(54) 发明名称
高速重载轴承密封性能试验台装置

(57) 摘要
本发明公开了一种高速重载轴承密封性能试验台装置。在试验箱内安装主轴，伸出箱外的主轴两端支承在轴承座中，一端主轴伸出端经联轴器与电机轴连接。位于箱内的主轴轴套装的轴颈分别是一个内大外小的锥体，两个被测高速重载轴承安装在锥体上；两个被测高速重载轴承外圈安装加载套，两侧对称安装的两个轴向加载缸活塞杆分别对称在各自轴承套外侧面，两个径向加载缸活塞杆在各自加载套圆柱面上；在试验箱上部安装水、风喷头；箱内设置温度传感器和毛细管路，毛细管路与外部的制冷机热设备连接。由于设计主轴直径高，支撑轴承易于选择，可对内径大于130mm，转速2000r/min以上，单套加载荷要求200kN以上的密封轴承进行测试。
1. 一种高速重载轴承密封性能试验台装置，其特征在于；在剖分式高低温试验箱 (6) 内同轴安装主轴 (4)，伸出剖分式高低温试验箱 (6) 外的主轴两端分别通过支撑轴承支承在各自的轴承座中，位于一个轴承座的主轴伸出端经联轴器 (11) 与电机 (13) 的输出轴连接；剖分式高低温试验箱 (6)、两个轴承座和电机支架 (14) 均安装在同一底座上；位于剖分式高低温试验箱 (6) 内的主轴轴环两边的轴颈分别是一个相同的、内大外小的锥体，两个被测高速重载轴承 (19) 分别安装在两侧的锥体上，两个锥体上分别安装轴承轴套后用各自的轴套锁紧螺母固定；两个被测高速重载轴承 (19) 外圈分别安装加载套，两侧对称安装的两个轴向加载缸活塞杆分别对称顶在各自加载套外侧面，两个径向加载缸活塞杆分别反向垂直顶在各自加载套圆柱面上，以上各个加载缸活塞体部分安装在温度箱之外，仅将加载缸活塞杆伸入剖分式高低温试验箱 (6) 内；在剖分式高低温试验箱 (6) 上部安装水、风喷头 (8)，剖分式高低温试验箱 (6) 内设置温度传感器和毛细管路，毛细管路与外部的制冷制热设备连接。
高速重载轴承密封性能试验台装置

技术领域
[0001] 本发明涉及轴承密封性能的测试设备，特别是涉及一种高速重载轴承密封性能试验台装置。

背景技术
[0002] 铁路轴承在实现铁路机车时速运行到 200km/h 时即可称为高速铁路轴承，近年来，经过国内轴承行业的努力，已在高速铁路轴承的设计与制造方面取得重要进展，已研制出时速 350 公里动车组的轴承样品。然而，由于没有时速 300 公里以上高速铁路轴承相关试验台而缺乏试验数据积累，不能提供足够的轴承性能数据，无法满足高速铁路轴承应用要求。现代轴承密封性能测试设备普遍采用两种机械结构，即桥式结构与悬臂结构。悬臂结构的优点是每次测试过程操作简单、装配试验轴体时无需拆装主轴，直接更换被测轴承即可，但这种结构受限于悬臂结构和支撑轴承的限制仅适用于载荷较小或者转速较低的测试场合。另外一种桥式结构主轴是两端支撑，被测轴承置于主轴中间位置，其主轴的承载能力大于悬臂结构的主轴的承载能力，而且由于是两端支撑，所以相同支撑轴承的情况下可以加载悬臂结构两倍的力，但是这种结构在每次更换被测轴承时需要将主轴完全拆卸，并且需要将支撑轴承拆下后才能进行被测轴承的更换。虽然桥式结构提升了轴承试验的加载力的大小，但是当所测试的轴承的试验要求施加特别大的载荷并且同时要求特别高的转速时，此种结构同样由于支撑轴承的限制，也无法或者很难满足实验要求。

