CONSTRUCTION AND METHOD FOR ASSEMBLING FLAT DISPLAY PANEL AND PLASMA TELEVISION

Inventor: Naoto Maruta, Osaka (JP)

Assignee: Funai Electric Co., Ltd., Osaka (JP)

Appl. No.: 11/583,392

Filed: Oct. 18, 2006

Foreign Application Priority Data


Publication Classification

Int. Cl.
A47B 81/00 (2006.01)
A47B 97/00 (2006.01)

U.S. Cl. ................................. 312/223.2, 312/223.1

ABSTRACT

A filter 13 which is carried from above side onto a cabinet which is carried on a full-scale production line is interposedly held between panel holder members 14a, 14b, 14c, 14d and filter holder members 15a, 15b, 15c, 15d and fixed by the panel holder members 14a, 14b, 14c, 14d and the filter holder members 15a, 15b, 15c, 15d, and a flat display panel 11e which is also carried from the above side onto the cabinet is fixed. Moreover, the plasma display panel 11e and the filter 13 are superposed, through the panel holder members 14a, 14b, 14c, 14d and the filter holder members 15a, 15b, 15c, 15d, on the cabinet 12 which is in a state of being carried on the line, and are screw-fastened. Thus, when a cabinet, a flat display panel and a filter are to be fitted, the fitting operations can be easily carried out.
CONSTRUCTION AND METHOD FOR
ASSEMBLING FLAT DISPLAY PANEL, AND
PLASMA TELEVISION

CROSS-REFERENCES TO RELATED
APPLICATIONS


BACKGROUND OF THE INVENTION

[0002] (1) Field of the Invention

[0003] The present invention relates to a construction and method for assembling a flat display panel to a resin-molded cabinet and a filter, and a plasma television assembled by using the fitting construction.

[0004] (2) Description of the Related Art

[0005] Televisions through which broadcasted images are displayed and brought into the limelight of the world have widely spread to the general household for a long time, as base media through which entertainment programs, movies, news and the like are brought into the limelight of the world. As the standard of living is raised, the screens of televisions have been large-sized. However, televisions employing cathode-ray tubes, which have been dominant for a long time, structurally have problems in depth, weight thereof, and power used therein. Therefore, there are limits to the large-sizing of the televisions.

[0006] On the other hand, as electronics, semiconductor and material technologies progress, new display devices such as plasma displays and liquid crystal displays which are completely different from the cathode-ray tubes have been recently developed. Such display devices are thinner than the related cathode-ray tubes, so that the display devices are generically called “flat display panels”.

[0007] Regarding the flat display panels for televisions, the techniques for the flat display panels develop, the flat display panels are now in quantity production, and can be produced at low cost and large-sized. In order to meet the need of buying new televisions which is aroused as television broadcasts are digitalized and narrow housing environments in Japan, the related cathode-ray tube type display device has been replaced by the flat display panel and a flat display panel market has been widely expanded.

[0008] Incidentally, in a case where a television is manufactured by using the flat display panel, a general-purpose panel assembly which is supplied by a panel maker is fitted and original control treatment or the like may be applied to the panel assembly. The fitting of such a general-purpose panel assembly is generally carried out by combining the panel assembly, a filter and a resin-molded cabinet.

[0009] Referring now to FIG. 5, a related construction for fitting a plasma display panel to be used as a flat display panel will be discussed in order to facilitate understanding of the present invention. The plasma display panel 1 is mounted, through spacers 3 arranged at four corners of the plasma display panel, to a substantially frame-shaped panel holder 2 which is brought into a standing-up state, from the back side of the panel holder 2, and is screw-fastened to the panel holder 2 from the sides of the panel holder 2. Incidentally, the spacers 3 serve as means to keep the plasma display panel 1 spaced apart at a predetermined distance from a filter 4 which will be discussed hereinafter, and facing the filter 4.

[0010] The filter 4 is mounted, through a gasket 5, to the panel holder 2 from the front side of the panel holder 2. Upper, lower, left and right sides of the filter 4 are engaged with the panel holder 2 by four filter holders 6, which include rectilinear bodies each having a step portion of a crank-shape in cross-section, and are screw-fastened to the panel holder 2 from the front side. To the panel holder 2 to which the plasma display panel 1 and the filter 4 are mounted as discussed above, a substantially frame-shaped cabinet 7 and a bezel 8 for covering a clearance between the cabinet 7 and a periphery of a view area then are mounted from the front side and screw-fastened from the back side of the panel holder 2.

[0011] Accordingly, the above-mentioned fitting of the plasma display panel 1 is required to be carried out in the condition where the panel holder 2, the plasma display panel 1, the filter 4, the cabinet 7 and the bezel 8 all stand up. The fitting of the plasma display panel 1 is unable to be carried out in a full-scale production line in which the respective components are arranged on a line and the assembly-line production is efficiently performed. Therefore, separate work is forced to be performed in a sub-line step independent from the full-scale production line. In the above-mentioned fitting work in sub-line step, work efficiency is lowered, particularly, when the plasma display panel 1 is large-sized so as to have a size of 37 inch or more, and the number of stages of assembling is increased.

[0012] Moreover, fixing of the plasma display panel 1, the filter 4 and the cabinet 7 which are mounted to the panel holder 2 is required to be performed from several sides including the back side, the lateral sides and the front side, by using a large number of screws, so that work efficiency is lowered and the number of screws required to be used is increased. In addition, the spacers 3 for keeping a distance between the plasma display panel 1 and the filter 4 constant are required, thus increasing the cost of the television.

[0013] On the other hand, in order to easily fit the plasma display panel, the following related arts are proposed.

[0014] Japanese Patent Application Laid-Open No. 2002-40424 discloses that assemblies are arranged in a face-to-face relationship with each other at both ends of an interior of a mold frame having a storage space provided therein, and a reflector, a light guide plate, a diffusion plate and the like are stacked between the assemblies in order, to thereby form an integrating type back light assembly unit. According to this construction, it is possible to carry out the assembling while causing elements to be stacked from a lowermost element to an uppermost element in order, so that the assembling can be easily carried out.

[0015] Japanese Patent Application Laid-Open No. Hei. 10-13765 discloses that a back portion of a mounting frame is fixed to a back face of a PDP unit, left and right sides of the mounting frame are bent forward, thereby forming side surface portions, and forward regions of the side surfaces are bent so as to become parallel to a front face of the PDP unit, and are screw-fastened to a front frame. According to this
construction, it is possible to distribute loads from the PDP unit onto the entire mounting frame, possible to reduce the number of parts for mounting, and possible to easily carry out assembling and disassembling.

[0016] Japanese Patent Application Laid-Open No. Hei. 10-288772 discloses that a liquid crystal holder having a plurality of stopper pawls and an upper portion to which a liquid crystal display and a diffusion sheet can be mounted in a superposed state, is employed, and the stopper pawls of the liquid crystal holder are inserted in a plurality of engaging holes formed in a printed circuit board. According to this construction, the liquid crystal display is mounted to the printed circuit board without resort to a liquid crystal holder or the like, so that it is possible to easily perform the assembling work and also possible to reduce the number of parts.

[0017] Japanese Patent Application Laid-Open No. Hei. 9-127881 discloses that a box-shaped fixing holder which has a filter section, a step portion formed around the filter section, an opening and elastic stopper pawls provided around the opening is made of a transparent resin, the fixing holder is arranged on a printed circuit board so as to cover an LCD and a back light unit, the stopper pawls are engaged with the printed circuit board, and a peripheral portion of the LCD is held down by an inner surface of the step portion and fixed. According to this construction, it is possible to omit a filter for protecting the LCD and a dirt dust preventing member, and reduce the number of parts and the number of assembling steps, thus saving cost.

