflected in low modulus values. While lower packing density allows for a large degree of deformation prior to the formation of strength-limiting cracks, it is also detrimental to the resistance of the glass to small, groove-like scratches in the microductile regime. The microductile scratch regime is defined as the presence of a permanent scratch groove without any lateral cracks intersecting the surface or any surface radial cracks. This type of scratch occurs during contacts which displace small volumes of glass. The increased hardness of the yttria doped glasses makes the width and/or depth of the scratch smaller for a given contact when compared to softer glasses. The glasses described herein have a Young's modulus, which increases the resistance of the glass to such small, groove-like scratches, of at least 75 gigaPascals (GPa) and, in some embodiments, at least 80 GPa. In comparison, code 2317 glass and related alkali aluminosilicate glasses manufactured by Corning® Incorporated, typically have a Young's modulus of about 75 GPa or less. The addition of rare earth metals such as yttrium to the base sodium aluminosilicate glass base composition result in a much more highly packed glass network, which results in greater hardness and Young's modulus.

[0026] Whereas ion-exchanged alkali aluminosilicate glasses typically have 200 grams force (gf) Vickers hardness values of about 650 kgf/m², the glasses described herein have 200 grams force (gf) Vickers hardness values of at least 750 kgf/mm³ and, in some embodiments, at least 790 kgf/mm² when ion exchanged. When unstrengthened (i.e., not ion exchanged), the glasses described herein have a 200 gf Vickers hardness of at least 660 kgf/mm². Table 3 lists Vickers hardness

values obtained for selected glasses listed in Table 1, and includes data for glasses that were ion exchanged as well as for glasses that were not ion exchanged.

[0027] The glasses described herein, in some embodiments, may be used as cover glass or windows for displays on electronic devices such as, but not limited to, entertainment devices, laptop computers, tablets, and the like. For such applications, the glass is formed into a planar or three dimensional sheets and is typically ion exchanged to provide the desired level of surface compressive stress. In some embodiments, the glass has a thickness in a range from about 0.1 mm to about 1.5 mm, in other embodiments, from about 0.2 mm to about 1.0 mm, in still other embodiments, from about 0.2 mm to about 0.7 mm, and in still other embodiments, from about 0.2 mm to about 0.5 mm.

[0028] Vickers indentation radial cracking thresholds measured for glasses listed in Table 1 that were ion exchanged are listed in Table 2. Vickers indentation radial cracking threshold measurements described herein were performed by applying and then removing an indentation load to the glass surface at 0.2 mm/min. The indentation maximum load is held for 10 seconds. The indentation cracking threshold is defined at the indentation load at which 50% of 10 indents exhibit any number of radial/median cracks emanating from the corners of the indent impression. The maximum load is increased until the threshold is met for a given glass composition. All indentation measurements are performed at room temperature in 50% relative humidity.

Table 1. Examples of ion-exchangeable, yttria-containing sodium aluminosilicate glasses.

Batched Composition (mol%)	ANL	ANM	ANN	ANO	ANP	ANQ
SiO ₂	61	59	57	55	53	51
Al ₂ O ₃	18.5	20.5	22.5	24.5	26.5	28.5
Y ₂ O ₃	6.5	6.5	6.5	6.5	6.5	6.5
Na ₂ O	14	14	14	14	14	14
molar ratio Al ₂ O ₃ /Y ₂ O ₃	2.8	3.2	3.5	3.8	4.1	4.4
Batched Composition (wt%)						
SiO ₂	46.5	44.5	42.5	40.6	38.7	36.9
Al ₂ O ₃	23.9	26.2	28.5	30.7	32.9	35.0
Y ₂ O ₃	18.6	18.4	18.2	18.0	17.9	17.7
Na ₂ O	11.0	10.9	10.8	10.7	10.6	10.4
Density (g/cm ³)	2.767	2.772	2.779	2.789	2.808	2.797
Molar Volume (mol/cm ³)	28.50	28.76	28.98	29.18	29.28	29.70
Young's modulus (GPa)	82.6	83.7	86.5	86.4	90	88.4
Shear modulus (GPa)	33.4	34.1	34.8	35.1	36.3	35.8
Poisson's Ratio	0.238	0.227	0.243	0.229	0.239	0.235
BBV Strain Pt (°C)	761.3	762.1	763.6	761.9	765.8	765.4
BBV Anneal Pt. (°C)	811.1	809	810.3	807.9	809	810.1
PPV softening Pt. (°C)	1009.6	999.1	994.5	992.3	985.3	988.9

Table 1, continued.

