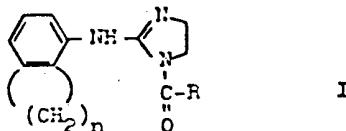


PATENT SPECIFICATION (11) 1 591 879

1 591 879

(21) Application 47237/77 (22) Filed 14 Nov. 1977
 (31) Convention Application No. 2652004 (32) Filed 15 Nov. 1976 in
 (33) Fed. Rep. of Germany (DE)
 (44) Complete Specification Published 1 Jul. 1981
 (51) INT. CL.³ C07D 233/50
 (52) Index at Acceptance

C2C 1173 1175 1204 1412 1494 1510
 1530 1693 200 213 215 220 221
 222 225 226 22X 22Y 246 250 251
 252 253 254 25Y 28X 29X 29Y 30Y
 311 313 314 31Y 322 32Y 332 337
 338 339 350 351 355 35X 35Y 364
 366 368 36Y 43X 456 45Y 620 621
 624 625 628 634 644 652 65X 660
 661 662 665 66X 670 675 678 680
 694 695 697 699 69Y 775 AA LL
 LM LS LW LZ NG


(54) NEW 1-ACYL-2-IMIDAZOLINES AND THEIR MANUFACTURE

(71) We, BASF AKTIENGESELLSCHAFT, a German Joint Stock Company of 6700 Ludwigshafen, Federal Republic of Germany, do hereby declare the invention, for which we pray that a Patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

5 The present invention relates to 1-acyl-2-imidazolines, their manufacture and their use as intermediates.

An article by H. Bredereck et al (Chem. Ber. 92 (1959), 837 et seq.) discloses that fatty acid N,N-dialkylamides can be reacted with phosphorus oxytrichloride to give fatty acid, N,N-dialkylamide/ phosphorus oxytrichloride adducts, which react with amines to give 10 tri-substituted amidines. H. and K. Bredereck further disclose (Chem. Ber. 94 (1961), 2278) that lactams, e.g. 2-pyrrolidone, 2-piperidone, ϵ -caprolactam and 3,4-dihydro-2-quinolone, behave similarly and give semi-cyclic amidines. 1-Acyl-2-imidazolines, for example, can also be obtained by this reaction (German Laid-Open Application DOS 2,316,377).

15 We have found, surprisingly, that 1-acyl-2-imidazolines of the general formula I

25 where n is 3 or 4 and R is hydrogen, alkyl of 1 to 4 carbon atoms (which is unsubstituted or is monosubstituted, disubstituted or trisubstituted by halogen, especially fluorine, chlorine or bromine, alkoxy or 1 to 4 carbon atoms, alkoxy carbonyl of 2 or 3 carbon atoms, phenoxy or nitrophenoxy), cycloalkyl of 3 to 7 carbon atoms in the ring, alkoxy of 1 to 8 carbon atoms (which is unsubstituted or monosubstituted, disubstituted or trisubstituted by halogen, especially chlorine or bromine, or monosubstituted by alkoxy of 1 to 4 carbon atoms), cycloalkoxy of 3 to 10 carbon atoms in the ring (which is unsubstituted or substituted by alkyl of 1 to 4 carbon atoms), alkenyloxy of 3 or 4 carbon atoms, alkoxy carbonyl of 2 or 3 carbon atoms, aralkoxy (which is unsubstituted or substituted in the aromatic portion by alkoxy of 1 to 4 carbon atoms, halogen, especially chlorine or bromine, or nitro), aryloxy (which is unsubstituted or substituted in the aromatic portion by nitro), phenyl and phenylalkyl of 7 or 8 carbon atoms (where phenyl is unsubstituted or

25

30

35

30

35

monosubstituted, disubstituted or trisubstituted by alkyl of 1 to 4 carbon atoms, trifluoromethyl, halogen, especially chlorine, bromine and fluorine, alkoxy of 1 to 4 carbon atoms, alkylenedioxy of 1 or 2 carbon atoms or phenyl, phenylalkenyl of 8 or 9 carbon atoms (which is unsubstituted or monosubstituted, disubstituted or trisubstituted by halogen, especially fluorine, chlorine or bromine, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms or methylenedioxy), or a heterocyclic ring system, eg. thienyl, furyl or pyridyl, the pyridine ring being unsubstituted or substituted by halogen, especially chlorine, are valuable novel intermediates for the manufacture of the corresponding 1-unsubstituted imidazolines, because of their ready accessibility and their ease of hydrolysis. 5

10 Unsubstituted alkyl radicals R are, methyl, ethyl, propyl and butyl, whilst examples of substituted alkyl radicals R are monohalomethyl, monohaloethyl, trihalomethyl, methoxyethyl, ethoxyethyl, phenoxyethyl, nitrophenoxy-methyl, methoxycarbonylmethyl and ethoxycarbonylmethyl. 10

15 Examples of cycloalkyl radicals R are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. 15

20 Examples of alkoxy radicals R which are unsubstituted or substituted by one or more halogen atoms or an alkoxy radical are methoxy, ethoxy, propoxy, butoxy, amyloxy, 2-ethylhexoxy, bromoethoxy, trichloroethoxy and methoxyethoxy. 20