[0018] In the construction disclosed in the Japanese Patent Application Laid-Open No. 2002-40424, the reflector, a light guide plate, a plurality of diffusion sheets and the like are stacked on a bottom surface of the interior of the mold frame in order, and a liquid crystal assembly and a chassis are then stacked on them. According to the process in which the respective elements are stacked together, it is possible to easily perform the work and also possible to cause the respective elements to flow on the line. However, of the stacked elements, the elements in the interior of the mold frame are covered by fixing frames from the upper both sides and fixed by causing engaging protrusions provided at side portions of the mold frame to be engaged with through-holes formed in side portions of the fixing frames. Such a fixing process can not be applied to a case where a plasma display panel which is large-sized and weighty and a filter are mounted according to the present invention. Of course, screw-fastening can be performed in lieu of the fixing by the engagement between the protrusions and the through-holes. In this case, the screw-fastening is inevitably carried out from a lateral direction. This lowers the work efficiency. Moreover, it is necessary to cause the plasma display panel and the filter to be spaced apart at a fixed distance from each other, so that they can not be directly overlapped each other and it is necessary to inevitably cause spacers to be arranged between the plasma display panel and the filter, thus increasing cost.

[0019] The Japanese Patent Application Laid-Open No. 2002-40424 does not disclose a process for fixing the liquid crystal display panel assembly and the chassis which are stacked on the fixing frame. Therefore, the problem in which the mounting of the cabinet, the plasma display panel and the filter is involved as discussed above remain unsettled.

[0020] In the construction disclosed in the Japanese Patent Application Laid-Open No. Hei. 10-13765, in order to make it possible to distribute the loads from the PDP unit onto the entire mounting frame and also make it possible to reduce the number of parts, the mounting frame is integrated with the back face of the PDP unit by causing the mounting frame to be subjected to a bending process. The purpose of this technique is different from the purpose of the present invention. The problem in which the mounting of the cabinet, the plasma display panel and the filter is involved as discussed above remain unsettled.

[0021] In the construction disclosed in the Japanese Patent Application Laid-Open No. Hei. 10-288772, the small-sized and lightweight liquid crystal display and the diffusion sheet are fixed to the printed circuit board by the stopper pawls. Such a technique can not be applied to the case where the large-sized and weighty plasma display panel and the filter are fitted according to the present invention. Moreover, the liquid crystal display and the diffusion sheet are merely overlapped directly each other. Therefore, the technique can not be applied to the construction in which the plasma display panel and the filter are required to be spaced apart at the fixed distance from each other as in the present invention.

[0022] In the construction disclosed in the Japanese Patent Application Laid-Open No. Hei. 9-127881, the filter itself is formed into a staircase-shape and constitutes the fixing holder. Such a construction can not be applied to the filter of the present invention.

[0023] Moreover, even if the filter itself is not formed into such a shape but a specialized holder which is formed into the shape is employed, the fixing method by the stopper pawls can not be applied to the case where the large-sized and weighty plasma display panel and the filter are fitted according to the present invention. In addition, the LCD and the back light unit are merely overlapped directly each other in the interior of the fixing holder. Such a construction can not be applied to the case where the plasma display panel and the filter are required to be spaced apart at the fixed distance from each other according to the present invention.

BRIEF SUMMARY OF THE INVENTION

[0024] The present invention discloses an inexpensive construction and method for fitting a resin-molded cabinet, a flat display panel and a filter, and a plasma television assembly by the fitting construction, in which the resin-molded cabinet, the flat display panel and the filter can be easily fitted in a full-scale production line, without the need of being subjected to fitting in a sub-line step, which facilitate raising of the work efficiency and reducing of the number of assembling steps, in which spacers are not required to be arranged between the plasma display panel and the filter, and which facilitate reducing of the number of screw-fastening steps and reducing of the number of screws to be used.

[0025] One aspect of present invention provides a plasma television which includes a resin-molded cabinet of a substantially frame shape, a plasma display panel used as a flat display panel and having a size of 37 inch or more, the plasma display panel including brackets provided on a back
carry the first step portions of the first panel holder members, upper step portions carried on the third step portions of the first panel holder members, the upper step portions being arranged above the lower step portions and connected to the lower step portions so as to form stairs, the upper step portions having screw-insertion holes formed in four predetermined regions thereof, and connecting portions interconnecting the upper step portions and the lower step portions, and having protrusions provided at predetermined regions thereof, the protrusions being fitted in the fitting holes of the first panel holder members and positioned, the rectilinear bodies of the second filter holder members having convex portions, base ends, and screw-insertion holes formed in three predetermined regions thereof for facilitating screw-fastening, the convex portions being abutted against gaskets and the base ends of the second filter holder members being carried on the second step portions of the second panel holder members, when the second filter holder members are carried, through the gaskets, on the filter carried on the first step portions of the second panel holder members, wherein when the cabinet, the plasma display panel and the filter are fitted, the first panel holder members and the second holder members are carried from the above side onto the upper, lower, left and right sides of the view area within the fitting opening of the cabinet carried on a full-scale line with the fitting opening facing upwardly, in such a manner that the first step portions, the second step portions and the third step portions are arranged within the cabinet, the engaging hole of the first panel holder member is fitted on the convex portion of the cabinet, the filter is carried from the above side onto the step portions of the first panel holder members and the step portions of the second panel holder members, the first filter holder members and the second filter holder members are carried on portions of the filter which are carried on the first step portions in such a manner that the convex portions thereof are abutted, through the gaskets, against the portions of the filter and the first filter holder members and the second filter holder members cooperate with the first panel holder members and the second holder members, respectively, the protrusions of the first filter holder members are fitted into the fitting holes of the first panel holder members, to thereby position the first filter holder members, screws are inserted from the above side into the screw-insertion holes formed in the upper step portions of the first filter holder members and the screw-insertion holes formed in the end portions of the second filter holder members, whereby the end portions of the filter are interposedly held, through the gaskets, between the first step portions of the first and second panel holder members and the convex portions of the first filter holder members and the second filter holder members and are fixed, the plasma display panel is carried from the above side onto the fourth step portions of the first panel holder members in such a manner that the brackets of the plasma display panel are abutted against the fourth step portions of the first panel holder members, and the plasma display panel is screw-fastened from the above side to the fourth step portions of the first panel holder members utilizing the screw-insertion holes of the brackets and the threaded holes of the fourth step portions, so that the plasma display panel and the filter can be superposed from the above side, through the panel holder device and the filter holder device, onto the cabinet carried on the full-scale production line, and can be screw-fastened to the panel holder device, the filter holder device
and the cabinet, the number of assembling operations conventionally required in a sub-line and the number of screws required for fitting can be reduced, spacers required to be arranged between the plasma display panel and the filter can be omitted, and the engaging hole of the first panel holder member is fitted over the convex portion of the cabinet to thereby prevent the cabinet from being completely removed from the first panel holder member at the time of separating operation of the cabinet.

[0026] In the above-mentioned construction, when the cabinet is assembled to the plasma display panel and the filter, the panel holder device, the filter, and the filter holder device are in order superposed from the above side onto the fitting opening of the cabinet arranged with the fitting opening facing upwardly, the panel holder device and the filter holder device are fastened to each other from the above side, to thereby cause the ends of the filter to be interposedly held by the panel holder device and the filter holder device and fixed and, thereafter, the flat display panel is superposed on the panel holder device from the above and fastened to the panel holder device from the above side.

[0027] The plasma display panel and the filter can be superposed, through the panel holder device and the filter holder device, from the above side onto the cabinet arranged on the full-scale production line with the fitting opening facing upwardly, and the panel holder device and the filter holder device can be screw-fastened to each other from the above side, so that the number of assembling operations conventionally required in a sub-line and the number of screws required for fitting can be reduced and spacers required to be arranged between the plasma display panel and the filter can be omitted.

