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ABSTRACT 

The present invention relates to sensor signal analysis. It relates particularly, but 

not exclusively, to methods, systems and devices for monitoring and processing 

the sensor signals to determine automatically characteristics of events 

represented by the sensor signals. The present invention is particularly, but not 

exclusively, related to methods, systems and devices for monitoring moisture in 

absorbent articles such as diapers, incontinence garments, dressings and pads 

resulting from wetness events caused by, for example, urinary and/or faecal 

incontinence. In an embodiment, the invention includes a method for processing 

sensor signals representing an event in an absorbent article. The method 

comprises: receiving sensor signals from a sensor representing one or more 

events in an absorbent article; and processing the sensor signals to determine a 

characteristic of at least one event in the absorbent article. One such 

characteristic can include the volume of a voiding event such as a urinary 

incontinence event. In another embodiment, the method includes carrying out a 

learning phase including the steps of: receiving sensor signals representing one 

or more events in each of one or more absorbent articles; receiving observation 

data indicative of a cumulative characteristic of the one or more events in each 

absorbent article; and identifying an optimal mathematical model describing a 

relationship between the sensor signals and the observation data. Such events 

can include urinary incontinence events occurring in absorbent articles such as 

diapers. Observation data can be measured cumulative volume of a cycle of 

voiding events occurring in a diaper.
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APPARATUS AND METHOD FOR ANALYSING EVENTS FROM SENSOR DATA 

BY OPTIMISATION 

The present application is a divisional of Australian patent application no.  

5 2011267839 filed on 16 June 2011 the entire disclosure of which is incorporated 

herein by reference.  

FIELD OF THE INVENTION 

The present invention relates to sensor signal analysis. It relates particularly, but not 

10 exclusively, to methods, systems and devices for monitoring and processing the 

sensor signals to determine automatically characteristics of events represented by the 

sensor signals. The present invention is particularly, but not exclusively, related to 

methods, systems and devices for monitoring moisture in absorbent articles such as 

diapers, incontinence garments, dressings and pads resulting from wetness events 

15 caused by, for example, urinary and/or faecal incontinence.  

BACKGROUND OF THE INVENTION 

Incontinence is a condition in which there is an uncontrolled release of discharges or 

evacuations. Urinary incontinence refers to loss of bladder control resulting in 

20 involuntary or uncontrolled urination. Other forms of incontinence include faecal or 

bowel incontinence.  

There is a range of recognised forms of incontinence. Stress incontinence, also 

known as effort incontinence, refers to involuntary loss of continence associated with 

25 coughing, sneezing, lifting, straining or other physical exertion. Urge incontinence is 

involuntary loss of urine coupled with a strong desire to urinate. Overflow 

incontinence refers to involuntary loss of continence associated with a chronically 

distended and overfull bladder. Dribble incontinence refers to a leakage of urine 

without warning or provocation. Persons suffering from dribble incontinence often 

30 need to wear protective pads or diapers throughout the day and night. Functional 

incontinence refers to when a person recognises the need to urinate but cannot 

physically do so due to factors such as limited mobility.
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Treatment options for incontinence can include behaviour management, medication 

and surgery. In circumstances where treatment is not available or unsuccessful the 

only option available is to address the incontinence events themselves. Such 

methods for addressing incontinence include the sufferer wearing an absorbent pad 

5 or diaper.  

Because most sufferers of incontinence tend to be elderly or suffering from some form 

of disability a significant proportion of patients in care institutions such as hospitals, 

nursing homes, aged care facilities and geriatric institutions are sufferers of 

10 incontinence. Furthermore, a significant proportion of patients in care of such 

facilities suffer from incontinence on a regular basis.  

To comply with regulations and protocols to ensure that the patients in care 

institutions are looked after it has been necessary for staff to conduct manual checks 

15 of patients suffering from incontinence on a regular basis. Such manual checks are 

typically carried out whether or not the patient has suffered an incontinence event as 

often the patient is unwilling or unable to alert staff of the fact that an incontinence 

event has occurred. As can be appreciated, the need to conduct regular checks of 

patients for incontinence is a significant drain on the resources of the patient care 

20 institutions and also causes interruption to a patient's rest and sleep.  

Incontinence indicators and detection systems exist. However, existing continence 

detection systems are generally unable to distinguish a urinary incontinence event 

from a faecal incontinence event. Nor are existing incontinence detection systems 

25 able to detect or determine useful information about incontinence events such as the 

volume of an incontinence event. The existing systems are deficient in that they may 

alert a staff member or carer of the fact that a wetness event has occurred but provide 

no practically useful information as to the size of the wetness event or of the quantity 

of wetness contained in an incontinence pad or diaper as a result of a series of 

30 wetness events. As a result, a staff member or carer may waste time or resources by 

having to check a patient on a regular basis to determine the size of a wetness event 

or the quantity of wetness contained in an absorbent pad or diaper in order to 

determine whether the absorbent pad or diaper requires changing. Accordingly, 

although existing systems can provide an alert when a wetness event occurs, this
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does not necessarily reduce the regularity with which a staff member or carer must 

check the patient.  

Attempts to refine existing systems or develop new systems which are able to detect 

5 the type of event or the volume have been frustrated by difficulties to create an 

adequate simulation of the field environment for validating the systems during 

development. As a result, such systems have failed once deployed in actual care 

scenarios.  

10 Attempts to use data collected in the field to analyse whether wetness events are 

urinary or faecal events or to obtain other useful information about wetness events 

have been frustrated by the fact that once there has been manual checking, by 

removing the absorbent article from the wearer and weighing the absorbent article, 

the absorbent article cannot be reused. This means that once the absorbent article 

15 has been removed subsequent wetness events cannot occur in the same absorbent 

article and be checked each time a wetness events takes place. Even if an absorbent 

article is removed from a wearer after each wetness event and weighed it is difficult to 

tell whether the volume of the wetness event as measured in the absorbent article 

corresponds to the volume associated with a single wetness event or a sequence of 

20 events.  

The present invention seeks to ameliorate some or all of the problems set out above 

with existing methods and systems and to improve the efficiency of monitoring and 

management of incontinence by providing more information about the characteristics 

25 of incontinence events than has hitherto been possible with existing incontinence 

detection systems. Particularly, the present invention aims to improve upon the prior 

art methods and systems by detecting the occurrence of each event in a sequence of 

events and determining the size or volume of each individual event in an absorbent 

article, without the need to remove the pad from the wearer.  

30 

The present invention also aims to provide a method and a platform for information to 

be gathered by sensors detecting factors other than wetness with the aim of deriving 

information related to those other factors enabling other judgments or diagnoses to be 

made about patients. Accordingly, the present invention aims to improve the
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efficiency in monitoring and management of disabilities and disorders other than 

incontinence.  

SUMMARY OF THE INVENTION 

5 In a first aspect, the invention provides a method for determining a wetness status of 

an absorbent article worn by a subject, the method comprising: 

receiving sensor signals from a sensor representing one or more wetness 

events occurring in an absorbent article; 

processing the sensor signals to determine a cumulative volume of the one or 

10 more wetness events; and 

determining which of one or more volume ranges contains the cumulative volume, 

wherein each one of the volume ranges represents a wetness status..  

Preferably, the wetness status includes whether it is the correct time to change 

the absorbent article worn by the subject, wherein the cumulative volume of the one 

15 or more wetness events is calculated from the sensor signals representative of each 

individual wetness event: 

(i) generating a representative vector for that wetness event; 

(ii) allocating weightings to the representative vector to generate a 

weighted representative vector for that wetness event; and 

20 (iii) allocating a wetness event volume to the weighted representative vector 

for that event, 

wherein allocating a wetness event volume to the weighted representative vector for 

that wetness event includes comparing the weighted representative vector with 

clusters of weighted representative vectors to determine which one or more of the 

25 clusters the weighted representative vector is most similar to and allocating a wetness 

event characteristic of the one or more clusters to the weighted representative vector 

for that wetness event, wherein the wetness event characteristic indicates wetness 

event volume for that wetness event.  

30 In embodiments, determining which of one or more volume ranges contains the 

cumulative volume, includes comparing the cumulative volume with: 

- an upper threshold wetness volume capacity of the absorbent article; or 

- a lower threshold wetness volume capacity of the absorbent article.



5 

Preferably, the upper and lower thresholds are selected from the group including Oml 

- 200ml, 100ml - 300ml, 200ml - 400ml, 300ml - 500ml, 400ml - 600ml, 500ml 

700ml and 600ml - 800ml.  

5 In one embodiment of the method, analysis is carried out on information derived from 

sensors incorporated in or applied to absorbent articles such as pads, diapers, adult 

incontinence garments or the like where the sensors detect wetness resulting from 

urinary and faecal incontinence events. In embodiments, the present invention may 

include receiving sensor signals from sensors for detecting other phenomena such as 

10 movement, orientation, location, sound, colour, smells, temperature, acidity and/or 

basicity (pH), biochemistry including enzymes, proteins, amino acids, carbohydrates, 

lipids, glucose and other analytes that may be of interest to individuals and medical 

practitioners for the purpose of monitoring, assessing and diagnosing disorders, 

disabilities and disease.  

15 

In embodiments, the method enables analysis of sensor signals received from 

absorbent articles to determine the occurrence of wetness events and cumulative 

volume of wetness events occurring in an absorbent pad. Another advantage of the 

method is that it facilitates processing the sensor signals to determine which of one or 

20 more volume ranges, such as a not correct time to change volume range or a correct 

time to change volume range, contains the cumulative volume to thereby determine 

the wetness status (i.e. not correct time to change or correct time to change) of the 

absorbent article.  

25 The wetness event characteristic allocated to the weighted representative vector can 

be a weighted average of wetness event characteristics of more than one cluster 

according to a degree of similarity of the weighted representative vector to the one or 

more clusters.
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In a further preferred embodiment, the method includes: 

(i) generating a representative vector for each individual event, the 

representative vector being comprised of one or more elements; 

5 (ii) allocating weightings to the elements of the representative vector to 

generate a weighted representative vector; and 

(iii) allocating each of the weighted representative vectors to one or more of a 

plurality of clusters according to their relative similarity; and 

(iv) allocating a characteristic to each of the clusters based on the optimal 

10 mathematical model obtained during the learning phase.  

The mathematical model to be employed in the method can include one or more 

coefficients that are optimised to determine the optimal mathematical model, for 

example: a value for each weighting applicable to each of the elements of the 

15 representative vectors; a value (i.e. volume amount) applicable to each cluster of 

similar (clustered) weighted representative vectors; and a reference, or hypothetical, 

weighted representative vector or centre value for each cluster. Throughout the 

specification the terms "group", "cluster" and "event type" are used interchangeably to 

refer to groups or clusters of similar weighted representative vectors grouped or 

20 clustered according to their relative similarity.  

By determining the optimal mathematical model during the learning phase it is 

possible using the inventive method to determine during an assessment phase, with a 

degree of confidence, from sensor signals received from sensors in absorbent pads a 

25 characteristic, such as void volume of exudate, associated with individual events in a 

sequence of events occurring in an absorbent article while it is being worn. The 

characteristic associated with each event can be determined without requiring 

observation data in the form of the measured weight of each absorbent pad after an 

event or a sequence of events has occurred in the absorbent article. By gathering 

30 and processing information obtained during the learning phase the method can be 

used to estimate the characteristics, such as a void event volume, from information 

obtained from sensors such as wetness sensors incorporated in absorbent articles 

being worn by an individual.
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A preferred embodiment of the inventive method includes normalizing the elements of 

the representative vector with respect to a reference range and allocating the 

weightings to the normalized elements of the representative vector to generate a 

weighted normalized representative vector.  

5 

In one embodiment, the method includes categorizing the representative vectors of 

events according to order of occurrence (e.g. 1st, 2 nd 3 rd etc.) in a sequence of events 

in the absorbent article and allocating different weightings to elements of the 

representative vectors according to their category.  

10 

In another embodiment, the elements of the representative vector can include one or 

more values derived from the sensor signals. Preferably, the values derived from the 

sensor signals can include any one or more of the group including: 

* duration of the event, 

15 e time to reach a maximum sensor signal value for the event, 

e average value of the sensor signal during an increase in the signal to a 

maximum for the event, 

e the maximum signal value for the event, 

e the time taken to reach a minimum signal value for the event, 

20 e average value of the sensor signal during a decrease in the signal to a 

minimum for the event, 

e the minimum signal value for the event, 

e the order of the event in a sequence of events, 

e the similarity of a single sensor signal to one or a combination of other sensor 

25 signals occurring at the same time.  

In an embodiment of the method, the characteristics allocated to each of the clusters 

includes event information (e.g. a volume). In another embodiment of the method, the 

characteristics allocated to each of the clusters includes a reference representative 

30 vector and a void volume.  

In another embodiment of the method, an element of the representative vector 

includes event information for a previous event in a sequence of events occurring in
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the absorbent article. In yet another embodiment, an element of the representative 

vector can include a value representing information from any one or more of a group 

of information types including: 

* demographic information; 

5 e environmental information; 

e the order of the event in a sequence of events for the absorbent article; 

It is to be understood that environmental factors can have an influence on void event 

volumes for an individual suffering from incontinence. Such environmental factors 

10 can include the temperature and humidity of the surrounding climate, light levels and 

a range of other factors. Accordingly, the method can be configured to accommodate 

any one or more of these environmental factors as elements of the representative 

vector for each void event.  