25 Examples of cycloalkoxy radicals R are cyclohexoxy and tert.-butylcyclohexoxy. 25

30 An example of an alkenyloxy radical R is allyloxy. 30

35 Alkoxycarbonyl radicals R are methoxycarbonyl and ethoxy carbonyl. 35

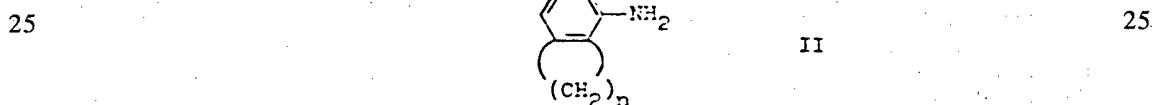
40 Examples of aralkoxy radicals R which are unsubstituted or substituted in the aromatic portion by alkoxy, halogen or nitro are benzyloxy, methoxybenzyloxy, chlorobenzyloxy and nitrobenzyloxy. 40

45 Examples of aryloxy radicals R are phenoxy and nitrophenoxy. 45

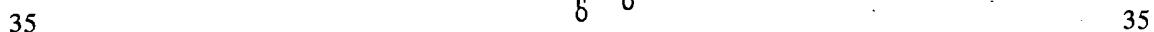
50 Examples of phenyl radicals R which are optionally substituted by one or more alkyl, trifluoromethyl, halogen, alkoxy, alkylenedioxy or phenyl substituents are phenyl, methylphenyl, ethylphenyl, propylphenyl, trifluoromethylphenyl, fluorophenyl, chlorophenyl, bromophenyl, methoxyphenyl, ethoxyphenyl, propoxyphenyl, butoxyphenyl, biphenyl, dimethylphenyl, chloromethylphenyl, dichlorophenyl, dimethoxyphenyl, methoxyethoxyphenyl, diethoxyphenyl, methylenedioxyphephenyl, ethylenedioxyphephenyl, trimethoxyphenyl, dimethoxyethoxyphenyl and triethoxyphenyl. 50

55 Examples of phenylalkyl radicals R which are optionally substituted in the aromatic portion by one or more alkyl, halogen, alkoxy or alkylenedioxy substituents are benzyl, methylbenzyl, chlorobenzyl, methoxybenzyl, dimethylbenzyl, dichlorobenzyl, dimethoxybenzyl, methylene-dioxybenzyl, ethylenedioxybenzyl, trimethoxybenzyl, phenylethyl, chlorophenylethyl, methoxyphenylethyl, dichlorophenylethyl and dimethoxyphenylethyl. 55

60 Examples of phenylalkenyl radicals R which are optionally substituted by halogen, alkyl, alkoxy or methylenedioxy are styryl, methylstyryl, propylstyryl, chlorostyryl, fluorostyryl, methoxystyryl, dichlorostyryl, dimethoxystyryl, methylenedioxystyryl and trimethoxystyryl. 60


65 Examples of heterocyclic ring systems R are thienyl, furyl, pyridyl and chloropyridyl. 65

70 Amongst the above meanings of R, the following are preferred: hydrogen; alkyl of 1 to 4 carbon atoms, namely methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec.-butyl and tert.-butyl; alkyl substituted by from one to three chlorine, bromine or fluorine atoms, one alkoxy or alkoxy carbonyl radical, alkyl being in each case of 1 or 2 carbon atoms, or phenoxy (which is unsubstituted or substituted by nitro), eg. chloromethyl, trichloromethyl, trifluoromethyl, 2-chloroethyl, 2-methoxyethyl, 2-ethoxyethyl, phenoxyethyl, p-nitrophenoxyethyl, methoxycarbonylmethyl and ethoxycarbonylmethyl; cycloalkyl of 3 to 6 carbon atoms in the ring, eg. cyclopropyl, cyclopentyl and cyclohexyl; alkoxy of 1 to 8 carbon atoms, which is unsubstituted or substituted by from 1 to 3 bromine or chlorine atoms or one alkoxy group of 1 or 2 carbon atoms, eg. methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, sec.-butoxy, amyloxy, 2-ethylhexoxy, 2-bromoethoxy, 2,2,2-trichloroethoxy and 2-methoxyethoxy; cycloalkoxy of 5 or 6 ring members, the cycloalkyl radical being unsubstituted or substituted by alkyl of 1 to 4 carbon atoms, eg. cyclopentoxy, cyclohexoxy and 4-tert.-butylcyclohexoxy; alkenyloxy of 3 or 4 carbon atoms, eg. allyloxy; alkoxy carbonyl of 2 or 3 carbon atoms, namely methoxycarbonyl and ethoxycarbonyl; benzyloxy, in which phenyl is unsubstituted or substituted by chlorine, methoxy or nitro, eg. benzyloxy, p-methoxybenzyloxy, p-chlorobenzyloxy and p-nitrobenzyloxy; phenoxy, optionally substituted by nitro, eg. phenoxy and p-nitrophenoxy; phenyl which is unsubstituted or carries from 1 to 3 substituents chosen from amongst fluorine, chlorine and bromine atoms, and alkyl and alkoxy radicals alkoxy radicals of 1 to 4 carbon atoms, or is monosubstituted by trifluoromethyl, phenyl, methylenedioxy or ethylenedioxy, eg. phenyl, methylphenyl, ethylphenyl, propylphenyl, i-propylphenyl, 65