[0028] Moreover, the engaging holes formed in the panel holder member arranged at the upper end of the view area is fitted over the convex portion provided at the cabinet, so that at the time of separating operation of the cabinet from the panel holder member, the cabinet can be prevented from coming off from the panel holder member.

[0029] Another aspect of the present invention provides a flat display panel fixing construction for fitting a resin-molded cabinet of a substantially frame shape, a flat display panel, and a filter. The fixing construction includes a panel holder device, the flat display panel being mounted to the panel holder device, and a filter holder device, the filter being interposedly held between the panel holder device and the filter holder device, and the cabinet having a fitting opening, wherein when the cabinet, the flat display panel and the filter are fitted, the four panel holder members are carried from the above side onto the upper, lower, left and right sides of the view area within the fitting opening of the cabinet located with the fitting opening facing upwardly, in such a manner that the step portions are arranged within the cabinet, the four ends of the filter is carried from the above side onto the step portions of the panel holder members, the four filter holder members are carried on upper surfaces of the four ends of the filter in such a manner that the convex portions thereof are abutted, through the gaskets, against the upper surfaces of the four ends of the filter, the panel holder members and the filter holder members are fastened to one another from the above side, to thereby cause the filter to be interposedly held between the panel holder members and the filter holder members and fixed, and the flat display panel is superposed from the above side onto the panel holder member and fastened to the panel holder device from the above side.

[0030] In the above-mentioned construction, when the cabinet, the flat display panel and the filter are fitted, the panel holder device, the filter, and the filter holder device are in order superposed from the above side onto the fitting opening of the cabinet arranged with the fitting opening facing upwardly, the panel holder device and the filter holder device are fastened to each other from the above side, to thereby cause the ends of the filter to be interposedly held by the panel holder device and the filter holder device and fixed and, thereafter, the flat display panel is superposed on the panel holder device from the above and fastened to the panel holder device from the above side.

[0031] The plasma display panel and the filter can be superposed, through the panel holder device and the filter holder device, from the above side onto the cabinet arranged on the full-scale production line with the fitting opening facing upwardly, and the panel holder device and the filter holder device can be screw-fastened to each other from the above side, so that the number of assembling operations conventionally required in a sub-line and the number of screws required for fitting can be reduced and spacers required to be arranged between the plasma display panel and the filter can be omitted.

[0032] An optional aspect of the present invention provides a flat display panel fitting construction wherein the panel holder device includes four panel holder members arranged at upper, lower, left and right ends of a view area of the flat display panel, and the filter holder device including four filter holder members arranged at the upper, lower, left and right ends of the view area of the flat display panel, the panel holder members including rectilinear bodies each having a staircase-shape in cross-section, the rectilinear bodies having step portions for carrying lower surfaces of four ends of the filter, and the filter holder members including rectilinear bodies provided with convex portions which are abutted, through gaskets, against the filter carried on the step portions of the panel holder members, wherein when the cabinet, the flat display panel and the filter are fitted, the four panel holder members are carried from the above side onto the upper, lower, left and right sides of the view area within the fitting opening of the cabinet located with the fitting opening facing upwardly, in such a manner that the step portions are arranged within the cabinet, the four ends of the filter is carried from the above side onto the step portions of the panel holder members, the four filter holder members are carried on upper surfaces of the four ends of the filter in such a manner that the convex portions thereof are abutted, through the gaskets, against the upper surfaces of the four ends of the filter, the panel holder members and the filter holder members are fastened to one another from the above side, to thereby cause the filter to be interposedly held between the panel holder members and the filter holder members and fixed, and the flat display panel is superposed from the above side onto the panel holder member and fastened to the panel holder members.

[0033] In the above-mentioned construction, when the cabinet is assembled to the flat display panel and the filter, the panel holder device, the filter, and the filter holder device are in order superposed from the above side onto the fitting opening of the cabinet arranged with the fitting opening facing upwardly, the panel holder device and the filter holder device are fastened to each other from the above side, to thereby cause the ends of the filter to be interposedly held by the first step portions of the panel holder device and the convex portions of the filter holder device and fixed and, thereafter, the flat display panel is superposed on the panel
holder device from the above and fastened to the panel holder device from the above side.

[0034] The flat display panel and the filter can be superposed, through the panel holder device and the filter holder device, from the above side onto the cabinet arranged on the full-scale production line with the fitting opening facing upwardly, and the panel holder device and the filter holder device can be screw-fastened to each other from the above side, so that the number of assembling operations conventionally required in a sub-line and the number of screws required for fitting can be reduced and spacers required to be arranged between the flat display panel and the filter can be omitted.

[0035] Another optional aspect of the present invention provides a flat display panel fitting construction, wherein the flat display panel has a size of 37 inch or more, the plasma display panel includes brackets provided on a back face thereof, the brackets having screw-insertion holes, the panel holder device includes a pair of first panel holder members arranged at upper and lower ends of the view area of the plasma display panel, the first panel holder members including rectilinear bodies each having a staircase-shape in cross-section, and a pair of second panel holder members arranged at left and right sides of the view area of the plasma display panel, the second panel holder members including rectilinear bodies each having a staircase-shape in cross-section, the rectilinear bodies of the second panel holder members being shorter than the rectilinear bodies of the first panel holder members, the rectilinear bodies of the first panel holder members including first step portions for carrying back surfaces of both end portions of the filter which positionally corresponds to the upper and lower ends of the view area, second step portions arranged above the first step portions and connected to the first step portions so as to form stairs, third step portions arranged above the second step portions and connected to the second step portions so as to form stairs, the third step portions having threaded holes formed in four predetermined portions thereof, fourth step portions arranged above the third step portions, connected to the third step portions and formed so as to have substantially U-shapes in cross-section, the fourth step portions having threaded holes, connecting portions interconnecting the second step portions and the third step portions and having fitting holes, and connecting portions interconnecting the third step portions and the fourth step portions, the rectilinear bodies of the second panel holder members including first step portions for carrying back surfaces of both end portions of the filter which positionally corresponds to the left and right side portions of the view area, and second step portions arranged above the first step portions of the second panel holder members, connected to the first step portions of the second panel holder members so as to form stairs, and have threaded holes formed in three predetermined regions thereof, the filter holder device includes a pair of first filter holder members arranged at regions of the filter which positionally correspond to the upper and lower ends of the view area, the first filter holder members including rectilinear bodies each having a staircase-shape in cross-section, and a pair of second filter holder members arranged at regions of the filter which positionally correspond to the left and right sides of the view area, the second filter holder members including rectilinear bodies each having a staircase-shape in cross-section, the rectilinear bodies of the second filter holder members being shorter than the rectilinear bodies of the first filter holder members including lower step portions having convex portions and base ends, the convex portions being abutted against gaskets and the base ends being carried on the second step portions of the first panel holder members, when the first filter holder members are carried, through the gaskets, on the filter carried on the first step portions of the first panel holder members, upper step portions carried on the third step portions of the first panel holder members, the upper step portions being arranged above the lower step portions and connected to the lower step portions so as to form stairs, the upper step portions having screw-insertion holes formed in four predetermined regions thereof, and connecting portions interconnecting the upper step portions and the lower step portions, and having protrusions provided at predetermined regions thereof, the protrusions being fitted in the fitting holes of the first panel holder members and positioned, the rectilinear bodies of the second filter holder members having convex portions, base ends, and screw-insertion holes formed in three predetermined regions thereof for facilitating screw-fastening, the convex portions being abutted against gaskets and the base ends of the second filter holder members being carried on the second step portions of the second panel holder members, when the second filter holder members are carried, through the gaskets, on the filter carried on the first step portions of the second panel holder members, wherein when the cabinet, the plasma display panel and the filter are fitted, the first panel holder members and the second holder members are carried from the above side onto the upper, lower, left and right sides of the view area, the fitting opening facing upwardly, in such a manner that the first step portions, the second step portions and the third step portions are arranged within the cabinet, the engaging hole of the first panel holder member is fitted on the convex portion of the cabinet, the filter is carried from the above side onto the step portions of the first panel holder members, the first filter holder members and the second step portions of the second panel holder members, the first filter holder members and the second filter holder members are carried on portions of the filter which are carried on the first step portions in such a manner that the convex portions thereof are abutted, through the gaskets, against the portions of the filter and the first filter holder members and the second filter holder members cooperate with the first panel holder members and the second holder members, respectively, the protrusions of the first filter holder members are fitted in the fitting holes of the first panel holder members, to thereby position the first filter holder members, screws are inserted from the above side into the screw-insertion holes formed in the upper step portions of the first filter holder members and the screw-insertion holes formed in the end portions of the second filter holder members, whereby the end portions of the filter are interposedly held, through the gaskets, between the first step portions of the first and second panel holder members and the convex portions of the first filter holder members and the second filter holder members and are fixed, the plasma display panel is carried from the above side onto the fourth step portions of the first panel holder members in such a manner that the brackets of the plasma display panel are abutted against the fourth step portions of the first panel holder members, and the plasma display panel is screw-fastened from the above side to the fourth step portions of the first panel holder members utilizing the screw-insertion
holes of the brackets and the threaded holes of the fourth step portions, so that the plasma display panel and the filter can be superposed from the above side, through the panel holder device and the filter holder device, onto the cabinet carried on the full-scale production line, and can be screw-fastened to the panel holder device, the filter holder device and the cabinet, the number of assembling operations conventionally required in a sub-line and the number of screws required for fitting can be reduced, and spacers required to be arranged between the plasma display panel and the filter can be omitted.

