(12) STANDARD PATENT

(11) Application No. AU 2013336601 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title

Vector for liver-directed gene therapy of hemophilia and methods and use thereof

(51) International Patent Classification(s)

A61K 38/36 (2006.01)

C12N 15/86 (2006.01)

A61K 48/00 (2006.01)

(21) Application No: **2013336601**

(22) Date of Filing: 2013.10.25

(87) WIPO No: WO14/064277

(30) Priority Data

(31) Number (32) Date (33) Country

PCT/EP2013/064054 2013.07.03 EP PCT/EP2012/071297 2012.10.26 EP

(43) Publication Date: **2014.05.01** (44) Accepted Journal Date: **2018.01.25**

(71) Applicant(s)

Vrije Universiteit Brussel

(72) Inventor(s)

Vandendriessche, Thierry; Chuah, Marinee

(74) Agent / Attorney

Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001, AU

(56) Related Art

Wu et al, Optimization of Self-complementary AAV Vectors for Liver-directed Expression Results in Sustained Correction of Hemophilia B at Low Vector Dose, MOLECULAR THERAPY, 2008, pages 280-289

WO 2009130208 A1

WO 2011005968 A1

A. CANTORE ET AL, "Hyperfunctional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice", BLOOD, (20121004), vol. 120, no. 23, doi:10.1182/blood-2012-05-432591, ISSN 0006-4971, pages 4517 - 4520

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2014/064277 A1

(43) International Publication Date 1 May 2014 (01.05.2014)

(51) International Patent Classification: A61K 38/36 (2006.01) C12N 15/86 (2006.01) A61K 48/00 (2006.01)

(21) International Application Number:

PCT/EP2013/072450

(22) International Filing Date:

25 October 2013 (25.10.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PCT/EP2012/071297

26 October 2012 (26.10.2012) EP PCT/EP2013/064054 3 July 2013 (03.07.2013) EP

VRIJE UNIVERSITEIT BRUSSEL [BE/BE]; Pleinlaan 2, B-1050 Brussel (BE).

(72) Inventors: VANDENDRIESSCHE, Thierry: Tiensesteenweg 250, B-3360 Bierbeek (BE). CHUAH, Marinee; Tiensesteenweg 250, B-3360 Bierbeek (BE).

(74) Agents: VANHALST, Koen Victor Rachel et al.; De Clercq & Partners, E. Gevaertdreef 10a, B-9830 Sint-Martens-Latem (BE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: VECTOR FOR LIVER-DIRECTED GENE THERAPY OF HEMOPHILIA AND METHODS AND USE THEREOF

1

VECTORS FOR LIVER-DIRECTED GENE THERAPY OF HEMOPHILIA AND METHODS AND USE THEREOF

FIELD OF THE INVENTION

The invention relates to expression vectors for gene therapy with improved liver-specific expression capabilities, particularly for use as a gene therapy means for the treatment of hemophilia, more particularly for restoring coagulation factor IX (FIX) and/or coagulation factor VIII (FVIII) in liver-directed gene therapy of respectively, hemophilia B and hemophilia A.

10

15

20

25

30

35

BACKGROUND OF THE INVENTION

Hemophilia B is an X-linked, recessive bleeding disorder caused by deficiency of clotting factor IX (FIX). The clinical presentation for hemophilia B is characterized by episodes of spontaneous and prolonged bleeding. There are an estimated 1 in 20,000 individuals who suffer from hemophilia B. Currently, hemophilia B is treated with protein replacement therapy using either plasma-derived or recombinant FIX. Although FIX protein replacement markedly improved the life expectancy of patients suffering from hemophilia, they are still at risk for severe bleeding episodes and chronic joint damage, since prophylactic treatment is restricted by the short half-life, the limited availability and the high cost of purified FIX, which can approach 100.000\$/patient/year. In addition, the use of plasma-derived factors obtained from contaminated blood sources increases the risk of viral transmission. Gene therapy offers the promise of a new method of treating hemophilia B, since the therapeutic window is relatively broad and levels slightly above 1% of normal physiologic levels are therapeutic. If successful, gene therapy could provide constant FIX synthesis which may lead to a cure for this disease. The different modalities for gene therapy of hemophilia have been extensively reviewed (Chuah et al., 2012a, 2012b, 2012c; VandenDriessche et al., 2012; High 2001, 2011; Matrai et al., 2010a, 2010b).

Hemophilia A is a serious bleeding disorder caused by a deficiency in, or complete absence of, the blood coagulation factor VIII (FVIII). The severity of hemophilia A and hemophilia B has been classified by the subcommittee on Factor VIII and Factor IX of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis into three forms, depending on respectively, the FVIII level and the FIX level:

1) severe form (FVIII or FIX level less than 0.01 international units (IU)/mI, i.e. less than 1% of normal FVIII or FIX level), 2) moderate form (FVIII or FIX level from 0.01 to 0.05

2

IU/ml, i.e. from 1 to 5% of normal FVIII or FIX level), and 3) mild from (FVIII or FIX level higher than 0.05 to 0.4 IU/ml, i.e. higher than 5 to 40% of normal FVIII or FIX level). Hemophilia A is the most common hereditary coagulation disorder with an incidence approaching approximately 1 in 5000 males.

5

10

15

20

25

30

35

Protein substitution therapy (PST) with purified or recombinant FVIII has significantly improved the patients' quality of life. However, PST is not curative and patients are still at risk of developing potentially life-threatening hemorrhages and crippling joint inflammation. Unfortunately, many patients suffering from hemophilia A (up to 40%) develop neutralizing antibodies to FVIII (i.e. "inhibitors") following PST. These inhibitors complicate the management of bleeding episodes and can render further PST ineffective. These limitations of PST, justify the development of gene therapy as a potential alternative for hemophilia treatment. Furthermore, only a modest increase in FVIII plasma concentration is needed for therapeutic benefit, with levels of more than 1% of normal levels able to achieve markedly reduced rates of spontaneous bleeding and long-term arthropathy.

The liver is the main physiological site of FIX and FVIII synthesis and hence, hepatocytes are well suited target cells for hemophilia gene therapy. From this location, FIX protein can easily enter into the circulation. Moreover, the hepatic niche may favor the induction of immune tolerance towards the transgene product (Annoni et al., 2007; Follenzi et al., 2004; Brown et al., 2007; Herzog et al., 1999; Matrai et al., 2011; Matsui et al., 2009). Liver-directed gene therapy for hemophilia can be accomplished with different viral vectors including retroviral (Axelrod et al., 1990; Kay et al., 1992; VandenDriessche et al., 1999, Xu et al., 2003, 2005), lentiviral (Ward et al., 2011, Brown et al., 2007, Matrai et al., 2011), adeno-associated viral (AAV) (Herzog et al., 1999) and adenoviral vectors (Brown et al., 2004)(Ehrhardt & Kay, 2002). In particular, AAV is a naturally occurring replication defective non-pathogenic virus with a single stranded DNA genome. AAV vectors have a favorable safety profile and are capable of achieving persistent transgene expression. Long-term expression is predominantly mediated by episomally retained AAV genomes. More than 90% of the stably transduced vector genomes are extra-chromosomal, mostly organized as high-molecular-weight concatamers. Therefore, the risk of insertional oncogenesis is minimal, especially in the context of hemophilia gene therapy where no selective expansion of transduced cells is expected to occur. Nevertheless, oncogenic events have been reported following AAV-based gene transfer (Donsante et al., 2007) but it has been difficult to reproduce these findings in other model systems (Li et al., 2011). The major limitation of AAV vectors is the limited packaging capacity of the vector particles (i.e. approximately 4.7 kb), constraining the size of the transgene expression

3

cassette to obtain functional vectors (Jiang et al., 2006). Several immunologically distinct AAV serotypes have been isolated from human and non-human primates (Gao et al., 2002, Gao et al. 2004), although most vectors for hemophilia gene therapy were initially derived from the most prevalent AAV serotype 2. The first clinical success of AAV-based gene therapy for congenital blindness underscores the potential of this gene transfer technology (Bainbridge et al., 2008).

5

10

15

20

25

30

35

AAV-mediated hepatic gene transfer is an attractive alternative for gene therapy of hemophilia for both liver and muscle-directed gene therapy (Herzog et al., 1997, 1999, 2002; Arruda et al., 2010; Fields et al., 2001; Buchlis et al., 2012; Jiang et al., 2006; Kay et al., 2000). Preclinical studies with the AAV vectors in murine and canine models of hemophilia or non-human primates have demonstrated persistent therapeutic expression, leading to partial or complete correction of the bleeding phenotype in the hemophilic models (Snyder et al., 1997, 1999; Wang et al., 1999, 2000; Mount et al., 2002; Nathwani et al., 2002). Particularly, hepatic transduction conveniently induces immune tolerance to FIX that required induction of regulatory T cells (Tregs) (Mingozzi et al., 2003; Dobrzynski et al., 2006). Long-term correction of the hemophilia phenotype without inhibitor development was achieved in inhibitor-prone null mutation hemophilia B dogs treated with liver-directed AAV2-FIX gene therapy (Mount et al, 2002). In order to further reduce the vector dose, more potent FIX expression cassettes have been developed. This could be accomplished by using stronger promoter/enhancer elements, codon-optimized FIX or self-complementary, double-stranded AAV vectors (scAAV) that overcome one of the limiting steps in AAV transduction (i.e. single-stranded to double-stranded AAV conversion) (McCarty, 2001, 2003; Nathwani et al, 2002, 2006, 2011; Wu et al., 2008). Alternative AAV serotypes could be used (e.g. AAV8 or AAV5) that result in increased transduction into hepatocytes, improve intra-nuclear vector import and reduce the risk of T cell activation (Gao et al., 2002; Vandenberghe et al., 2006). Liver-directed gene therapy for hemophilia B with AAV8 or AAV9 is more efficient than when lentiviral vectors are used, at least in mice, and resulted in less inflammation (VandenDriessche et al., 2007, 2002). Furthermore, recent studies indicate that mutations of the surface-exposed tyrosine residues allow the vector particles to evade phosphorylation and subsequent ubiquitination and, thus, prevent proteasome-mediated degradation, which resulted in a 10-fold increase in hepatic expression of FIX in mice (Zhong et al., 2008).

These liver-directed preclinical studies paved the way toward the use of AAV vectors for clinical gene therapy in patients suffering from severe hemophilia B. Hepatic delivery of AAV-FIX vectors resulted in transient therapeutic FIX levels (maximum 12% of normal

4

5

10

15

20

25

30

35

levels) in subjects receiving AAV-FIX by hepatic artery catheterization (Kay et al., 2000). However, the transduced hepatocytes were able to present AAV capsid-derived antigens in association with MHC class I to T cells (Manno et al., 2006, Mingozzi et al., 2007). Although antigen presentation was modest, it was sufficient to flag the transduced hepatocytes for T cell-mediated destruction. Recently, gene therapy for hemophilia made an important step forward (Nathwani et al., 2011; Commentary by VandenDriessche & Chuah, 2012). Subjects suffering from severe hemophilia B (<1% FIX) were injected intravenously with self-complementary (sc) AAV8 vectors expressing codon-optimized FIX from a liver-specific promoter. This AAV8 serotype exhibits reduced cross-reactivity with pre-existing anti-AAV2 antibodies. Interestingly, its uptake by dendritic cells may be reduced compared to conventional AAV2 vectors, resulting in reduced T cell activation (Vandenberghe et al., 2006). In mice, AAV8 allows for a substantial increase in hepatic transduction compared to AAV2, though this advantage may be lost in higher species, like dog, rhesus monkeys and man. Subjects received escalating doses of the scAAV8-FIX vector, with two participants per dose. All of the treated subjects expressed FIX above the therapeutic 1% threshold for several months after vector administration, yielding sustained variable expression levels (i.e. 2 to 11% of normal levels). The main difference with the previous liver-directed AAV trial is that for the first time sustained therapeutic FIX levels could be achieved after gene therapy. Despite this progress, T-cell mediated clearance of AAV-transduced hepatocytes remains a concern consistent with elevated liver enzyme levels in some of the patients. Transient immune suppression using a short course of glucocorticoids was used in an attempt to limit this vector-specific immune response.