15 In another embodiment, the method further includes, for each of the weighted 

representative vectors, determining a degree of belief of belonging to one or more of 

the plurality of clusters.  

In yet another embodiment, the method further includes training a fuzzy neural 

20 network with the weighted representative vectors and the degree of belief of 

belonging information determined for each of the weighted representative vectors. In 

a preferred form, training the fuzzy neural network includes the step of allocating 

information to each of the clusters including a void volume and a series of values 

corresponding to the degrees of belief of belonging information determined for each of 

25 the representative vectors.  

The trained fuzzy neural network can be used during the assessment phase to 

determine the degree of belief of belonging information for a weighted representative 

vector representing an event in an absorbent article. Accordingly, in a preferred 

30 embodiment the method includes using the trained fuzzy neural network during an 

assessment phase to determine the degree of belief of belonging information for a 

weighted representative vector representing an event in an absorbent article including 

determining the degree of belief of belonging to one or more of the plurality of 

clusters.
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* the order of the wetness event in a sequence of wetness events for the 

absorbent article; 

It is to be understood that environmental factors can have an influence on wetness 

event volumes for an individual suffering from incontinence. Such environmental 

5 factors can include the temperature and humidity of the surrounding climate, light 

levels and a range of other factors. Accordingly, the method can be configured to 

accommodate any one or more of these environmental factors as elements of the 

representative vector for each wetness event.  

In another embodiment, the method further includes, for each of the weighted 

10 representative vectors, determining a degree of belief of belonging to one or more of 

the plurality of clusters.  

In yet another embodiment, the method further includes training a fuzzy neural 

network with the weighted representative vectors and the degree of belief of 

belonging information determined for each of the weighted representative vectors. In 

15 a preferred form, training the fuzzy neural network includes the step of allocating 

information to each of the clusters including a wetness event volume and a series of 

values corresponding to the degrees of belief of belonging information determined for 

each of the representative vectors.  

The trained fuzzy neural network can be used during the assessment phase to 

20 determine the degree of belief of belonging information for a weighted representative 

vector representing a wetness event in an absorbent article. Accordingly, in a 

preferred embodiment the method includes using the trained fuzzy neural network 

during an assessment phase to determine the degree of belief of belonging 

information for a weighted representative vector representing a wetness event in an 

25 absorbent article including determining the degree of belief of belonging to one or 

more of the plurality of clusters.  

In another embodiment, the method further includes identifying weighted 

representative vectors that have less than a predetermined degree of confidence of 

belonging to any one of the clusters.  

30
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In a preferred form, the weighted representative vectors that are identified as having 

less than a predetermined degree of confidence of belonging to any one of the 

clusters are allocated to one or more clusters of representative vectors representing 

non-genuine wetness events.  

5 In yet another embodiment, the method further includes verifying the correctness of 

the optimal mathematical model by receiving one or more sensor signals from a 

sensor representing a wetness event in an absorbent article, processing the sensor 

signals to determine a characteristic of the wetness event based on the optimal 

mathematical model obtained during the learning phase and comparing the 

10 determined characteristic with observation data.  

In another embodiment, the step of identifying an optimal mathematical model 

includes determining a plurality of objective functions for evaluating the mathematical 

model and combining the objective functions according to a predetermined hierarchy 

of importance.  

15 In embodiments the cumulative volume corresponds to a cumulative volume of 

wetness events in a pad resulting from a sequence of wetness events.  

In embodiments, the method includes alerting a caregiver of the absorbent article 

wetness status.  

In one embodiment, the step of identifying individual events from the sensor signals 

20 includes determining local maxima or minima of the sensor signals.  

In another embodiment, the method includes smoothing the sensor signals received 

from the sensors.  

In another aspect, the invention provides an incontinence monitoring system for 

determining a wetness status of an absorbent article worn by a subject, the system 

25 comprising:
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an absorbent article including a sensor for sensing wetness events occurring in 

the absorbent article; 

a processor for receiving sensor signals from the sensor representing one or 

more wetness events occurring in the absorbent article and processing the sensor 

5 signals to determine a cumulative volume of the one or more wetness events, 

determining which of one or more volume ranges contains the cumulative volume, 

wherein each one of the volume ranges represents a wetness status, 

wherein the cumulative volume of the one or more wetness events is calculated from 

the sensor signals representative of each individual wetness event: 

10 (i) generating a representative vector for that wetness event; 

(ii) allocating weightings to the representative vector to generate a 

weighted representative vector for that wetness event; and 

(iii) allocating a wetness event volume to the weighted representative vector 

for that event, wherein allocating a wetness event volume to the weighted 

15 representative vector for that wetness event includes comparing the weighted 

representative vector with clusters of weighted representative vectors to determine 

which one or more of the clusters the weighted representative vector is most similar to 

and allocating a wetness event characteristic of the one or more clusters to the 

weighted representative vector for that wetness event, wherein the wetness event 

20 characteristic indicates wetness event volume for that wetness event.  

Preferably, the wetness status includes whether it is the correct time to change the 

absorbent article worn by the subject.  

Determining which of one or more volume ranges contains the cumulative volume can 

include comparing the cumulative volume with: 

25 - an upper threshold wetness volume capacity of the absorbent article; or 

- a lower threshold wetness volume capacity of the absorbent article.  

In embodiments, the processor sends information that is received by a caregiver's 

mobile device alerting the caregiver of the absorbent article wetness status.
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BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention will now be described in greater detail with reference to the 

accompanying drawings. It is to be understood that the particularity of the 

accompanying drawings does not supersede the generality of the preceding 

5 description of the invention.  

Figure 1 is a schematic diagram illustrating features of a system for analysing for 

analyzing sensor signals representing a wetness event occurring in an absorbent 

article in accordance with an embodiment of the invention.  

Figure 2 is a flow diagram showing typical steps of a learning phase executed by the 

10 system in accordance with an embodiment of the invention.
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accompanying drawings does not supersede the generality of the preceding 

description of the invention.  

Figure 1 is a schematic diagram illustrating features of a system for analysing for 

5 analyzing sensor signals representing a wetness event occurring in an absorbent 

article in accordance with an embodiment of the invention.  

Figure 2 is a flow diagram showing typical steps of a learning phase executed by the 

system in accordance with an embodiment of the invention.  

10 

Figure 3 is a flow diagram illustrating an optimisation process for a learning phase in 

which optimised parameters are determined for use during an assessment phase 

according to an embodiment of the invention.  

15 Figure 4 is a flow diagram showing typical steps of an assessment phase executed by 

the system in accordance with an embodiment of the invention.  

Figure 5 i s a graph illustrating an example of an original signal and its smoothened 

signals using two different smoothing coefficients in accordance with an embodiment 

20 of the invention 

Figure 6 i s a graph illustrating subsections of the signal in Figure 5 of an event 

including positive, zero and negative derivatives for illustrating local maxima and 

minima of a signal in accordance with an embodiment of the invention.  

25 

Figure 7 i s a graph illustrating detected events in a sequence of events from sensor 

data representative of events occurring in an absorbent article in accordance with an 

embodiment of the invention.  

30 Figure 8 is a table and a graph illustrating elements of representative vectors for a 

sequence of events occurring in an absorbent article in accordance with an 

embodiment of the invention.
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Figure 9 is illustrates a plurality of weighted representative vectors plotted on a graph 

as well as group or cluster boundaries and group or cluster centers.  

Figure 10 is a graph plotting the effectiveness of two types of absorbent pad and 

5 sensor combinations in enabling the method to accurately determine correct 

estimates of the correct time to change an absorbent pad.  

Figure 10 is a graph plotting two examples of pad cycles with their cumulative volume 

and their representative factors.  

10 Figure 12 shows a general structure of a volume estimation model after training with 

inputs which are the representative factors of each pad cycle and outputs which are 

expected to be a volume very close to the actual volume in the diaper.  

Figure 13 shows the probability for the average volumes of each void event for the 

data set that were collected from a selection of aged care facilities.  

15 Figure 14 illustrates average system verification performance of the method for 100 

separate training and testing sets.  

DETAILED DESCRIPTION 

An embodiment of the present invention provides a method and a system for 

20 monitoring wetness in one or more absorbent articles such as pads, diapers, adult 

incontinence garments or the like. Throughout the description, reference will be made 

to a range of absorbent articles. It is to be understood that the list of absorbent 

articles above is not exhaustive and that other like garments are within the scope of 

the present invention.  

25 

The method of the present invention is generally intended for use in facilities in which 

monitoring and care of individuals with disabilities such as urinary and faecal 

incontinence take place. This may include facilities for the monitoring and care of the 

elderly or those suffering from some form of disability such as care institutions like 

30 hospitals, nursing homes, aged care facilities and geriatric institutions. However, it is 

envisaged that the present invention may be applicable in domestic or home 

monitoring of individuals, or in ambulatory monitoring.
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Although the present invention is described herein with reference to a method of 

processing information derived from sensors incorporated in or applied to absorbent 

articles such as pads, diapers, adult incontinence garments or the like for detecting 

5 wetness resulting from urinary and faecal incontinence events it is to be appreciated 

that the present invention may have broader application. For example, the present 

invention may include detecting other phenomena such as temperature, acidity and/or 

basicity (pH), biochemistry including enzymes, proteins, amino acids, carbohydrates, 

lipids, glucose and other phenomena that may be of interest to individuals and 

10 medical practitioners for the purpose of monitoring, assessing and diagnosing 

disorders, disabilities and disease.  

As well the urinary and faecal incontinence and wetness events referred to above, the 

present invention also has applicability in the detection, monitoring and management 

15 of conditions in which other fluids and exudates from the body may be present such 

as in wound management.  

The present invention relates to a method for processing sensor signals representing 

an event in an environment, such as a wetness event in an absorbent article. The 

20 method comprises receiving from a sensor one or more sensor signals representing 

one or more events in an absorbent article. The sensor signals may be 

representative of an event or sequence of events, such as a voiding event, occurring 

in the absorbent article. The method also comprises processing the sensor signals to 

determine a characteristic of at least one event in the absorbent article. In a preferred 

25 form, processing the sensor signals includes identifying automatically the sensor 

signals representative of each individual event and, from the sensor signals 

representative of each individual event: (i) generating a representative vector for that 

event; (ii) allocating weightings to the representative vector to generate a weighted 

representative vector for that event; and (iii) allocating a characteristic to the weighted 

30 representative vector for that event. In a preferred form, the characteristic that is 

allocated to each weighted representative vector is a void event volume.  

In the field of urinary and faecal incontinence it is useful to be able to derive 

information from sensors embedded in an absorbent article or pad which is additional
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to the mere occurrence of a wetness event. Embodiments of the method of the 

present invention are useful for determining information regarding the nature and 

volume of exudate associated with a wetness event and more particularly, the volume 

of individual events in a sequence of events occurring during the wearing of an 

5 absorbent pad. This information is useful to be able to determine the frequency, type 

and severity of each incontinence episode suffered by an individual and developing 

an incontinence profile in order to prescribe a suitable treatment or management plan 

for the individual's incontinence. It is also useful to determine when the total amount 

of exudate absorbed by an absorbent pad is approaching or has reached the limit of 

10 the pad's absorbent capacity and whether changing of the pad is required. An aspect 

of the inventive method enables a determination of whether an absorbent pad is likely 

to require changing without necessarily requiring manual periodic checking of the pad 

by staff in a care facility.  

15 In a preferred form, the method further includes a step of carrying out a learning 

phase for optimising the accuracy of calculations subsequently made during 

assessment. The learning phase includes a step of receiving sensor signals 

representing one or more events in each of one or more absorbent articles. The 

learning phase of the method also includes receiving observation data indicative of a 

20 cumulative characteristic, for example cumulative volume, of the one or more events 

in each absorbent article. The learning phase of the method then involves using the 

sensor signal information and the observation data to determine one or more 

mathematical models each describing a relationship between the sensor signals and 

the observation data and identifying an optimal one of the mathematical models 

25 describing a relationship between the sensor signals and the observation data. In a 

preferred form, each one of the mathematical models includes a system of linear 

equations describing the relationship between the sensor signals and the observation 

data. Identifying an optimal one of the mathematical models may involve, for 

example, identifying optimal coefficients of the model.  

30 

In a preferred form, the method includes: 

(i) generating a representative vector for each individual event, the 

representative vector being comprised of one or more elements;
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(ii) allocating weightings to the elements of the representative vector to 

generate a weighted representative vector; 

(iii) allocating the weighted representative vectors of a plurality of events to 

a plurality of clusters according to their relative similarity; and 

5 (iv) allocating a characteristic to each of the clusters based on the optimal 

mathematical model obtained during the learning phase.  

Referring to Figure 2, there is shown a flow chart illustrating an embodiment of the 

learning phase carried out in accordance with an embodiment of the method. In the 

10 learning phase sensor signals are received from sensors representing one or more 

events in each of one or more of the absorbent articles. The sensor signals typically 

include raw data associated with wetness events detected by the sensors in the 

absorbent articles.  

