VIA DE CONNEXION ELECTRIQUE POUR SUBSTRAT DE DISPOSITIF SEMI-CONDUCTEUR.

Procédé de réalisation d’un via de connexion électrique au travers d’un substrat pour réaliser une connexion électrique d’une face à l’autre du substrat, et substrat, dans lesquels un anneau (10) en une matière conductrice de l’électricité formant au moins en partie le via (6) est formé dans un trou (9) du substrat.
09-GR3-299
LD-RI GRB09-3090FR

Société par actions simplifiée :
STMICROELECTRONICS (CROLLES 2) SAS

Via de connexion électrique pour substrat de dispositif semi-conducteur

Invention de : CHAABOUNI Hamed
 CADIX Lionel
Via de connexion électrique pour substrat
de dispositif semi-conducteur

La présente invention concerne le domaine des dispositifs semi-conducteurs.

Les dispositifs semi-conducteurs devenant de plus en plus complexes, il peut être avantageux de réaliser des connexions électriques au travers des substrats, généralement en silicium, sur lesquels ils sont réalisés, afin de réaliser des connexions électriques d'une face à l'autre.

Il est proposé un procédé de réalisation d'un via de connexion électrique au travers d'un substrat pour réaliser une connexion électrique d'une face à l'autre du substrat.

Le procédé peut comprendre la réalisation d'un trou dans le substrat et la réalisation dans ce trou d'au moins un anneau en une matière conductrice de l'électricité formant au moins en partie le via.

Le procédé peut comprendre la réalisation d'un anneau intermédiaire en une matière isolante contre la paroi périphérique du trou du substrat avant la réalisation dudit anneau conducteur.

Le procédé peut comprendre la réalisation dans le trou du substrat d'au moins deux anneaux en une matière conductrice de l'électricité, en réalisant entre eux un anneau intermédiaire en une matière isolante, ces anneaux formant au moins en partie ledit via.

Le procédé peut comprendre la réalisation d'un anneau intérieur en une matière isolante dans le trou d'un anneau conducteur et la réalisation d'un cylindre central en une matière conductrice de l'électricité, de façon à obtenir, dans le trou du substrat, un via comprenant co-axialement ce cylindre conducteur et au moins un anneau conducteur.

L'épaisseur radiale (e) de la paroi de chaque anneau conducteur peut être choisie au plus égale à deux fois l'épaisseur de peau (δ) dans la matière formant le via.
Le diamètre dudit cylindre central conducteur peut être choisi au plus égal à deux fois l’épaisseur de peau (\(\delta\)) dans la matière formant le via.

Il est également proposé un substrat pour dispositif semi-conducteur comprenant au moins un via de connexion électrique d’une face à l’autre, en une matière conductrice de l’électricité.

Le via de connexion électrique peut comprendre au moins un anneau conducteur aménagé dans un trou traversant le substrat.

Le via de connexion électrique peut comprendre au moins deux anneaux co-axiaux en une matière conductrice de l’électricité, séparés par un anneau en une matière isolante, ces anneaux étant aménagés dans le trou traversant le substrat.

Le via de connexion électrique peut comprendre un cylindre central en une matière conductrice de l’électricité, entouré par un anneau isolant.

L’épaisseur radiale (\(e\)) de la paroi de chaque anneau conducteur de l’électricité peut être au plus égale à deux fois l’épaisseur de peau (\(\delta\)) dans la matière formant le via.

Le diamètre du cylindre central conducteur est au plus égal à deux fois l’épaisseur de peau (\(\delta\)) dans la matière formant le via.

Il est également proposé un substrat pour dispositif semi-conducteur comprenant au moins un via de connexion électrique d’une face à l’autre, en une matière conductrice de l’électricité, chaque partie de ce via présentant une épaisseur au plus égale à deux fois l’épaisseur de peau (\(\delta\)) dans la matière formant le via.

Il est également proposé un dispositif semi-conducteur comprenant un substrat tel que défini ci-dessus et, sur une face de ce substrat, un circuit intégré relié audit via.