trifluormethylphenyl, fluorophenyl, chlorophenyl, bromophenyl, methoxyphenyl, ethoxyphenyl, n-propoxyphenyl, i-propoxyphenyl, n-butoxyphenyl, biphenyl, dimethylphenyl, methychlorophenyl, dichlorophenyl, dimethoxyphenyl, ethoxymethoxyphenyl, diethoxyphenyl, methylenedioxyphenyl, ethylenedioxyphenyl, trimethoxyphenyl and triethoxyphenyl; phenylalkyl of 7 or 8 carbon atoms, in which phenyl is unsubstituted or is monosubstituted, disubstituted or trisubstituted by chlorine or bromine, alkoxy of 1 to 3 carbon atoms or alkyl of 1 or 2 carbon atoms or is monosubstituted by methylenedioxy or ethylenedioxy, eg. benzyl, methylbenzyl, chlorobenzyl, methoxybenzyl, dimethylbenzyl, dichlorobenzyl, dimethoxybenzyl, methylenedioxybenzyl, ethylenedioxybenzyl, trimethoxybenzyl, 1-phenyl-ethyl, 1-o-methoxyphenylethyl, 1-p-chlorophenyl-ethyl, 2-phenylethyl, 2-chlorophenylethyl, 2-(methoxyphenyl)-ethyl and 2-(dimethoxyphenyl)-ethyl; styryl, which is unsubstituted or monosubstituted, disubstituted or trisubstituted by alkyl of 1 to 3 carbon atoms, halogen, especially fluorine, chlorine or bromine, alkoxy of 1 to 3 carbon atoms or methylenedioxy, eg. styryl, methylstyryl, i-propylstyryl, chlorostyryl, fluorostyryl, methoxystyryl, dichlorostyryl, dimethoxystyryl, methylenedioxystyryl and trimethoxystyryl; and a heterocyclic ring system, eg thienyl, furyl, pyridyl and chloropyridyl.

Amongst these, the particularly preferred meanings of R are alkyl of 1 to 4 carbon atoms, especially methyl and ethyl, alkoxy of 1 to 8 carbon atoms, especially methoxy and ethoxy, and phenyl.

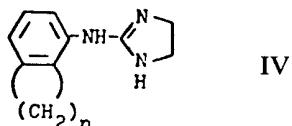
The compounds of the invention can be manufactured by reacting an amine of the general formula II

30 where n has the above meaning, with a 1-acyl-2-imidazolidinone of the general formula III

where R has the above meaning, in the presence of at least 1 mole of phosphorus oxytrichloride at from 20 to 120°C. The preferred reaction temperatures are from 40 to 70°C. Experience has shown that the reaction is advantageously carried out with from two to three times the molar amount of phosphorous oxychloride. In addition, further phosphorus oxychloride may or may not be used as a solvent.

The reaction of an amine of the general formula II with a 1-acyl-2-imidazolidinone of the general formula III is preferably carried out with a molar ratio of from 1:1.1 to 1:1.5, and in addition is advantageously carried out in excess POCl_3 as the solvent, preferably at from 40 to 70°C or at the reflux temperature of any solvent which may be used. When POCl_3 is employed as the solvent, its amount is advantageously up to a 20-molar excess. In some cases the amount used is determined by the need to ensure that the reaction mixture should remain easily stirrable. The reaction can also be carried out advantageously in the presence of an inert organic solvent, for example a chlorohydrocarbon, eg. chloroform or carbon tetrachloride. Furthermore, it is advantageous to heat the mixture in an inert atmosphere, eg. under nitrogen or argon, because of the relative ease with which the amines used can oxidize.

After completion of the reaction (which may be followed by, for example, thin layer chromatography), the excess POCl_3 may be removed by distillation, and after neutralization the resulting compounds of the invention, having the general formula I, may be purified by physical methods, eg. partition, crystallization or chromatography, or by chemical methods, eg. forming salts, crystallizing these and then decomposing them in an alkaline medium. In purifying the products, the nature of the anion of the salt is immaterial, since all that matters is that the salt should be well defined and readily crystallizable.


The excess POCl_3 is preferably distilled off, and in order to avoid decomposing the reaction product it is particularly preferred that the distillation is carried out under reduced pressure. The distillation residue obtained is mixed with cold water, preferably ice water, an aqueous alkaline solution, eg. of sodium bicarbonate, sodium carbonate or sodium hydroxide, is added until the mixture reacts distinctly alkaline, and the batch is preferably extracted with a water-immiscible solvent, eg. methylene chloride or chloroform. After

removing the solvent, the substances of the invention, having the formula I, are preferably purified by crystallization from an inert organic solvent, eg. hexane, cyclohexane, toluene, isopropanol or acetonitrile.

5 The 1-acyl-2-imidazolidinones of the formula III, used as starting compounds, can be obtained by acylating ethyleneurea with carboxylic acid anhydrides or with carboxylic acid halides, in the presence or absence of acid-binding agents, eg. triethylamine, pyridine or antipyrine, in the conventional manner; good yields are obtained. Some of the 1-acyl-2-imidazolidinones are described in, for example, German Laid-Open Applications DOS 2,152,967 and 2,316,377.

10 10 The 1-acyl-2-imidazolines according to the invention, of the general formula I, are valuable intermediates for the manufacture of imidazolines of the general formula IV

15

15

20 20 where n is 3 or 4, which compounds are useful drugs.

We have found, surprisingly, that elimination of the acyl radical from the compounds according to the invention, of the general formula I, is achievable by merely heating in water, preferably by refluxing, whilst elimination of the acyl group from the chemically similar 1-acyl-2-arylamino-2-imidazolines, manufactured, for example, by the process of German Laid-Open Application DOS 2,316,377, is only achievable with acid or alkaline reagents and in lower aliphatic alcohols as solvents. Using the intermediates according to the invention provides an improvement over the methods described in German Laid-Open Application DOS 2,316,377, both in respect of the cheapness of the hydrolytic agent used and in respect of the yields achieved.