Batched Composition (mol%)	ANU (ANL repeat)	ANV	ANW	ANX	ANY	ANZ
SiO ₂	61	62	63	64	65	66
Al ₂ O ₃	18.5	18.5	18.5	18.5	18.5	18.5
Y ₂ O ₃	6.5	5.5	4.5	3.5	2.5	1.5
Na ₂ O	14	14	14	14	14	14
molar ratio Al ₂ O ₃ /Y ₂ O ₃	2.8	3.4	4.1	5.3	7.4	12.3
Batched Composition (wt%)						
SiO ₂	46.5	48.2	50.1	52.0	54.1	56.2
Al ₂ O ₃	23.9	24.4	25.0	25.5	26.1	26.7
Y ₂ O ₃	18.6	16.1	13.4	10.7	7.8	4.8
Na ₂ O	11.0	11.2	11.5	11.7	12.0	12.3

Table 1, continued.

Batched Compositi on (mol%)	AOA	AOB	AOC	AOD (ANL repeat 2)	AOE (ANV repeat)
SiO ₂	64.8	72.5	80.23	61	62
Al ₂ O ₃	15.7	10.0	4.27	18.5	18.5
Y ₂ O ₃	5.5	3.5	1.5	6.5	5.5
Na ₂ O	14.0	14.0	14	14	14
molar ratio Al ₂ O ₃ /Y ₂ O ₃					
	2.8	2.8	2.8	2.8	3.4
Batched Compositi on (wt%)					
SiO ₂	51.3	62.0	74.6	46.5	48.2
Al ₂ O ₃	21.0	14.4	6.7	23.9	24.4
Y ₂ O ₃	16.3	11.2	5.2	18.6	16.1
Na ₂ O	11.4	12.3	13.4	11.0	11.2
Density (g/cm ³)				2.759	
Molar Volume (mol/cm ³)				28.59	

Table 1, continued.

Batched Compositi on (mol%)	AOF (ANW repeat)	AOG (ANX repeat)	AON	AOO
SiO ₂	63	64	70.5	71.5
Al ₂ O ₃	18.5	18.5	11	11
Y ₂ O ₃	4.5	3.5	4.5	3.5
Na ₂ O	14	14	14	14
molar ratio Al ₂ O ₃ /Y ₂ O ₃	4.1	5.3	2.4	3.1
Batched Compositi on (wt%)				
SiO ₂	50.1	52.0	58.5	60.7
Al ₂ O ₃	25.0	25.5	15.5	15.9
Y ₂ O ₃	13.4	10.7	14.0	11.2
Na ₂ O	11.5	11.7	12.0	12.3
Density (g/cm ³)	2.661	2.608	2.63	2.576
Molar Volume (mol/cm ³)	28.39	28.34	27.54	27.47

Table 2. Compressive stress, depth of layer, Vickers indentation radial cracking thresholds, and diffusivities obtained for selected glasses listed in Table 1 when ion exchanged at 450°C in a KNO₃ molten salt bath for 24 hours..

<i>Compressive stress measured using SOC = 31.8</i>	ANL	ANM	ANN	ANO	ANP	ANQ
450°C 24hr KNO ₃ Ion-Exchange CS (MPa)	884	889	860	851		772
450°C 24hr KNO ₃ ion-exchange DOL (microns)	71	41	38	24		20
450°C 24hr KNO ₃ Ion-Exchange indentation radial cracking threshold (kgf)	6-7	4-5	4-5	2-3	2-3	2-3
450°C 24hr K ⁺ /Na ⁺ ion-exchange Diffusivity (cm ² /s)	7.44 x 10 ⁻¹¹	2.48 x 10 ⁻¹¹	2.13 x 10 ⁻¹¹	8.50 x 10 ⁻¹²		5.91 x 10 ⁻¹²

Table 3. Vickers hardness values obtained for selected glasses listed in Table 1.

	ANL	ANM	ANN	ANO	ANP	ANQ
Vickers Hardness (kgf/mm ²) non-IX 200gf load	674	666	674	673	687	670
Vickers Hardness (kgf/mm ²) IX 200gf load	812	795	803	795	797	804

[0029] While typical embodiments have been set forth for the purpose of illustration, the foregoing description should not be deemed to be a limitation on the scope of the invention. Accordingly, various modifications, adaptations, and alternatives may occur to one skilled in the art without departing from the spirit and scope of the present invention.