[0036] In the above-mentioned construction, when the cabinet is assembled to the plasma display panel and the filter, the panel holder device, the filter, and the filter holder device are in order superposed from the above side onto the fitting opening of the cabinet arranged with the fitting opening facing upwardly, the panel holder device and the filter holder device are fastened to each other from the above side, to thereby cause the ends of the filter to be interposedly held by the first step portions of the panel holder device and the convex portions of the filter holder device and fixed and, thereafter, the plasma display panel is superposed on the panel holder device from the above side.

[0037] The plasma display panel and the filter can be superposed, through the panel holder device and the filter holder device, from the above side onto the cabinet arranged on the full-scale production line with the fitting opening facing upwardly, and the panel holder device and the filter holder device can be screw-fastened to each other from the above side, so that the number of assembling operations conventionally required in a sub-line and the number of screws required for fitting can be reduced and spacers required to be arranged between the plasma display panel and the filter can be omitted.

[0038] Another optional aspect of present invention provides a flat display panel fitting construction, wherein the cabinet has a convex portion provided at a predetermined region thereof which positionally corresponds to the upper end of the view area, a first panel holder member arranged at the upper end of the view area has an engaging hole formed in a predetermined region of a connecting portion interconnecting a third step portion and a fourth step portion thereof, and wherein when the cabinet, the plasma display panel, and the filter are fitted, the engaging hole positioned at the above side of the view area in the first panel holder member is fitted over the convex portion of the cabinet, to thereby prevent the cabinet from being completely removed from the first panel holder member at the time of separating operation of the cabinet.

[0039] In the above-mentioned construction, the convex portion provided at the cabinet is inserted in the engaged hole formed in the first panel holder member arranged at the upper end of the view area.

[0040] Another optional aspect of present invention provides a flat display panel fitting construction, wherein the convex portion provided at the cabinet is inserted in the engaging holes formed in the first panel holder member arranged at the upper end of the view area, so that at the time of separating operation of the cabinet from the panel holder member, the cabinet can be prevented from coming off from the panel holder member.

[0041] Another aspect of the present invention provides a method for fitting a cabinet, a flat display panel, and a filter, the cabinet having a fitting opening. The method includes the steps of causing the cabinet to be arranged in such a manner that the fitting opening faces upwardly, causing a panel holder device, the filter, and a filter holder device to be in order superposed onto the cabinet from the above side, causing the panel holder device and the filter holder device to be fastened to each other from the above side, to thereby cause the filter to be interposedly held between the panel holder device and the filter holder device and fixed, thereafter, causing the flat display panel to be superposed onto the panel holder device from the above side, and causing the flat display panel to be fastened to the panel holder device from the above side, and fixed.

[0042] These and other features, aspects, and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred non-limiting exemplary embodiments, taken together with the drawings and the claims that follow.

BRIEF DESCRIPTION OF THE DRAWINGS

[0043] It is to be understood that the drawings are to be used for the purposes of exemplifying the invention only and not as a definition of the limits of the invention. Throughout the disclosure, the word “exemplary” is used exclusively to mean “serving as an example, instance, or illustration.” Any embodiment described as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.

[0044] Referring to the drawings in which like reference character(s) present corresponding parts throughout:

[0045] FIG. 1 is an exemplary illustration of a block diagram which is of assistance in explaining a plasma television according to an embodiment of the present invention;

[0046] FIG. 2 is an exemplary illustration of a schematic exploded perspective view which is of assistance in explaining a structure for fitting a plasma display panel, according to the embodiment of the present invention;

[0047] FIGS. 3 and 4 are each an exemplary illustration of a schematic fragmentary sectional view which is of assistance in explaining the plasma display panel fitting structure;

[0048] FIG. 5 is an exemplary illustration of a schematic exploded perspective view which is of assistance in explaining a related structure for fitting a plasma display panel.

DETAILED DESCRIPTION OF THE INVENTION

[0049] The detailed description set forth below in connection with the appended drawings is intended as a description of presently preferred embodiments of the invention and is not intended to represent the only forms in which the present invention may be constructed and or utilized.

[0050] Embodiments according to the present invention will be discussed hereinafter with reference to the accompanying drawings.

[0051] Referring now to FIG. 1, there is illustrated a block diagram which is of assistance in explaining a schematic
structure of a plasma television employing a plasma display panel which serves as a flat display panel according to an embodiment of the present invention.

[0052] The plasma television 11 shown in FIG. 1 includes a body, a controller 11b for controlling the operation of the body, a tuner 11d for extracting a television broadcast signal of a selected channel from television broadcast signals received through an unshown antenna and outputting the television broadcast signal, an image processing section 11f for causing an image based on the television broadcast signal outputted from the tuner 11d to be displayed on a plasma display panel 11e, a voice processing section 11h for causing voice based on the television broadcast signal outputted from the tuner 11d to be outputted from a speaker 11g, and a remote controller receiver section 11a for receiving a control command transmitted from a remote controller 11c.

[0053] The controller 11b is designed so as to control turning on/off of a power source, switching of channels, volume up/down, etc., according to the control command received through the remote controller receiver section 11a. Incidentally, an operating power is adapted to be supplied to the respective sections of the plasma television 11 from an unshown power source circuit. An input of the power source circuit is a commercial power source (for example, AC 100V).

[0054] In the illustrated example, as the plasma display panel 11e, there may be employed, a large-sized, for example, 37 inch or more, general-purpose plasma display panel assembly which is supplied by a panel maker. A filter and a cabinet are fitted to a front side of the plasma display panel 11e in a full-scale production line. Thus, the plasma television 11 is produced.

[0055] Referring to FIG. 2, there are illustrated the cabinet 12, the plasma display panel 11e, the filter 13 and components of the plasma television 11 for fitting the cabinet 12, the plasma display panel 11e and the filter 13.