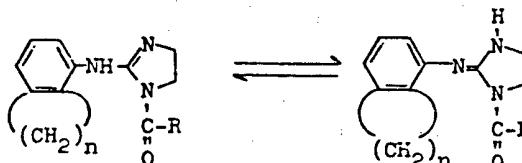
30 30 The advantageous process for deacylating a compound of the formula I is characterized in that a mixture of the compound with water is heated at from 70 to 100°C, with or without passing steam through the mixture. As a rule, from 10 to 25% strength by weight mixtures with water are used. The amount of water is advantageously chosen to allow the system to be stirred readily. Steam distillation is particularly advantageous for removing unconverted amine, which, if not removed in this way, may become difficult to remove by crystallization.

35 35 The deacylated compound can be manufactured by using the aqueous solution of the acylated compound directly, without having to remove troublesome reagents. The imidazoline can advantageously be obtained from the resulting aqueous solution of the imidazoline bases of the formula IV by converting it to the sparingly soluble nitrate, which separates out in a crystalline form, which is isolated. The imidazoline nitrates are obtained in a high yield and virtually analytically pure.

40 40 In order to be able to carry out the deacylation or hydrolysis by heating in water, the acyl-imidazolines according to the invention need not be isolated as such. It suffices to remove the excess POCl_3 by distillation, take up the evaporation in a suitable extractant, for example a chlorohydrocarbon, eg. chloroform, bring the pH to about 11 with an alkali solution, eg. sodium hydroxide solution, free the extract, which has been washed neutral with water, from the solvent and reflux the residue with water as described. It has proved particularly advantageous to pass steam into the reaction mixture at the same time, so that unconverted amine of the formula II passes over with the steam and, being the most valuable of the starting materials employed, can be recovered from the distillate.

45 50 Deacylation in water is in principle possible with all 1-acyl-2-imidazolines according to the invention, of the general formula I. Naturally, it is a precondition that they should be sufficiently water-soluble at the temperatures employed. Solubilizing agents may or may not be added in order to increase the solubility of the compounds in water. Because of their cheapness, ready accessibility, relatively good solubility in water and relatively rapid hydrolysis, the compounds of the formula I, where R is alkyl of 1 to 4 carbon atoms, especially methyl or ethyl, alkoxy of 1 to 8 carbon atoms, especially methoxy or ethoxy, or phenyl, are particularly preferred. In these compounds, the deacylation in aqueous solution at 100°C is complete after from 2 to 4 hours.

55 60 Preferred starting compounds for the deacylation reaction are, accordingly, 1-acetyl-, 1-propionyl-, 1-methoxycarbonyl-, 1-ethoxycarbonyl- and 1-benzoyl-2-(4-indanylamino)-2-imidazoline and the corresponding 5,6,7,8-tetrahydro-1-naphthyl-amino compounds of the formula I.


65 65 The process for the manufacture of 2-arylamino-2-imidazolines by hydrolysis of 1-acyl-2-imidazolines is of particular importance since, in contrast to conventional processes

for the manufacture of 2-arylamino-2-imidazolines, it does not require any organo-sulfur compounds which could pollute the environment in the course of the synthesis, and since furthermore the most valuable starting material, ie. the amine of the general formula II, is only employed toward the end of the reaction sequence, thereby giving the best overall yield of imidazolines of the formula IV, based on amine converted. The conventional methods which can be used for the manufacture of 2-arylamino-2-imidazolines of the general formula V (German Patents 1,191,381, 1,195,323 and 2,136,325) entail organo-sulfur intermediates, eg. thioureas or isothiuronium compounds, from which hydrogen sulfide or mercaptan is eliminated in the course of the cyclizing reaction.

It should be pointed out that the compounds according to the invention, of the general formula I, as well as the 2-imidazolines of the formula IV, can be present partially or completely in a second tautomeric form which, for those of the formula IV, may be represented by the following formula Ia:

15

20

I

Ia

15

20

25

It is to be understood that the compounds of formulae I and IV are included irrespective of their tautomeric form.

The Examples which follow illustrate the invention without implying any limitation.

Example 1
 140.9 g (1.1 moles) of 1-acetyl-2-imidazolidinone (melting point 186-187°C) are introduced into 1,320 ml of POCl_3 and 133.2 g (1 mole) of 4-amino-indan are added dropwise, with vigorous stirring, under conditions such that the internal temperature does not rise above 50°C. After completion of the addition, stirring is continued for 40 hours at 50°C. The excess POCl_3 is then distilled off as completely as possible under reduced pressure on a rotary evaporator and the distillation residue is added to 5 l of ice water whilst keeping the temperature at $\leq 15^\circ\text{C}$ by further addition of ice. The pH is brought to 11 by means of 25% strength sodium hydroxide solution, whilst cooling with ice, the mixture is repeatedly extracted with chloroform, the combined chloroform phases are again washed with 1 liter of 2 N sodium hydroxide solution and are then washed neutral with water and dried over anhydrous sodium sulfate, and the chloroform is distilled off. The residue is recrystallized from isopropanol. 84.3 g of pure 1-acetyl-2-(4-indanyl-amino)-2-imidazoline of melting point 180.5-182°C are obtained.

70 g of 4-amino-indan are recovered from the recrystallization mother liquor.

The yield of 1-acetyl-2-(4-indanyl-amino)-2-imidazoline is 73.1% of theory (based on 4-amino-indan converted).