CLAIMS

1. A glass comprising SiO₂, Al₂O₃, Na₂O, and up to about 7 mol% Y₂O₃, the glass having a molar ratio [Al₂O₃ (mol%)/Y₂O₃ (mol%)] of greater than 2, wherein the glass is ion exchangeable.

2. The glass of Claim 1, wherein the glass has a Young's modulus of at least 75 GPa.

3. The glass of Claim 1 or Claim 2, wherein the glass comprises: from about 40 mol% to about 82 mol% SiO₂; from about 4 mol% to about 40 mol% Al₂O₃; from about 4 mol% to about 26 mol% Na₂O; and from about 1.5 mol% to about 7 mol% Y₂O₃.

4. The glass of any one of Claims 1-3, wherein the glass comprises: from about 50 mol% to about 80 mol% SiO₂; from about 4 mol% to about 30 mol% Al₂O₃; from about 12.5 mol% to about 18 mol% Na₂O; and from about 1.5 mol% to about 7 mol% Y₂O₃.

5. The glass of any one of the preceding Claims, wherein Al₂O₃(mol%)/Na₂O(mol%) > 1.

6. The glass of any one of the preceding Claims, wherein Al₂O₃(mol%)/Na₂O(mol%) < 1.

7. The glass of any one of the preceding Claims, further comprising at least one alkali metal oxide other than Na₂O.

8. The glass of any one of the preceding Claims, further comprising at least one divalent metal oxide.

9. The glass of Claim 8, wherein the at least one divalent metal oxide comprises at least one of ZnO and one or more alkaline earth oxide.

10. The glass of any one of the preceding Claims, further comprising at least one rare earth oxide other than Y₂O₃.

11. The glass of any one of the preceding Claims, further comprising at least one of B_2O_3 , P_2O_5 , and TiO_2 .

12. The glass of any one of the preceding Claims, wherein the glass has a strain point of at least 700°C.

13. The glass of any one of the preceding Claims, wherein the glass has a 200 gf Vickers hardness of at least 660 kgf/mm².

14. The glass of any one of the preceding Claims, wherein the glass is ion exchanged.

15. The glass of Claim 14, wherein the ion exchanged glass has a compressive layer extending from a surface of the glass to a depth of layer of at least 40 μm into the glass, wherein the compressive layer has a compressive stress of at least 800 MPa.

16. The glass of Claim 14 or Claim 15, wherein the compressive layer comprises potassium ions.

17. The glass of any one of Claims 14-16, wherein the ion exchanged glass has a 200 gf Vickers hardness of at least 750 kgf/mm².

18. The glass of any one of the preceding Claims, wherein the glass has a thickness in a range from about 0.1 mm up to about 1.5 mm.

19. A glass comprising SiO_2 , Al_2O_3 , Na_2O , and Y_2O_3 , the glass having a molar ratio [Al_2O_3 (mol%)/ Y_2O_3 (mol%)] of greater than 2 and a Young's modulus of at least 80 GPa.

20. The glass of Claim 19, wherein the glass comprises up to at least 7 mol% Y_2O_3 .

21. The glass of Claim 19 or Claim 20, wherein the glass comprises: from about 40 mol% to about 82 mol% SiO_2 ; from about 4 mol% to about 40 mol% Al_2O_3 ;

from about 4 mol% to about 26 mol% Na₂O; and from about 1.5 mol% to about 7 mol% Y₂O₃.

22. The glass of any one of Claims 19-21, wherein the glass comprises: from about 50 mol% to about 80 mol% SiO₂; from about 4 mol% to about 30 mol% Al₂O₃; from about 12.5 mol% to about 18 mol% Na₂O; and from about 1.5 mol% to about 7 mol% Y₂O₃.

23. The glass of any one of Claims 19-22, wherein Al₂O₃(mol%)/Na₂O(mol%) > 1.

24. The glass of any one of Claims 19-23, wherein Al₂O₃(mol%)/Na₂O(mol%) < 1.

25. The glass of any one of Claims 19-24, further comprising at least one alkali metal oxide other than Na₂O.

26. The glass of any one of Claims 19-25, further comprising at least one divalent metal oxide.

27. The glass of Claim 26, wherein the at least one divalent oxide comprises at least one of ZnO and one or more alkaline earth oxide.