[0056] In the illustrated example, when the cabinet 12, the plasma display panel 11e and the filter 13 are to be fitted, a panel holder device 14 to which the plasma display panel 11e is to be mounted, and a filter holder device 15 for interposedly holding the filter 13 in cooperation with the panel holder device 14, are used together.

[0057] The panel holder device 14 includes four panel holder members. More particularly, the panel holder device 14 includes a pair of first panel holder members 14a, 14b which are to be mounted to an upper end of a view area of the plasma display panel 11e and a lower end of the view area of the plasma display panel 11e, respectively, and a pair of second panel holder members 14c, 14d which are to be mounted to a right end of the view area of the plasma display panel 11e and a left end of the view area of the plasma display panel 11e, respectively. The second panel holder members 14c, 14d are formed so as to be shorter than the first panel holder members 14a, 14b.

[0058] The filter holder device 15 includes four filter holder members. More particularly, the filter holder device 15 includes a pair of first filter holder members 15a, 15b for interposedly holding upper and lower ends of the filter 13 therebetween and a pair of second filter holder members 15c, 15d for interposedly holding right and left ends of the filter 13 therebetween.

[0059] Referring to FIG. 3, each of the first panel holder members 14a, 14b include a longitudinal body which has a staircase-shape in cross-section and includes a first step portion 14e, a second step portion 14f arranged above the first step portion 14e and connected to the first step portion 14e so as to form a stair, a third step portion 14g arranged above the second step portion 14f and connected to the second step portion 14f so as to form a stair, and a fourth step portion 14h arranged above the third step portion 14g, connected to the third step portion 14g and formed so as to have a substantially U-shape in cross section. First step portions 14e serve to carry lower surfaces of upper and lower end portions of a view area of the filter 13 thereon. As will be discussed in greater detail hereinafter, each of the first filter holder members 15a, 15b, has a lower step portion 15c which is provided with a convex portion 15c1, and an upper step portion 15f. Second step portions 14f carry base portions of lower step portions 15e thereon, when convex portions 15c1 of the lower step portions 15e of the first filter holder members 15a, 15b are carried, through gaskets 16, on the upper and lower end portions of the filter 13 carried on the first step portions 14e of the first panel holder members 14a, 14b for assembling. Third step portions 14g each have threaded holes 14g1 formed in four predetermined regions thereof. The third step portions 14g carry upper step portions 15f of the first filter holder members 15a, 15b and are screw-fastened to the upper step portions 15f of the first filter holder members 15a, 15b through the threaded holes 14g1. When the convex portions 15c1 of the lower step portions 15e of the first filter holder members 15a, 15b are carried, through the gaskets 16, on the upper and lower end portions of the filter 13 carried on the first step portions 14e of the first panel holder members 14a, 14b for the assembling. Brackets 11e1 are provided on a back face of the plasma display panel 11e. Fourth step portions 14h are formed with threaded holes (not shown), carry end portions of the brackets 11e1 thereon and are screw-fastened to the end portions of the brackets 11e1 through the threaded holes of the fourth step portions 14h. The first filter holder members 15a, 15b are provided with protrusions (not shown). Fitting holes (not shown) are formed in predetermined regions of connecting portions interconnecting the second step portions 14f and the third step portions 14g. The protrusions of the first filter holder members 15a, 15b are fitted in the fitting holes of the connecting portions, whereby the first filter holder members 15a, 15b are positioned. An engaging hole 14i is formed in a predetermined region of a connecting portion interconnecting the third step portion 14g and the fourth step portion 14h of the first panel holder member 14a. The cabinet 12 has a convex portion provided at a predetermined region thereof which positionally corresponds to the upper end portion of a view area of the cabinet 12. The convex portion of the cabinet 12 is fitted in the engaging hole 14.

[0060] Referring to FIG. 4, each of the second panel holder members 14c, 14d includes a longitudinal body which has a staircase-shape in cross-section and includes a first step portion 14e and a second step portion 14f arranged above the first step portion 14e of a second panel holder member and connected to the first step portion 14e of the second panel holder member so as to form a stair. First step portions 14e of the second panel holder members 14c, 14d serve to carry lower surfaces of left and right end portions of the view area of the filter 13 thereon. As will be discussed in greater detail hereinafter, each of the second filter holder
Second step portions 14f of the second panel holder members 14c, 14d each have threaded holes 14f/ formed in three predetermined regions thereof. The second step portions 14f of the second panel holder members 14c, 14d carry end portions of the second filter holder members 15c, 15d thereon and are screw-fastened to the end portions of the second filter holder members 15c, 15d through the threaded holes 14f/ when convex portions 15e1 of the second filter holder members 15c, 15d are carried, through gaskets 16, on the left and right end portions of the filter 13 carried on the first step portions 14e of the second panel holder members 14c, 14d for the assembling. Incidentally, there are enough spaces around the second panel holder members 14c, 14d for allowing mounting of the cabinet 12, as compared to the first panel holder members 14a, 14b so that the second step portions 14f of the second panel holder members 14c, 14d are designed so as to be slightly longer than the second step portions 14f of the first panel holder members 14a, 14b, and can be formed with the threaded holes 14f/.

Again referring to FIG. 3, each of the first filter holder members 15a, 15b includes a longitudinal body which has a stairs-shape in cross-section and includes the lower step portion 15e and the upper step portion 15f arranged above the lower step portion 15e and connected to the lower step portion 15e so as to form a stairs. When the first filter holder members 15a, 15b are carried, through the gaskets 16, on the filter 13 carried on the first step portions 14e of the first panel holder members 14a, 14b for assembling, the convex portions 15e1 of lower step portions 15e of the first filter holder members 15a, 15b are abutted against the gaskets 16 and the base portions of the lower step portions 15e of the first filter holder members 15a, 15b are carried on the second step portions 14f/ of the first panel holder members 14a, 14b. Upper step portions 15f of the first filter holder members 15a, 15b each have threaded holes 15f/ formed in predetermined regions thereof. The upper step portions 15f of the first filter holder members 15a, 15b are carried on the third step portions 14g of the first panel holder members 14a, 14b and screw-fastened to the third step portions 14g of the first panel holder members 14a, 14b through the threaded holes 15f/. Connecting portions which interconnect the lower step portions 15e and the upper step portions 15f have protrusions (not shown) provided at predetermined regions thereof. The protrusions of the connecting portions are fitted in holes (not shown) of the first panel holder members 14a, 14b, whereby the first filter holder members 15a, 15b are positioned.

Again referring to FIG. 4, each of the second filter holder members 15c, 15d includes a longitudinal body which includes a convex portion 15e1, an end portion which is to be carried on the second step portion 14f/ of the panel holder member 14c or 14d, and threaded holes 15f/ formed in three predetermined regions of the end portion. When the second filter holder members 15c, 15d are carried, through the gaskets 16, on the filter 13 which is carried on the first step portions 14e of the second panel holder members 14c, 14d for the assembling, the convex portions 15e1 of the second filter holder members 15c, 15d are abutted against the gaskets 16 and end portions of the second filter holder members 15c, 15d are carried on the second step portions 14f/ of the second panel holder members 14c, 14d and screw-fastened to the second step portions 14f/ of the second panel holder members 14c, 14d through the threaded holes 15f/.

When combining of the cabinet 12, the plasma display panel 11e, and the filter 13 is to be carried out by using the first panel holder members 14a, 14b, the second panel holder members 14c, 14d, the first filter holder members 15a, 15b and the second filter holder members 15c, 15d which are constructed as discussed above, they are carried on the full-scale production line.