The following compounds were also obtained by the process described in Example 1:

Example 2

From 1-propionyl-2-imidazolidinone (melting point 148-149°C) and 4-amino-indan: 1-propionyl-2-(4-indanyl-amino)-2-imidazoline, melting point 156-157°C.

Example 3

From 1-n-butyryl-2-imidazolidinone (melting point 104-106°C) and 4-amino-indan: 1-n-butyryl-2-(4-indanyl-amino)-2-imidazoline, melting point 77-80°C.

Example 4
 From 1-trifluoroacetyl-2-imidazolidinone (melting point 160-164°C) and 4-amino-indan: 1-trifluoroacetyl-2-(4-indanyl-amino)-2-imidazoline, melting point 149.5-152°C.

Example 5

From 1-formyl-2-imidazolidinone (melting point 156-158°C) and 4-amino-indan: 1-formyl-2-(4-indanyl-amino)-2-imidazoline, melting point 166-167°C.

Example 6

From 1-ethoxycarbonyl-2-imidazolidinone (melting point 124-126°C) and 4-amino-indan: 1-ethoxycarbonyl-2-(4-indanyl-amino)-2-imidazoline, melting point 102-103°C.

Example 7

From 1-acetyl-2-imidazolidinone and 5,6,7,8-tetrahydro-1-naphthylamine: 1-acetyl-2-(5,6,7,8-tetrahydro-1-naphthylamino)-2-imidazoline, melting point 175.5-176.5°C.

Example 8

From 1-benzoyl-2-2-imidazolidinone (melting point 169-171°C) and 4-amino-indan: 1-benzoyl-2-(4-indanyl-amino)-2-imidazoline, melting point 194-197°C.

Example 9

From 1-benzoyl-2-2-imidazolidinone and 5,6,7,8-tetrahydro-1-naphthylamine: 1-benzoyl-2-(5,6,7,8-tetrahydro-1-naphthylamino)-2-imidazoline, melting point 163-165°C. 10

Example 10

From 1-(o-toluoyl)-2-imidazolidinone (melting point 234-236.5°C) and 4-amino-indan: 1-(o-toluoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 247-249°C. 15

Example 11

From 1-(o-chlorobenzoyl)-2-imidazolidinone (melting point 124-125.5°C) and 4-amino-indan: 1-(o-chlorobenzoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 186-187°C. 20

Example 12

From 1-(m-chlorobenzoyl)-2-imidazolidinone (melting point 189-191°C) and 4-amino-indan: 1-(m-chlorobenzoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 153-156°C. 25

Example 13

From 1-(p-toluoyl)-2-imidazolidinone (melting point 188-192°C) and 4-amino-indan: 1-(p-toluoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 148-149°C. 30

Example 14

From 1-(p-toluoyl)-2-imidazolidinone and 5,6,7,8-tetrahydro-1-naphthylamine: 1-(p-toluoyl)-2-(5,6,7,8-tetrahydro-1-naphthylamino)-2-imidazoline, melting point 128-130°C. 35

Example 15

From 1-(p-isopropylbenzoyl)-2-imidazolidinone (melting point 165-166.5°C) and 4-amino-indan: 1-(p-isopropylbenzoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 167-168°C. 40

Example 16

From 1-(p-chlorobenzoyl)-2-imidazolidinone (melting point 204-205.5°C) and 4-amino-indan: 1-(p-chlorobenzoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 185-186.5°C. 45

Example 17

From 1-(p-fluorobenzoyl)-2-imidazolidinone (melting point 177-180°C) and 4-amino-indan: 1-(p-fluorobenzoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 207.5-209°C. 50

Example 18

From 1-(p-methoxybenzoyl)-2-imidazolidinone (melting point 167- 168°C) and 4-amino-indan: 1-(p-methoxybenzoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 132.5-134°C. 55

Example 19

From 1-(p-ethoxybenzoyl)-2-imidazolidinone (melting point 182-183.5°C) and 4-amino-indan: 1-(p-ethoxybenzoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 148-149.5°C. 60

Example 20

From 1-(p-n-butyloxybenzoyl)-2-imidazolidinone (melting point 171.5-173°C) and 4-amino-indan: 1-(p-n-butyloxybenzoyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 141-142.5°C. 65

Example 21

From 1-(4-biphenylylcarbonyl)-2-imidazolidinone (melting point >250°C) and 4-amino-indan: 1-(p-biphenylylcarbonyl)-2-(4-indanyl-amino)-2-imidazoline, melting point 164-165.5°C. 70

5 *Example 22*
 From 1-(2,6-dichlorobenzoyl)-2-imidazolidinone (melting point 228-229.5°C) and 4-amino-indan: 1-(2,6-dichlorobenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 167-168°C.

10 *Example 23*
 From 1-(3,4-dimethoxybenzoyl)-2-imidazolidinone (melting point 182-184°C) and 4-amino-indan: 1-(3,4-dimethoxybenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 219-221°C.

15 *Example 24*
 From 1-(3,4-methylenedioxybenzoyl)-2-imidazolidinone (melting point 167.5-171°C) and 4-amino-indan: 1-(3,4-methylenedioxybenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 157-159°C.

20 *Example 25*
 From 1-(2,3,4-trimethoxybenzoyl)-2-imidazolidinone (melting point 156-158°C) and 4-amino-indan: 1-(2,3,4-trimethoxybenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 160-162°C.