One of the significant limitations in the generation of efficient viral gene delivery systems for the treatment of hemophilia A by gene therapy is the large size of the FVIII cDNA. Previous viral vector-based gene therapy studies for hemophilia A typically relied on the use of small but weak promoters, required excessively high vector doses that were not clinically relevant or resulted in severely compromised vector titers. Several other *ad hoc* strategies were explored, such as the use of split or dual vector design to overcome the packaging constraints of AAV, but these approaches were overall relatively inefficient and raised additional immunogenicity concerns (reviewed in Petrus et al., 2010). It has been found that the FVIII B domain is dispensable for procoagulant activity. Consequently, FVIII constructs in which the B domain is deleted are used for gene transfer purposes since their smaller size is more easily incorporated into vectors. Furthermore, it has been shown that deletion of the B domain leads to a 17-fold increase in mRNA and primary translation product. FVIII wherein the B domain is deleted and replaced by a short 14-amino acid

5

linker is currently produced as a recombinant product and marketed as Refacto® for clinical use (Wyeth Pharma) (Sandberg et al., 2001). Miao et al. (2004) added back a short B domain sequence to a B domain deleted FVIII, optimally 226 amino acids and retaining 6 sites for N-linked glycosylation, to improve secretion. McIntosh et al. (2013) replaced the 226 amino-acid spacer of Miao et al. with a 17 amino-acid peptide in which six glycosylation triplets from the B-domain were juxtaposed. Yet, production was still not sufficient for therapeutic purposes.

5

10

15

20

25

30

35

Non-viral vectors typically rely on a plasmid-based gene delivery system, where only the naked DNA is delivered, potentially in conjunction with physicochemical methods that facilitate transfection. Consequently, the non-viral approach maybe less immunogenic and potentially safer than viral vectors, though innate immune response may still occur. The non-viral gene transfer method is simple, but the efficiency is generally low compared to most viral vector-mediated gene transfer approaches. Efficient in vivo gene delivery of non-viral vectors remains a bottleneck. Typically, for hepatic gene delivery, plasmids are administered by hydrodynamic injection. In this case, a hydrodynamic pressure is generated by rapid injection of a large volume of DNA solution into the circulation, in order to deliver the gene of interest in the liver (Miao et al., 2000). Efforts are being made to adapt hydrodynamic injection towards a clinically relevant modality by reducing the volume of injection along with maintaining localized hydrodynamic pressure for gene transfer. Alternative approaches based on targetable nanoparticles are being explored to achieve target specific delivery of FIX into hepatocytes. Expression could be prolonged by removing bacterial backbone sequences which interfere with long term expression (i.e. mini-circle DNA) Finally, to increase the stability of FIX expression after non-viral transfection, transposons could be used that result in stable genomic transgene integration. We and others have shown that transposons could be used to obtain stable clotting factor expression following in vivo gene therapy (Yant et al., 2000; Mates, Chuah et al., 2009, VandenDriessche et al., 2009; Kren et al., 2009; Ohlfest et al., 2004).

An exemplary state of the art vector for liver-specific expression of FIX is described in WO2009/130208 and is composed of a single-stranded AAV vector that contains the TTR/Serp regulatory sequences driving a factor cDNA. A FIX first intron was included in the vector, together with a poly-adenylation signal. Using said improved vector yielded about 25-30% stable circulating factor IX.

In order to translate viral-vector based gene therapy for hemophilia to the clinic, the safety concerns associated with administering large vector doses to the liver and the need for manufacturing large amounts of clinical-grade vector must be addressed. Increasing the

potency (efficacy per dose) of gene transfer vectors is crucial towards achieving these goals. It would allow using lower doses to obtain therapeutic benefit, thus reducing potential toxicities and immune activation associated with in vivo administration, and easing manufacturing needs.

One way to increase potency is to engineer the transgene sequence itself to maximize expression and biological activity per vector copy. We have shown that FIX transgenes optimized for codon usage and carrying an R338L amino acid substitution associated with clotting hyperactivity and thrombophilia (Simioni et al., 2009), increase the efficacy of gene therapy using lentiviral vector up to 15-fold in hemophilia B mice, without detectable adverse effects, substantially reducing the dose requirement for reaching therapeutic efficacy and thus facilitating future scale up and its clinical translation (Cantore et al., 2012).

Also codon optimization of human factor VIII cDNAs leads to high-level expression. Significantly greater levels (up to a 44-fold increase and in excess of 200% normal human levels) of active FVIII protein were detected in the plasma of neonatal hemophilia A mice transduced with lentiviral vector expressing FVIII from a codon-optimized cDNA sequence, thereby successfully correcting the disease model (Ward et al., 2011).

It is an object of the present invention to increase the efficiency and safety of liver-directed gene therapy for hemophilia A and B.

In the claims which follow and in the description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

SUMMARY OF THE INVENTION

It is an object of the present invention to increase the efficiency and safety of liver-directed gene therapy for hemophilia B. The above objective is accomplished by providing a vector, either a viral vector, in particular an AAV-based vector, or a non-viral vector, in particular a transposon-based vector, comprising a nucleic acid expression cassette with

specific regulatory elements that enhance liver-directed gene expression, while retaining tissue specificity, in conjunction with the use of a human FIX gene containing a hyperactivating mutation and/or a codon-optimized transgene.

The resulting vector and nucleic acid expression cassette results in unexpectedly high expression levels of FIX in the liver, due to its unique combination of regulatory elements and the choice of vector type and transgene. The combined effect of these elements could not have been predicted. In WO2009/130208 for example, the given AAV-based vector yielded about 25-30% stable circulating factor IX. In the current application the new vector obtained 500-600% of stable circulating factor IX levels. This represents a more than 20-

10

15

20

25

30

35

fold increase in FIX levels due to the unique combination of elements of the nucleic acid expression cassette and vector of the present invention. In particular, the inventors demonstrated in Example 7 that specific combinations of the Serpin enhancer (called "Serp" or "SerpEnh" herein) with codon-optimized hFIX transgene or the Serpin enhancer with transgene encoding hFIX containing the Padua mutation provide for synergistic effects on FIX activity. The highest hFIX activity was measured in mice hydrodynamically injected with a plasmid comprising the unique combination of the Serpin enhancer with a codon-optimized transgene encoding hFIX containing the Padua mutation. hFIX activity in these mice was up to 265-fold higher as compared to hFIX activity in mice injected with a corresponding hFIX plasmid without the Serpin enhancer, the codon-optimization and the Padua mutation. This increase in hFIX activity was shown to be synergistic.

It is another object of the present invention to increase the efficiency and safety of liver-directed gene therapy for hemophilia A. As shown in the experimental section, this objective is accomplished by providing a vector either a viral vector, in particular an AAV-based vector, or a non-viral vector, in particular a transposon-based vector, comprising a nucleic acid expression cassette with specific regulatory elements that enhance liver-directed gene expression, while retaining tissue specificity, in particular the Serpin enhancer, in conjunction with the use of a codon-optimized human FVIII construct, in particular a codon-optimized B domain deleted FVIII construct.

The resulting AAV-based vector and nucleic acid expression cassette resulted in unprecedented, supra-physiologic FVIII expression levels (i.e. more than 200% of normal level) using relatively low vector doses (5x10⁹ vg/mouse). This constitutes a robust 50-fold improvement in FVIII expression levels, when compared to AAV vectors that expressed a codon-optimized B domain deleted FVIII cDNA from a truncated liver-specific promoter (McInthosh et al. 2013). This represents a significant improvement over the latest generation AAV-FVIII vectors and an important step towards clinical translation. The inventors demonstrated in Example 6 that the specific combination of the Serpin enhancer with the codon-optimized B domain deleted FVIII transgene provides for a synergistic effect on FVIII expression levels compared to expression cassettes containing either the Serpin enhancer or the codon-optimized B domain deleted FVIII transgene.

The inventors further demonstrated in Example 5 that the inclusion of the MVM intron into the nucleic acid expression cassettes disclosed herein provides for unexpectedly increased expression of the transgene operably linked thereto.

The invention therefore provides the following aspects:

- Aspect 1. A vector comprising a nucleic acid expression cassette comprising a liver-specific regulatory element, a promoter, optionally a minute virus of mouse (MVM) intron, a transgene, preferably a codon-optimized transgene, and a transcriptional termination signal.
- 5 Aspect 2. The vector according to aspect 1, wherein said transgene encodes for factor VIII or factor IX.
 - Aspect 3. The vector according to aspect 2, wherein said coagulation factor VIII has a deletion of the B domain.
- Aspect 4. The vector according to aspect 3, wherein said B domain of said FVIII is replaced by a linker having SEQ ID NO:16.
 - Aspect 5. The vector according to aspect 2, wherein said coagulation factor IX contains a hyper-activating mutation.
 - Aspect 6. The vector according to aspect 5, wherein said hyper-activating mutation in coagulation factor IX corresponds to an R338L amino acid substitution.
- Aspect 7. The vector according to any one of aspects 2 to 6, wherein said transgene encoding for coagulation factor VIII or IX is codon-optimized.
 - Aspect 8. The vector according to any one of aspects 1 to 4, or 7, wherein said transgene encoding for coagulation factor VIII has SEQ ID NO:7.
- Aspect 9. The vector according to any one of aspects 1 to 8, wherein said liver-specific regulatory element contains sequences from the serpin promoter.
 - Aspect 10. The vector according to any one of aspects 1 to 9, wherein said liver-specific regulatory element comprises or consists of SEQ ID NO:8, or a sequence having 95% identity to said sequence, preferably wherein said liver-specific regulatory element is the Serpin enhancer.
- Aspect 11. The vector according to any one of aspects 1 to 10, wherein said promoter is derived from the transthyretin (TTR) promoter, preferably the minimal TTR promotor.
 - Aspect 12. The vector according to any one of aspects 1 to 11, wherein said transcriptional termination signal is derived from the bovine growth hormone polyadenylation signal or from the Simian virus 40 polyadenylation signal.
- 30 Aspect 13. The vector according to any one of aspects 1 to 12, wherein said vector is a viral vector.