That is, the cabinet 12 which is formed into a substantially frame-shape is carried on the full-scale production with a fitting opening 12a thereof (FIG. 2) facing upward, and the first panel holder members 14a, 14b and the second panel holder members 14c, 14d are carried on the upper, lower, left and right end portions of the view area of the cabinet 12 within the fitting opening 12a from the above in such a manner that the first step portions 14e, the second step portions 14f and the third step portions 14g are arranged in the cabinet 12. The engaging hole 14f/ of the first panel holder member 14a arranged on the upper side of the view area is fitted on the convex portion of the cabinet 12.

Then, the filter 13 is carried on the first step portions 14e of the first panel holder members 14a, 14b and second panel holder members 14c, 14d from the above. The first filter holder members 15a, 15b and the second filter holder members 15c, 15d are carried on the filter 13 in such a manner that the convex portions 15e1 of the first and second filter holder members 15a, 15b, 15c, 15d are abutted through the gaskets 16, against portions of the filter 13 which are carried on the first step portions 14e of the first and second panel holder members 14a, 14b, 14c, 14d, and the first filter holder members 15a, 15b and second filter holder members 15c, 15d positionally correspond to the first panel holder members 14a, 14b and the second panel holder members 14c, 14d. The first filter holder members 15a, 15b are positioned by causing the protrusions of the first filter holder members 15a, 15b to be fitted in the holes of the first panel holder members 14a, 14b. Unshown screws are fastened with respect to the screw-insertion holes 15f/ formed in the upper step portions 15f of the first filter holder members 15a, 15b and the screw-insertion holes 15f/ of the end portions of the second filter holder members 15c, 15d from the above. The screws are further fastened with respect to the threaded holes 14g/ formed in the third step portions 14g of the first panel holder members 14a, 14b and the threaded holes 14f/ formed in the second step portions 14f of the second panel holder members 14c, 14d.

Consequently, the end portions of the filter 13 which are interposed between the first and second panel holder members 14a, 14b, 14c, 14d and the first filter holder members 15a, 15b, 15c, 15d are interposedly held, through the gaskets 16, between the first step portions 14e of the first and second panel holder members 14a, 14b, 14c, 14d and the convex portions 15e1 of the first and second filter holder members 15a, 15b, 15c, 15d.

Succeedingly, the plasma display panel 11e is carried on the fourth step portions 14f/ of the first panel holder members 14a, 14b from the above in such a manner that the brackets 11e1 provided on the back face of the plasma display panel 11e are abutted against the fourth step portions 14f/ of the first panel holder members 14a, 14b. The plasma
display panel 11e is then secured to the respective panel holder members 14a, 14b, 14c, 14d by causing the brackets 11e1 to be screw-fastened to the fourth step portions 14b from the above through the screw-insertion holes formed in the brackets 11e1 and the threaded holes formed in the fourth step portions 14b.

[0068] Succeedingly, fixing of the respective panel holder members 14a, 14b, 14c, 14d to the cabinet 12 engaged at the upper end portion of the view area with the convex portion is carried out by causing the first panel holder member 14b to be screw-fastened to an unshown boss provided at a portion of the fitting opening 12a, which positionally corresponds to the lower end portion of the view area within the fitting opening 12a, through an unshown screw-insertion hole of the first panel holder member 14b.

[0069] According to the mounting process in which, as discussed above, the combining of the cabinet 12, the plasma display panel 11e, and the filter 13 is carried out by using both the panel holder members 14a, 14b, 14c, 14d to which the plasma display panel 11e is to be mounted, and the filter holder members 15a, 15b, 15c, 15d which are to interpose the filter 13 in cooperation with the panel holder members 14a, 14b, 14c, 14d, such a sub-line as required for the mounting of them in the related process is not required, and the plasma display panel 11e and the filter 13 are superposed from the above through the panel holder members 14a, 14b, 14c, 14d and the filter holder members 15a, 15b, 15c, 15d, on the cabinet 12 carried on the full-scale line, and can be screw-fastened from the above. Accordingly, the number of the mounting steps required in the related sub-line can be considerably reduced.

[0070] Moreover, the mounting of the filter 13 to the panel holder members 14a, 14b, 14c, 14d is not carried out directly by using screws but is carried out by causing the filter 13 to be interposedly held between the panel holder members 14a, 14b, 14c, 14d and the filter holder members 15a, 15b, 15c, 15d, so that the number of screws to be used may be a necessary minimum and can be considerably reduced. In addition, the cabinet 12 and the panel holder device 14 are engaged with each other at the upper end portion of the view area, and screw-fastened to each other at the lower portions thereof only, so that the number of screws to be required can be also reduced.

[0071] Moreover, the screw-fastening operations can be all carried out from the above side, so that it is possible to considerably improve efficiency of the screw-fastening operations, as compared to the related screw-fastening operations which are necessarily carried out from laterally, forward and rearward sides.

[0072] In addition, a distance between the plasma display panel 11e and the filter 13 can be defined at the mounting position of the panel holder device 14 and the filter holder device 15, such spacers as required in the related art are not required.

[0073] Moreover, the mounting of the cabinet 12 and the panel holder device 14 is carried out at the upper end portions thereof by means of the engaging construction as discussed above, so that in a case where the cabinet 12 is required to be separated from the panel holder device 14 at the time of any adjusting work required to be performed at the back of the plasma television 11 and at the time of maintenance work, even if the screw securing the lower end portion of the cabinet 12 is loosened, the upper end portion of the cabinet 12 is engaged with the panel holder device 14, thus preventing the cabinet 12 from being completely removed from the panel holder device 14. In addition, since the separation of the cabinet 12 from the panel holder device 14 can be performed by only loosening the screw securing the lower end portion of the cabinet 12, it is possible to improve efficiency of the work.

[0074] Accordingly, it is possible to provide an inexpensive fitting construction, a fitting method which can be performed at low cost, and a plasma television which employs the inexpensive fitting construction and produced by the fitting method.

[0075] Incidentally, while the present invention is not limited to the above-mentioned embodiment, the following variable modifications are possible.

[0076] 1. While the case where the plasma display panel is employed as a flat display panel is discussed above, the present invention is not limited to the case and can be applied to other flat display panels, such as a liquid crystal display panel, an organic EL and the like.

[0077] 2. While the case where the plasma display panel having a panel size of 37 inch or more is employed is discussed above, this is merely an example of the present invention and the panel size is not limited to 37 inch or more. Incidentally, the above-mentioned effects obtained by the present invention are remarkably produced in a case where a display panel which is large-sized and weighty is employed.

[0078] 3. While the concrete shapes of the panel holder and the filter holder employed in the illustrated example are examples, the present invention is not limited to such shapes. In short, as far as the filter which is carried on the cabinet carried in a standing up state on the line, from the above side, can be interposedly held and fixed by the panel holder and the filter holder, and the flat display panel which is also carried from the above side can be fixed, the shapes of the panel holder and the filter holder may be suitably varied.

[0079] 4. In the illustrated example, the panel holder members arranged at the upper and lower sides of the view area and the panel holder members arranged at the left and right sides of the view area are different from each other in the shape of the cross-section, and the filter holder members arranged at the upper and lower sides of the view area and the filter holder members arranged at the left and right sides of the view area are also different from each other in the shape of the cross-section. This difference is made by taking it into consideration that the cabinet 12 to which the first panel holder members 14a, 14b are mounted does not structurally have an enough space around the first panel holder members 14a, 14b, the second step portions are inevitably required to be shortened and threaded-holes cannot be formed in the second step portions, and the third step portions are provided above the second step portions and the threaded-holes are formed in the third step portions. Therefore, unless there is not such a limitation, the upper and lower panel holder members and the left and right panel holder members are not necessarily formed so as to have the cross-section of different shapes each other, and the upper
and lower filter holder members and the left and right filter holder members are not necessarily formed so as to have the cross-section of different shapes each other. They may be formed so as to have the same shape in cross-section.