Des dispositifs semi-conducteurs vont maintenant être décrits à titre d’exemples non limitatifs et illustrés par le dessin sur lequel :

- la figure 1 représente une coupe transversale partielle d’un dispositif semi-conducteur, dans la zone d’un via de connexion électrique ;
- la figure 2 représente une coupe selon II-II du dispositif semi-conducteur de la figure 1 ;
- les figures 3 à 13 représentent des coupes transversales du dispositif semi-conducteur de la figure 1, selon des étapes successives de fabrication ;
- la figure 14 représente une coupe transversale partielle d’un dispositif semi-conducteur, dans la zone d’un autre via de connexion électrique, selon une étape de fabrication ;
- les figures 15 à 18 représentent une coupe du dispositif semi-conducteur de la figure 14, selon des étapes de fabrication.

Selon une variante illustrée sur les figures 1 et 2, un dispositif semi-conducteur 1 comprend un substrat 2 en forme plaquette, par exemple en silicium, sur une face avant 3 duquel sont réalisés, dans une couche avant 4, des circuits intégrés et des moyens d’interconnexion.

Pour réaliser par exemple une connexion électrique de ces circuits intégrés entre la face avant 3 et la face arrière 5 du substrat 2, dans un sens ou dans l’autre, ce dernier est traversé par un via de connexion électrique 6, pour par exemple assurer une liaison entre un plot avant 7 des moyens d’interconnexion de la couche avant 4 et un plot arrière 8 de moyens d’interconnexion aménagés sur la face arrière 5 du substrat 2, le plot avant 7 étant par exemple dans le premier niveau métallique des moyens d’interconnexion.

Le via de connexion électrique 6 est aménagé dans un trou traversant 9, par exemple cylindrique, du substrat 2.

Le via de connexion électrique 6 peut comprendre, co-axialement à ce trou 9, au moins un anneau en une matière conductrice de l’électricité ou une pluralité d’anneaux séparés par des anneaux en une matière isolante et éventuellement un cylindre central séparé de l’anneau adjacent par un anneau en une matière isolante.

Selon l’exemple représenté, le via de connexion électrique 6 comprend un anneau cylindrique extérieur 10, conducteur, et un anneau cylindrique intérieur 11, conducteur, ainsi qu’un cylindre central 12, conducteur. L’anneau conducteur extérieur 10 et l’anneau
conducteur intérieur 11 sont séparés par un anneau isolant 13 et l'anneau conducteur intérieur et le cylindre central conducteur 12 sont séparés par un anneau isolant 14.

De plus, un anneau intermédiaire isolant 15 peut éventuellement être inséré entre la paroi du trou traversant 9 et l'anneau conducteur extérieur 10.

Le via de connexion électrique 6 peut être réalisé en mettant en œuvre tous moyens connus adaptés utilisés couramment en microélectronique, par exemple de la manière suivante.

Comme le montre la figure 3, disposant d'un substrat 2 équipé de la couche avant 4, on procède à la réalisation du trou cylindrique 9, par exemple par gravure. Le trou 9 présente un fond 9a sur le plot avant 7 ou légèrement engagé dans ce plot.

Puis, comme le montre la figure 4, on procède au dépôt d'une couche isolante 16. Cette couche 15 recouvre la paroi du trou cylindrique 9 pour former l'anneau intermédiaire isolant 15 et présente une partie 16a recouvrant le fond 9a du trou cylindrique 9 et une partie 16b recouvrant la face avant 5 du substrat 2.

Puis, comme le montre la figure 5, on procède à l'enlèvement de la partie 16a de la couche 16 pour découvrir le plot avant 7.

Puis, comme le montre la figure 6, on procède au dépôt d'une couche conductrice 17. Cette couche 17 recouvre la paroi intérieure de l'anneau intermédiaire isolant 15 pour former l'anneau conducteur extérieur 10 et présente une partie 17a recouvrant le fond 9a du trou, c'est-à-dire recouvrant le plot avant 7, et une partie 17b recouvrant la partie 16b de la couche isolante 16.