15 The sensor signals are pre-processed in a manner that is described in more detail 

below. Pre-processing of the sensor signals includes smoothing 101 the sensor 

signals, determining local maxima and minima in the signals 102, generating a 

representative vector for each event 103 in a sequence of events represented by the 

sensor signals and normalising the sensor signals 104. The representative vector for 

20 each event 103 includes a number of elements which are values derived from the 

sensor signals. These include any one or more of the group including: duration of the 

event; time to reach a maximum sensor signal value for the event; average value of 

the sensor signal during an increase in the signal to a maximum for the event; the 

maximum signal value for the event; the time taken to reach a minimum signal value 

25 for the event; average value of the sensor signal during a decrease in the signal to a 

minimum for the event; the minimum signal value for the event; the order of the event 

in a sequence of events; or the similarity of a single sensor signal to one or a 

combination of other sensor signals occurring at the same time. Elements of the 

representative vector 103 can also include values representing information from any 

30 one or more of a group of information types including: demographic information; 

environmental information; and the order of the event in a sequence of events for the 

absorbent article.
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The learning phase of the method also includes receiving observation data describing 

a characteristic of the events. Such observation data includes the time the 

observation was made and a measured cumulative weight of exudate contained 

within an absorbent article removed from an individual after changing, and whether 

5 the exudate contains urine, faecal matter of a combination of urine and faecal matter.  

The observation data may be manually or otherwise collected during the learning 

phase.  

Elements of the representative vector are allocated random weightings to provide 

10 weighted representative vectors 105. This is because, as will be described in more 

detail below, it is not known at this stage how important any particular element of the 

mathematical model is to the characteristic of the event that is to be determined (i.e.  

the volume amount for an event). The weighted representative vectors are then 

grouped or clustered based on their relative similarity 106 in a manner that will be 

15 described in more detail below. The method then involves determining and finding 

solutions for one or more mathematical models 107 that describe a relationship 

between the sensor signals received from sensors embedded in one or more 

absorbent articles and cumulative observation data, namely the total weight of 

exudate, contained within each absorbent article monitored during the learning phase.  

20 

As will be described in more detail below with reference to Figure 3 the method 

involves finding an optimal mathematical model, by iteratively generating and solving 

mathematical equations describing a relationship between the sensor signals and the 

observation data, until an optimal mathematical model is arrived at where the solution 

25 to the mathematical equations produces an optimal value such as a minimal error. In 

each iteration of the mathematical model components of the model such as the 

weightings given to each of the elements of the representative vector are altered.  

Each of the mathematical models is assessed and the accuracy of the mathematical 

model is evaluated by reference to an objective function, for example solution error. If 

30 an iteration of the mathematical model provides a relatively low solution error then the 

mathematical model is recorded. Further iterations of the mathematical model are 

generated until a stopping condition is reached, such as a user defined maximum 

number of iterations or when an acceptably low solution error is achieved. When the 

stopping condition is reached the optimal mathematical model, for example the
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mathematical model that provides the lowest solution error, is recalled to be utilised 

during the assessment phase.  

During the learning phase, the optimal mathematical model includes event information 

5 for each of one or more event types. The event information can be determined 

according to a reference vector having a corresponding volume amount for each of 

the event types. The plurality of event types and the reference vector and the volume 

amount for each event type is determined during the learning phase by determining a 

reference vector for each event in a sequence of events for each absorbent article.  

10 The reference vector for each event is made up of the same elements as the 

representative vector, such as those derived from the sensor signals for each event, 

and for each different event, a representative vector is generated. Secondly, the 

method involves intuitively allocating the random weightings to each element of each 

of the representative vectors to provide weighted representative vectors. In one form, 

15 the method employs a strategy (such as genetic, tabu, simulated annealing, etc) to 

intuitively allocate random weightings to each element of each of the representative 

vectors to provide weighted representative vectors. The weightings, which at this 

stage are intuitively allocated and are yet to be optimised, represent the importance 

that each element in the representative vector has in determining the characteristic, 

20 for example volume, of the event.  

In a preferred form, the method involves grouping, or clustering, similar weighted 

representative vectors according to their relative similarity while maximising the 

relative dissimilarity of the centres of the groups or clusters. Any number of groups or 

25 clusters may be adopted in the method. In the present embodiment, a category or set 

of groups or clusters is allocated to events based on the order of events in a 

sequence occurring in the absorbent articles (i.e. 1st, 2 nd, rd etc.). Thus, a first 

category of groups/clusters is allocated to the first of the events in a sequence of 

events in a number of absorbent articles, a second category of groups/clusters is 

30 allocated to the second of the events in the sequence of events in the absorbent 

articles and so on. Each category of groups/clusters may include two, three, or more 

groups or clusters. Each group or cluster has its own reference, or hypothetical, 

weighted representative vector. Thus, the weighted representative vector for the first 

event of a sequence of events in an absorbent article is allocated to a cluster
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according to which of the first event clusters the weighted representative vector is 

most similar to. Also, the weighted representative vector for the second event of the 

sequence of events in an absorbent article is allocated to a cluster according to which 

of the second event clusters the weighted representative vector is most similar to and 

5 so on. The same occurs for all of the remaining events in the sequence of events 

until all of the representative vectors for all of the events of the sequence are 

allocated to a group/cluster. Furthermore, during the learning phase, each 

group/cluster is associated with a characteristic value which is in turn associated with 

each of the weighted representative vectors that are grouped into that group/cluster.  

10 In preferred forms of the invention, the group/cluster value represents the volume 

amount for a voiding event. The volume amount values for each group/cluster are 

calculated in each iteration of the learning phase and comprise elements of the 

mathematical model representing the solution for that iteration. Once a stopping 

condition is reached, the iteration of the optimal mathematical model, which is the 

15 mathematical model which resulted in providing the optimal value according to the 

objective function, for example lowest solution error, is recalled and the characteristic 

values for each cluster from that optimal mathematical model are associated with 

each group/cluster for use in the assessment phase.  

20 In a preferred embodiment, the weighted representative vectors are clustered 

according to a degree of belief of the similarity of each representative vector to one or 

more of a plurality of groups or clusters. This process, referred to as "fuzzy 

clustering", involves allocating a weighted representative vector obtained during either 

the learning phase or during the assessment phase to one, or more than one, "fuzzy" 

25 cluster with an accompanying degree of belief indicating the extent to which the 

weighted representative vector belongs to each of the one or more fuzzy clusters. In 

this embodiment, coefficients of degree of belief of belonging to the one or more of 

the fuzzy clusters are allocated to the weighted representative vectors. The degree of 

belief of belonging coefficients of the weighted representative vectors are a function of 

30 the similarity of the representative vectors to one or more groups or fuzzy clusters.  

The group or fuzzy cluster values for a weighted representative vector may be a 

weighted average of more than one group or fuzzy cluster value based on the degree 

of similarity or closeness of the representative vector to the centre of one or more 

groups or fuzzy clusters of representative vectors. Thus, for example, the degree of
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belief of belonging of a weighted representative vector to fuzzy cluster x1 may be 0.2, 

to fuzzy cluster x 2 may be 0.5 and to fuzzy cluster x3 may be 0.3 wherein the sum of 

the coefficients is 1.0. Thus, the coefficients of degree of belief allocated to the 

weighted representative vector will be 0.2 x1 , 0.5 x 2 and 0.3 x 3 .  

5 

The optimization process carried out in the learning phase of the method is an 

iterative process in which iterations of the mathematical model determined by the 

method and describing a relationship between the sensor signals and the observation 

data are determined and solved and improved. Iterations of the mathematical model 

10 are determined and solved until a stop point is reached, such as a user defined 

number of iterations, and an optimal mathematical model is identified that involves, for 

example the lowest solution error. As a result of identifying the optimal mathematical 

model an optimal set of weightings for the elements of the representative vector to be 

employed by the method during the assessment phase are found. Also as a result of 

15 identifying the optimal mathematical model an optimal set of characteristic values for 

the clusters, such as the volume amount value for each cluster, are found. In 

embodiments of the method of the invention the mathematical model determined by 

the method is a system of linear equations describing the relationship between the 

sensor signals and the observation data. The linear equations preferably include a 

20 linear equation for each sequence of events for each absorbent article monitored 

during the learning phase. For example, if 200 absorbent pads are employed during 

the learning phase and each absorbent pad provides sensor data relating to one 

sequence of events then, during the learning phase, the method will involve 

determining mathematical models including at least 200 linear equations. Each linear 

25 equation relates the weighted representative vectors for each event in the sequence 

for each absorbent article and the cluster or fuzzy cluster values allocated to the 

weighted representative vectors by reference to their cluster, or fuzzy cluster, 

allocation with the observation data obtained for each absorbent article. In the 

present embodiment the observation data is the total or cumulative weight of exudate 

30 in the absorbent article resulting from a sequence of void events occurring in the 

absorbent article.  

Referring to Figure 3, there is shown a flow chart illustrating how optimisation may be 

achieved according to the inventive method during the learning phase. In particular,
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the flow chart illustrates how the method determines and finds solutions for one or 

more mathematical models 111 each describing a relationship between the sensor 

signals and the observation data. Each of the mathematical models relates randomly 

weighted and clustered, or fuzzy clustered, representative vectors to the observation 

5 data indicating the cumulative volume of wetness events in a sequence of events.  

The mathematical model evolves through a number of iterations (step 112) in which 

the weightings and clustering, or fuzzy clustering, of the representative vectors are 

changed.  

10 Each iteration of the mathematical model is solved at 113 to provide, for each model, 

the solution error between the sum of the event volumes determined according to the 

weighted and clustered representative vectors of each event in a sequence, and the 

measured cumulative volume of the events in the sequence occurring in the 

absorbent pad (observed volume). A number of iterations of the mathematical model 

15 are performed 112 until a stop point or stop condition 114 is reached. A stop point 

may be defined by e.g. a user defined number of iterations. The iteration of the 

mathematical model that produces, for example a lowest solution error, as evaluated 

by an objective function is considered to be the optimal mathematical model. This 

provides optimized parameters of the mathematical model at 115 which may then be 

20 employed in an assessment phase. The optimised parameters typically include: 

i) an optimal value for each weighting coefficient; 

ii) a value (i.e. volume amount) for each group or cluster; and 

iii) a reference, or hypothetical, weighted representative vector for each group 

25 or cluster (i.e. the centre of each group or cluster).  

The information in items (i), (ii) and (iii) above identified during the learning phase are 

the optimized parameters employed in an assessment phase which is described in 

detail below.  

30 

In Figure 4 there is shown a flow chart illustrating steps in a method of assessing 

incontinence events in an absorbent article. The assessment phase employs 

optimised models obtained during the learning phase illustrated in Figures 2 and 3 

and described above. In particular, the flow chart of Figure 4 illustrates how, in the
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assessment phase, it is no longer necessary to receive observation data such as the 

total weight of exudate contained within each absorbent article after changing in order 

to ascertain the cumulative or event volume of wetness in the article. During the 

assessment phase, by using the optimised mathematical model obtained during the 

5 learning phase, the volume of exudate associated with each wetness event is 

estimated from sensor signals from sensors embedded in absorbent articles. Thus, 

there is no need to disrupt individuals wearing the absorbent articles to manually 

inspect their wetness condition.  

10 The assessment method involves receiving sensor signals from the sensors 

embedded in the absorbent articles. The sensor signals are pre-processed in a 

manner that is described in more detail below. Pre-processing of the sensor signals 

includes smoothing 201 the sensors signals, determining local maxima and minima in 

the signals 202 to determine events in a sequence of events, generating a 

15 representative vector for each event 203 in a sequence of events represented by the 

sensor signals and normalising the sensor signals 204.  

Using the optimised mathematical model obtained during the learning phase 

described above and illustrated in Figures 2 and 3, weightings are allocated to the 

20 elements of each representative vector to provide a weighted representative vector 

205. The weighted representative vector calculated at 205 is then compared in a step 

206 with the hypothetical, weighted representative vectors for each group or cluster 

(i.e. the centre of each group or cluster) where the clusters represent an event type.  

Clusters determined during the learning phase are employed during the assessment 

25 phase, to determine which group or cluster (i.e. event type) the weighted 

representative vector is most similar to. The method then involves allocating the 

value (i.e. volume amount) obtained during the learning phase for the relevant group 

or cluster (i.e. event type) to the event represented by the weighted and 

grouped/clustered representative vector thus providing an estimated volume of 

30 exudate associated with the event in a step 207.  

Where the method involves fuzzy clustering, the weighted representative vectors 

obtained during the assessment phase are allocated degree of belief coefficients 

according to a degree of belief of the similarity of the weighted representative vectors
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to one or more groups or fuzzy clusters of weighted representative vectors 

determined during the learning phase. Thus, the weighted representative vector for 

an event may have allocated to it a weighted average of values (i.e. volume amount) 

of more than one fuzzy cluster based on the degree of similarity or closeness of the 

5 representative vector to the reference vectors (i.e. the centres) of the fuzzy clusters.  

Thus, a voiding event volume estimate for an individual voiding event may be 

determined by the method during the assessment phase to be a weighted average of 

the volumes of a plurality of fuzzy clusters allocated to the fuzzy clusters during the 

learning phase.  