5. While the screw-fastening operations can be all carried out from the above side in the illustrated embodiment, the present invention is not necessarily limited to this. As far as the mounting operations can be carried out on the production line, the screw-fastening operations may be carried out from, for example, the lateral directions. In this case, work efficiency may be slightly lowered as compared to the case where the screw-fastening operations are carried out from the above side but other effects are still obtained.

6. The engaging structure between the upper end portion of the view area of the cabinet and the upper panel holder member may be omitted. Alternatively, a fixing structure by screw-fastening may be employed. In this case, when separating operation of the cabinet is carried out, the effect of preventing the cabinet from being completely removed from the panel holder device is not obtained, but other effects can be obtained.

7. It goes without saying that the above-mentioned construction can be provided as any of the fitting construction, the fitting method and the television assembled by using the fitting construction.

Although the invention has been described in considerable detail in language specific to structural features and or method acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as preferred forms of implementing the claimed invention. Therefore, while exemplary illustrative embodiments of the invention have been described, numerous variations and alternative embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention.

What is claimed is:

1. A plasma television comprising:
   a resin-molded cabinet of a substantially frame shape;
   a plasma display panel used as a flat display panel and having a size of 37 inch or more;
   the plasma display panel including brackets provided on a back face thereof;
   the brackets having screw-insertion holes;
   the cabinet having a fitting opening and a convex portion provided at a predetermined region thereof which positionally corresponds to an upper end of a view area of the plasma display panel;
   a filter;
   a panel holder device;
   the plasma display panel being mounted to the panel holder device; and
   a filter holder device;
   the filter being interposedly held between the panel holder device and the filter holder device;
   a pair of first panel holder members arranged at upper and lower ends of the view area of the plasma display panel;
   the first panel holder members comprising rectilinear bodies each having a staircase-shape in cross-section; and
   a pair of second panel holder members arranged at left and right sides of the view area of the plasma display panel;
   the second panel holder members comprising rectilinear bodies each having a staircase-shape in cross-section;
   the rectilinear bodies of the second panel holder members being shorter than the rectilinear bodies of the first panel holder members;
   the rectilinear bodies of the first panel holder member comprising:
   first step portions for carrying back surfaces of both end portions of the filter which positionally corresponds to the upper and lower ends of the view area;
   second step portions arranged above the first step portions and connected to the first step portions so as to form stairs;
   third step portions arranged above the second portions and connected to the second step portions so as to form stairs;
   the third step portions each having threaded holes formed in four predetermined portions thereof;
   fourth step portions arranged above the third step portions, connected to the third step portions and formed so as to have substantially U-shapes in cross-section;
   the fourth step portions having threaded holes;
   connecting portions interconnecting the second step portions and the third step portions and having fitting holes;
   connecting portions interconnecting the third step portions and the fourth step portions; and
   an engaging hole formed in a connecting portion interconnecting a third step portion and a fourth step portion of a first panel holder member arranged at the upper end of the view area;
   the rectilinear bodies of the second panel holder members comprising:
   first step portions for carrying back surfaces of both end portions of the filter which positionally corresponds to the left and right side portions of the view area; and
   second step portions arranged above the first step portions of the second panel holder members, connected to the first step portions of the second panel holder members so as to form stairs, and have threaded holes formed in three predetermined regions thereof;
   the filter holder device comprising:
   a pair of first filter holder members arranged at regions of the filter which positionally correspond to the upper and lower ends of the view area;
the first filter holder members comprising rectilinear bodies each having a staircase-shape in cross-section; and

a pair of second filter holder members arranged at regions of the filter which positionally correspond to the left and right sides of the view area;

the second filter holder members comprising rectilinear bodies each having a staircase-shape in cross-section;

the rectilinear bodies of the second filter holder members being shorter than the rectilinear bodies of the first filter holder members;

the rectilinear bodies of the first filter holder members comprising:

lower step portions having convex portions and base ends;

the convex portions being abutted against gaskets and the base ends being carried on the second step portions of the first panel holder members, when the first filter holder members are carried, through the gaskets, on the filter carried on the first step portions of the first panel holder members;

upper step portions carried on the third step portions of the first panel holder members;

the upper step portions being arranged above the lower step portions and connected to the lower step portions so as to form stairs;

the upper step portions having screw-insertion holes formed in four predetermined regions thereof; and

connecting portions interconnecting the upper step portions and the lower step portions, and having protrusions provided at predetermined regions thereof;

the protrusions being fitted in the fitting holes of the first panel holder members and positioned;

the rectilinear bodies of the second filter holder members having convex portions, base ends, and screw-insertion holes formed in three predetermined regions thereof for facilitating screw-fastening;

the convex portions being abutted against gaskets and the base ends of the second filter holder members being carried on the second step portions of the second panel holder members, when the second filter holder members are carried, through the gaskets, on the filter carried on the first step portions of the second panel holder members;

wherein when the cabinet, the plasma display panel and the filter are fitted, the first panel holder members and the second holder members are carried from the above side onto the upper, lower, left and right sides of the view area within the fitting opening of the cabinet carried on a full-scale line with the fitting opening faces upwardly, in such a manner that the first step portions, the second step portions and the third step portions are arranged within the cabinet, the engaging hole of the first panel holder member is fitted on the convex portion of the cabinet;

the filter is carried from the above side onto the step portions of the first panel holder members and the step portions of the second panel holder members, the first filter holder members and the second filter holder members are carried on portions of the filter which are carried on the first step portions in such a manner that the convex portions thereof are abutted, through the gaskets, against the portions of the filter and the first filter holder members and the second filter holder members cooperate with the first panel holder members and the second holder members, respectively, the protrusions of the first filter holder members are fitted into the fitting holes of the first panel holder members, to thereby position the first filter holder members, screws are inserted from the above side into the screw-insertion holes formed in the upper step portions of the first filter holder members and the screw-insertion holes formed in the end portions of the second filter holder members, whereby the end portions of the filter are interposedly held, through the gaskets, between the first step portions of the first and second panel holder members and the convex portions of the first filter holder members and the second filter holder members and are fixed;

the plasma display panel is carried from the above side onto the fourth step portions of the first panel holder members in such a manner that the brackets of the plasma display panel are abutted against the fourth step portions of the first panel holder members, and the plasma display panel is screw-fastened from the above side to the fourth step portions of the first panel holder members utilizing the screw-insertion holes of the brackets and the threaded holes of the fourth step portions, so that the plasma display panel and the filter can be superposed from the above side, through the panel holder device and the filter holder device, onto the cabinet carried on the full-scale production line, and can be screw-fastened to the panel holder device, the filter holder device and the cabinet, the number of assembling operations conventionally required in a sub-line and the number of screws required for fitting can be reduced, spacers required to be arranged between the plasma display panel and the filter can be omitted, and the engaging hole of the first panel holder member is fitted over the convex portion of the cabinet, to thereby prevent the cabinet from being completely removed from the first panel holder member at the time of separating operation of the cabinet.

2. A flat display panel fitting construction for fitting a resin-molded cabinet of a substantially frame shape, a flat display panel, and a filter, the fitting construction comprising:

a panel holder device;

the flat display panel being mounted to the panel holder device; and

a filter holder device;

the filter being interposedly held between the panel holder device and the filter holder device; and

the cabinet having a fitting opening;

wherein when the cabinet, the plasma display panel and the filter are fitted, the panel holder device, the filter, and the filter holder are in order superposed from the above side onto the cabinet located in such a manner that the fitting opening faces upwardly, the panel holder
device and the filter holder device are fastened to each other from the above side, to thereby cause the filter to be interposedly held between the panel holder device and the filter holder device and fix the filter, and the flat display panel is superposed from the above side onto the panel holder device and fastened to the panel holder device from the above side.