28. The glass of any one of Claims 19-27, further comprising at least one rare earth oxide other than Y₂O₃.

29. The glass of any one of Claims 19-28, further comprising at least one of B₂O₃, P₂O₅, and TiO₂.

30. The glass of any one of Claims 19-29, wherein the glass has a strain point of at least 700°C.

31. The glass of any one of Claims 19-30, wherein the glass has a 200 gf Vickers hardness of at least 660 kgf/mm².

32. The glass of any one of Claims 19-31, wherein the glass is ion exchanged.

33. The glass of Claim 32, wherein the ion exchanged glass has a compressive layer extending from a surface of the glass to a depth of layer of at least 40 μm into the glass, wherein the compressive layer has a compressive stress of at least 800 MPa.

34. The glass of Claim 32 or Claim 33, wherein the compressive layer comprises potassium ions.

35. The glass of any one of Claims 32-34, wherein the ion exchanged glass has a 200 gf Vickers hardness of at least 750 kgf/mm².

36. The glass of any one of Claims 19-35, wherein the glass has a thickness in a range from about 0.1 mm up to about 1.5 mm.

37. A glass comprising SiO₂, Al₂O₃, Na₂O, and Y₂O₃, the glass having a molar ratio [Al₂O₃(mol%)/(Y₂O₃(mol%))] of at least 2 and a 200 gf Vickers hardness of at least 660 kgf/mm².

38. The glass of Claim 37, wherein the glass has a Young's modulus of at least 75 GPa.

39. The glass of Claim 37 or Claim 38, wherein the glass of comprises up to about 7 mol% Y₂O₃.

40. The glass of any one of Claims 37-39, wherein the glass comprises: from about 40 mol% to about 82 mol% SiO₂; from about 4 mol% to about 40 mol% Al₂O₃; from about 4 mol% to about 26 mol% Na₂O; and from about 1.5 mol% to about 7 mol% Y₂O₃.

41. The glass of any one of Claims 37-40, wherein the glass comprises: from about 50 mol% to about 80 mol% SiO₂; from about 4 mol% to about 30 mol% Al₂O₃; from about 12.5 mol% to about 18 mol% Na₂O; and from about 1.5 mol% to about 7 mol% Y₂O₃.

42. The glass of any one of Claims 37-41, wherein $\text{Al}_2\text{O}_3(\text{mol}\%) / \text{Na}_2\text{O}(\text{mol}\%) > 1$.

43. The glass of any one of Claims 37-42, wherein $\text{Al}_2\text{O}_3(\text{mol}\%) / \text{Na}_2\text{O}(\text{mol}\%) > 1$.