- Aspect 14. The vector according to aspect 13, wherein said vector is derived from an adeno-associated virus (AAV), preferably AAV serotype 9.
- Aspect 15. The vector according to aspect 14, wherein said vector is a single-stranded AAV, preferably single-stranded AAV serotype 9.
- Aspect 16. The vector according to any one of aspects 1 to 4, 7 to 15, having SEQ ID NO: 6, or the vector according to any one of aspects 1, 2, 5 to 7, 9 to 15, or 17, having SEQ ID NO: 1 or 2.
 - Aspect 17. The vector according to aspect 14, wherein said vector is a self-complementary AAV, preferably self-complementary AAV serotype 9.
- 10 Aspect 18. The vector according to any one of claims 1 to 12, wherein said vector is a non-viral vector.
 - Aspect 19. The vector according to aspect 18, wherein said vector is a transposon-based vector.
- Aspect 20. The vector according to aspect 19, wherein said vector is a PiggyBac(PB)based vector, such as the PB-based vector having SEQ ID NO:13, preferably a PiggyBacbased vector comprising micro inverted repeats, more preferably the PB-based vector
 having SEQ ID NO: 14 or 15, or a Sleeping Beauty(SB)-based vector, preferably the SBbased vector having SEQ ID NO:16.
- Aspect 21. A method to obtain levels of factor VIII in plasma equal to or higher than the therapeutic threshold concentration of 10 mU/ml plasma in a subject, comprising the transduction or transfection of the vector according to any one of claims 1 to 4, 7 to 20 into a subject.
 - Aspect 22. The method according to aspect 21, wherein the transduction of the vector according to any one of claims 1 to 4, 7 to 17 into the subject is done at a dose lower than 2.5x10¹¹ vg/kg.

- Aspect 23. A method to obtain levels of factor IX in plasma equal to or higher than the therapeutic threshold concentration of 10mU/ml plasma in a subject, comprising the transduction or transfection of the vector according to any one of aspects 1, 2, 5 to 15, 17 to 20 into a subject.
- 30 Aspect 24. The method according to aspect 23, wherein the transduction of the vector according to any one of aspects 1, 2, 5 to 15, 17 into the subject is done at a dose lower than 2x10¹¹ vg/kg.

- Aspect 24. The method according to aspect 23, used to obtain levels of factor IX in plasma equal to or higher than the therapeutic concentration of 100 mU/ml in a subject, wherein the transduction of the vector according to any one of aspects 1, 2, 5 to 15, 17 into the subject is done at a dose lower than or equal than 6x10¹¹ vg/kg.
- Aspect 25. The method according to aspect 23, used to obtain levels of factor IX in plasma equal to or higher than the therapeutic concentration of 50 mU/ml in a subject, wherein the transduction of the vector according to any one of aspects 1, 2, 5 to 15, 17 into the subject is done at a dose lower than or equal than 6x10¹¹ vg/kg.
- Aspect 26. The method according to aspect 23, used to obtain levels of factor IX in plasma equal to or higher than the therapeutic concentration of 200 mU/ml in a subject, wherein the transduction of the vector according to any one of aspects 1, 2, 5 to 15, 17 into the subject is done at a dose lower than or equal than 2x10¹² vg/kg.
 - Aspect 27. The method according to aspect 23, used to obtain levels of factor IX in plasma equal to or higher than the therapeutic concentration of 150 mU/ml in a subject, wherein the transduction of the vector according to any one of claims 1, 2, 5 to 15, 17 into the subject is done at a dose lower than or equal than 2x10¹² vg/kg.

- Aspect 28. The method according to any one of aspects 21 to 27, wherein said transduction or transfection is by intravenous administration.
- Aspect 29. The method according to any one of aspects 21 or 23, wherein said transfection is by hydrodynamic transfection.
 - Aspect 30. The method according to any one of aspects 21, 23, 28 or 29, wherein a vector according to any one of aspects 19 or 20 is administered in combination with a vector encoding a transposase, preferably a hyperactive transposase.
- Aspect 31. The method according to any one of aspects 21 to 30, wherein said subject is a mammalian subject, preferably a human subject.
 - Aspect 32. A method for treating hemophilia A in a mammalian subject, comprising performing the method according to any one of aspects 21, 22, 28 to 31.
 - Aspect 33. The use of the vector according to any one of aspects 1 to 4, 7 to 20 for the manufacture of a medicament to treat hemophilia A.
- 30 Aspect 34. The vector according to any one of aspects 1 to 4, 7 to 20 for use in the treatment of hemophilia A.

- Aspect 35. A method for treating hemophilia B in a mammalian subject, comprising performing the method according to any one of aspects 23 to 31.
- Aspect 36. The use of the vector according to any one of aspects 1, 2, 5 to 15, 17 to 20 for the manufacture of a medicament to treat hemophilia B.
- 5 Aspect 37. The vector according to any one of aspects 1, 2, 5 to 15, 17 to 20 for use in the treatment of hemophilia B.
 - Aspect 38. A pharmaceutical composition comprising a vector according to any one of aspects 1 to 4, 7 to 20 and a pharmaceutically acceptable carrier, optionally further comprising an active ingredient for treating hemophilia A.
- Aspect 39. The pharmaceutical composition according to aspect 38 for use in treating hemophilia A.
 - Aspect 40. The pharmaceutical composition for use according to aspect 39, or the vector for use according to aspect 34, wherein said treatment results in levels of factor VIII in plasma of the treated subject that are equal to or higher than the therapeutic threshold concentration of 10 mU/ml plasma in a subject.
 - Aspect 41. The pharmaceutical composition for use according to any one of aspects 39 or 40, or the vector for use according to any one of aspects 34 or 40, wherein said treatment comprises the transduction of the vector according to any one of claims 1 to 4, 7 to 17 into the subject at a dose lower than or equal than 2.5x10¹¹ vg/kg.
- Aspect 42. A pharmaceutical composition comprising a vector according to any one of aspects 1, 2, 5 to 15, 17 to 20 and a pharmaceutically acceptable carrier, optionally further comprising an active ingredient for treating hemophilia B.
 - Aspect 43. The pharmaceutical composition according to aspect 42, for use in treating hemophilia B.
- Aspect 44. The pharmaceutical composition for use according to aspect 43, or the vector for use according to aspect 37, wherein said treatment results in levels of factor IX in plasma of the treated subject that are equal to or higher than the therapeutic threshold concentration of 10 mU/ml plasma in a subject, preferably equal to or higher than the therapeutic concentration of 50 mU/ml plasma in a subject, more preferably equal to or higher than the therapeutic concentration of 100 mU/ml plasma in a subject, even more preferably equal to or higher than the therapeutic concentration of 150 mU/ml plasma in a subject and even more preferably equal to or higher than the therapeutic concentration of 200 mU/ml plasma in a subject.

12

Aspect 45. The pharmaceutical composition for use according to aspect 43 or 44, or the vector for use according to aspect 37 or 44, wherein said treatment comprises the transduction of the vector according to any one of aspects 1, 2, 5 to 15, 17 to 20 into the subject at a dose lower than or equal than $2x10^{12}$ vg/kg, preferably at a dose lower than or equal than $6x10^{11}$ vg/kg, more preferably at a dose lower than or equal than $2x10^{11}$ vg/kg.

BRIEF DESCRIPTION OF THE FIGURES

The present invention is illustrated by the following figures which are to be considered for illustrative purposes only and in no way limit the invention to the embodiments disclosed therein:

Figure 1 A) shows a schematic diagram of the AAV9-SerpEnh-TTRm-MVM-co-hFIX construct (pdsAAVsc SerpTTRmMVMF9coptpA) with indication where the liver-specific Serpin regulatory element ("Serp" or "SerpEnh") is inserted upstream of the transthyretin minimal promoter (TTRm). Abbreviations used are: ITR: viral inverted terminal repeat; mTTR: minimal transthyretin promoter; MVM: minute virus mouse; huFIXcoptMT: codon-optimized FIX; bGHpA: polyadenylation signal of bovine growth hormone; B) shows the sequence of the AAV9-SerpEnh-TTRm-MVM-co-hFIX construct (SEQ ID No. 1) and C) shows the sequence of the AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L construct (SEQ ID No. 2).

Figure 2 shows FIX activity after intravenous injection of AAV9-SerpEnh-TTRm-MVM-co-hFIX construct (pdsAAVsc SerpTTRmMVMF9coptpA) or AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L construct in FIX-deficient hemophilia B mice. AAV vectors expressing either the human codon-optimized FIX cDNA were designated as AAV-co-hFIX or the human codon-optimized FIX-R338L cDNA as AAV-co-padua-hFIX. hFIX activity levels were determined using a chromogenic activity assay on citrated plasma. Mice were injected with different vectors dose of the cognate self-complementary AAV9 vectors (10⁹ vg, 5x10⁹ vg, 2x10¹⁰ vg).

30

35

5

10

15

20

25

Figure 3 A) shows a schematic representation of the AAV9sc-SerpEnh-TTRm-MVM-co-hFIX-R338L vector. The expression cassette was packaged in a self-complimentary (sc) adeno-associated virus serotype 9 (AAV9), flanked by the 5' and 3' AAV inverted terminal repeats (ITR). The liver-specific minimal transthyretin (TTRm) promoter drives the codon-optimized human FIX with R338L mutation (co-hFIX-R338L) transgene. The hepatocyte-

specific regulatory elements ("Serp" or "SerpEnh") are located upstream of the TTRm promoter. The minute virus of mouse mini-intron (MVM) intron and bovine growth hormone polyadenylation site (pA) are also indicated. **B)** shows a schematic representation of a control vector AAV9-SerpEnh-TTRm-MVM-co-hFIX, which is identical to the AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L vector, but the transgene, codon-optimized hFIX, does not contain the R338L mutation. **C)** compares the R338L or Padua mutation in human FIX fragment (SEQ ID NO:23), making hFIX hyper-functional, with human FIX fragment (SEQ ID NO:24).

5

35

10 Figure 4. Evaluation of codon-optimized and hyper-functional FIX transgenes by AAV9 delivery in hemophilic mice. Mice were intravenously administered 1x109 vg/mouse (A,B), 5x10⁹ vg/mouse (C,D) or 2x10¹⁰vg/mouse (E,F) of AAV9sc-SerpEnh-TTRm-MVM-cohFIX-R338L (indicated as cohFIX-R338L) or AAV9sc-SerpEnh-TTRm-MVM-co-hFIX-(indicated as cohFIX) vector. hFIX activity (A, C, E) and hFIX protein (B, D, F) were 15 measured by clotting activity using chromogenic FIX activity assays (n = 3) and by ELISA (n = 3), respectively, on plasma samples collected at the indicated times after AAV administration. (G, H, I) Hemophilic mice were intravenously administered 1x109 vg/mouse (G), 5x10⁹ vg/mouse (H) or 2x10¹⁰vg/mouse (I) of AAV9-SerpEnh-TTRm-MVMco-hFIX-R338L (n = 3). For each dose, hFIX expression (hFIX protein) was compared to 20 the corresponding FIX clotting activity. (J) D-dimer levels and hFIX activity were determined in mice injected with AAV9sc-SerpEnh-TTRm-MVM-co-hFIX-R338L (indicated as AAV cohFIX R338L) or AAV9sc-SerpEnh-TTRm-MVM-co-hFIX (indicated as AAV cohFIX) vector at the indicated doses and compared to non-injected control mice. D-dimer levels were determined by ELISA and hFIX activity was analyzed by chromogenic assay. The D-dimer positive control is shown. Results are presented as mean±SEM. *: p<0.05, 25 **: p<0.01, ***: p<0.001 (t- test). (K) Analysis of immune tolerance induction in hemophilia B mice injected with 5x109 vg/mouse of AAV9sc-SerpEnh-TTRm-MVM-co-hFIX-R338L (indicated as cohFIX-R338L, n=4). FIX-specific antibodies were measured by ELISA at week 2 (w2), w4, w6 and w8 after immunization with hFIX protein, as indicated. The 30 immunizations were initiated 2 weeks after vector administration. Immunized PBS-injected hemophilia B mice (n=4) were used as control.