10 

Referring now to Figure 1, there is shown a schematic diagram illustrating features of 

a system 10 for implementing the method of the invention. The system 10 is adapted 

for analysing sensor signals representing an event in an environment such as an 

absorbent article 20. The system 10 includes an input 40 for receiving one or more 

15 sensor signals representing one or more events in the absorbent article 20. The 

system 10 also includes a storage device 50, a processor 60 and an output 70. An 

algorithm is stored on the storage device 50 as a set of instructions executed by the 

processor 60 to carry out a method for processing the sensor signals to determine a 

characteristic of at least one event in the absorbent article 20. The output 70 

20 communicates the characteristic of the at least one event with a user of a system 10 

e.g. via a display device such as a computer monitor.  

In one embodiment, the system 10 is configured to receive sensor signals from a 

plurality of sensors 30 embedded in the absorbent article 20. The sensors 30 are 

25 adapted to detect the presence of moisture which is indicated by an increase in 

conductivity between spaced electrodes as a result of moisture forming a conductive 

bridge between the electrodes. However, the sensors 30 could be replaced or 

complimented with sensors for detecting other phenomena such as temperature, 

acidity and/or basicity (pH), biochemistry including enzymes, proteins, amino acids, 

30 carbohydrates, lipids, glucose and other phenomena that may be of interest to 

individuals and medical practitioners for the purpose of monitoring, assessing and 

diagnosing disorders, disabilities and disease.
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In a clinical environment such as in a hospital, and aged care facility or the like the 

system 10 may include a wireless signal transmission device 35 that is coupled to the 

sensors 30 embedded in the absorbent article 20 using a physical connector or 

contactless coupling. The transmission device 35 is adapted to wirelessly transmit 

5 sensor signals that are received by a wireless receiver device 45 connected to the 

input 40. Thus, the signals generated by the sensors 30 in the absorbent article 20 

can be transmitted wirelessly to the input 40 such that a hard line between the 

sensors 30 and the input 40 of the system 10 is not required.  

10 The algorithm is executed by the processor 60 to perform an analysis of the sensor 

signals to characterise wetness events occurring in the absorbent articles being 

monitored. In one embodiment, the analysis involves carrying out a method of the 

invention by applying a mathematical model describing a relationship between sensor 

signals representing a sequence of events and a characteristic of the event such as a 

15 cumulative volume of exudate associated with wetness in the absorbent article. The 

mathematical model may be determined or optimised by processor 60 or by a 

separate processor or processing means.  

The system 10 illustrated in Figure 1 also includes an optimization module 80. The 

20 optimization module 80 carries out a learning phase of an embodiment of the 

invention. The optimisation module 80 executes the learning phase for optimizing 

one or more parameters employed by the algorithm. The optimization module 80 

performs an analysis of the sensor signals received by the input 40 to characterise 

wetness events occurring in the absorbent articles being monitored during the 

25 learning phase. It is to be noted, however that the optimization module need not be 

provided as part of the analysis system deployed into care institutions. Although that 

may be the case, it is also contemplated that the optimization module may be 

provided separately and remotely from the analysis elements of the system, e.g. at 

sites where observation data is readily available for use in the learning phase 

30 executed by the optimization module.  

In a preferred form, the system 10 involves grouping, or clustering, similar weighted 

representative vectors according to their relative similarity while maximising the 

relative dissimilarity of the centres of the groups or clusters. The system 10 clusters
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weighted representative vectors according to a degree of belief of the similarity of 

each representative vector to one or more groups or clusters. This process, referred 

to as fuzzy clustering, involves allocating a weighted representative vector obtained 

during either the learning phase or during the assessment phase to more than one 

5 fuzzy cluster with a degree of belief of belonging of the weighted representative vector 

to each of the fuzzy clusters.  

In an embodiment, the invention involves capturing the knowledge obtained by the 

fuzzy clustering process carried out during a learning phase and applying it during an 

10 assessment phase. One preferred form, capturing the knowledge of the fuzzy 

clustering process carried out during the learning phase involves training a fuzzy 

neural network. Thus, in one embodiment, the system 10 includes a fuzzy neural 

network in the form of an algorithm that may be executed by the optimisation module 

80 and/or the processor 60. The optimisation module 80 and/or the processor 60 

15 executes the fuzzy neural network algorithm to capture the knowledge of the fuzzy 

clustering process described above. As mentioned above, during the learning or 

optimization phase, when the fuzzy clustering occurs, each weighted representative 

vector representing an event is categorised in one or more of the fuzzy clusters with a 

degree of belief of belonging to the one or more fuzzy clusters. The degree of belief 

20 is typically represented by degree of belief coefficients. The information that is 

obtained from the fuzzy clustering process carried out during the learning phase can 

be used to train the fuzzy neural network such that during the assessment phase the 

trained fuzzy neural network can approximate the degree of belief of belonging of a 

given weighted representative vector derived from sensor signals representative of a 

25 detected event, to one or more of the clusters and thereby more accurately 

approximate a characteristic of the event. The fuzzy neural network is trained using 

input information and output information. In an embodiment, the fuzzy neural network 

is trained using the information obtained during the fuzzy clustering process. That is 

the weighted representative vector information for each of the events included in the 

30 learning phase, namely the input, and the degree of belief coefficients for each of 

these weighted representative vectors representing the degree of belief of belonging 

of the weighted representative vector to each of the fuzzy clusters, namely the output.
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In an embodiment of the system, the processor 60 and the optimization module 80 

identify in each of the signals one or more different void events. By identifying 

different void events from the signals representative of the void events the processor 

60 and the optimization module 80 distinguish between different occasions on which 

5 exudate is passed by the wearer of the absorbent article 20. The processor 60 and 

the optimization module 80 then generate a representative vector for the signals 

representing each event for each absorbent article 20. The representative vector may 

be made up of a number of elements. Such elements may include the magnitude or 

strength of signals from one or more different sensors 30 embedded in the absorbent 

10 article 20. Other elements may include secondary values derived from the signals 

from the different sensors or other related observations, actions, demographic 

variable or environmental conditions. Some of the elements of the representative 

vector may be more indicative of a characteristic that a user wishes to know about an 

event than others. Accordingly, the elements of the representative vector are 

15 weighted according to a weighting vector to provide a weighted representative vector.  

This emphasises the effect of some factors and diminishes the influence of other 

factors when analysing the sensor signals.  

The elements of the representative vectors for the events that are employed during 

20 the learning phase and the assessment phase are those that are considered likely to 

be representative of the characteristic of the event that is to be determined during the 

assessment phase. In these embodiments of the method and the system, the 

elements of the representative vectors for the events that are being monitored are 

those that are considered likely to be representative of the void volumes (or other 

25 characteristics being assessed) associated with incontinence events occurring in an 

absorbent article. The elements of the representative vectors derived from the sensor 

signals can include any one or more of the group including but not limited to: 

* duration of the event, 

e time to reach a maximum sensor signal value for the event, 

30 e average value of the sensor signal during an increase in the signal to a 

maximum for the event, 

e the maximum signal value for the event, 

e the time taken to reach a minimum signal value for the event,
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" average value of the sensor signal during a decrease in the signal to a 

minimum for the event, 

e the minimum signal value for the event, 

e the position of the event in a sequence of events, 

5 e the similarity of a single sensor signal to one or a combination of other sensor 

signals occurring at the same time.  

The above elements of the representative vector are determined from the signals 

received from sensors in the method and from the sensors 30 by the input 40 in the 

10 system. However, it is also possible to receive other information in the method and to 

provide other information to the input 40 in the system relating to other elements that 

are not dependent on, or determined by, sensors signals received from sensors in an 

absorbent article in the method or from the sensors 30 in the absorbent article 20 in 

the system. Other such information could relate to elements of the representative 

15 vector that are user defined and include user defined values. One such user defined 

value could include a value representing the order of the event in a sequence of 

events, that is, whether an event is first, second, third, and so on, in a sequence of 

events that occur in the absorbent article. This information is considered to be 

relevant to the characteristic of the event that is to be determined, namely void 

20 volume of a wetness event, because the number of void events which may have 

occurred prior to the wetness event in question may impact on the sensor signals 

generated by the sensors 30 in the absorbent article 20 for subsequent events. For 

example, the sensor signals representative of a first event may be disproportionately 

lower or higher in magnitude in comparison to sensors signals representative of a 

25 second event, and lower or higher still than a third event, and so on, because residual 

wetness may remain in the absorbent article. This may sensitise or desensitise the 

sensors to subsequent wetness events.  

Other information that may be received in the method or provided to the input 40 in 

30 the system relating to elements that are not dependant on, or determined by, sensor 

signals received from sensors in an absorbent article can include a value representing 

information from any one or more of a group of information types including 

demographic information of a wearer of the absorbent article; event sequence number
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information; elapsed time since the absorbent pad was changed; the time of day; 

ambient temperature; or the time since the patient last ingested food or liquid.  

The relative importance of the elements of the representative vector derived from 

5 other information described above that is not derived from the sensor signals is 

determined by the method during the learning phase by determining the optimal 

weighting coefficients for the elements.  

In embodiments of the method and the system, the processor 60 and the optimization 

10 module 80 normalize the elements of the representative vector with respect to a 

reference range to provide a normalized representative vector and allocate a 

weighting to the normalized elements of the representative vector to generate a 

weighted normalized representative vector. In order to make a comparison between 

the values of the different elements, whether that be sensor signal value, secondary 

15 information derived from sensor signals or values of other user defined elements, the 

values must be normalised by being converted into values falling within a common 

range, such as a value from 0 to 1. Ideally, normalisation of elements of 

representative vectors occurs during the learning phase and the assessment phase.  

20 In further embodiments of the method and the system, the method, the processor 60 

and the optimization module 80 process the sensor signals during the learning phase 

and during the assessment phase to identify in each of the signals one or more 

individual events. The derivative of each point of each sensor signal data gives the 

trend of the signal. The genuine events are detected by finding the local maxima of 

25 the signal. In a differentiable function, critical points represent either local minima or 

maxima. To rule out the local minima, as they do not represent the genuine events, 

and any local maxima that are not representative of genuine events the trends before 

and after the critical points are studied. In the sensor signals received in the method, 

and received by the input 20 from the sensors 30 in an absorbent article 20 in the 

30 system, the beginning of a wetness event occurring in the absorbent article is 

represented as a positive derivative of the sensor signal. The end of the wetness 

event occurring in the absorbent article is represented when the derivative of the 

signal is close to zero (theoretically zero). The beginning of the next wetness event in 

a sequence of events for the absorbent article is represented as the next occasion on
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which the sensor signal has a positive derivative. To put it another way, the method, 

the processor 60 and the optimization module 80 identify individual events in a 

sequence of events by determining local maxima or minima of the sensor signals.  

Accordingly, the method, the processor 60 and the optimization module 80 are 

5 capable of distinguishing between consecutive events occurring in each absorbent 

article during the learning phase and the assessment phase and can thereby 

determine the elements of the representative vector for use in the algorithm.  

In order to enhance the ability of the method and processor 60 and the optimization 

10 module 80 of the system to determine local maxima and minima of the sensor signals 

received from sensors in each absorbent article the method and the processor 60 and 

the optimization module 80 of the system smooth the sensor signals such as by 

executing a smoothing algorithm. The smoothing algorithm may employ a smoothing 

coefficient that is either user defined or is optimised by an optimisation process. The 

15 optimal smoothing coefficient is one which enables the method and the processor 60 

and the optimization module 80 of the system to determine local maxima and minima 

of signals received from sensors in absorbent articles that accurately correlate with 

the beginning and end of wetness events occurring in the absorbent article. The 

smoothing of the sensor signals and the determination of local maxima and minima 

20 form part of the pre-processing of the sensor signals in the learning and assessment 

phases illustrated in Figures 2 and 4.  

An example of a preferred implementation of the invention including the Learning 

Phase and the Assessment Phase is set out below: 

25 
Smoothing the Sensor Signals 
There are two main reasons that the sensors' data should be smoothed. First, to 

reduce the noise and consequently capture the important pattern of the signal and 

secondly to make the signal differentiable. The signal must be differentiable for the 

30 event detection phase. A user defined or optimisable variable (called smoothing 

coefficient) controls the extent of smoothing. The smoothing coefficient can be 

derived by a separate optimisation process in which the goal is to maximise the 

number of legitimate detected events in the event detection phase. Figure 5 shows a 

graph illustrating an original signal and its smoothened signals with two different
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smoothing coefficients. The process of smoothing the sensor signal may also involve 

interpolation of missing data resulting from an interruption of the sensor signal or 

because of some other reason.  

5 Genuine event detection 
The derivative of each point on the sensors' data gives the trend of the signal. The 

events are detected by finding the local maxima of the signal. In a differentiable 

function, critical points represent either local minima or maxima. To rule out the local 

minima, as they do not represent the events, the trends before and after the critical 

10 points are considered. An event starts with a positive derivative which shows an event 

is starting to happen. Then before the signal comes down, there is a period of time 

that the derivative is close to zero (theoretically zero). Figure 6 illustrates the period 

of closed interval [pk , nk ] for an event k, sub periods of [pk , Zsk ], [Zsk , zek ] and [zek , 

nk] with positive, zero and negative derivatives, respectively. Figure 7 shows the 

15 detected event for a sample raw sensor's data.  