44. The glass of any one of Claims 37-43, further comprising at least one alkali metal oxide other than Na_2O .

45. The glass of any one of Claims 37-44, further comprising at least one divalent metal oxide.

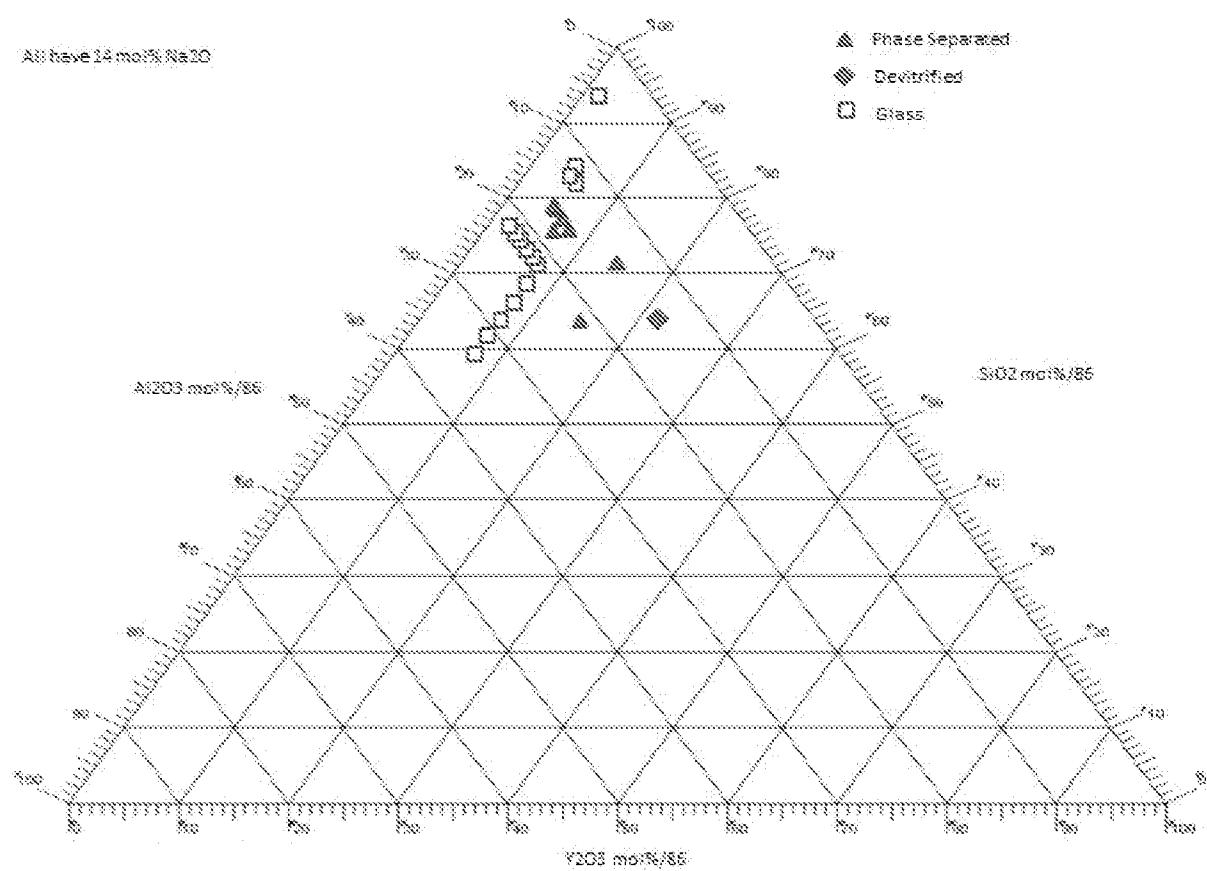
46. The glass of Claim 45, wherein the at least one divalent metal oxide comprises at least one of ZnO and one or more alkaline earth oxide.

47. The glass of any one of Claims 37-46, further comprising at least one rare earth oxide other than Y_2O_3 .

48. The glass of any one of Claims 37-47, further comprising at least one of B_2O_3 , P_2O_5 , and TiO_2 .

49. The glass of any one of Claims 37-48, wherein the glass has a strain point of at least 700°C .

50. The glass of any one of Claims 37-49, wherein the glass is ion exchanged.


51. The glass of Claim 50, wherein the ion exchanged glass has a compressive layer extending from a surface of the glass to a depth of at least 40 μm into the glass, wherein the compressive layer has a compressive stress of at least 800 MPa.

52. The glass of Claim 50 or Claim 51, wherein the ion exchanged glass has a 200 gf Vickers hardness of at least 750 kgf/mm^2 .

53. The glass of any one of Claims 50-52, wherein the compressive layer comprises potassium ions.

54. The glass of any one of Claims 37-53, wherein the glass has a thickness in a range from about 0.1 mm up to about 1.5 mm.

FIG. 1

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2013/070869

A. CLASSIFICATION OF SUBJECT MATTER
INV. C03C3/068 C03C3/095 C03C21/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C03C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	<p>WO 2013/181122 A2 (CORNING INC [US]; GUO XIAOJU [US]; MAURO JOHN CHRISTOPHER [US]; POTUZA) 5 December 2013 (2013-12-05) example Y1, p. 15, p.16</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1-4,6,8, 9,14

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
6 February 2014	28/02/2014

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Deckwerth, Martin

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2013/070869

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2001 172043 A (ASAHI GLASS CO LTD) 26 June 2001 (2001-06-26)	1-3, 5-12,14, 16, 18-21, 23-30, 32,34, 36-40, 42-50, 53,54
Y	abstract; table 1, examples 3, 5, 7-10	4,13,15, 17,22, 31,33, 35,41, 51,52
X	----- US 6 332 338 B1 (HASHIMOTO KAZUAKI [JP] ET AL) 25 December 2001 (2001-12-25)	1-3, 5-12,14, 16, 18-21, 23-30, 32,34, 36-40, 42-50, 53,54
	col. 1, 1. 48-62; col. 3, 1. 25-35; table 1, example 6; table 6, ex. 31-37; table 7, ex. 38, 41, 42; table 11, ex. 61; table 12, ex. 85, 86	
X	----- US 2012/107647 A1 (MATSUMOTO NAOMI [JP] ET AL) 3 May 2012 (2012-05-03)	1-3, 5-12,14, 16, 18-21, 23-30, 32,34, 36-40, 42-50, 53,54
Y	0012], [0019], [0030], [0081], [0083], [0104], [0177]; table 1, ex. 24	4,13,15, 17,22, 31,33, 35,41, 51,52
	----- -/-	
1		