发明内容
[0003] 针对性地解决大型高速重载轴承的密封性能测试问题，本发明的目的是提供模拟轴承真实工作的情况下进行性能测试的一种高速重载轴承密封性能试验台装置试验台装置。
[0004] 本发明采用的技术方案是：
[0005] 本发明在分式低温试验箱内同轴安装主轴，伸出分式高低温试验箱外的主轴两端分别通过支撑轴承支承在各自的轴承座中，位于一个轴承座的主轴伸出端经联轴器与电机的输出轴连接，分式高低温试验箱、两个轴承座和电机支架均安装在同一底座上；位于分式高低温试验箱内的主轴轴环两边的轴颈分别是一个相同的内大外小的锥体，两个被测高速重载轴承分别安装在两侧的锥体上，两个锥体上分别安装轴承垫片后用各自的轴套锁紧螺母固定；两个被测高速重载轴承外圈分别安装加装套，两侧对称安装的两个轴向加载缸活塞杆分别对称顶在各自加装套的内侧，两个径向加载缸活塞杆分别反向垂直顶在各自加装套圆柱面上，以上各个加载缸活塞部分安装在温度箱之外，仅将加载缸活塞杆伸入分式高低温试验箱内；在分式高低温试验箱上部安装水、风喷头，分式高低温试验箱内设置温度传感器和毛细管路，毛细管路与外部的制冷制热设备连接。
[0006] 本发明具有的有益效果是：
[0007] 高速重载轴承试验台的技术难点主要有两个方面，即主轴的强度问题与支撑问题，由于试验台在高速重载工况下运转，其主轴的安全性的保障具有重要的意义，另一方
面，一般的普通轴承也根本无法满足这样的工况要求。本轴承试验台发明主体结构舍弃了一
般轴承试验台轴所使用的横式结构与悬臂结构，而是使用了一种载荷相抵、力偶式的
新型结构。其结构的优越性在于：
【0008】1）两个被测轴承加载时加载力方向相反，在同一个平面上，则两个被测轴承靠得
越近，径向载荷在主轴上产生的力偶就会越小，轴所受的弯矩就会越小，越有利于提高主轴
的疲劳强度。
【0009】2）径向载荷产生的弯矩与支撑轴承受的约束力平衡，从理论上讲，支撑点距离加载
点越远，支撑轴承受的载荷就越小。达到一定的距离，即使加载载荷非常的大，支撑轴承
受到的载荷也很小，因此也可采用普通的轴承作为支撑轴承。
【0010】本发明可对内径大于 130mm，转速要求 2000r/min 以上（对应列车时速 330km/h），
单套轴承加载载荷要求 200kN 以上的密封轴承进行测试。

附图说明
【0011】图 1 是本高速重载轴承试验台装置的结构示意图（正视）。
【0012】图 2 是本高速重载轴承试验台装置的结构示意图（俯视）。
【0013】图中：1. 螺栓与螺母，2. 轴承下座，3. 轴承上座，4. 轴承，5A. 第一轴向加载缸活
塞杆，5B. 第二轴向加载缸活塞杆，5C. 第三轴向加载缸活塞杆，5D. 第四轴向加载缸活塞
杆，6. 切分式高低温试验箱，7A. 第一加载套，7B. 第二加载套，8. 水、风喷头，9A. 第一径
向加载缸活塞杆，9B. 第二径向加载缸活塞杆，10. 双头螺栓与螺母，11. 联轴器，12. 底座，
13. 电机，14. 电机支架，15. 第一轴心压板，16A. 第一支撑轴承轴套，16B. 第二支撑轴承轴
套，17A. 第一支撑轴承，17B. 第二支撑轴承，18A. 第一轴套锁紧螺母，18B. 第二轴套锁紧
螺母，19. 被测高速重载轴承，20A. 第一轴承轴套，20B. 第二轴承轴套，21. 第二轴心压板，
22A. 第一主轴密封圈，22B. 第二主轴密封圈，23A. 第一径向加载缸活塞杆密封圈，23B. 第
二径向加载缸活塞杆密封圈。