Generating the representative vector 
Instead of dealing with the events in their signal form, it is much easier to convert 

each event to its representative vector. This vector, rep, reflects the properties of the 

20 signal. A number of factors introduced as effective factors are as follows: age, 

weight, gender (both demographic factors), duration and average value of relax 

part, duration and average of increasing part, duration and average of decreasing 

part and similarity of each signal to an accumulated signal which is a sum of all of the 

signals generated by the sensors in the absorbent article. The similarity measure 

25 enables the algorithm to detect signal artefacts or noise such as "wetbacks" or faecal 

matter exudates as opposed to urinal exudates. Other elements that are introduced 

are elements that are subjective and based e.g. on experts' suggestions. Figure 8 

illustrates the elements of representative vectors relating to four events.  

30 Also, each event affects the behaviour of the absorbent article in each sequence of 

events occurring in the absorbent article. Thus, the sensors' data for each event is 

dependent on previous events in a sequence and the event itself. Hence, the 

motivation for taking the previous events into consideration in addition to the event 

itself. The recursive structure of each event with its history is as following (1).
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EwH (Eg ) = (Eg , C(EwH (Eg_1))) 

where (1) g = 1, EwH (El ) = (El) and where C (Eg ) represents a function which 

returns the cluster type of event Eg. So for example if we have four events in a 

sequence, all the first, second and third events have effect on the fourth one.  

5 

Normalizing 
The representative vector contains different elements with different natures. This 

vector does not really show the behaviour of the signal for one element in comparison 

to other signals for other elements or the same element if they have different ranges 

10 for each element. Normalization allows data, such as signals, on different scales to 

be compared, by bringing them to a common scale. So to give the same priority to all 

the elements, all elements are mapped into a same range, represented by Eri* For 

a mapping function of n variables in a form of m:Rr [o-ija, the minimum and 

maximum values of each factor are mapped to 0 and 1, respectively.  

15 

Learning Phase 
In the Learning Phase, the following process is carried out: 

Searching for the optimum weight vector 
20 The elements of the representative vectors have different importance for the void 

event analysis. This is due the fact that it is hard to say how effective is a factor for 

void event analysis. Thus, an optimisation method is employed to detect a numeric 

value or coefficient that represents the importance of each element. So, even if an 

element is not effective at all for void event detection and analysis, the optimization 

25 method will return zero as the effectiveness (weighting) of that element. So it is not 

necessary to consider that element to find the effective element and can be effectively 

excluded such that only effective elements are considered.  

The optimisation method searches for an input vector, w, in the search space such 

30 that the system's output (reaction) reaches the minimum. In such problems a local 

minimum is not acceptable and the optimisation method should be able to avoid being 

trapped in local minima and return a global minimum solution instead. The 

formulation of the global minimization problem is as follows: 

y =min f (w) 

35 f : Rn R,
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where f (w) is a non-convex real-valued unknown system. Note that there is no need 

to investigate a global maximization problem separately, since it can be converted to 

a global minimization problem: 

max f (w) = -min[-f (w)] 

5 f: Rn -R.  

In here f 0 calculates the error between the observed and the actual volumes (2).  

lull ? HE~h'2) 

where p is the absorbent article identifier, p max is the maximum number of 

sequences for the absorbent article, g is the event identifier for the absorbent article 

10 p and g max, is the maximum number of events in the sequence p.  

The objective function Obj to be minimized or maximized is the average error 

between the observed volumes 0 and the actual volumes A, given in (3) 

15 The optimization problem (2) with the objective function of (3), is tackled by any 

suitable algorithm.  

Clustering 
Clustering is the process of grouping each of the individuals of a population into a 

20 cluster in such a way that the individuals in each group have similar properties. So 

the ultimate goal is to group the similar events together, then one can say that the 

events in each group almost represent the void volumes with almost a same size.  

The more cluster types are provided, the better approximation that is obtained. The 

information that obtained after clustering is how similar each of the individual events 

25 are in comparison to each other. So it is very likely that two individual events in one 

cluster have the same volume, but the question of how much urine volume each 

event produces cannot be answered in this phase.
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In one form, the algorithm groups similar weighted representative vectors according to 

a degree of belief of their relative similarity. This form of the invention involves a 

methodology known as fuzzy clustering. In fuzzy clustering, the individual events do 

not necessarily belong to just one cluster but to many clusters with a degree of belief.  

5 This makes the clustering results more promising as there are some cases where is 

hard to say if one individual representative vector exactly belongs to a single cluster 

or group. Instead, an individual event may belong to two or more clusters. Figure 9 

illustrates an example of clustering with 3 clusters 91, 92, 93. Figure 9 illustrates a 

plurality of weighted representative vectors plotted on a graph 90 as well as the three 

10 clusters 91, 92, 93. Each one of the clusters 91, 92, 93 includes a centre 91a, 92a, 

93a or a reference weighted representative vector and a boundary 91b, 92b, 93b.  

The closer a weighted representative vector of an individual event is to the centre 

91 a, 92a, 93a of one of the clusters 91, 92, 93 the higher the degree of belief that the 

event belongs to that cluster relative to the degree of belief that it belongs to another 

15 cluster. During the learning phase, each one of the clusters 91, 92, 93 is allocated a 

characteristic value, such as a volume amount, which is in turn allocated to each of 

the weighted representative vectors that are grouped into that cluster.  

Fuzzy clustering involves allocating a weighted representative vector obtained during 

20 either the learning phase or during the assessment phase to more than one cluster 

with a degree of belief of belonging of the weighted representative vector to each of 

the clusters. For example, in a scenario where there are three fuzzy clusters x1, x 2 

and x3 each having a reference weighted representative vector representing the 

centre of each fuzzy cluster and where a weighted representative vector of an actual 

25 event detected during either the learning phase or the optimisation phase is 

compared with the fuzzy clusters a degree of belief of belonging of the weighted 

representative vector to each of the clusters is determined as a function of how close 

the weighted representative vector is to the centres of the fuzzy clusters. The degree 

of belief of belonging of the weighted representative vector to each of the clusters is 

30 represented by a coefficient between 0 and 1 wherein the total of the coefficients of 

the degrees of belief for a weighted representative vector equal 1. Thus, for example, 

the degree of belonging of the weighted representative vector to fuzzy cluster x, may 

be 0.2, to fuzzy cluster x 2 may be 0.5 and to fuzzy cluster x3 may be 0.3. The sum of 

the coefficients 0.2, 0.5 and 0.3 must be 1.
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Fuzzy c-means (FCM) is way of fuzzy clustering. The aim in FCM is to determine, 

with soft clusters, that each element has a degree of belongness. To find the 

optimized clusters, FCM minimizes the degree of belief for the elements which do 

5 not really belong to a cluster and increases the belief degree for the elements 

which actually belong to a cluster. The optimized degree of the belief for the 

elements can be obtained by the following mathematical optimization problem (4): 

10 where mij is the membership degree of x; in cluster ci. The algorithm starts from set 

of random m;; and then minimizes or maximizes the objective function in (4) with an 

iterative approach. The stopping criterion is usually, either the maximum number of 

the iterations or the difference between the two consecutive of the objective values.  

15 Fuzzy Neural Network 

Training of a fuzzy neural network is adopted to capture the knowledge of fuzzy 

clustering. As mentioned above, during the learning (optimization) phase when the 

fuzzy clustering occurs, each weighted representative vector representing an event is 

categorised in one or more of the fuzzy clusters with a degree of belief of belonging to 

20 the one or more fuzzy clusters represented as degree of belief coefficients. The 

information that is obtained from the fuzzy clustering process carried out during the 

learning phase, as described above, can be used to train a neural network. Thus, 

during the assessment phase the trained neural network can approximate the degree 

of belief of belonging of a given weighted representative vector, which is 

25 representative of a detected event, to each of the clusters and thereby approximate a 

characteristic of the event, such as the void volume of the event. The fuzzy neural 

network is trained with input information and output information from the fuzzy 

clustering process. In particular, the fuzzy neural network is trained with input 

information in the form of the weighted representative vector information for each of 

30 the events included in the learning phase and with output information in the form of 

the degree of belief coefficients for each of these weighted representative vectors 

representing the degree of belief of belonging of the weighted representative vectors 

to each of the fuzzy clusters.
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For example, if during the learning or optimisation phase there are 200 representative 

event vectors representing 200 events, namely the input information, then there are 

200 sets of degree of belief data representing degree of belief of belonging of the 

5 representative vectors to the fuzzy clusters, namely the output information. The fuzzy 

neural network is trained with this input and output information such that during the 

assessment phase when a new representative event vector is obtained from sensor 

data representative of a new event then the degrees of belief information regarding 

this new representative vector, namely the coefficients representing the degree of 

10 belief of belonging of this event to one or more of the fuzzy clusters, can be 

approximated by the trained fuzzy neural network.  

The following flowchart represents the overall process of the Learning Phase as 

exemplified above: 

15 

h .zdcv
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The general flowchart of the voiding event detection and analysis algorithm 

including training the fuzzy neural network.  

Signal Artefacts, Signal Noise and Outliers 

5 The accuracy of the optimized representative parameters obtained during the learning 

phase can be adversely affected by the input of signal artefacts or noise during the 

learning phase. Such signal artefacts or noise could be representative of false event 

signals relating to environmental events such as patient movement, "wetbacks" 

resulting from patient movement or faecal matter exudates as opposed to urinal 

10 exudates. The representative vectors that are representative of "wetbacks" or faecal 

events may be referred to as wetback representative vectors and faecal 

representative vectors.  

Other signals received during the learning phase that are representative of events 

15 occurring in absorbent articles may result in representative vectors that, whilst 

representative of genuine events, lay far outside the range of the clusters generated 

during the learning phase. Representative vectors for genuine events may be 

considered to lay far outside the range of the clusters generated during the learning 

phase because they have been determined by the method to have a low degree of 

20 confidence of belonging to the fuzzy clusters generated during the learning phase 

and, therefore, may have little or no statistical significance. Such representative 

vectors may be referred to as outlier representative vectors.  

Embodiments of the method can increase the accuracy of the optimized 

25 representative parameters obtained during the learning phase to be employed in the 

assessment phase by, for example, identifying and either quarantining or eliminating 

wetback representative vectors, faecal event representative vectors and outlier 

representative vectors from the representative vectors incorporated into the method 

during the learning phase. Failing to quarantine or remove wetback representative 

30 vectors, faecal event representative vectors and outlier representative vectors may 

bias the parameters of the objective function determined during the learning phase.  

Accordingly, identifying and quarantining or removing wetback representative vectors, 

faecal event representative vectors and outlier representative vectors by either 

discarding or by clustering the wetback representative vectors, faecal event
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representative vectors and outlier representative vectors in clusters other than 

genuine event representative vector clusters reduces any bias during the learning 

phase. It would also be desirable to be able to identify representative vectors relating 

to wetbacks, faecal events or outliers with a high degree of confidence, during the 

5 assessment phase.  

By determining the level (or degree) of confidence that a weighted representative 

vector belongs to the one or more fuzzy clusters of genuine voiding event 

representative vectors both during the learning phase and the assessment phase it is 

10 possible to detect representative vectors that have a low level of confidence of 

belonging to any one or more of the fuzzy clusters of representative vectors of 

genuine voiding events. Information about the level of confidence that a weighted 

representative vector belongs to the one or more fuzzy clusters is a value 

representing the similarity, or lack thereof, of the weighted representative vector to 

15 any one of the fuzzy clusters. In contrast, the degree of belief of belonging 

information allocated to the representative vector during the fuzzy clustering process 

of the learning phase is a value representing the relative closeness of a weighted 

representative vector to all of the fuzzy clusters of which it is eligible to be a member.  

It is to be appreciated, however, that degree of belief of belonging and level of 

20 confidence information can be related such that both sets of information can be 

derived from a single value or source of information or that one could be derived from 

the other.  

For example, weighted representative vectors representative of wetback events, 

25 faecal events or outliers will have allocated to them coefficients of degree of 

confidence of belonging to genuine event representative vector clusters based on 

their absolute closeness to each of the clusters. With this information, the method 

determines which of the weighted representative vectors have less than a 

predetermined threshold coefficient value for degree of confidence of belonging to 

30 any one of the clusters of genuine events. Such weighted representative vectors with 

less than the threshold coefficient value for degree of confidence of belonging to any 

one of the clusters of genuine events may be representative of wetback events, faecal 

events or outliers. On the other hand, where the method includes separate clusters 

for representative vectors representative of wetback events, faecal events or outliers
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then the method will determine that weighted representative vectors representative of 

wetback events, faecal events or outliers respectively belong to these clusters with a 

high degree of confidence.  

5 Clustering weighted representative vectors that are deemed with a relatively, or 

sufficiently, high degree of confidence to be representative of wetback events, faecal 

events or outliers in respective clusters during the learning and assessment phases 

increases the accuracy of the system in predicting the voiding event volumes of 

genuine voiding events. Another advantage of clustering weighted representative 

10 vectors that are deemed with a relatively, or sufficiently, high degree of confidence to 

be representative of wetback events and faecal events in respective clusters enables 

the method to determine wetback events and faecal events occurring in an absorbent 

article during the assessment phase.  