Puis, comme le montre la figure 7, on procède au dépôt d'une couche isolante 18. Cette couche 18 recouvre la paroi intérieure de l'anneau conducteur extérieur 10 pour former l'anneau isolant 13 et présente une partie 18a recouvrant le fond du trou de la couche 17, c'est-à-dire recouvrant la partie 17a de cette couche 17, et une partie 18b recouvrant la partie 17b de la couche conductrice 17.
Puis, comme le montre la figure 8, on procède à l’enlèvement de la partie 18a de la couche isolante 18 pour découvrir le plot avant 7.

Puis, comme le montre la figure 9, on procède au dépôt d’une couche conductrice 19, comme décrit précédemment à propos de la figure 6. Cette couche 19 recouvre la paroi intérieure de l’anneau isolant 13 pour former l’anneau conducteur intérieur 11 et présente une partie 19a recouvrant le fond du trou, c’est-à-dire recouvrant la partie 17a de la couche 17, et une partie 19b recouvrant la partie 18b de la couche isolante 18.

Puis, comme le montre la figure 10, on procède au dépôt d’une couche isolante 20, comme décrit précédemment à propos de la figure 7. Cette couche 20 recouvre la paroi intérieure de l’anneau conducteur intérieur 11 pour former l’anneau isolant 14 et présente une partie 20a recouvrant le fond du trou de la couche 19, c’est-à-dire recouvrant la partie 17a de cette couche 17, et une partie 20b recouvrant la partie 19b de la couche conductrice 19.

Puis, comme le montre la figure 11, on procède à l’enlèvement de la partie 20a de la couche isolante 20 pour découvrir la partie 19a de la couche conductrice 19, comme décrit précédemment à propos de la figure 8.

Puis, comme le montre la figure 12, on procède au dépôt d’une couche conductrice 21. Cette couche 19 remplit le trou laissé dans l’anneau isolant 14, au dessus de la partie 19a de la couche conductrice 19, pour former le cylindre central conducteur 12, et présente une partie 21b qui recouvre la partie 20b de la couche isolante 20.

Puis, comme le montre la figure 13, on procède à l’enlèvement de des parties 16b, 17b, 18b, 19b, 20b et 21b des couches correspondantes, par exemple par polissage mécano-chimique (CMP), pour découvrir la face arrière 5 du substrat 2 et former la face arrière radiale 12 du via de connexion électrique 6.
Ainsi, les anneaux 10, 11, 13, 14 et 15 et le cylindre central 12 présentent des faces radiales arrière situées dans le plan de la face arrière 5 du substrat 2.

Du côté avant, la face avant radiale de l’anneau intermédiaire 15 est sur le plot avant 7 et les faces radiales avant des anneaux isolants 13 et 14 sont à distance du plot avant 7, de telle sorte que les anneaux conducteurs 10 et 11 et le cylindre central conducteur 12 se rejoignent entre les faces radiales avant des anneaux isolants 13 et 14 et le plot avant 7.

Bien entendu, une pluralité de vias de connexion électrique 6 peuvent être réalisés en même temps.

Après quoi, on peut réaliser les moyens d’interconnexion arrière sur la face arrière 5 du substrat 2, qui comprennent le plot arrière 8 sur le via de connexion électrique 6.

Selon une variante illustrée sur la figure 14, un dispositif semi-conducteur 1 comprend un via de connexion électrique 22, reliant un plot avant 7 d’une couche avant 4 et un plot arrière 8, peut être réalisé par le côté de la face avant 3 du substrat 2. Comme représenté, ce via 22 correspond substantiellement au via 6 de l’exemple précédemment décrit.

Le via de connexion électrique 22 peut être réalisé de la manière suivante.

Comme le montre la figure 15, partant d’un substrat 2 épais, on réalise des circuits intégrés formant une sous-couche 4a sur sa face avant 3.