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2013/070869

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 917 135 A1 (HOYA CORP [JP]) 19 May 1999 (1999-05-19)	1-3, 5-12,14, 16, 18-21, 23-30, 32,34, 36-40, 42-50, 53,54
Y	[0009], [0022]-[0024], [0063]-[0066], [0045]-[0047]; table 1, ex. 6; table 7-2, ex. 15; table 8-1, ex. 50, 54; table 8-2, ex. 58, 59	4,13,15, 17,22, 31,33, 35,41, 51,52
X	----- US 6 465 105 B1 (JOHNSON ROBERT W [US] ET AL) 15 October 2002 (2002-10-15)	1-3, 5-12,14, 16, 18-21, 23-30, 32,34, 36-40, 42-50, 53,54
Y	col. 2, 1. 15-33; table 1, ex. 20	4,13,15, 17,22, 31,33, 35,41, 51,52
X	----- US 6 387 510 B1 (NAKASHIMA TETSUYA [JP] ET AL) 14 May 2002 (2002-05-14)	1,2, 5-12,14, 16,18, 19,37
	col. 1, 1. 8-33; col. 2, 1. 40-60; col. 5, 1. 18-45; table 1, ex. 1-10	
X	----- US 2004/063564 A1 (KAWAI HIDEKI [JP] ET AL) 1 April 2004 (2004-04-01) paragraphs [0012], [0019] - [0021], [0024], [0036], [0041] - paragraphs [0042], [0061], [0062]; examples 71,113,125,177; tables 4,6,7,9	1,2,19, 37

1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/US2013/070869

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 2013181122	A2	05-12-2013	NONE		
JP 2001172043	A	26-06-2001	NONE		
US 6332338	B1	25-12-2001	AU 8460998 A CA 2267094 A1 CN 1241169 A DE 69834385 T2 EP 0953548 A1 JP 3928884 B2 KR 100402450 B1 US 6332338 B1 WO 9906333 A1		22-02-1999 11-02-1999 12-01-2000 19-04-2007 03-11-1999 13-06-2007 22-10-2003 25-12-2001 11-02-1999
US 2012107647	A1	03-05-2012	CN 103189917 A SG 190011 A1 US 2012107647 A1 WO 2012057338 A1		03-07-2013 28-06-2013 03-05-2012 03-05-2012
EP 0917135	A1	19-05-1999	AU 749543 B2 AU 7550498 A CA 2262700 A1 CN 1228184 A CN 1558398 A DE 69835572 T2 EP 0917135 A1 JP 4098834 B2 JP 4134266 B2 JP 2008097821 A KR 100446053 B1 MY 118378 A WO 9855993 A1		27-06-2002 21-12-1998 10-12-1998 08-09-1999 29-12-2004 09-08-2007 19-05-1999 11-06-2008 20-08-2008 24-04-2008 30-08-2004 30-10-2004 10-12-1998
US 6465105	B1	15-10-2002	AT 356093 T CA 2314841 A1 CN 1285667 A DE 60033742 T2 EP 1074519 A2 JP 3383942 B2 JP 3828817 B2 JP 2001089184 A JP 2002321939 A JP 2004182598 A KR 20010021187 A SG 114469 A1 SG 130036 A1 TW I230146 B US 6465105 B1		15-03-2007 02-02-2001 28-02-2001 06-12-2007 07-02-2001 10-03-2003 04-10-2006 03-04-2001 08-11-2002 02-07-2004 15-03-2001 28-09-2005 20-03-2007 01-04-2005 15-10-2002
US 6387510	B1	14-05-2002	NONE		
US 2004063564	A1	01-04-2004	JP 4530618 B2 JP 2004161597 A US 2004063564 A1		25-08-2010 10-06-2004 01-04-2004