15 An event which is allocated by the method with a low degree of confidence of 

belonging to any of the genuine event representative vector clusters could be deemed 

to be an outlier. It may be an outlier because of confounding factors such as patient 

movement or other factors. Furthermore, an embodiment of the invention can include 

clusters associated with outliers such that one outlier cluster might with a high level or 

20 degree of confidence relate to faecal matter events and another may relate to 

wetback events and another outlier cluster for outliers which have a low level or 

degree of confidence that a weighted representative vector belongs to any of the 

other clusters.  

25 Generating the system of linear equations 
A set of linear equations with the same variables make system of linear equations. A 

solution vector to this system of linear equations is a vector which almost satisfies all 

the equations.  

30 Each event sequence can be represented by a linear equation which has set of 

volumes and consequently the overall volume as given in (5).  

where p is the event sequence identifier and pmax is the maximum number of the 

events in the event sequence p.
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In general there are Tote= 2p. events in (5) which can form a system of linear 

equations as given in as below.  

1., El 17 

5 where the solution to the above system of linear equations gives the estimation of 

volume for each event.  

Considering the clustering done in the previous phase with n clusters for each event 

category, the above system of linear equation can be translated to a system like: 

4 J' 

10 

where cij is the cluster j of the event category i. Solving the above system of linear 

equations provides the solution vector which represents the volume for each cluster.  

The best weight vector sought in the learning phase ultimately reduces the error of 

the solution for the above system of linear equations.  

15 

Assessment Phase 
In the Assessment Phase, the following process is carried out: 

1. Smoothing: The sensors signals are smoothened every w-t minutes. The 

20 smoothing technique is ideally the same as the one used in the learning phase.  

2. Event detection: The events from the beginning of the sequence are detected.  

3. Generating the representative vector: The representative vector for each event is 

made. The elements which are considered in the first phase should be applied in 

generating the representative vector during the assessment.
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4. Normalizing: The elements of the representative vectors are normalized.  

5. Prioritizing factors: The optimum weight vector w sought in the learning phase is 

multiplied to each of the elements in the representative vector, known as the weighted 

representative vector. The resulting weighted representative vector emphasizes the 

5 important elements for the cluster detection phase.  

6. Cluster detection: The best cluster for each of the weighted representative vectors 

is then detected. To be able to find the cluster, the centres of the clusters which are 

the same as the ones obtained in the learning phase are applied. In an alternative 

embodiment, during the assessment phase, the weighted representative vectors 

10 representative of sensor detection of new events are allocated degree of belief 

coefficients by the trained neural network.  

7. Generating the linear equation: Now each event type has a cluster in its event 

category. So a linear equation of form (6) for the event sequence can be converted to 

a form of (7): 

15 

The value for Equation (7) can be calculated by having the solution from the learning 

phase.  

20 Embodiments of the system of the invention involving the use of a neural network 

enables the system to approximate more accurately the value, or volume of exudate, 

associated with the event that the weighted representative vector represents as a 

weighted average of the cluster volumes determined with reference to the respective 

coefficients of degree of belief belonging of the weighted representative vector to 

25 each of the clusters. This means a void volume amount of a detected event need not 

be approximated to only one cluster value, but may be approximated by a weighted 

combination of cluster values, giving rise to more accurate estimates.  

Verification or Testing of the Optimised Objective Function 

30 In embodiments of the invention, a further process is involved in which the accuracy 

or appropriateness of the optimal mathematical model obtained during the 

optimisation phase is verified. In other words, the correctness of the optimal 

mathematical model obtained from the optimisation process is proved or disproved.
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Verification or testing of the optimal mathematical model can be included as an 

additional step or phase during the learning or optimisation phase to verify the 

correctness of the optimal mathematical model determined during the learning phase.  

In an embodiment, the step of verification includes dividing the data set used for the 

5 learning phase into a learning data set and a testing data set such that the learning 

and testing data come from the same set of data. For example, the learning data set 

and the testing data set are taken from the same overall set of absorbent pad cycles 

and observation data used obtained during the learning phase.  

10 The testing phase involves adopting the optimised mathematical model to estimate 

voiding event volumes for the voiding events in the testing data set and thereby 

determining estimates of the cumulative volumes of the event cycles in the absorbent 

pads of the testing data set. The estimates of the cumulative volumes of the event 

cycles of the testing data set are compared with the observation data namely the 

15 actual, measured cumulative volumes of voiding events in each sequence in each 

absorbent pad. The extent to which the optimal mathematical model accurately 

estimates voiding event volumes in the sequences of events of the testing data set 

reflects the correctness of the optimal mathematical model determined during the 

learning phase. If the optimised mathematical model provides estimates that are 

20 inaccurate because they involve an error that is more than a predetermined 

acceptable error then the learning phase may need to be carried out again with a new 

learning data set or the mathematical model may require modification. If the optimised 

mathematical model provides estimates that are accurate because they involve an 

error that is less than a predetermined acceptable error then the mathematical model 

25 obtained during the learning phase may be adopted in the assessment phase.  

Hierarchical Optimisation 

In embodiments of the method the process of determining an optimal mathematical 

model during the learning phase can be deliberately influenced by utilising a 

30 hierarchical optimisation method. In one form of this method, a hierarchy of factors 

that are deemed to have greater or lesser significance to the estimates to be made by 

the optimised objective function are determined depending on the intended use and 

outcomes of the system. In another form of this method, a hierarchy of objective 

functions of the mathematical model to be optimised is determined. The hierarchy of
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objective functions can be determined as those objective functions of the 

mathematical model deemed to have greater or lesser importance to the intended use 

and outcomes of the method. Thus, the hierarchical optimisation method involves 

influencing the weightings given to elements of the representative vectors or to 

5 representative vectors themselves in order to influence the learning phase to produce 

an optimised mathematical model in which certain objective functions which are 

deemed to have more importance are optimised in preference to other objective 

functions deemed to have lesser importance.  

10 For example, if the optimised mathematical model obtained during the learning phase 

is intended to produce estimates of voiding event volumes based on sensor data from 

absorbent pads received during an assessment phase in the context of an aged care 

facility there may be a number of outcomes of the method that are deemed more 

important for the method to be accurate in estimating than others. For example, in an 

15 aged care facility, one of the most important factors for accurate estimating is the 

correct time to change the absorbent pad of a patient. The correct time to change an 

absorbent pad may depend on the size and construction of the pad in question.  

Assuming the absorbent pads used during the assessment phase should be changed 

when the cumulative volume of voiding events in the pad is between 100mL and 

20 200mL then the correct time to change assessment made by the optimised 

mathematical model is when the estimated cumulative volume of events in an 

absorbent pad is between 1 00mL and 200mL or whatever range is appropriate for the 

type of absorbent pad in question.  

25 A less important factor than correct time to change may be underestimation by the 

method of the actual cumulative volume of voiding events that have occurred in an 

absorbent pad. In particular, estimation of the cumulative volume being within the 

correct time to change range, for example between 1 OOmL to 200mL, where in actual 

fact the actual cumulative volume in the absorbent pad is greater than the limits of the 

30 range, for example greater than 200mL. Underestimation is undesirable because it 

may result in a patient being forced to wear an absorbent pad than has absorbed 

more urine than its designed limit.
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A less important factor than both correct time to change and underestimation may be 

overestimation by the method of the actual cumulative volume of voiding events that 

have occurred in an absorbent pad. In particular, estimation of the cumulative volume 

being within the correct time to change range, for example between 1 OOmL to 200mL, 

5 where in actual fact the actual cumulative volume in the absorbent pad is less than 

the limits of the range, for example less than 100mL. Overestimation is undesirable 

because it may result in a patient having their absorbent pad changed when changing 

is not required. However, overestimation may more tolerable than underestimation 

because it may be considered more tolerable for a patient to have their absorbent pad 

10 changed when changing is not required than it is for a patient to be allowed to be in 

the situation of wearing an absorbent pad that has received more than its maximum 

limit of urine and well after the point at which the absorbent pad should have been 

changed. Thus, in the present example, overestimation may be lowest in terms of 

objective functions of the mathematical model to be optimised. Underestimation will 

15 be given higher priority in the hierarchy of objective functions to be optimised than 

overestimation but not higher than correct time to change which will be given the 

highest priority of the objective functions to be optimised.  

Thus, during the learning phase, the above hierarchy of objective functions to be 

20 optimised is included in the process by which the mathematical model is optimised 

such that the accuracy of the model, optimised during the assessment phase, is 

optimised firstly for estimating the correct time to change, secondly for avoiding 

underestimation and lastly for avoiding overestimation. By employing a hierarchy of 

objective functions to be optimised in the course of optimising the mathematical 

25 model during the learning phase the weightings allocated to elements of the 

representative vectors, and perhaps other factors, are biased in favour of achieving 

the best outcome in terms of the hierarchy of outcomes determined for the method.  

Testing Protocol 

30 The present invention provides a method and a system for monitoring wetness in one 

or more absorbent articles such as pads, diapers, adult incontinence garments or the 

like. In embodiments of the method and the system, a learning phase is carried out in 

which information is derived from sensors incorporated in absorbent article such as 

pads, diapers, adult incontinence garments or the like for detecting wetness resulting
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from urinary and faecal incontinence events. In the learning phase, the method 

involves: receiving sensor signals representing a plurality of events in each of one or 

more absorbent articles; receiving observation data describing a characteristic of the 

plurality of events in an absorbent article; identifying an optimal mathematical model 

5 describing a relationship between the sensor signals and the observation data.  

The accuracy of the optimized mathematical model obtained during the learning 

phase in allocating a characteristic to an event represented by the sensor signals, 

such as the volume of a voiding event, can be affected by variables such as 

10 absorbent pad specification, design, composition and structure or wetness sensor 

specification, design, composition and structure. Other variables that may affect the 

accuracy of the optimized mathematical model obtained during the learning phase in 

allocating a characteristic to an event represented by the sensor signals may be the 

means with which the sensors are fixed or manufactured into the absorbent pad, the 

15 number and location of the sensors relative to the absorbent pad and other structural 

parameters of the absorbent pad and sensor combination. Yet more variables that 

may affect the accuracy of the optimized mathematical model obtained during the 

learning phase in allocating a characteristic to an event represented by the sensor 

signals may be the means with which the sensor signals are received from the 

20 sensors such as through hard-wires or a wireless system. Another variable that may 

affect the accuracy of the optimized mathematical model obtained during the learning 

phase in allocating a characteristic to an event represented by the sensor signals may 

be the actual mathematical model itself.  

25 For example, variables such as different adhesive methods and adhesives used to 

retain wetness sensors to an absorbent pad and different absorbent pad structures, 

sizes, and compositions, sensor types and modes of manufacture may impact on the 

effectiveness of signals received from the sensors in developing an optimised 

mathematical model obtained during the learning phase that is capable of accurately 

30 estimating a volume of a voiding event occurring in the absorbent article during an 

assessment phase. In another example, those variables may impact on the 

effectiveness of signals received from the sensors in enabling the optimised 

mathematical model obtained during the learning phase to accurately estimate a
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volume of a voiding event occurring in the absorbent article during an assessment 

phase.  

An embodiment of the method, described herein, is able to determine the impact that 

5 different variables, including but not limited to the above variables, may have on the 

accuracy of the optimized mathematical model, obtained during the learning phase, in 

allocating a characteristic to an event represented by the sensor signals, such as the 

volume of a voiding event during the learning and assessment phases. An 

embodiment of the method is also able to determine whether changes or 

10 improvements to the above variables or how they are represented in the 

mathematical model have the effect of improving the accuracy of the optimized 

mathematical model, obtained during the learning phase, in allocating a characteristic 

to an event represented by the sensor signals during the learning and assessment 

phases.  

15 

In an example, a laboratory testing protocol is established whereby, for example, for a 

single absorbent pad type there are two or more sets of absorbent pads each set of 

absorbent pads includes a different adhesive method for attaching a set of wetness 

sensors to the absorbent pads. For example, one of the sets of absorbent pads 

20 includes 24 locations at which adhesive is used to attach wetness sensors to each 

absorbent pad and another one of the sets of absorbent pads includes 88 locations at 

which adhesive is used to attach wetness sensors to each absorbent pad. In both 

sets of absorbent pads identical wetness sensors are included. The purpose of the 

testing protocol is to establish whether one of the sets of absorbent pads when used 

25 in the learning phase of the method described above results in a mathematical model 

that more accurately estimates the volume of a wetness event occurring in the 

absorbent pad during the verification step of an embodiment of the method or during 

the assessment phase of another embodiment of the method. A similar testing 

method may be employed to verify the accuracy of the mathematical models 

30 employed for pad/sensor combinations arising from a range of manufacturing 

methodologies.  

In the example, a laboratory testing rig is used in which for each of the first and 

second sets of absorbent pads, which in the example includes a set of identically
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constructed absorbent pads for each set, each absorbent pad is mounted in a stable 

and repeatable manner and a wetness applicator, such as a syringe, is used to 

accurately and repeatably apply a variety of predetermined amounts of liquid, such as 

water or a urine surrogate, to each absorbent pad at a variety of times. Thus, for 

5 each absorbent pad a series of wetness events is simulated to provide a simulated 

cycle of wetness events occurring in the absorbent pad. Sensor signal generated by 

wetness sensors in each absorbent pad are received and the process is repeated for 

each of the set of different absorbent pads of each of the first and second set.  