Puis, on réalise un trou cylindrique borgne 23 au travers de la sous-couche 4a et dans le substrat 2, sans que ce trou n’atteigne la face arrière 5a du substrat 2. Le trou cylindrique borgne 23 est naturellement réalisé dans une zone de la sous-couche 4a exempte de circuits intégrés.

Puis, comme le montre la figure 16, on procède à la réalisation du via de connexion électrique dans le trou 23, en suivant les étapes de réalisation du via de connexion électrique 6, telles que décrites en référence aux figures 4, 6, 7, 9, 10 et 12, c’est-à-dire sans enlever les
parties 16a, 18a, et 20a des couches isolantes 16, 18 et 20 situées respectivement au fond du trou 23 et des trous des couches conductrices 17 et 19.

Puis, comme le montre la figure 17, on procède à un polissage mécano-chimique (CMP), du côté de la face 3 du substrat 2, jusqu’à la partie 16b de la couche 16, des faces avant des anneau conducteurs 10, 11 et 12 et des faces avant des anneaux isolants 13, 14 et 15, dans le même plan.

Puis, comme également illustré sur la figure 18, on procède à un amincissement du substrat 2 par sa face arrière, jusqu’à ce que soient formées des faces arrière des anneau conducteurs 10, 11 et 12 et des faces arrière des anneaux isolants 13, 14 et 15, dans le même plan que la face arrière 5 résultante du substrat 2. Le via de connexion électrique 22 est alors réalisé.

Après quoi, on peut réaliser les moyens d’interconnexion sur la partie 16a pour compléter et former la couche 4, y compris le plot avant 7 sur les faces avant des anneau conducteurs 10, 11 et 12 et des anneaux isolants 13, 14 et 15, et réaliser les moyens d’interconnexion sur la face arrière 5, y compris le plot arrière 8 sur les faces arrière des anneau conducteurs 10, 11 et 12 et des anneaux isolants 13, 14 et 15.

Dans une variante de réalisation, on pourrait compléter et former la couche 4 avant de procéder à l’amincissement du substrat 2.

Les structures de vias de connexion électrique qui viennent d’être décrites sont particulièrement avantageuses car elles peuvent être dimensionnées pour réduire les effets de peau dans la matière les constituant, voire de les éviter, tout en limitant la résistance électrique des vias, ce qui permet de limiter les pertes par effet joule.

L’épaisseur de peau permet de déterminer la largeur de la zone dans laquelle se concentre le courant dans un conducteur électrique. Elle permet de calculer la résistance effective à une fréquence donnée.

L’épaisseur de peau est généralement calculée en appliquant la formule (A) suivante:
\[\delta = \sqrt{\frac{2}{\omega \cdot \mu \cdot \sigma}} = \sqrt{\frac{2 \cdot \rho}{\omega \cdot \mu}} \]

Dans laquelle :
\(\delta \) représente l’épaisseur de peau en mètre,
\(\omega \) représente la pulsation en radian par seconde (soit : \(\omega = 2 \pi f \)),
\(f \) représente la fréquence du courant en Hertz,
\(\mu \) représente la perméabilité magnétique en Henry par mètre,
\(\rho \) représente la résistivité en Ohm-mètre (soit : \(\rho = 1/\sigma \)), et
\(\sigma \) représente conductivité électrique en Siemens par mètre.

Ainsi, ayant choisi une matière pour réaliser le via de connexion électrique des exemples décrits, on peut calculer l’épaisseur de peau \(\delta \) en fonction des caractéristiques de cette matière et du courant qui devra traverser le via, en appliquant la formule (A) ci-dessus.

Après quoi, on peut choisir une épaisseur maximum \(\varepsilon \) attribuée aux parois desdits anneaux conducteurs et un diamètre dudit cylindre central conducteur, formant les vias de connexion électrique 6 et 22 des exemples décrits, de telle sorte que cette épaisseur \(\varepsilon \) soit au plus égale à deux fois l’épaisseur de peau \(\delta \) calculée.