Figure 5. Biodistribution and transduction efficiency in different organs of mice injected with AAV9sc-SerpEnh-TTRm-MVM-co-hFIX-R338L (indicated as cohFIX-R338L, n = 3) or AAV9sc-SerpEnh-TTRm-MVM-co-hFIX (indicated as cohFIX, n = 3). **(A, B)** AAV copy number relative to 100 ng of genomic DNA was determined for both constructs at a dose

14

of $1x10^9$ vg/mouse (A) and $5x10^9$ vg/mouse (B). **(C, D)** Quantitative reverse transcriptase (qRT)-PCR analysis of hFIX mRNA levels in the different organs expressed relative to hFIX mRNA levels in the liver for both constructs at a dose of $1x10^9$ vg/mouse (C) and $5x10^9$ vg/mouse (D). GAPDH was used for normalization. Results are presented as mean±SEM. *: p<0.05, **: p<0.01, ***: p<0.001 (t- test).

5

10

15

20

25

30

35

Figure 6 A) shows a schematic representation of AAVss-SerpEnh-TTRm-MVMhFVIIIcopt-sv40pA vector. The expression cassette was packaged in a single-stranded (ss) adeno-associated virus, flanked by the 5' and 3' AAV inverted terminal repeats (ITR). The liver-specific minimal transthyretin (TTRm) promoter regulates transcription of the human codon-optimized B-domain deleted FVIII cDNA (hFVIIIcopt). The Serpin enhancer ("Serp" or "SerpEnh")is cloned upstream of the TTRm promoter. The minute virus of mouse mini-intron (MVM) and SV40 polyadenylation site (pA) are indicated. B) shows a schematic of the AAVss-SerpEnh-TTRm-MVM-hFVIIIcopt-sv40pA construct (AAVss-SerpTTRm-MVM-FVIIIcopt-sv40pA) with indication where the liver-specific Serpin enhancer ("Serp" or "SerpEnh") is inserted upstream of the transthyretin minimal promoter (TTRm). Abbreviations used are: ITR: viral inverted terminal repeat; MVM intron: minute virus mouse intron; FVIIIcopt: codon-optimized B domain deleted human FIX; SvpolyA: polyadenylation signal of SV40. C) shows the sequence of the AAVss-SerpEnh-TTRm-MVM-hFVIIIcopt -sv40pA construct (SEQ ID NO. 6). The flanking inverted terminal repeat sequences are indicated in italics, the Serpin enhancer ("Serp" or "SerpEnh") in bold (72 bp), the minimal transthyretin promoter (TTRm) is underlined (202 bp), the mTTR/5' untranslated region is boxed (21 bp), the MVM intron is in italics and underlined (92bp), the codon-optimized B domain deleted hFVIII (hFVIIIcopt) underlined and in bold (4377 bp), and the SV40 polyadenylation sequence is in italics and bold and underlined (134 bp). D) Nucleotide sequence of codon-optimized B domain deleted FVIII (SEQ ID NO: 7). E) Nucleotide seguence of the Serpin enhancer ("Serp" or "SerpEnh") (SEQ ID NO: 8). F) Nucleotide sequence of the minimal transthyretin promoter (TTRm) (SEQ ID NO: 9). G) Nucleotide sequence of the minute virus mouse (MVM) intron (SEQ ID NO: 10). H) Nucleotide sequence of the SV40 polyadenylation signal (SV40polyA) (SEQ ID NO: 11).

Figure 7 shows FVIII expression levels in CB17.SCID mice in function of time (days) following intravenous injection with AAVss-SerpEnh-TTRm-MVM-hFVIIIcopt-sv40pA (5x10⁹ vg/mouse). FVIII levels were determined using a hFVIII-specific ELISA and are expressed as a percentage of normal levels (i.e. physiological level of human FVIII of 200 ng/ml or 1 IU/ml of FVIII in a normal individual) and in ng/ml plasma.

Figure 8 A) shows schematic the plasmid а of pcDNA3 mouseCO hyPiggyBac Transposase MT encoding codon-optimized PiggyBac (PB) transposase. B) Nucleotide hyperactive sequence of 5 pcDNA3_mouseCO_hyPiggyBac_Transposase_MT plasmid (SEQ ID NO:12). C) shows a schematic PB Minimal T (T53Cthe C136T) D4Z4 TTRminSerpMVM hFVIIIcopt SV40pA D4Z4 transposon. The liverspecific minimal transthyretin (TTRm) promoter is operably linked to the Serpin enhancer ("Serp" or "SerpEnh") to regulate transcription of the human codon-optimized B-domain 10 deleted FVIII cDNA (FVIIIcopt). The minute virus of mouse mini-intron (MVM) and SV40 polyadenylation signal (SV40pA) are indicated. D) Nucleotide sequence of the PB Minimal T (T53C-C136T) D4Z4 TTRminSerpMVM hFVIIIcopt SV40pA D4Z4 transposon (SEQ ID NO:13). E) schematically the shows PB micro T No ins TTRminSerpMVM FIXco bghpA transposon. Codon-optimized 15 human FIX expression is driven from the liver-specific minimal transthyretin (TTRm) promoter operably linked to the Serpin enhancer ("Serp" or "SerpEnh"). The minute virus of mouse mini-intron (MVM) and bovine growth hormone polyadenylation signal (bghpA) F) Nucleotide are indicated. sequence of the PB_micro_T_No_ins_TTRminSerpMVM_FIXco_bghpA transposon (SEQ ID NO:14). G) 20 schematically shows the PB_micro_T_No_ins_TTRminSerpMVM_FIXco_Padua_bghpA transposon. Codon-optimized human Padua FIX expression is driven from the liverspecific minimal transthyretin (TTRm) promoter operably linked to the Serpin enhancer ("Serp" or "SerpEnh"). The minute virus of mouse mini-intron (MVM) and bovine growth hormone polyadenylation signal (bghpA) are indicated. H) Nucleotide sequence of the 25 PB_micro_T_No_ins_TTRminSerpMVM_FIXco_Padua_bghpA transposon (SEQ NO:15). I) shows the Sleeping Beauty (SB) transposon pT2BH TTRminSerpMVM hFIXco bghpA transposon. Codon-optimized human FIX expression is driven from the liver-specific minimal transthyretin (TTRm) promoter operably linked to the Serpin enhancer ("Serp" or "SerpEnh"). The minute virus of mouse 30 mini-intron (MVM) and bovine growth hormone polyadenylation signal (bghpA) are indicated. J) shows a schematic of the plasmid pCDNA3 CMVBGI SBMAX bghpA encoding the hyperactive SBmax transposase. K) Nucleotide sequence of the pCDNA3 CMVBGI SBMAX bghpA plasmid (SEQ ID NO:17).

35 **Figure 9.** FIX expression levels in hemophilia B mice treated by liver-directed gene therapy using hyperactive PB transposon expressing either codon-optimized FIX or the

16

hyperactive codon-optimized FIX-R338L mutant. The amount of transposon (IRpBAc_{micro}) and transposase plasmid (hypBase) is indicated. Human FIX levels were determined using activity assays.

- 5 Figure 10. FVIII expression levels in SCID mice treated by liver-directed gene therapy PB hyperactive transposon systems: μg pcDNA3 mouseCO hyPiggyBac Transposase MT plasmid (hyPB plasmid) + 5 μg PB Minimal T (T53C-C136T) D4Z4 TTRminSerpMVM hFVIIIcopt SV40pA D4Z4 transposon (A); or 1 µg hyPB plasmid + 500 ng PB Minimal T (T53C-10 C136T)_D4Z4_TTRminSerpMVM_hFVIIIcopt_SV40pA_D4Z4 transposon (B). (lines: with hyPB, broken lines: without hyPB control). Physiologic FVIII concentration (100% = 200 ng/ml plasma) is indicated. Human FVIII levels were detected by ELISA.
- Figure 11. Comparison of Sleeping Beauty transposon and PiggyBac transposon for 15 codon-optimized hFIX hepatic gene delivery. Sleeping Beauty transposon (pT2BH TTRminSerpMVM hFIXco bghpA) and PiggyBac transposon (PB micro T No Ins SerpTTrminMVM hFIXco BGHpA) were injected in immunodeficient (NOD SCID) mice along with plasmid encoding codon-optimized hyperactive PB transposase (pcDNA3 mouseCO hyPiggyBac Transposase MT) or hyperactive SBmax transposase (pCDNA3 _CMVBGI _SBMAX_bghpA), respectively 20 using the doses as indicated. One month post-injection FIX plasma levels were determined in plasma by ELISA.
- Figure 12. Evaluation of effect of cloning MVM intron into nucleic acid constructs on in 25 vivo expression of transgenes. (A) Schematic representation of the piggyBac transposon encoding for a wild-type hFIX (denoted as pB hFIXIA) The expression cassette is flanked by the wild-type piggyBac transposon invert repeat (IRpBac). The liver-specific minimal transthyretin (TTRm) promoter drives the human FIX transgene comprising a truncated 1;4 kb hFIX intron A between exon 1 and the following exons 2-8. The hepatocyte-specific 30 regulatory element ("Serp" or "SerpEnh") is located upstream of the TTRm promoter. Bovine growth hormone polyadenylation site (pA) is also indicated. (B) Schematic representation of the piggyBac transposon encoding for a codon-optimized hFIX (denoted as pB hFIXco). The expression cassette is the same as pB hFIXIA, except for the transgene. The hFIX transgene is codon-optimized (hFIXco) and contains no intron A. 35 MVM intron is cloned upstream of the FIXco transgene. (C) Schematic representation of the mouse piggyBac transposase plasmid (denoted as mpBase). The mouse codon-

17

optimized native piggyBac transposase (mpB) driven by the cytomegalovirus (CMV) promoter is cloned upstream of a β-globin intron (βGI). Bovine growth hormone polyadenylation site (bghpA) is also indicated. (D) Schematic representation of the empty control plasmid (denoted as empty) without a transposase gene. The plasmid contains a multiple cloning site (MCS) between the CMV promoter and the bahpa polyadenylation signal. (E, F) Hemophilia B mice were hydrodynamically injected with 10 µg of transposon plasmids comprising wild-type hFIX transgene and truncated intron A (pB hFIXIA, E) or codon-optimized hFIX transgene and MVM intron (pB MVM-FIXco, F) in conjunction with 2 µg of plasmids encoding mouse piggyBac transposase (+ mpBase, full lines) or an empty control plasmid (+ empty, dashed lines) hFIX antigen expression (black squares) and hFIX clotting activity (grey squares) were measured on plasma samples collected at the indicated times by ELISA and a chromogenic hFIX activity assay, respectively. Transposon copies per diploid genome (G) and hFIX mRNA levels (H) were measured by a quantitative RT-PCR method (qRT-PCR) at the end of the experiments from total RNA extracted from liver biopsies. hFIX mRNA levels relative to FIXIA mRNA levels are shown in H. The pB hFIXco plasmid showed more than 57-fold expression of mRNA as compared to the pB FIXIA plasmid. Results were presented as mean ± standard error of the mean. n.s. indicates not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001 (n = 3) mice/group).