10 The testing protocol of the method may involve using any number of identically 

constructed absorbent pad and sensor combination sets as long as for each set of 

absorbent pads and sensor combinations all of the elements of the testing protocol 

are identical for each set. For example, the amount of simulated voiding events for 

each absorbent pad and sensor combination is the same for each set, the volume of 

15 each simulated voiding event is the same for each absorbent pad and sensor 

combination for each set, the time between simulated voiding events for each 

absorbent pad and sensor combination is the same for each set and the testing rig or 

apparatus is the same for each absorbent pad and sensor combination for each set.  

Thus, the testing protocol is designed to ensure that, to the extent possible, the only 

20 variable that differs between the sets of absorbent article and sensor combinations 

being tested is the design or manufacturing parameter that is being tested.  

Furthermore, the testing protocol is ideally designed so that the quantity, distribution 

and characteristics of the simulated voiding events in the absorbent articles of each 

set are representative of genuine voiding events that are likely to occur in a clinical or 

25 aged care facility environment.  

The testing protocol includes, for each set of absorbent pad and sensor combinations, 

subjecting each absorbent pad and sensor combination to a cycle of simulated 

wetness events, carrying out the learning and assessment phases of the method of 

30 the invention described herein. This includes receiving sensor signals representing 

the simulated events occurring in the absorbent articles and processing the sensor 

signals to determine a characteristic of at least one event in the absorbent article. In 

a preferred form, the step of processing the sensor signals includes identifying in 

each of the sensor signals one or more different events and, for each different event:
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(i) generating a representative vector for that event; (ii) allocating weightings to the 

representative vector to generate a weighted representative vector; and (iii) allocating 

a characteristic to each weighted representative vector. The method further includes 

carrying out the learning phase described herein including the step of receiving 

5 sensor signals representing a plurality of events in each of one or more absorbent 

articles and receiving observation data describing a characteristic of the plurality of 

events in each absorbent article. The learning phase of the method then involves 

using the sensor signal information and the observation data to determine one or 

more mathematical models each describing a relationship between the sensor signals 

10 and the observation data and identifying an optimal one of the mathematical models 

and thereby determining optimal parameters of an objective function. In a preferred 

form, each one of the mathematical models is a system of linear equations describing 

the relationship between the sensor signals and the observation data.  

15 The above testing protocol is carried out in respect of a proportion of each of the two 

sets of 117 data sets for each of the 117 absorbent pad cycles, referred to as a 

learning data set, in order to determine an optimised mathematical model for each 

absorbent pad and sensor combination. The optimised mathematical model for each 

absorbent pad and sensor combination is based on a predetermined objective 

20 function to be optimised, such as least error for each wetness event estimate, or 

correct time to change or based on a hierarchy of objective functions to be optimised.  

The testing protocol of the method includes a step of verifying the correctness of the 

optimal mathematical model obtained for each of the absorbent pad and sensor 

25 combinations by the above method. This verification step includes adopting the 

optimised mathematical model obtained for each absorbent pad and sensor 

combination to estimate voiding event volumes for the simulated voiding events 

occurring in the remaining proportion, or testing data set, of each of the two sets of 

117 data sets for each of the 117 absorbent pad cycles.  

30 

The testing protocol of the method thereby determines estimates of the volumes of 

individual events or cumulative volumes of the event cycles in the absorbent pads of 

the testing data set. The estimates of the cumulative volumes of the event cycles of 

the testing data set are compared with the observation data namely the actual,
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measured cumulative volumes of voiding events in each sequence in each absorbent 

pad. The extent to which the optimal mathematical models accurately estimate 

simulated voiding event volumes in the sequences of simulated events of the testing 

data set reflects the correctness of the optimal mathematical model determined during 

5 the learning phase.  

Also, a comparison of the extent to which the optimal mathematical models of the two 

absorbent pad and sensor combinations accurately estimate simulated voiding event 

volumes in the sequences of simulated events of the testing data set reflects the 

10 relative absorbent capacities of the absorbent pad and sensor combinations when 

used with the method to enables accurate estimates of void event volumes. The 

overall accuracy with which the method estimates the event volume of each simulated 

voiding event for each of the two sets of absorbent pads can be statistically compared 

to determine which of the two absorbent pads enables the method to more accurately 

15 estimate the event volume of simulated events. This information can be used to 

improve the design or method for attaching a set of wetness sensors to the absorbent 

pads such that the absorbent pad can enable the method to more accurately estimate 

the volume of a wetness event in a clinical environment or an aged care facility or the 

like.  

20 

As can be appreciated, other embodiments of the method are envisaged in which two 

or more sets of absorbent pads are compared wherein the sets of absorbent pads 

and sensor combinations differ from each other with respect to one variable. Such 

variables could include absorbent pad specification, design, composition and 

25 structure or wetness sensor specification, design, composition and structure. Other 

variables could include the means with which the sensors are fixed or manufactured 

into the absorbent pad, the location of the sensors relative to the absorbent pad and 

other structural parameters of the absorbent pad and sensor combination. Yet more 

variables could include the means with which the sensor signals are received from the 

30 sensors, in other words the means by which the sensor signals are delivered from the 

sensors to a sensor signal input of a system, such as through hard-wires or via a 

wireless system. For example, variables could include different absorbent pad sizes 

designed to contain different volumes of wetness, different adhesive methods and 

adhesives used to retain wetness sensors to an absorbent pad.
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In the above example, the method includes determining the accuracy of the estimates 

of simulated void event volumes from sensor data from the testing data sets. In the 

example, objective functions to be optimised by the method is a set of correct time to 

5 change volume ranges that are determined as volume ranges within which an 

absorbent pad should be changed when the method estimates the cumulative volume 

of a sequence of simulated events occurring in the absorbent pad is within a 

respective one of the ranges. In the present example, the correct time to change 

ranges may be e.g.: Oml - 200ml, 100ml - 300ml, 200ml - 400ml, 300ml - 500ml, 

10 400ml - 600ml, 500ml - 700ml and 600ml - 800ml. Accordingly, this example of the 

testing protocol method involves determining the proportion of times that the method 

correctly estimates that absorbent pads of the two sets of absorbent pads have 

received a cumulative volume of a sequence of simulated voiding events within one of 

the correct time to change volume ranges, represented as a percentage, and plots 

15 these percentages on a graph, as exemplified in Figure 10.  

The two plots in the graph of Figure 10 represent the relative abilities of the two sets 

of absorbent pads, of 117 pads each respectively involving 24 and 88 sites on the pad 

at which adhesive is used to attach wetness sensors to each absorbent pad, to 

20 provide sensor signals that enable the method to provide accurate estimates of the 

cumulative volume of a sequence of simulated voiding events occurring within an 

absorbent pad falling within one of the correct time to change volume ranges. The 

information represented in the graph enables a comparison to be made between the 

two different adhesive options for otherwise identical absorbent pad and sensor 

25 combinations for determining which combination is more likely to provide superior 

results in a clinical environment such as an aged care facility. The above method can 

be used to determine the relative effectiveness of different absorbent pads, sensors 

and absorbent pad and sensor combinations for enabling the method to provide 

accurate void event volume estimates.  

30 

Another example of the testing protocol involves testing and comparing the 

effectiveness of different optimisation methods against each other. In this example, 

the testing protocol of the method includes, for each mathematical model, employing 

identical sets of absorbent pad and sensor combinations, subjecting each absorbent



50 

pad and sensor combination to a cycle of simulated wetness events and carrying out 

the learning phase of the method of the invention described herein on the learning 

data set of the absorbent pad cycles to identify respective optimal optimisation 

methods. The method includes a step of verifying the correctness of the optimal 

5 optimisation method including adopting the optimal mathematical models arrived at by 

the optimisation method to estimate voiding event volumes for the simulated voiding 

events occurring in the remaining proportion, or testing data set, of the set of 

absorbent pad cycles. The overall accuracy with which the respective mathematical 

models arrived at by the different optimisation methods estimate the event volume of 

10 each simulated voiding event for the testing data set can be statistically compared to 

determine which of the two optimisation methods arrives a mathematical model which 

more accurately estimates the event volume of simulated events. This information 

can be used to improve the optimisation method such that the method may more 

accurately estimate the volume of a wetness event in a clinical environment or an 

15 aged care facility or the like.  

EXAMPLE 

An example demonstrating how it is envisaged that an embodiment of the invention 

can be practiced will now be described. This Example describes a portable wireless 

incontinence monitoring system for aged care facilities. Goals of the system include 

20 increasing quality of life for the elderly and reducing the work load of caregivers. In 

contrast to existing incontinence monitoring systems, the present system does not 

only detect urinary events but it also estimates the voided volume for each event. For 

optimizing the parameters of a volume estimation model, genetic algorithms are 

applied and an objective function is introduced for verification of the obtained volume 

25 estimation model.  

In this example, the hardware components of the system comprise a portable wireless 

transceiver and a strip with an array of sensors placed in a diaper to measure 

conductivity of urine. The software components includes a database to record raw 

data and a volume estimation module which reads the raw data from the database 

30 and estimates the volume. To derive the volume estimation model, genetic algorithms 

are applied to optimize the parameters of the model during a learning phase over the 

training set in an offline mode. The obtained model is then tested for estimation of the
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volume for emulation data in a laboratory by simulating field data. For generating the 

emulation scenarios, the distributions of the variables such as; volume sizes, timing 

between each event and the number of urinary events per day for the field is taken 

into account. Moreover a separate objective function has been designed and included 

5 in the embodiment of the system, called time to change objective function, to verify 

the performance of the volume estimation model on the testing data set. The time to 

change objective function is included to provide a measure which reflects the 

validation of the system in the market.  

System design and development 

10 In this example, the incontinence monitoring system comprises a sensor placed into a 

diaper, and connected to a wireless component. The wireless component is attached 

to the top of the residents' underwear. The wireless component transmits the sensors' 

data to a server which collects all the data from all in an aged care facility. The 

recorded data is then analysed by software and the results are shown to the end user 

15 via a user interface. The caregivers can check the residents' status from any 

workstation in communication with the server to see if the resident has to be changed 

or not. Also, an alert can be sent to a caregiver's mobile telephone, tablet computer or 

other mobile communication device. The schematic of the system is illustrated in 

Figure 2. The main criteria during the development of the proposed system are 

20 defined as follows: 

Comfortability for the residents 

A primary concern in designing the system is to provide comfort for the residents. The 

only extra components in addition to the diaper that each resident wears when 

monitored using the system are the sensor which is placed into the diaper and a 

25 wireless component which is clipped to the top front of the residents' underwear. The 

sensor, is barely felt by the residents and the wireless component is a small device 

which weighs less than 30grams.  

Ease of use for the caregivers 

The system provides a process for caregivers to take care of residents. Typically, the 

30 only additional effort required of caregivers is to create a profile for each resident with
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the user interface via any workstation. This enables the system to keep track of each 

resident and alert the caregivers when a resident's diaper has to be changed.  

Cost and Specifications 

The system includes a diaper with a disposable sensor, placed into the diaper. The 

5 sensor is connected to a chargeable wireless component, which sends the sensor's 

data to the server. In the current example, the minimum requirements of the server 

are 2.40 GHz Intel CoreTM2 Duo processor, 3GB RAM, 160 GB of hard drive disk, 

NVIDIA GeForce 8500 GT, or ATI Radeon HD 4350 graphic card with Windows XP 

Professional SP3. Compatibility of the system is also adapted to be verified on 

10 Windows XP Professional SP2, Windows Server 2008 Enterprise 32-Bit, Windows 

Server 2008 Enterprise 64-Bit. The minimum requirement of the workstations are 

(Intel@ Pentium@ III 450MHz or faster processor (or equivalent)), 2GB of RAM, with 

Windows 7, Windows Vista, or Windows XP Service Pack 2.  

Volume estimation as an optimization problem 

15 In this section, there is provided a discussion of how to derive the volume estimation 

model. Then the volume estimation model is used to alert the caregivers when the 

estimated voided volume reaches a pre-defined capacity of the diaper. The diaper 

capacity is either defined by the diaper manufacturer or it can be advised by the aged 

care facilities.  

20 Modelling of the volume estimation 

An aged care facility resident may void one or more times while he or she is wearing 

a diaper. The manual process of dealing with incontinence is to check the resident 

every few hours, and if required, to change the resident's diaper. In the occasion of 

changing, the caregivers also record the weight of the diaper. The period of time from 

25 wearing the diaper to changing it is called a pad cycle. The pad cycle is, therefore, the 

period of time that data is collected for each diaper. In the present exemplary system, 

for each pad cycle, raw sensor data along with the resident's weight, demographic 

information, food and fluid intake information, time of the day, temperature and 

humidity of the environment and other factors are recorded.