25 *Example 26*
 From 1-(3,4,5-trimethoxybenzoyl)-2-imidazolidinone (melting point 162-163°C) and 4-amino-indan: 1-(3,4,5-trimethoxybenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 167-168.5°C.

30 *Example 27*
 From 1-(3,4,5-trimethoxybenzoyl)-2-imidazolidinone and 5,6,7,8-tetrahydro-1-naphthylamine: 1-(3,4,5-trimethoxybenzoyl)-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, melting point 153-154°C.

35 *Example 28*
 From 1-phenylacetyl-2-imidazolidinone (melting point 112-113.5°C) and 4-amino-indan: 1-phenylacetyl-2-(4-indanylarnino)-2-imidazoline, melting point 142-144°C.

40 *Example 29*
 From 1-cinnamoyl-2-imidazolidinone (melting point 203-205°C) and 4-amino-indan: 1-cinnamoyl-2-(4-indanylarnino)-2-imidazole, melting point 162-164°C.
 The following compounds can be obtained by the method described in Example 1:

45 *Example 30*
 1-(3,4-Dimethoxybenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 177-178.5°C.

50 *Example 31*
 1-(2,6-Dimethylbenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 242-244°C.

55 *Example 32*
 1-(2,6-Dimethoxybenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 245-247°C.

60 *Example 33*
 1-(o-Tolylacetyl)-2-(4-indanylarnino)-2-imidazoline, melting point 178-180°C.

65 *Example 34*
 1-(o-Methoxyphenylacetyl)-2-(4-indanylarnino)-2-imidazoline, melting point 140-141°C.

70 *Example 35*
 1-(m-Methoxyphenylacetyl)-2-(4-indanylarnino)-2-imidazoline, melting point 139-140°C.

75 *Example 36*
 1-(p-Methoxyphenylacetyl)-2-(4-indanylarnino)-2-imidazoline, melting point 193.5-195°C.

80 *Example 37*
 1-(p-Chlorophenylacetyl)-2-(4-indanylarnino)-2-imidazoline, melting point 172-173°C.

	<i>Example 38</i> 1-(2,6-Dichlorophenylacetyl)-2-(4-indanyl amino)-2-imidazoline, melting point 180-181°C.	5
5	<i>Example 39</i> 1-(3,4-Methylenedioxyphenylacetyl)-2-(4-indanyl amino)-2-imidazoline, melting point 177-179°C.	5
10	<i>Example 40</i> 1-(3,4-Ethylenedioxyphenylacetyl)-2-(4-indanyl amino)-2-imidazoline, melting point 207-209°C.	10
15	<i>Example 41</i> 1-(3,4,5-Trimethoxyphenylacetyl)-2-(4-indanyl amino)-2-imidazoline, melting point 164-166°C.	15
20	<i>Example 42</i> 1-(2-Phenylpropionyl)-2-(4-indanyl amino)-2-imidazoline, melting point 148.5-150°C.	20
25	<i>Example 43</i> 1-[2-(o-Methoxyphenyl)-propionyl]-2-(4-indanyl amino)-2-imidazoline, melting point 142-143°C.	25
30	<i>Example 44</i> 1-(2-p-Chlorophenyl-propionyl)-2-(4-indanyl amino)-2-imidazoline, melting point 144-145°C.	30
35	<i>Example 45</i> 1-(3-p-Methoxyphenyl-propionyl)-2-(4-indanyl amino)-2-imidazoline, melting point 159-160.5°C.	35
40	<i>Example 46</i> 1-[3-(3,4-Dimethoxyphenyl)-propionyl]-2-(4-indanyl amino)-2-imidazoline, melting point 137-139°C.	40
45	<i>Example 47</i> 1-Benzoyloxycarbonyl-2-(4-indanyl amino)-2-imidazoline, melting point 124-126°C.	45
50	<i>Example 48</i> 1-Phenoxy carbonyl-2-(4-indanyl amino)-2-imidazoline, melting point 144-147°C.	50
55	<i>Example 49</i> 1-(2-Thenoyl)-2-(4-indanyl amino)-2-imidazoline, melting point 157-158.5°C.	55
60	<i>Example 50</i> 1-(3-Thenoyl)-2-(4-indanyl amino)-2-imidazoline, melting point 150-151.5°C.	60
65	<i>Example 51</i> 1-Nicotinoyl-2-(4-indanyl amino)-2-imidazoline, melting point 132-133°C.	65
70	<i>Example 52</i> 1-(6-Chloronicotinoyl)-2-(4-indanyl amino)-2-imidazoline, melting point 176-177.5°C.	70
75	<i>Example 53</i> 1-(3-Pyridylacetyl)-2-(4-indanyl amino)-2-imidazoline, melting point 157-158.5°C.	75
80	<i>Example 54</i> 1-(m-Toluoyl)-2-(4-indanyl amino)-2-imidazoline, melting point 158-160°C.	80
85	<i>Example 55</i> 1-Isobutyryl-2-(4-indanyl amino)-2-imidazoline, melting point 156-157°C.	85
90	<i>Example 56</i> 1-Methoxycarbonyl-2-(4-indanyl amino)-2-imidazoline, melting point 131-133°C.	90

Example 57

1-Ethoxaryl-2-(4-indanylarnino)-2-imidazoline, melting point 162-166°C.