20

25

30

5

10

15

Figure 13. Comparison of nucleic acid expression cassettes comprising hFVIII transgene. **(A,B)** Predicted (a,b) and measured (c,d) hFVIII levels in mice hydrodynamically injected with, from left to right, (a) AAV9ss-TTRm-MVM-hFVIII-SV40pA plasmid, (b) AAV9ss-SerpEnh-TTRm-MVM-hFVIII-SV40pA plasmid, (c) AAV9ss-TTRm-MVM-hFVIIIcopt-SV40pA plasmid, or (d) AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA plasmid, at 2 μg DNA (A) or 5 μg DNA (B). **(C,D)** Bars showing from left to right, predicted hFVIII levels in mice hydrodynamically injected with (b) AAV9ss-SerpEnh-TTRm-MVM-hFVIII-SV40pA plasmid; measured hFVIII levels in mice injected with (c) AAV9ss-TTRm-MVM-hFVIIIcopt-SV40pA plasmid; sum of hFVIII levels predicted in mice injected with (b) and hFVIII levels measured in mice injected with (c); and hFVIII levels measured in mice transfected with (d) AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA plasmid. (C) shows the data for mice that were injected with 2 μg DNA, (D) shows the data for mice that were injected with 5 μg DNA.

18

Figure 14. Comparison of nucleic acid expression cassettes comprising hFIX transgene. **(A,B)** Bars showing from left to right, hFIX activity in mice hydrodynamically injected with (a) AAVsc-TTRm-MVM-hFIX-SV40pA plasmid; (b) AAVsc-SerpEnh-TTRm-MVM-hFIX-SV40pA plasmid; (c) AAVsc-TTRm-MVM-hFIXco-SV40pA plasmid; (b) and (c) calculated as the sum of hFIX activity measured in mice injected with (b) and (c); and (d) AAVsc-SerpEnh-TTRm-MVM-hFIXco-SV40pA plasmid at day 2 (A) and day 6 (B) post-injection. **(C,D)** Bars showing from left to right, hFIX activity in mice hydrodynamically injected with (c) AAVsc-TTRm-MVM-hFIXco-SV40pA plasmid; (d) AAVsc-SerpEnh-TTRm-MVM-hFIXco-SV40pA plasmid; (e) AAVsc-TTRm-MVM-hFIXcoPadua-SV40pA plasmid; (d) and (e) calculated as the sum of hFIX activity measured in mice injected with (d) and (e); and (f) AAVsc-SerpEnh-TTRm-MVM-hFIXcoPadua-SV40pA plasmid at day 2 (C) and day 6 (D) post-injection.

5

10

15

20

25

30

35

Figure 15. (A) Schematic representation of the piggyBac transposon pB hFIXco/IR_{mut16}. wherein the expression cassette is flanked by a wild-type piggyBac transposon inverted repeat (IRwt) and a piggybac transposon inverted repeat containing the indicated point mutations (IRmut16). The liver-specific minimal transthyretin (TTRmin) promoter drives a codon-optimized hFIX (hFIXco). Minute virus of mouse (MVM) intron is cloned upstream of the FIXco transgene. The Serpin enhancer (denoted as HSH8) is located upstream of the TTRmin promoter. Bovine growth hormone polyadenylation site (pA) is also indicated. (B) Schematic representation of the piggybac transposon pB hFIXco/IR_{micro}. The transposon is the same as pB_hFIXco/IR_{mut16}, except for the inverted repeats, which are micro inverted repeats (IRmicro). (C) Schematic representation of the piggybac transposon pB hFIXco-R338L. The transposon is the same as pB hFIXco/IR_{micro}, except for the transgene which is codon-optimized human FIX containing the Padua mutation (hFIXco-R338L). (D) Schematic representation of the hyperactive piggyBac transposase (hyPBase) plasmid. The hyperactive piggyBac transposase (hyPBase) driven by the cytomegalovirus (CMV) promoter is cloned upstream of a β-globin intron (βGI). The hyperactiving mutations are indicated. Bovine growth hormone polyadenylation site (bghpA) is also indicated. (E) Three months after transfection with pB transposons pB hFIXIA, pB hFIXco, or pB hFIXco-R338L, mice were subjected to immunization with recombinant hFIX antigen and adjuvant. Anti-hFIX specific antibodies were measured by ELISA at week 2 (black) and week 4 (grey) post-immunization (p.i). PBS-injected hemophilia B mice that were immunized with recombinant hFIX and adjuvant were used as positive control. Results are presented as mean ± standard error of the mean. n.s. WO 2014/064277

PCT/EP2013/072450

indicates not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001 (n = 3 mice/group). **(F,G,H,I,J,K)** CB17/IcrTac/Prkdc^{scid} mice were hydrodynamically transfected with 500 ng (F,H,J) or 50 ng (G,I,K) of pB-hFIXco (F-K), pB-hFIXco/ IR_{micro} (H,I; triangle) or pB-hFIXco/ IR_{mut16} (J,K; triangle) transposon plasmids along with 1000 ng (F,H,J) or 100 ng (G,I,K) mPB (triangle F,G) or hyPB-expressing plasmid (F,G; square and H-K) or empty control plasmid (hatched lines). hFIX expression was measured on plasma samples collected at the indicated times by a specific ELISA assay. Results were presented as mean \pm standard error of the mean. n.s. indicates not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001 (n = 3 mice/group).

19

10

15

20

25

5

DETAILED DESCRIPTION OF THE INVENTION

The present invention will be described with respect to particular embodiments and with reference to certain drawings but the invention is not limited thereto but only by the claims. Any reference signs in the claims shall not be construed as limiting the scope. The drawings described are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes.

Where the term "comprising" is used in the present description and claims, it does not exclude other elements or steps. The term "comprising" also encompasses the more specific embodiments defined as "consisting of" and "consisting essentially of".

Where an indefinite or definite article is used when referring to a singular noun e.g. "a" or "an", "the", this includes a plural of that noun unless something else is specifically stated. Furthermore, the terms first, second, third and the like in the description and in the claims, are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order.

It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or illustrated herein.

The following terms or definitions are provided to aid in the understanding of the invention.

Unless specifically defined herein, all terms used herein have the same meaning as they would to one skilled in the art of the present invention. Practitioners are particularly directed to Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Press, Plainsview, New York (1989); and Ausubel et al., Current Protocols

20

in Molecular Biology (Supplement 47), John Wiley & Sons, New York (1999), for definitions and terms of the art.

The definitions provided herein should not be construed to have a scope less than understood by a person of ordinary skill in the art.

The term "coagulation factor IX" has the meaning as known in the art. Synonyms of coagulation factor IX are "FIX" or "Christmas factor" or "F9" and can be used interchangeably. In particular, the term "coagulation factor IX" encompasses the human protein encoded by the mRNA sequence as defined in Genbank accession number NM_000133.

10 Preferably, said FIX is a mutated FIX, which is hyperactive or hyper-functional as compared to the wild type FIX. Modifying functional activity of human coagulation factor can be done by bioengineering e.g. by introduction of point mutations. By this approach a hyperactive R338A variant was reported, which showed a 3 fold increased clotting activity compared to the wild type human FIX in an in vitro activated partial thromboplastin time 15 assay (APPT) (Chang et al., 1998) and a 2 to 6-fold higher specific activity in hemophilia B mice transduced with the mutant FIX gene (Schuettrumpf et al., 2005). Further exemplary FIX point-mutants or domain exchange mutants with even higher clotting activities have been described: FIX, with the EGF-1 domain replaced with the EGF-1 domain from FVII, alone or in combination with a R338A point mutation (Brunetti-Pierri et al., 2009), the 20 V86A/E277A/R338A triple mutant (Lin et al., 2010), the Y259F, K265T, and/or Y345T single, double or triple mutants (Milanov, et al., 2012), and the G190V point mutant (Kao et al., 2010), all incorporated herein by reference. In a particularly preferred embodiment, the FIX mutant is the one described by Simioni et al., in 2009 and denominated as the "factor IX Padua" mutant, causing X-linked thrombophilia. Said mutant factor IX is hyperactive and carries an R338L amino acid substitution. In a preferred embodiment of 25 the present invention, the FIX transgene used in expression vector encodes the human FIX protein, most preferably the FIX transgene encodes for the Padua mutant of the human FIX protein.

The term "coagulation factor VIII" has the meaning as known in the art. Synonyms of coagulation factor VIII are "FVIII" or "anti-hemophilic factor" or "AHF" and can be used interchangeably herein. The term "coagulation factor VIII" encompasses, for example, the human protein having the amino acid sequence as defined in Uniprot accession number P00451.

21

5

10

15

20

25

30

35

In preferred embodiments, said FVIII is B domain deleted FVIII wherein the B domain is replaced by a linker having the following sequence: SFSQNPPVLTRHQR (SEQ ID NO: 16) (i.e. SQ FVIII as defined in Ward et al. (2011)). In particularly preferred embodiments, said FVIII has SEQ ID NO:7 (i.e. codon-optimized B domain deleted human FVIII or hFVIIIcopt), as disclosed also in WO 2011/0059.

A "regulatory element" as used herein refers to transcriptional control elements, in particular non-coding cis-acting transcriptional control elements, capable of regulating and/or controlling transcription of a gene, in particular tissue-specific transcription of a gene. Regulatory elements comprise at least one transcription factor binding site (TFBS), more in particular at least one binding site for a tissue-specific transcription factor, most particularly at least one binding site for a liver-specific transcription factor. Typically, regulatory elements as used herein increase or enhance promoter-driven gene expression when compared to the transcription of the gene from the promoter alone, without the regulatory elements. Thus, regulatory elements particularly comprise enhancer sequences, although it is to be understood that the regulatory elements enhancing transcription are not limited to typical far upstream enhancer sequences, but may occur at any distance of the gene they regulate. Indeed, it is known in the art that sequences regulating transcription may be situated either upstream (e.g. in the promoter region) or downstream (e.g. in the 3'UTR) of the gene they regulate in vivo, and may be located in the immediate vicinity of the gene or further away. Of note, although regulatory elements as disclosed herein typically are naturally occurring sequences, combinations of (parts of) such regulatory elements or several copies of a regulatory element, i.e. non-naturally occurring sequences, are themselves also envisaged as regulatory element. Regulatory elements as used herein may be part of a larger sequence involved in transcriptional control, e.g. part of a promoter sequence. However, regulatory elements alone are typically not sufficient to initiate transcription, but require a promoter to this end.

The regulatory elements contained in the nucleic acid expression cassettes and vectors disclosed herein are preferably liver-specific. Non-limiting examples of liver-specific

22

regulatory elements are disclosed in WO 2009/130208, which is specifically incorporated by reference herein.

In preferred embodiments, the regulatory element in the nucleic acid expression cassettes and vectors disclosed herein is a liver-specific regulatory element derived from the serpin gene promotor. Siad regulatory element comprises the sequence as defined in SEQ ID NO:8, a sequence having at least 85%, preferably at least 90%, more preferably at least 95%, such as 96%, 97%, 98% or 99%, identity to said sequence, or a functional fragment thereof. Said regulatory element is herein referred to as "the Serpin enhancer", "SerpEnh", or "Serp".