53 

To train a model, each pad cycle is represented with some factors. By introducing 

different factors the necessary information of the pad cycles is captured. Figure 11 

shows two examples of pad cycles with their cumulative volume and their 

representative factors. Genetic algorithms are used to tune the parameters of a black 

5 box which represents the volume estimation model. This model estimates a volume 

for each of the representative factors of each pad cycle. The goal is to optimize the 

parameters of the black box such that the objective function given in (1) is minimized.  

The volume estimation model can be seen as a black box where the inputs are the 

10 representative factors of each pad cycle and the output is expected to be a volume 

very close to the actual volume in the diaper. A model which has the smallest value of 

the objective function over all the training set is chosen as the volume estimation 

model. Figure 12 shows a general structure of a volume estimation model after 

training.  

15 Time to change objective function 

Estimation of the exact volume of urine in a diaper is not very important in aged care 

facilities. The caregivers' preference is to change the residents when the volume of 

the urine in the diaper reaches the capacity of the diaper. As an example, the volume 

estimation model may predict the cumulative volume to be 350ml when the actual 

20 volume is 300ml. Let us assume the acceptable range of changing the diaper is 

defined to be 250ml to 400ml then for a volume estimate of 350ml, the system will 

alert the caregiver to change the diaper. In this case, the caregiver will be satisfied 

with the performance of volume estimation model, despite the estimated volume 

having over-estimated by 16%. The acceptable range of changing a diaper is 

25 represented by the closed interval of [min_capacity, maxcapacity]. On the other 

hand, if the caregiver receives an alert to change the diaper while the cumulative 

volume is less than min_capacity or more than max-capacity then they would not be 

satisfied with the performance of the volume estimation model.  

Accordingly, in a preferred embodiment, as exemplified herein a time to change 

30 objective function for the verification of the obtained volume estimation model is



54 

introduced. The time to change objective function is aligned with what the market, or 

end user, requires and so is related to validation of the system. So we expect the 

performance percentage of system validation would be close (or linearly related) to 

the performance percentage of system verification. The time to change objective 

5 function is defined as follows: 
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A very simple implementation of the time to change objective function is to give +1 

point for each correct estimation and -1 point for each incorrect estimation. A volume 

estimation model with higher points is more preferred in the field. Note that the 

10 caregivers do not receive any changing alerts for under estimation-low risk, under 

estimation-high risk, and correct estimation-not full cases. However, the residents get 

changed after some pre-defined period of time which is called max period, even 

though no changing alert message is being sent.  

Simulation and results 

15 The set up of an exemplary emulation in the laboratory and how to generate 

emulation scenarios is discussed below. Also discussed below is reporting of the 

system verification results. The emulation environment involves a female dummy 

wearing a diaper including the sensor connected to the wireless component. Using 

this set up 119 pad cycles were generated, of which the following is an example:
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Diaper Est. Time of Void Size 
Diaper # Size Event Type Void from start id z 

(min) 

1 Heavy Void 0 61 

1 Heavy Void 20 375 

1 Heavy Void 40 117 

1 Heavy Disconnect 45 0 

To generate pad cycle scenarios, a selection of variables in each pad cycle were 

studied; such as number of void events in each pad cycle; time between the void 

events, and the volume of the void events. The first step in generating the scenario for 

5 each pad cycle is to know how many void events are in that pad cycle. The number of 

void events in each pad cycle is computed with the probability of their occurrence in 

the historical data. Then for each void event, the period of time that it takes for the 

void event to happen and the volume of the void event are generated. The period of 

time and the volume are generated with their probability of occurrence in the historical 

10 data. As an example to find the probability of the void volume in each void event, we 

need to know the exact volume of the void event.  

Since the exact volume of the void events in the historical data are unknown. One 

approach is to find the average voided volume of each void event in each pad cycle.  

This can be calculated as follows: 

total one 

15 n eF 

Then the average volumes are categorized into some intervals, e.g. [0,50], [50,100], 

[100, 200], [200,300], [400,2000]. Figure 13 shows the probability for the average 

volumes of each void event for the data set that were collected from a selection of 

aged care facilities.  

20 To include randomness in the void volume, after selecting the band of the volume 

based on the probabilities given in Figure 13, the floor of the band (interval) is added 

with a random value times difference of this band, as follows: 

o~hrne= 4- 9 f~cc- da (:1-)
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After simulating 119 pad cycles, the data set was randomly divided into training (90%) 

and testing (10%) sets. 100 separate training and testing sets were carried out. The 

average error of the individual and cumulative volumes over the training sets for 100 

sets with random seeds are provided in Table 1. As an example, the estimated and 

5 the actual volume of the individuals of one pad cycle for the testing set for one of the 

100 sets is provided in Table 2. For verification of the method, the system verification 

performance for min_capacity of Oml to 1000ml with difference of 200ml between 

min_capacity and maxcapacity over the 100 testing sets are provided. This means 

that the max-capacity is set from 200ml to 1200ml. The verification in performance is 

10 shown in Figure 14.  

Measurement Training set Ten sz 

Over-imted % 916% 8 63 
Under-estimated low rlsk% 621% 
Under-estimnaed medium risk % 952% 0M8% 
Under-estimnated Migh tig%< 023%09 

.Average err for each esentm7.3477 76.8516 
Staard de iation of ror 4 7764 6 081 
Average volume of evem tmb 9830525 

3, Ave. error for each pad cycen 8CI 5675 1 S 7 
Stialbrd dwTi'on o)f er~ 47927 

Ave~a~e volue o. vad cy&! nml) 59474 29A? 

Table 1: The average error for testing and training sets with three objective functions.  

Actual Actual 
volume volume 

1"urinary event 92 ml 145.30 ml 

2"" urinary event 263 ml 160.53 ml 

3V urinary event 60 ml 67.73 ml 

4tfh urinary event 132 ml 192.44 ml 

Table 2: An example of estimated versus actual volumes in a pad cycle.
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As an example, system validation performance of around 65% for 

mincapacity=200ml and max capacity=400ml is desirable. The performance tends 

to be better with higher min-capacity and max-capacity. Also, also it has been 

realised that by increasing the difference between min_capacity and max-capacity, 

5 the system validation performance improves.  

The above example provides a portable wireless incontinence monitoring system that 

alerts a caregiver only if wearer of a diaper has to be changed. For doing so, there is 

provided a volume estimation model which is tuned by genetic algorithms. There is 

also provided a time to change objective function to reflect the validation process of 

10 the system in the market. The emulation results reveal that the system has an 

average of 73% system verification performance for the acceptable changing volumes 

of between 500ml to 700ml. More importantly, the results indicate that in more than 

89% of the cases, the system can avoid the medium or high risk scenarios of a diaper 

being changed after having received a total volume of greater than its maximum 

15 capacity of 700ml.  

A reference herein to a patent document or other matter which is given as prior art is 

not to be taken as an admission that the document or matter was known or that the 

information it contains was part of the common general knowledge as at the priority 

date of any of the claims.  

20 

Where the terms "comprise", "comprises" and "comprising" are used in the 

specification (including the claims) they are to be interpreted as specifying the stated 

features, integers, steps or components, but not precluding the presence of one or 

more other features, integers, steps or components, or group thereof.
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The claims defining the invention are as follows: 

1. A method for determining a wetness status of an absorbent article worn 

by a subject, the method comprising: 

receiving sensor signals from a sensor representing one or more 

wetness events occurring in an absorbent article; 

processing the sensor signals to determine a cumulative volume of the 

one or more wetness events; and 

determining which of one or more volume ranges contains the 

cumulative volume, wherein each one of the volume ranges represents a 

wetness status, 

wherein the cumulative volume of the one or more wetness events is 

calculated from the sensor signals representative of each individual wetness 

event: 

(i) generating a representative vector for that wetness event; 

(ii) allocating weightings to the representative vector to generate a 

weighted representative vector for that wetness event; and 

(iii) allocating a wetness event volume to the weighted 

representative vector for that event, 

wherein allocating a wetness event volume to the weighted 

representative vector for that wetness event includes comparing the weighted 

representative vector with clusters of weighted representative vectors to 

determine which one or more of the clusters the weighted representative 

vector is most similar to and allocating a wetness event characteristic of the 

one or more clusters to the weighted representative vector for that wetness 

event, wherein the wetness event characteristic indicates wetness event 

volume for that wetness event.  

2. The method of claim 1, wherein the wetness status includes whether it 

is the correct time to change the absorbent article worn by the subject.  

3. The method of claim 1 or claim 2, wherein determining which of one or 

more volume ranges contains the cumulative volume, includes comparing the 

cumulative volume with:
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- an upper threshold wetness volume capacity of the absorbent article; 

or 

- a lower threshold wetness volume capacity of the absorbent article.  

4. The method of claim 3, wherein the upper and lower thresholds are 

selected from the group including Oml - 200ml, 100ml - 300ml, 200ml 

400ml, 300ml - 500ml, 400ml - 600ml, 500ml - 700ml and 600ml - 800ml.  

5. The method of any one of the preceding claims, wherein the wetness 

event characteristic allocated to the weighted representative vector is a 

weighted average of wetness event characteristics of more than one cluster 

according to a degree of similarity of the weighted representative vector to the 

one or more clusters.  

6. The method of any one of the preceding claims, including carrying out 

a learning phase including the steps of: 

receiving sensor signals representing one or more wetness events in 

each of one or more absorbent articles; 

receiving observation data indicative of a cumulative characteristic of 

the one or more wetness events in each absorbent article; 

identifying an optimal mathematical model describing a relationship 

between the sensor signals and the observation data.  

7. The method of claim 6, wherein the mathematical model includes a 

system of linear equations describing the relationship between the sensor 

signals and the observation data.  

8. The method of claim 6 or claim 7, further including: 

(i) generating a representative vector for each individual wetness 

event, the representative vector being comprised of one or more elements;
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(ii) allocating weightings to the elements of the representative 

vector to generate a weighted representative vector; 

(iii) allocating each of the weighted representative vectors to one or 

more of a plurality of clusters of weighted representative vectors according to 

their relative similarity; and 

(iv) allocating a wetness event volume to each of the clusters based 

on the optimal mathematical model obtained during the learning phase.  

9. The method of claim 8, further including normalizing the elements of 

the representative vector with respect to a reference range and allocating the 

weightings to the normalized elements of the representative vector to 

generate a weighted normalized representative vector.  

10. The method of claim 8 or claim 9, further including categorizing the 

representative vectors of events according to order of occurrence in a 

sequence of events in the absorbent article and allocating different weightings 

to elements of the representative vectors according to their category.  

11. The method of any one of claims 8 to 10, wherein the elements of the 

representative vector include one or more values derived from the sensor 

signals.  

12. The method of any one of claims 8 to 11, further including determining 

degree of belief of belonging information including, for each of the weighted 

representative vectors, determining a degree of belief of belonging to one or 

more of the plurality of clusters.  

13. The method of claim 12, further including training a fuzzy neural 

network with the weighted representative vectors and the degree of belief of 

belonging information determined for each of the weighted representative 

vectors.
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14. The method of any one of claims 6 to 13, further including verifying the 

correctness of the optimal mathematical model by receiving one or more 

sensor signals from a sensor representing an event in an absorbent article, 

processing the sensor signals to determine a characteristic of the event based 

on the optimal mathematical model obtained during the learning phase and 

comparing the determined characteristic with observation data.  

15. The method of any one of-claims 6 to 13, identifying an optimal 

mathematical model includes determining a plurality of objective functions of 

the mathematical model and determining optimal values for the objective 

functions in a predetermined hierarchical order.  

16. The method of any one of the preceding claims, including alerting a 

caregiver of the absorbent article wetness status.  

17. An incontinence monitoring system for determining a wetness status of 

an absorbent article worn by a subject, the system comprising: 

an absorbent article including a sensor for sensing wetness events 

occurring in the absorbent article; 

a processor for receiving sensor signals from the sensor representing 

one or more wetness events occurring in the absorbent article and processing 

the sensor signals to determine a cumulative volume of the one or more 

wetness events, determining which of one or more volume ranges contains 

the cumulative volume, wherein each one of the volume ranges represents a 

wetness status, 

wherein the cumulative volume of the one or more wetness events is 

calculated from the sensor signals representative of each individual wetness 

event: 

(i) generating a representative vector for that wetness event; 

(ii) allocating weightings to the representative vector to generate a 

weighted representative vector for that wetness event; and 

(iii) allocating a wetness event volume to the weighted 

representative vector for that event, wherein allocating a wetness event 

volume to the weighted
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representative vector for that wetness event includes comparing the weighted 

representative vector with clusters of weighted representative vectors to 

determine which one or more of the clusters the weighted representative 

vector is most similar to and allocating a wetness event characteristic of the 

one or more clusters to the weighted representative vector for that wetness 

event, wherein the wetness event characteristic indicates wetness event 

volume for that wetness event.  

18. The method of claim 17, wherein the wetness status includes whether 

it is the correct time to change the absorbent article worn by the subject.  

19. The system of claim 17 or claim 18, wherein determining which of one 

or more volume ranges contains the cumulative volume, includes comparing 

the cumulative volume with: 

- an upper threshold wetness volume capacity of the absorbent article; 

or 

- a lower threshold wetness volume capacity of the absorbent article.  

20. The system of any one of claims 17 to 19, wherein the processor sends 

information that is received by a caregiver's mobile device alerting the 

caregiver of the absorbent article wetness status.
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