Example 58

5 1-Cyclohexylcarbonyl-2-(4-indanylarnino)-2-imidazoline, melting point 147-149°C. 5

Example 59

10 1-(m-Trifluoromethylbenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 183-185°C. 10

Example 60

15 1-(2,3-Dimethylbenzoyl)-2-(4-indanylarnino)-2-imidazoline, melting point 186.5-189°C. Further examples are given in List A which follows: 15

15 *List A*

1-propionyl-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-n-butyryl-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-isobutyryl-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-chloroacetyl-2-(4-indanylarnino)-2-imidazoline, 1-trichloroacetyl-2-(4-indanylarnino)-2-imidazoline, 1-phenoxyacetyl-2-(4-indanylarnino)-2-imidazoline, 1-(o-toluooyl)-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-(o-chlorobenzoyl)-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-(2-chloro-6-methylbenzoyl)-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-(2,6-dichlorobenzoyl)-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-cyclopropylcarbonyl-2-(4-indanylarnino)-2-imidazoline, 1-cyclopentylcarbonyl-2-(4-indanylarnino)-2-imidazoline, 1-methoxycarbonyl-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-ethoxycarbonyl-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-isopropoxycarbonyl-2-(4-indanylarnino)-2-imidazoline, 1-n-butyloxycarbonyl-2-(4-indanylarnino)-2-imidazoline, 1-n-butyloxycarbonyl-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, 1-isobutyloxycarbonyl-2-(4-indanylarnino)-2-imidazoline, 1-sec.-butyloxycarbonyl-2-(4-indanylarnino)-2-imidazoline, 1-(2-ethylhexoxycarbonyl)-2-(4-indanylarnino)-2-imidazoline, 1-(2-bromoethoxycarbonyl)-2-(4-indanylarnino)-2-imidazoline, 1-(2-methoxyethoxycarbonyl)-2-(4-indanylarnino)-2-imidazoline, 1-(2,2,2-trichloroethoxycarbonyl)-2-(4-indanylarnino)-2-imidazoline, 1-cyclopentyloxycarbonyl-2-(4-indanylarnino)-2-imidazoline, 1-cyclohexoxy-carbonyl-2-(4-indanylarnino)-2-imidazoline, 1-(p-tert.-butylcyclohexoxycarbonyl)-2-(4-indanylarnino)-imidazoline, 1-(p-chlorobenzoyloxy-carbonyl)-2-(4-indanylarnino)-2-imidazoline, 1-(p-methoxybenzoyloxy-carbonyl)-2-(4-indanylarnino)-2-imidazoline, 1-(p-nitrobenzoyloxy-carbonyl)-2-(4-indanylarnino)-2-imidazoline, 1-allyloxycarbonyl-2-(4-indanylarnino)-2-imidazoline, 1-(p-nitrophenoxy carbonyl)-2-(4-indanylarnino)-2-imidazoline, 1-(o-chlorophenylacetyl)-2-(4-indanylarnino)-2-imidazoline, 1-(m-chlorophenylacetyl)-2-(4-indanylarnino)-2-imidazoline, 1-(3,4-dimethoxyphenylacetyl)-2-(4-indanylarnino)-2-imidazoline and 1-(3-phenylpropionyl)-2-(4-indanylarnino)-2-imidazoline.

45 Examples of deacylation reactions: 45

Example 61

50 73.0 g (0.3 mole) of pure 1-acetyl-2-(4-indanylarnino)-2-imidazoline obtained as described in Example 1, in 500 ml of water, are refluxed for 3 hours, while stirring. The mixture is allowed to cool to about 40-45°C, 15% strength nitric acid (about 83 ml) is added dropwise, while stirring, until a neutral reaction persists, 6 g of active charcoal are added, and the mixture is again boiled briefly and filtered hot. After standing overnight in a refrigerator, 63.5 g (78.8% of theory) or pure 2-(4-indanylarnino)-2-imidazoline nitrate of melting point 143-144°C crystallize from the filtrate. 50

Example 62

55 500 ml of water are added to 90.2 g of the crude 1-acetyl-2-(4-indanylarnino)-2-imidazoline obtained as described in Example 1, and the mixture is boiled for 4 hours while passing steam into it. On acidifying the steam distillate with hydrochloric acid, and evaporating to dryness, 43.6 g of 4-aminoindan hydrochloride are recovered. Using the method described in Example 61, the distillation residue is mixed with nitric acid and worked up. 43.5 g (68.5% of theory, based on 4-amino-indan converted) of 2-(4-indanylarnino)-2-imidazoline nitrate of melting point 142-143°C are obtained. 55

Comparative Example to Example 61

(according to the prior art, viz. German Laid-Open Application DOS 2,316,377 Example 1).

5 4.87 g (20 mmoles) of pure 1-acetyl-2-(4-indanylarnino)-2-imidazoline, obtained as described in Example 1, in 40 ml of methanol are refluxed for 6 hours. The methanol is distilled off under reduced pressure, 40 ml of water are added to the oily residue and the mixture is neutralized with nitric acid, and worked up, by the method described in Example 61. 3.14 g (59.3% of theory) of 2-(4-indanylarnino)-2-imidazoline nitrate of melting point 142-143°C are obtained.

10 10

Example 63

15 11.2 g (43.6 mmoles) of 1-acetyl-2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline, obtained as described in Example 7, in 50 ml of water are refluxed for 3 hours. After stripping off the solvent, 9.2 g (98% of theory) of pure 2-(5,6,7,8-tetrahydro-1-naphthylarnino)-2-imidazoline of melting point 142.5-143.5°C remain.