5

15

20

25

30

In further embodiments, the regulatory element in the nucleic acid expression cassettes and vectors disclosed herein consists of the sequence defined by SEQ ID NO:8 (i.e. the Serpin enhancer, also called "SerpEnh", or "Serp" herein).

'Liver-specific expression', as used in the application, refers to the preferential or predominant expression of a (trans)gene (as RNA and/or polypeptide) in the liver as compared to other tissues. According to particular embodiments, at least 50% of the (trans)gene expression occurs within the liver. According to more particular embodiments, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 99% or 100% of the (trans)gene expression occurs within the liver. According to a particular embodiment, liver-specific expression entails that there is no 'leakage' of expressed gene product to other organs, such as spleen, muscle, heart and/or lung. The same applies mutatis mutandis for hepatocyte-specific expression, which may be considered as a particular form of liver-specific expression. Throughout the application, where liver-specific is mentioned in the context of expression, hepatocyte-specific expression is also explicitly envisaged. Similarly, where tissue-specific expression is used in the application, cell-type specific expression of the cell type(s) predominantly making up the tissue is also envisaged.

The term "functional fragment" as used in the application refers to fragments of the sequences disclosed herein that retain the capability of regulating liver-specific expression, i.e. they still confer tissue specificity and they are capable of regulating expression of a (trans)gene in the same way (although possibly not to the same extent) as the sequence from which they are derived. Fragments comprise at least 10 contiguous nucleotides from the sequence from which they are derived. In further particular embodiments, fragments comprise at least 15, at least 20, at least 25, at least 30, at least 35 or at least 40 contiguous nucleotides from the sequence from which they are derived.

23

As used herein, the term "nucleic acid expression cassette" refers to nucleic acid molecules that include one or more transcriptional control elements (such as, but not limited to promoters, enhancers and/or regulatory elements, polyadenylation sequences, and introns) that direct (trans)gene expression in one or more desired cell types, tissues or organs. Typically, they will also contain the FIX transgene or the FVIII transgene as defined herein.

5

10

15

30

35

The term "operably linked" as used herein refers to the arrangement of various nucleic acid molecule elements relative to each such that the elements are functionally connected and are able to interact with each other. Such elements may include, without limitation, a promoter, an enhancer and/or a regulatory element, a polyadenylation sequence, one or more introns and/or exons, and a coding sequence of a gene of interest to be expressed (i.e., the transgene). The nucleic acid sequence elements, when properly oriented or operably linked, act together to modulate the activity of one another, and ultimately may affect the level of expression of the transgene. By modulate is meant increasing, decreasing, or maintaining the level of activity of a particular element. The position of each element relative to other elements may be expressed in terms of the 5' terminus and the 3' terminus of each element, and the distance between any particular elements may be referenced by the number of intervening nucleotides, or base pairs, between the elements.

As used in the application, the term "promoter" refers to nucleic acid sequences that regulate, either directly or indirectly, the transcription of corresponding nucleic acid coding sequences to which they are operably linked (e.g. a transgene or endogenous gene). A promoter may function alone to regulate transcription or may act in concert with one or more other regulatory sequences (e.g. enhancers or silencers). In the context of the present application, a promoter is typically operably linked to regulatory elements to regulate transcription of a transgene.

When a regulatory element as described herein is operably linked to both a promoter and a transgene, the regulatory element can (1) confer a significant degree of liver specific expression in vivo (and/or in hepatocytes/ hepatic cell lines in vitro) of the transgene, and/or (2) can increase the level of expression of the transgene in the liver (and/or in hepatocytes/hepatocyte cell lines in vitro).

According to a particular embodiment, the promoter contained in the nucleic acid expression cassettes and vectors disclosed herein is a liver-specific promoter. According to a further particular embodiment, the liver-specific promoter is from the transthyretin (TTR) gene. According to yet a further particular embodiment, the TTR promoter is a

minimal promoter (also referred to as TTRm, mTTR or TRRmin herein), most particularly the minimal TTR promoter as defined in SEQ ID NO: 9.

According to another particular embodiment, the promoter in the nucleic acid expression cassettes and vectors disclosed herein is a minimal promoter.

- A 'minimal promoter' as used herein is part of a full-size promoter still capable of driving expression, but lacking at least part of the sequence that contributes to regulating (e.g. tissue-specific) expression. This definition covers both promoters from which (tissue-specific) regulatory elements have been deleted- that are capable of driving expression of a gene but have lost their ability to express that gene in a tissue-specific fashion and promoters from which (tissue-specific) regulatory elements have been deleted that are capable of driving (possibly decreased) expression of a gene but have not necessarily lost their ability to express that gene in a tissue-specific fashion. Minimal promoters have been extensively documented in the art, a non-limiting list of minimal promoters is provided in the specification.
- Typically, the nucleic acid expression cassette in the expression vector according to the invention comprises a plasmid origin, a promotor and/or enhancer, a (trans)gene, a transcription terminator, and a selection gene.

In embodiments, the nucleic acid expression cassette in the expression vector according to the invention comprises the following elements:

- 20 a plasmid origin such as the f1 origin,
 - an Inverted Terminal Repeat sequence (ITR), sometimes mutated,
 - an enhancer, preferably the Serpin enhancer ("Serp" or "SerpEnh"),
 - a promoter, preferably the minimal TTR promoter (TTRm),
 - the MVM intron,
- 25 a (trans)gene, preferably a codon-optimized transgene
 - a transcription terminator, preferably a polyadenylation signal such as the bGHpA,
 - an Inverted Terminal Repeat sequence (ITR),
 - a selection gene (e.g. an antibiotic resistance gene such as an ampicilin resistance gene), and
- 30 a plasmid origin such as the pBR322 origin.

The cloning of the MVM intron into a nucleic acid expression cassette described herein was shown to unexpectedly high expression levels of the transgene operably linked thereto.

In a typical embodiment of the present invention, said nucleic acid expression cassette in the expression vector comprises the following elements (cf. Figure 1):

- an plasmid origin such as the f1 origin,
- an Inverted Terminal Repeat sequence (ITR), sometimes mutated,
- an enhancer, preferably the Serpin enhancer ("Serp" or "SerpEnh"),
- a promoter, preferably the minimal TTR promoter (TTRm),
- 10 an intron sequence, preferably the MVM intron,
 - a (trans)gene, preferably the FIX encoding gene, or its Padua mutant form,
 - a transcription terminator, preferably a polyadenylation signal such as the bGHpA,
 - an Inverted Terminal Repeat sequence (ITR),
- a selection gene (e.g. an antibiotic resistance gene such as an ampicilin resistance gene), and
 - a plasmid origin such as the pBR322 origin.

The combination of said elements results in an unexpectedly high expression level of FIX and in particular of the Padua mutant thereof in the liver of subjects. Preferably, the vector is an adeno-associated virus-derived vector, in combination with the Padua-mutant FIX gene.

In another typical embodiment of the present invention, said nucleic acid expression cassette in the vector comprises the following elements:

- a plasmid origin, such as the f1 Origin,

- an Inverted Terminal Repeat sequence (ITR), optionally mutated,
- a liver-specific regulatory element, preferably the Serpin enhancer,
 - a promoter, preferably the minimal TTR promoter,
 - an intron sequence, preferably the MVM intron,
 - a (trans)gene, preferably codon-optimized factor VIII cDNA, even more preferably codon-optimized B domain deleted factor VIII cDNA,

PCT/EP2013/072450

- a transcription terminator, preferably a polyadenylation signal such as the Simian vacuolating virus 40 or Simian virus 40 (SV40) polyadenylation signal,

26

- an Inverted Terminal Repeat sequence (ITR),
- a selection gene (e.g. an antibiotic resistance gene such as an ampicilin resistance gene), and
 - a plasmid origin, such as the pBR322 origin.

The combination of said elements results in an unexpectedly high expression level of FVIII specifically in the liver of subjects. Preferably, the vector is an adeno-associated virus(AAV)-derived vector in combination with codon-optimized B domain deleted FVIII cDNA.

In typical embodiment of the invention, said nucleic acid expression cassette in the vectors disclosed herein comprises:

- a liver-specific regulatory element, preferably the Serpin enhancer,
- a promoter, preferably the minimal TTR promoter,
- 15 - the MVM intron

5

10

- a (trans)gene, preferably a codon-optimized transgene
- a transcription terminator, preferably a polyadenylation signal such as the bovine growth hormone polyadenylation signal.

In another typical embodiment of the present invention, said nucleic acid expression 20 cassette in the vectors disclosed herein comprises:

- a liver-specific regulatory element, preferably the Serpin enhancer,
- a promoter, preferably the minimal TTR promoter,
- an intron sequence, preferably the MVM intron,
- a (trans)gene, preferably codon-optimized factor IX cDNA, even more preferably codon-25 optimized factor IX Padua cDNA,
 - a transcription terminator, preferably a polyadenylation signal such as the bovine growth hormone polyadenylation signal,

In yet another typical embodiment of the present invention, said nucleic acid expression cassette in the vectors disclosed herein comprises:

30 - a liver-specific regulatory element, preferably the Serpin enhancer,

27

- a promoter, preferably the minimal TTR promoter,
- an intron sequence, preferably the MVM intron,

10

15

20

25

- a (trans)gene, preferably codon-optimized factor VIII cDNA, even more preferably codon-optimized B domain deleted factor VIII cDNA,

5 - a transcription terminator, preferably a polyadenylation signal such as the Simian vacuolating virus 40 or Simian virus 40 (SV40) polyadenylation signal,

The term "transgene" or "(trans)gene" as used herein refers to particular nucleic acid sequences encoding a polypeptide or a portion of a polypeptide to be expressed in a cell into which the nucleic acid sequence is inserted. However, it is also possible that transgenes are expressed as RNA, typically to lower the amount of a particular polypeptide in a cell into which the nucleic acid sequence is inserted. These RNA molecules include but are not limited to molecules that exert their function through RNA interference (shRNA, RNAi), micro-RNA regulation (miR), catalytic RNA, antisense RNA, RNA aptamers, etc. How the nucleic acid sequence is introduced into a cell is not essential to the invention, it may for instance be through integration in the genome or as an episomal plasmid. Of note, expression of the transgene may be restricted to a subset of the cells into which the nucleic acid sequence is inserted. The term 'transgene' is meant to include (1) a nucleic acid sequence that is not naturally found in the cell (i.e., a heterologous nucleic acid sequence); (2) a nucleic acid sequence that is a mutant form of a nucleic acid sequence naturally found in the cell into which it has been introduced; (3) a nucleic acid sequence that serves to add additional copies of the same (i.e., homologous) or a similar nucleic acid sequence naturally occurring in the cell into which it has been introduced; or (4) a silent naturally occurring or homologous nucleic acid seguence whose expression is induced in the cell into which it has been introduced. By 'mutant form' is meant a nucleic acid sequence that contains one or more nucleotides that are different from the wild-type or naturally occurring sequence, i.e., the mutant nucleic acid sequence contains one or more nucleotide substitutions, deletions, and/or insertions. In some cases, the transgene may also include a sequence encoding a leader peptide or signal sequence such that the transgene product will be secreted from the cell.