具体实施方式
【0014】下面结合附图和实施例对本发明作进一步的说明。
【0015】如图 1、图 2 所示，在切分式高低温试验箱 6 与内轴安装主轴 4，伸出切分式高低温
试验箱 6 外的轴头两端分别通过支撑轴承支承在各自的轴承座中，伸出切分式高低温试验
箱 6 外的轴头两端均为内大外小的锥体，即第一轴承座由轴承下座 2 轴承上座 3 组合而
成，一侧内大外小的锥体上安装一个第一支撑轴承 17，第一支撑轴承套 17A 安装在两个第
一支撑轴承 17A 与内大外小的锥体间，用第一轴心压板 15 压紧，第二轴心轴承 17B 由另一
轴承下座 2 和另一轴承上座 3 组合而成，另一侧内大外小的锥体上安装两个第二支撑轴承
17B，第二支撑轴承套 17B 安装在两个第二支撑轴承 17B 与内大外小的锥体间，用第二轴心
压板 21 压紧，位于第二轴承座内大外小的锥体的主轴伸出端经联轴器 11 与电机 13 的输出轴
连接，切分式高低温试验箱 6、两个轴承座和电机支架 14 均安装在同一底座上；位于切分式高
低温试验箱 6 内的轴头轴环两端的轴颈分别是一个相同的、内大外小的锥体，两个被测高
速重载轴承 19 分别安装在两侧的锥体上，两个锥体上分别安装第一轴承轴套 20A 和第二轴
承轴套 20B 后各自的第一轴套锁紧螺母 18A 和第二轴套锁紧螺母 18B 固定；两个被测高速
重载轴承19外圈分别安装第一加载套7A和第二加载套7B，两侧对称安装的第一、第二个轴向加载缸活塞杆5A,5B和第一、第二轴向加载缸活塞杆5C,5D分别对称于第一、第二加载套7A,7B外侧面，第一径向加载缸活塞杆9A，第二径向加载缸活塞杆9B分别反向垂直于各自第一：第二加载套7A和7B圆柱面上，以上各个加载缸体部分安装在温度箱之外，仅将加载缸活塞杆伸入剖分式高低温试验箱6内。在剖分式高低温试验箱6上部安装水、风喷头8：主轴4与高低温试验箱6之间安装第一主轴密封圈22A和第二主轴密封圈22B，第一径向加载缸活塞杆9A与剖分式高低温试验箱6之间安装第一径向加载缸活塞杆密封圈23A，同样，第二径向加载缸活塞杆9B与剖分式高低温试验箱6之间安装第二径向加载缸活塞杆密封圈23B；凡与剖分式试验箱相连接处都需安装密封圈，剖分式高低温试验箱6内设置温度传感器和毛细管路，毛细管路与外部的制冷制热设备连接。0016轴承座上开有润滑油导油槽以及安装温度、振动传感器的安装孔。

力的加载通过液压缸实现，两只径向加载缸活塞杆9A和9B在同一平面上水平安装，分别正对两套被测轴承，方向相反；轴向加载的问题由于结构限制而且为了不引入新的弯矩，两个方向的轴向载荷通过两只液压缸同时加载，四套轴向加载活塞杆5A，5B，5C，5D同样安装在同一平面上。六支加载活塞杆安装在同一平面上，径向载荷产生的力互相平衡，产生的弯矩由支撑轴承抵消，轴向载荷不产生弯矩，同时两端轴向载荷完全抵消，在进行液压原理设计时注意将两支径向加载缸，四支轴向液压加载缸的活塞腔相通，这样可以保证两端的径向力与轴向力在任何时候都可以抵消，保证主轴和支撑轴承的安全，也避免了使用轴向推力轴承，简化了结构。第一、第二加载套7A,7B上可安装温度、振动等传感器。

剖分式高低温试验箱6置于两轴承座之间，沿轴向水平面呈剖分结构，便于主轴的拆装，温度箱中安装水和空气喷嘴，根据不同实验要求，模拟实际工况环境。

上述高速重载轴承性能试验台装置，可测试各种内径尺寸的轴承，单套轴承可加载较大的径向力，同时可以在很高的转速下运行，并且可以只使用普通标准轴承作为支撑轴承。工作原理：轴承密封性能试验的结果是通过测量被测轴承的温升和振动参数来反应的，而支撑轴承的运行状况的好坏也影响到试验台的性能，所以试验台是通过在被测轴承和支撑轴承上安装温度和振动传感器来进行试验监测的。

具体试验操作如下：
0020
1. 将液压缸活塞杆连接到加载套上后，调整高低温试验箱内环境温度到实验要求水平或者对被测轴承开始喷水、喷风；
0022
2 启动驱动电机，带动主轴转动；
0023
3. 当主轴达到规定转速后，加载缸开始加压，输出加载力，加载力通过活塞腔内压力间接测量，轴向和径向加载力可实现无级变化；
0024
4. 随着时间的变化，各个传感器采集各个轴承的动态信息，上传至具有处理、存储和实时这些信息能力的设备上，并且可以对当前轴承的情况进行判断与分析，所有的控制也都在该设备上进行操作；
0025
5. 实验结束后需要将主轴从轴承座中拆卸，以更换被测轴承。
0026
以上实施例仅供说明本发明，而非对本发明的限制，有关技术领域的技术人员，在不脱离本发明的精神和范围的情况下，还可以做出各种变形或变形，因此所有等同的技术方案也应属于本发明的范畴，应由个权利要求所限定。
图 1