15

Example 64

20 4.0 g (14.6 mmoles) of 1-ethoxycarbonyl-2-(4-indanylarnino)-2-imidazoline, obtained as described in Example 6, in 40 ml of water are refluxed for 3 hours. About 5 ml of 15% strength HNO_3 are added to the reaction solution, which has been cooled to about 45°C, to bring the pH to 3, 0.3 g of active charcoal is added, the mixture is boiled briefly, filtered hot, cooled to room temperature and left to stand overnight in a refrigerator. The crystalline product which has separated out is filtered off and dried, giving 2.0 g (52% of theory) of pure 2-(4-indanylarnino)-2-imidazoline nitrate of melting point 142-143°C.

20

25 25

Example 65

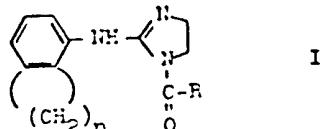
30 8.0 g (26.2 mmoles) of 1-benzoyl-2-(indanylarnino)-2-imidazoline, obtained as described in Example 8, in 50 ml of water are refluxed for 3 hours and worked up as described in Example 64. 6.0 g (86.7% of theory) of 2-(4-indanylarnino)-2-imidazoline nitrate of melting point 142-143°C are obtained.

30

Comparative Example to Example 65

35 (according to the prior art, viz. German Laid-Open Application DOS 2,316,377). 35

35 8.0 g (26.2 mmoles) of 1-benzoyl-2-(4-indanylarnino)-2-imidazoline in 40 ml of methanol are refluxed for 3 hours. The solvent is then stripped off under reduced pressure on a rotary evaporator, 50 ml of water are added to the residue and the latter is converted to the nitrate, and isolated, by the method described in Example 65. The product obtained is still yellow and has a melting point of 138.5-139.5°C. After recrystallization from water, 1.8 g (26.0% of theory) of pure 2-(4-indanylarnino)-2-imidazoline nitrate of melting point 142-143°C are obtained.


40

40 45

WHAT WE CLAIM IS:-

45 1. A 1-acyl-2-imidazoline of the general formula

45

50 where n is 3 or 4 and R is hydrogen, alkyl of 1 to 4 carbon atoms (which is unsubstituted, or is monosubstituted, disubstituted or trisubstituted by halogen, alkoxy of 1 to 4 carbon atoms, alkoxy-carbonyl of 2 or 3 carbon atoms, phenoxy or nitrophenoxy), cycloalkyl of 3 to 7 carbon atoms in the ring, alkoxy of 1 to 8 carbon atoms (which is unsubstituted or monosubstituted, disubstituted or trisubstituted by halogen or monosubstituted by alkoxy of 1 to 4 carbon atoms), cycloalkoxy of 3 to 10 carbon atoms in the ring (which is unsubstituted or substituted by alkyl of 1 to 4 carbon atoms) alkenyloxy of 3 or 4 carbon atoms, alkoxy-carbonyl of 2 or 3 carbon atoms, aralkoxy (which is unsubstituted or substituted in the aromatic portion by alkoxy of 1 to 4 carbon atoms, halogen or nitro), aryloxy (which is unsubstituted or substituted in the aromatic portion by nitro, phenyl and phenylalkyl of 7 or 8 carbon atoms (where phenyl is unsubstituted or monosubstituted, disubstituted or trisubstituted by alkyl of 1 to 4 carbon atoms, trifluoromethyl, halogen, alkoxy of 1 to 4 carbon atoms, methylenedioxy, ethylenedioxy or phenyl), phenylalkenyl of

55

55

60

60

65

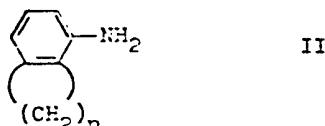
65

8 or 9 carbon atoms (which is unsubstituted or monosubstituted, disubstituted or trisubstituted by halogen, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms or methylenedioxy) or a heterocyclic ring system.

5 2. A 1-acyl-2-imidazoline as claimed in claim 1 wherein R is alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 8 carbon atoms or phenyl. 5

3. 1-Acetyl-2-(4-indanyl amino)-2-imidazoline.

4. 1-Acetyl-2-(5,6,7,8-tetrahydro-1-naphthyl amino)-2-imidazoline.

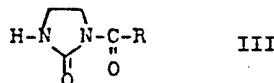

5. 1-Ethyoxy carbonyl-2-(4-indanyl amino)-2-imidazoline.

6. 1-Benzoyl-2-(4-indanyl amino)-2-imidazoline.

10 7. A compound as claimed in claim 1 and individually referred to in any of the foregoing Examples 2-5 and 9-60 or the foregoing List A.

8. A process for the manufacture of a compound as claimed in claim 1, in which an amine of the general formula II

15


15

20

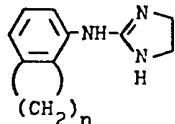
where n is 3 or 4, is reacted with a 1-acyl-2-imidazolidinone of the general formula III

20

25

25

where R is as defined in claim 1, in the presence of at least 1 mole of phosphorus oxytrichloride at from 20 to 120°C.


30 9. A process for deacylating a compound as claimed in any of claims 1 to 7 in which the compound is heated in water at from 70 to 100°C, with or without passing steam into the mixture.

30

10. A process as claimed in claim 8 or 9 carried out substantially as hereinbefore specifically described or exemplified.

35 11. A compound of the formula 35

40

40

where n is 3 or 4, when obtained by a process as claimed in claim 9 or 10. 45

J.Y. & G.W. JOHNSON,
Furnival House,
14-18, High Holborn,
London, WC1V 6DE,
Chartered Patent Agents,
Agents for the Applicants.

45

50

50