3. A flat display panel fitting construction according to claim 2, wherein the panel holder device comprises four panel holder members arranged at upper, lower, left and right ends of a view area of the flat display panel, and the filter holder device comprises four filter holder members arranged at the upper, lower, left and right ends of the view area of the flat display panel, the panel holder members comprising rectilinear bodies each having a staircase-shape in cross-section, the rectilinear bodies having step portions for carrying lower surfaces of four ends of the filter, and the filter holder members comprising rectilinear bodies provided with convex portions which are abutted, through gaskets, against the filter carried on the step portions of the panel holder members, and wherein when the cabinet, the plasma display panel and the filter are fitted, the four panel holder members are carried from the above side onto the upper, lower, left and right sides of the view area within the fitting opening of the cabinet located with the fitting opening faces upwardly, in such a manner that the step portions are arranged within the cabinet, the four ends of the filter is carried from the above side onto the step portions of the panel holder members, the four filter holder members are carried on upper surfaces of the four ends of the filter in such a manner that the convex portions thereof are abutted, through the gaskets, against the upper surfaces of the four ends of the filter, the panel holder members and the filter holder members are fastened to one another from the above side, to thereby cause the filter to be interposedly held between the panel holder members and the filter holder members and fixed, and the flat display panel is superposed from the above side onto the panel holder members and fastened to the panel holder members.

4. A flat display panel fitting construction according to claim 3, wherein the flat display panel has a size of 37 inch or more, the plasma display panel includes brackets provided on a back face thereof, the brackets having screw-insertion holes,

the panel holder device comprises:

a pair of first panel holder members arranged at upper and lower ends of the view area of the plasma display panel;

the first panel holder members comprising rectilinear bodies each having a staircase-shape in cross-section; and

a pair of second panel holder members arranged at left and right sides of the view area of the plasma display panel;

the second panel holder members comprising rectilinear bodies each having a staircase-shape in cross-section;

the rectilinear bodies of the second panel holder members being shorter than the rectilinear bodies of the first panel holder members;

the rectilinear bodies of the first panel holder member comprising:

first step portions for carrying back surfaces of both end portions of the filter which positionally corresponds to the upper and lower ends of the view area;

second step portions arranged above the first step portions and connected to the first step portions so as to form stairs;

third step portions arranged above the second portions and connected to the second step portions so as to form stairs;

the third step portions each having threaded holes formed in four predetermined portions thereof;

fourth step portions arranged above the third step portions, connected to the third step portions and formed so as to have substantially U-shapes in cross-section;

the fourth step portions having threaded holes;

connecting portions interconnecting the second step portions and the third step portions and having fitting holes; and

connecting portions interconnecting the third step portions and the fourth step portions;

the rectilinear bodies of the second panel holder members comprising:

first step portions for carrying back surfaces of both end portions of the filter which positionally corresponds to the left and right side portions of the view area; and

second step portions arranged above the first step portions of the second panel holder members, connected to the first step portions of the second panel holder members so as to form stairs, and have threaded holes formed in three predetermined regions thereof;

the filter holder device comprises:

a pair of first filter holder members arranged at regions of the filter which positionally correspond to the upper and lower ends of the view area;

the first filter holder members comprising rectilinear bodies each having a staircase-shape in cross-section; and

a pair of second filter holder members arranged at regions of the filter which positionally correspond to the left and right sides of the view area;

the second filter holder members comprising rectilinear bodies each having a staircase-shape in cross-section;

the rectilinear bodies of the second filter holder members being shorter than the rectilinear bodies of the first filter holder members;

the rectilinear bodies of the first filter holder members comprising:

lower step portions having convex portions and base ends;

the convex portions being abutted against gaskets and the base ends being carried on the second step portions of the first panel holder members, when the first filter holder members are carried, through the gaskets, on the filter carried on the first step portions of the first panel holder members;

upper step portions carried on the third step portions of the first panel holder members;
the upper step portions being arranged above the lower step portions and connected to the lower step portions so as to form stairs;

the upper step portions having screw-insertion holes formed in four predetermined regions thereof; and

connecting portions interconnecting the upper step portions and the lower step portions, and having protrusions provided at predetermined regions thereof;

the protrusions being fitted in the fitting holes of the first panel holder members and positioned;

the rectilinear bodies of the second filter holder members having convex portions, base ends, and screw-insertion holes formed in three predetermined regions thereof for facilitating screw-fastening;

the convex portions being abutted against gaskets and the base ends of the second filter holder members being carried on the second step portions of the second panel holder members, when the second filter holder members are carried, through the gaskets, on the filter carried on the first step portions of the second panel holder members;

wherein when the cabinet, the plasma display panel and the filter are fitted, the first panel holder members and the second holder members are carried from the above side onto the upper, lower, left and right sides of the view area within the fitting opening of the cabinet carried on a full-scale line with the fitting opening faces upwardly, in such a manner that the first step portions, the second step portions and the third step portions are arranged within the cabinet, the engaging hole of the first panel holder member is fitted on the convex portion of the cabinet;

the filter is carried from the above side onto the step portions of the first panel holder members and the step portions of the second panel holder members, the first filter holder members and the second filter holder members are carried on portions of the filter which are carried on the first step portions in such a manner that the convex portions thereof are abutted, through the gaskets, against the portions of the filter and the first filter holder members and the second filter holder members cooperate with the first panel holder members and the second holder members, respectively, the protrusions of the first filter holder members are fitted into the fitting holes of the first panel holder members, to thereby position the first filter holder members, screws are inserted from the above side into the screw-insertion holes formed in the upper step portions of the first filter holder members and the screw-insertion holes formed in the end portions of the second filter holder members, whereby the end portions of the filter are interposedly held, through the gaskets, between the first step portions of the first and second panel holder members and the convex portions of the first filter holder members and the second filter holder members and are fixed;

the plasma display panel is carried from the above side onto the fourth step portions of the first panel holder members in such a manner that the brackets of the plasma display panel are abutted against the fourth step portions of the first panel holder members, and the plasma display panel is screw-fastened from the above side to the fourth step portions of the first panel holder members utilizing the screw-insertion holes of the brackets and the threaded holes of the fourth step portions, so that the plasma display panel and the filter can be superposed from the above side, through the panel holder device and the filter holder device, onto the cabinet carried on the full-scale production line, and can be screw-fastened to the panel holder device, the filter holder device and the cabinet, the number of assembling operations conventionally required in a sub-line and the number of screws required for fitting can be reduced, and spacers required to be arranged between the plasma display panel and the filter can be omitted.

5. A flat display panel fitting construction according to claim 4, wherein the cabinet has a convex portion provided at a predetermined region thereof which positionally corresponds to the upper end of the view area, a first panel holder member arranged at the upper end of the view area has an engaging hole formed in a predetermined region of a connecting portion interconnecting a third step portion and a fourth step portion thereof, and wherein when the cabinet, the plasma display panel, and the filter are fitted, the engaging hole positioned at the above side of the view area in the first panel holder member is fitted over the convex portion of the cabinet, to thereby prevent the cabinet from being completely removed from the first panel holder member at the time of separating operation of the cabinet.

6. A method for fitting a cabinet, a flat display panel, and a filter, the cabinet having a fitting opening, the method comprising the steps of:

causing the cabinet to be arranged in such a manner that the fitting opening faces upwardly;

causing a panel holder device, the filter, and a filter holder device to be in order superposed onto the cabinet from the above side;

causing the panel holder device and the filter holder device to be fastened to each other form the above side, to thereby cause the filter to be interposedly held between the panel holder device and the filter holder device and fixed;

thereafter, causing the flat display panel to be superposed onto the panel holder device from the above side; and

causing the flat display panel to be fastened to the panel holder device from the above side, and fixed.

* * * * *