The term 'vector' as used in the application refers to nucleic acid molecules, usually double- stranded DNA, which may have inserted into it another nucleic acid molecule (the insert nucleic acid molecule) such as, but not limited to, a cDNA molecule. The vector is used to transport the insert nucleic acid molecule into a suitable host cell. A vector may contain the necessary elements that permit transcribing the insert nucleic acid molecule,

5

10

15

20

25

30

28

and, optionally, translating the transcript into a polypeptide. The insert nucleic acid molecule may be derived from the host cell, or may be derived from a different cell or organism. Once in the host cell, the vector can replicate independently of, or coincidental with, the host chromosomal DNA, and several copies of the vector and its inserted nucleic acid molecule may be generated.

The term "vector" may thus also be defined as a gene delivery vehicle that facilitates gene transfer into a target cell. This definition includes both non-viral and viral vectors. Non-viral vectors include but are not limited to cationic lipids, liposomes, nanoparticles, PEG, PEI, etc. Viral vectors are derived from viruses including but not limited to: retrovirus, lentivirus, adeno- associated virus, adenovirus, herpesvirus, hepatitis virus or the like. Typically, but not necessarily, viral vectors are replication-deficient as they have lost the ability to propagate in a given cell since viral genes essential for replication have been eliminated from the viral vector. However, some viral vectors can also be adapted to replicate specifically in a given cell, such as e.g. a cancer cell, and are typiclly used to trigger the (cancer) cell-specific (onco)lysis.

Preferred vectors are derived from adeno-associated virus, adenovirus, retroviruses and Antiviruses. Alternatively, gene delivery systems can be used to combine viral and non-viral components, such as nanoparticles or virosomes (Yamada et al., 2003). Retroviruses and Antiviruses are RNA viruses that have the ability to insert their genes into host cell chromosomes after infection. Retroviral and lentiviral vectors have been developed that lack the genes encoding viral proteins, but retain the ability to infect cells and insert their genes into the chromosomes of the target cell (Miller, 1990; Naldini et al., 1996, VandenDriessche et al., 1999). The difference between a lentiviral and a classical Moloney-murine leukemia-virus (MLV) based retroviral vector is that lentiviral vectors can transduce both dividing and non-dividing cells whereas MLV-based retroviral vectors can only transduce dividing cells.

Adenoviral vectors are designed to be administered directly to a living subject. Unlike retroviral vectors, most of the adenoviral vector genomes do not integrate into the chromosome of the host cell. Instead, genes introduced into cells using adenoviral vectors are maintained in the nucleus as an extrachromosomal element (episome) that persists for an extended period of time. Adenoviral vectors will transduce dividing and nondividing cells in many different tissues in vivo including airway epithelial cells, endothelial cells, hepatocytes and various tumors (Trapnell, 1993; Chuah et al., 2003). Another viral vector is derived from the herpes simplex virus, a large, double-stranded DNA virus.

WO 2014/064277

5

15

20

25

30

Recombinant forms of the vaccinia virus, another dsDNA virus, can accommodate large inserts and are generated by homologous recombination.

Adeno-associated virus (AAV) is a small ssDNA virus which infects humans and some other primate species, not known to cause disease and consequently causing only a very mild immune response. AAV can infect both dividing and non-dividing cells and may incorporate its genome into that of the host cell. These features make AAV a very attractive candidate for creating viral vectors for gene therapy, although the cloning capacity of the vector is relatively limited. In a preferred embodiment of the invention, the vector used is therefore derived from adeno-associated virus (i.e. AAV vector).

Different serotypes of AAVs have been isolated and characterized, such as, for example AAV serotype 2, AAV serotype 5, AAV serotype 8, and AAV serotype 9, and all AAV serotypes are contemplated herein. In a preferred embodiment, the vector used is AAV serotype 9.

The AAV vectors disclosed herein may be single-stranded (i.e. ssAAV vectors) or self-complementary (i.e. scAAV vectors). In particular, AAV vectors that comprise a FIX transgene as disclosed herein are preferably self-complementary, and AAV vectors that comprise a FVIII transgene as disclosed herein are preferably single-stranded. With the term "self-complementary AAV" is meant herein a recombinant AAV-derived vector wherein the coding region has been designed to form an intra-molecular double-stranded DNA template.

Gene therapy with adeno-associated viral vectors disclosed herein was shown to induce immune tolerance towards the transgene comprised in the vector.

In another aspect, the vector is a transposon-based vector. Preferably, said transposon-based vectors are preferably derived from Sleeping Beauty (SB) or PiggyBac (PB). A preferred SB transposon has been described in Ivics et al. (1997).

In preferred embodiments, said transposon-based vectors comprise the nucleic acid expression cassettes disclosed herein.

In embodiments, said transposon-based vectors are PiggyBac-based transposons. Such vectors are safe in that they do no enhance the tumorigenic risk. Furthermore, liver-directed gene therapy with these vectors was shown to induce immune tolerance towards the transgene, in particular hFIX, comprised in the vector.

In further embodiments, said PiggyBac-based vectors comprise micro inverted repeats, preferably inverted repeats having SEQ ID NO:29 and SEQ ID NO:30. With "micro

inverted repeats" is meant herein inverted repeats wherein the majority of the native sequence has been removed. Exemplary micro inverted repeats have been described in Meir et al. (2011. BMC Biotechnology 11:28) and are characterized by the sequences ttaaccctagaaagataatcatattgtgacgtacgttaaagataatcatgcgtaaaattgacgcatg (SEQ ID NO:29) and gcatgcgtcaattttacgcagactatctttctagggttaa (SEQ ID NO:30). Such micro inverted repeats advantageously increase the expression level of the transgene comprised in the vector.

5

10

In a particularly preferred embodiment, said transposon-based vector is a PiggyBac-based transposon comprising the Serpin enhancer, the minimal transthyretin promoter, the minute virus of mouse intron, the codon-optimized human FIX Padua mutant, and the bovine growth hormone polyadenylation signal, such as, e.g., the transposon defined by SEQ ID NO:15. In further embodiments, said transposon-based vector comprises micro inverted repeats.

In another particularly preferred embodiment, said transposon-based vector is a PiggyBac-based transposon comprising the Serpin enhancer, the minimal transthyretin promoter, the minute virus of mouse intron, codon-optimized human FIX cDNA, and the bovine growth hormone polyadenylation signal, such as, e.g., the transposon defined by SEQ ID NO:14. In further embodiments, said transposon-based vector comprises micro inverted repeats.

In another particularly preferred embodiment, said transposon-based vector is a PiggyBac-based transposon comprising the Serpin enhancer, the minimal transthyretin promoter, the minute virus of mouse intron, a codon-optimized human B domain deleted FVIII cDNA, and the SV40 polyadenylation signal, such as, e.g., the transposon defined by SEQ ID NO:13. In further embodiments, said transposon-based vector comprises micro inverted repeats.

In yet another particularly preferred embodiment, said transposon-based vector is a Sleeping Beauty-based transposon comprising the Serpin enhancer, the minimal transthyretin promoter, the minute virus of mouse intron, codon-optimized human FIX cDNA, and the bovine growth hormone polyadenylation signal (Fig. 8I).

The transposon-based vectors disclosed herein are preferably administered in combination with a vector encoding a transposase for gene therapy. For example, the PiggyBac-derived transposon-based vector can be administered with wild-type PiggyBac transposase (Pbase) or mouse codon-optimized PiggyBac transposase (mPBase) Preferably, said transposases are hyperactive transposases, such as, for example,

31

SBmax transposase and hyperactive PB (hyPB) transposase containing seven amino acid substitutions (I30V, S103P, G165S, M282V, S509G, N538K, N570S) as described in Yusa et al. (2011), which is specifically incorporated by reference herein.

Transposon/transposase constructs can be delivered by hydrodynamic injection or using non-viral nanoparticles to transfect hepatocytes.

5

10

15

20

25

30

In a further particular aspect, the nucleic acid regulatory elements, the nucleic acid expression cassettes and the vectors described herein can be used in gene therapy. Gene therapy protocols, intended to achieve therapeutic gene product expression in target cells, in vitro, but also particularly in vivo, have been extensively described in the art. These include, but are not limited to, intramuscular injection of plasmid DNA (naked or in liposomes), interstitial injection, instillation in airways, application to endothelium, intrahepatic parenchyme, and intravenous or intra-arterial administration (e.g. intra-hepatic artery, intra-hepatic vein). Various devices have been developed for enhancing the availability of DNA to the target cell. A simple approach is to contact the target cell physically with catheters or implantable materials containing DNA. Another approach is to utilize needle-free, jet injection devices which project a column of liquid directly into the target tissue under high pressure. These delivery paradigms can also be used to deliver viral vectors. Another approach to targeted gene delivery is the use of molecular conjugates, which consist of protein or synthetic ligands to which a nucleic acid-or DNAbinding agent has been attached for the specific targeting of nucleic acids to cells (Cristiano et al., 1993).

According to a particular embodiment, the use of the nucleic acid regulatory elements, nucleic acid expression cassettes or vectors as described herein is envisaged for gene therapy of liver cells. According to a further particular embodiment, the use of the regulatory elements, expression cassettes or vectors is for gene therapy *in vivo*. According to yet a further particular embodiment, the use is for a method of gene therapy to treat hemophilia, in particular to treat hemophilia B or hemophilia A.

Gene transfer into mammalian hepatocytes has been performed using both *ex vivo* and *in vivo* procedures. The *ex vivo* approach requires harvesting of the liver cells, *in vitro* transduction with long-term expression vectors, and reintroduction of the transduced hepatocytes into the portal circulation (Kay et al., 1992; Chowdhury et al., 1991). *In vivo* targeting has been done by injecting DNA or viral vectors into the liver parenchyma, hepatic artery, or portal vein, as well as via transcriptional targeting (Kuriyama et al., 1991; Kistner et al., 1996). Recent methods also include intraportal delivery of naked DNA

32

(Budker et al., 1996) and hydrodynamic tail vein transfection (Liu et al., 1999; Zhang et al., 1999).

According to a further aspect, methods for expressing a protein in liver cells are provided, comprising the steps of introducing in liver cells the nucleic acid expression cassette (or a vector) as described herein and expressing the transgene protein product in the liver cells. These methods may be performed both in vitro and in vivo.

5

10

15

20

25

30

Methods of gene therapy for a subject in need thereof are also provided, comprising the steps of introducing in the liver of the subject a nucleic acid expression cassette containing a transgene encoding a therapeutic protein, and expressing a therapeutic amount of the therapeutic protein in the liver. According to a further embodiment, the method comprises the steps of introducing in the liver of the subject a vector comprising the nucleic acid expression cassette containing a transgene encoding a therapeutic protein, and expressing a therapeutic amount of the therapeutic protein in the liver. According to a very specific embodiment, the therapeutic protein encoded by the transgene in the nucleic acid expression cassette is factor IX, and the method is a method for treating hemophilia B. By expressing factor IX in the liver via gene therapy, hemophilia B can be treated (Snyder et al., 1999).

According to another very specific embodiment, the therapeutic protein encoded by the transgene in the nucleic acid expression cassette is factor VIII, and the method is a method for treating hemophilia A.