La présente invention ne se limite pas aux exemples ci-dessus décrits. Bien d’autres variantes de réalisation sont possibles, par exemple en choisissant un nombre différent d’anneaux, sans sortir du cadre défini par les revendications annexées.
REVENDICATIONS

1. Procédé de réalisation d'un via de connexion électrique au travers d'un substrat pour réaliser une connexion électrique d'une face à l'autre du substrat, comprenant :
la réalisation d'un trou (9) dans le substrat (2), et
la réalisation dans ce trou d'au moins un anneau (10) en une matière conductrice de l'électricité formant au moins en partie le via (6).

2. Procédé selon la revendication 1, comprenant :
la réalisation d'un anneau intermédiaire (15) en une matière isolante contre la paroi périphérique du trou du substrat avant la réalisation dudit anneau conducteur (10).

3. Procédé selon l'une des revendications 1 et 2, comprenant :
la réalisation dans le trou du substrat d'au moins deux anneaux (10, 11) en une matière conductrice de l'électricité, en réalisant entre eux un anneau intermédiaire (13) en une matière isolante, ces anneaux formant au moins en partie le dit via (6).

4. Procédé selon l'une quelconque des revendications précédentes, comprenant :
la réalisation d'un anneau intérieur (14) en une matière isolante dans le trou d'un anneau conducteur (11), et
la réalisation d'un cylindre central (12) en une matière conductrice de l'électricité,
de façon à obtenir, dans le trou du substrat, un via comprenant co-axialement ce cylindre conducteur (12) et au moins un anneau conducteur (11).

5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'épaisseur radiale (ε) de la paroi de chaque anneau conducteur est choisie au plus égale à deux fois l'épaisseur de peau (δ) dans la matière formant le via.

6. Procédé selon la revendication 4, dans lequel le diamètre du cylindre central conducteur est choisi au plus égal à deux fois l'épaisseur de peau (δ) dans la matière formant le via.
7. Substrat pour dispositif semi-conducteur comprenant au moins un via de connexion électrique d'une face à l'autre, en une matière conductrice de l'électricité, ce via comprenant au moins un anneau conducteur (10) aménagé dans un trou (9) traversant le substrat (2).

8. Substrat selon la revendication 7, dans lequel le dit via comprend au moins deux anneaux co-axiaux (10, 11) en une matière conductrice de l'électricité, séparés par un anneau en une matière isolante (13), ces anneaux étant aménagés dans le trou (9) traversant le substrat.

9. Substrat selon l'une des revendications 7 et 8, dans lequel le dit via comprend un cylindre central (12) en une matière conductrice de l'électricité, entouré par un anneau isolant (14).

10. Substrat selon l'une quelconque des revendications 7 à 9, dans lequel l'épaisseur radiale de la paroi de chaque anneau conducteur de l'électricité est au plus égale à deux fois l'épaisseur de peau (δ) dans la matière formant le via.

11. Substrat selon la revendication 9, dans lequel le diamètre du cylindre central conducteur est au plus égal à deux fois l'épaisseur de peau (δ) dans la matière formant le via.

12. Substrat pour dispositif semi-conducteur comprenant au moins un via de connexion électrique d'une face à l'autre, en une matière conductrice de l'électricité, au moins une partie dudit via comprenant au moins un anneau, chaque partie de ce via présentant une épaisseur au plus égale à deux fois l'épaisseur de peau (δ) dans la matière formant le via.

13. Dispositif semi-conducteur comprenant un substrat selon l'une quelconque des revendications 7 à 12, et, sur une face de ce substrat, un circuit intégré relié audit via.
FIG. 18
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>H01L23/48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H05K3/42</td>
</tr>
<tr>
<td>X</td>
<td>US 2009/140436 A1 (WANG MENG-JEN [TW]) 4 juin 2009 (2009-06-04) * page 2, alinéa 36 - page 4, colonne 54; figures 22-42 *</td>
<td>1-3,5,7,8,10,12,13</td>
<td></td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHÉS (IPC)

- HO1L

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2008113505 A1</td>
<td>15-05-2008</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 2009140436 A1</td>
<td>04-06-2009</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006121041 A</td>
<td>11-05-2006</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82.