Except when noted differently, the terms "subject" or "patient" are used interchangeably and refer to animals, preferably vertebrates, more preferably mammals, and specifically includes human patients and non-human mammals. "mammalian" subjects include, but are not limited to, humans, domestic animals, commercial animals, farm animals, zoo animals, sport animals, pet and experimental animals such as dogs, cats, guinea pigs, rabbits, rats, mice, horses, cattle, cows; primates such as apes, monkeys, orang-utans, and chimpanzees; canids such as dogs and wolves; felids such as cats, lions, and tigers; equids such as horses, donkeys, and zebras; food animals such as cows, pigs, and sheep; ungulates such as deer and giraffes; rodents such as mice, rats, hamsters and guinea pigs; and so on. Accordingly, "subject" or "patient" as used herein means any mammalian patient or subject to which the compositions of the invention can be administered. Preferred patients or subjects are human subjects.

As used herein, the terms "treat" or "treatment" refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down

33

(lessen) an undesired physiological change or disorder, such as the development or spread of proliferative disease, e.g., cancer. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilised (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment.

5

10

15

20

25

30

35

As used herein, a phrase such as "a subject in need of treatment" includes subjects, such as mammalian subjects, that would benefit from treatment of a given condition, such as, hemophilia B. Such subjects will typically include, without limitation, those that have been diagnosed with the condition, those prone to have or develop the said condition and/or those in whom the condition is to be prevented.

The term "therapeutically effective amount" refers to an amount of a compound or pharmaceutical composition of the invention effective to treat a disease or disorder in a subject, i.e., to obtain a desired local or systemic effect and performance. In a particular embodiment, the term implies that levels of factor IX in plasma equal to or higher than the therapeutic threshold concentration of 10mU/ml (milli-units per milliliter) plasma, 50mU/ml plasma, 100mU/ml plasma, 150mU/ml or 200mU/ml plasma in a subject can be obtained by transduction or transfection of the vector according to any one the embodiments described herein into a subject. Due to the very high efficiency of the vector and nucleic acid expression cassette of the present invention, this high physiological level of factor IX in the subject can be obtained even by administering relatively low doses of vector. In another particular embodiment, the term implies that levels of factor VIII in plasma equal to or higher than the therapeutic threshold concentration of 10mU/ml (milli-units per milliliter) plasma, 50mU/ml plasma, 100mU/ml plasma, 150mU/ml plasma, 200mU/ml plasma or higher can be obtained by transduction or transfection of any of the vectors disclosed herein into a subject. Due to the very high efficiency of the vectors and nucleic acid expression cassettes disclosed herein, these high physiological levels of factor VIII in the subject can be obtained even by administering relatively low doses of vector. The term thus refers to the quantity of compound or pharmaceutical composition that elicits the biological or medicinal response in a tissue, system, animal, or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the hemophilia being treated. In particular, these terms refer to the quantity of compound or pharmaceutical composition according to the invention which is necessary to prevent, cure, ameliorate, or at least minimize the clinical impairment,

34

symptoms, or complications associated with hemophilia, in particular hemophilia B or hemophila A, in either a single or multiple dose.

In particular, the transduction of the vector according to any one of the embodiments defined herein into the subject can be done at a dose lower than $2x10^{11}$ vg/kg (viral genomes per kilogram) to obtain a physiological factor IX level of 10mU/ml plasma or of 50mU/ml plasma in a subject.

5

20

25

Alternatively, if a level of factor IX of 100 mU/ml plasma needs to be reached in a subject, the transduction of the vector according to any one of the embodiments defined herein into the subject can be done at a dose lower than or equal to 6x10¹¹ vg/kg.

10 Further, if a level of factor IX equal to 150 mU/ml plasma or higher needs to be reached, the transduction of the vector according to any one of the embodiments defined herein into the subject can be done at a dose lower than or equal than 2x10¹² vg/kg. In a preferred embodiment, a level of factor IX of 200 mU/ml plasma or higher can be reached in a subject, when the transduction of the vector according to any one of the embodiments defined herein into the subject is done at a dose lower than or equal to 2x10¹² vg/kg.

In particular, the transduction of the vector according to any one of the embodiments defined herein into the subject can be done at a dose lower than or equal to $2x10^{12}$ vg/kg (viral genomes per kilogram), such as lower than or equal to $1x10^{12}$ vg/kg, $5x10^{11}$ vg/kg, $2.5x10^{11}$ vg/kg, $1x10^{11}$ vg/kg, $5x10^{11}$ vg/kg, $1x10^{10}$ vg/kg, to obtain a physiological factor VIII level of 10 mU/ml plasma, 50 mU/ml plasma, 100 mU/ml plasma, 150 mU/ml plasma, 200 mU/ml plasma, or higher in a subject.

For hemophilia therapy, efficacy of the treatment can, for example, be measured by assessing the hemophilia-caused bleeding in the subject. In vitro tests such as, but not limited to the in vitro actived partial thromboplastin time assay (APPT), test factor IX chromogenic activity assays, blood clotting times, factor IX or human factor VIII-specific ELISAs are also available. Any other tests for assessing the efficacy of the treatment known in the art can of course be used.

The compound or the pharmaceutical composition of the invention may be used alone or in combination with any of the know hemophilia therapies, such as the administration of recombinant or purified clotting factors. The compound or the pharmaceutical composition of the invention can thus be administered alone or in combination with one or more active compounds. The latter can be administered before, after or simultaneously with the administration of the said agent(s).

35

5

10

15

20

25

30

35

A further object of the invention are pharmaceutical preparations which comprise a therapeutically effective amount of the expression vector of the invention as defined herein, and a pharmaceutically acceptable carrier, i.e., one or more pharmaceutically acceptable carrier substances and/or additives, e.g., buffers, carriers, excipients, stabilisers, etc. The term "pharmaceutically acceptable" as used herein is consistent with the art and means compatible with the other ingredients of a pharmaceutical composition and not deleterious to the recipient thereof. The term "pharmaceutically acceptable salts" as used herein means an inorganic acid addition salt such as hydrochloride, sulfate, and phosphate, or an organic acid addition salt such as acetate, maleate, fumarate, tartrate, and citrate. Examples of pharmaceutically acceptable metal salts are alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, and zinc salt. Examples of pharmaceutically acceptable ammonium salts are ammonium salt and tetramethylammonium salt. Examples of pharmaceutically acceptable organic amine addition salts are salts with morpholine and piperidine. Examples of pharmaceutically acceptable amino acid addition salts are salts with lysine, glycine, and phenylalanine. The pharmaceutical composition according to the invention can be administered orally, for example in the form of pills, tablets, lacquered tablets, sugar-coated tablets, granules, hard and soft gelatin capsules, aqueous, alcoholic or oily solutions, syrups, emulsions or suspensions, or rectally, for example in the form of suppositories. Administration can also be carried out parenterally, for example subcutaneously, intramuscularly or intravenously in the form of solutions for injection or infusion. Other suitable administration forms are, for example, percutaneous or topical administration, for example in the form of ointments, tinctures, sprays or transdermal therapeutic systems, or the inhalative administration in the form of nasal sprays or aerosol mixtures, or, for example, microcapsules, implants or rods. The pharmaceutical composition can be prepared in a manner known per se to one of skill in the art. For this purpose, the expression vector according to the invention as defined herein, one or more solid or liquid pharmaceutically acceptable excipients and, if desired, in combination with other pharmaceutical active compounds, are brought into a suitable administration form or dosage form which can then be used as a pharmaceutical in human medicine or veterinary medicine.

According to another aspect, a pharmaceutical composition is provided comprising a nucleic acid expression cassette containing a transgene encoding a therapeutic protein, and a pharmaceutically acceptable carrier. According to another embodiment, the pharmaceutical composition comprises a vector containing the nucleic acid expression

36

cassette containing a transgene encoding a therapeutic protein, and a pharmaceutically acceptable carrier. According to further particular embodiments, the transgene encodes factor IX and the pharmaceutical composition is for treating hemophilia B or the transgene encodes factor VIII and the pharmaceutical composition is for treating hemophilia A.

The use of the nucleic acid expression cassette, its regulatory elements and the vector components as disclosed herein for the manufacture of these pharmaceutical compositions for use in treating hemophilia, preferably hemophilia B or hemophilia A, is also envisaged.

It is to be understood that although particular embodiments, specific constructions and configurations, as well as materials, have been discussed herein for methods and applications according to the present invention, various changes or modifications in form and detail may be made without departing from the scope and spirit of this invention.

The following examples are provided to better illustrate particular embodiments, and they should not be considered limiting the application. The application is limited only by the claims.

EXAMPLES

Example 1: In vivo validation of liver-specific regulatory enhancer sequences expressing hyper-active FIX via AAV vector gene delivery.

20

25

30

10

15

Materials and methods

Vector construction

AAV-based vectors were constructed that express either the codon-optimized factor IX or the codon-optimized factor IX with the Padua R338L mutation from the TTRm promoter operably linked to the Serpin regulatory sequence. The Serpin regulatory sequence has been identified and described under patent application WO2009/130208.

An intron and poly-A sequence were also provided. The full sequence of the construct containing the codon-optimized factor IX is given in SEQ ID No.1 (Fig. 1B) and the construct containing the codon-optimized factor IX with the Padua R338L mutation in SEQ ID No.2 (Fig. 1C). The vectors were constructed by conventional cloning and DNA synthesis. A schematic overview of the AAV vector containing the codon-optimized huFIX

WO 2014/064277

37

PCT/EP2013/072450

is shown in Fig. 1A. The vector with the Padua R338L is identical except for the specific R338L mutation that results in FIX hyper-activity.

Cell lines and culture conditions

5 293T cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 2 mM L-glutamine (Gln), 100 IU/ml penicillin, 100 μg/ml streptomycin and 10% heatinactivated fetal bovine serum (FBS, Invitrogen, Merelbeke, Belgium).

AAV vector production

As an example, the AAV serotype 9 viral vector was chosen to package the construct, known to be a promising vector for gene therapy (Vandendriessche et al. 2007). AAV vectors expressing human FIX were produced at high-titer by calcium phosphate transfection according to the manufacturer's instruction (Calcium phosphate transfection kit, Invitrogen) of 293 cells with AAV2-vector DNA (26 μg/10 cm dish), an adenoviral helper plasmid (52 μg/10 cm dish) and AAV helper plasmids expressing Rep2 and Cap9 (26 μg/10 cm dish) for production of AAV9 serotypes, as described in Gao et al. (2002), Mingozzi et al. (2003) and Gehrke (2003).

Two days post-transfection, cells were lysed by successive freeze-thaw cycles and sonication. Lysates were treated with benzonase (Merck) and deoxycholate (Sigma-Aldrich) and subsequently subjected to three successive rounds of cesium chloride density ultracentrifugation. The fractions containing the AAV particles were concentrated using an Amicon filter (Millipore) and washed with PBS 1mM MgCl2. Vector genome titers were determined by quantitative polymerase chain reaction (qPCR) using TaqMan® probes and primers specific for the polyadenylation signal (forward primer: 5'GCCTTCTAGTTGCCAGCCAT (SEQ ID No.3), probe: 5'TGTTTGCCCCTCCCCGTGC (SEQ ID No.4), reverse primer: 5'GGCACCTTCCAGGGTCAAG (SEQ ID No.5)).

Animal studies

20

25

Animal procedures were approved by the animal Ethical Commission of the VUB. Animals were housed under Biosafety Level II conditions. Mice were injected with the AAV9 vectors as described in Vandendriessche et al. (2007). Briefly, 10⁹ vg, 5x10⁹ vg, 2x10¹⁰ vg

38

(vector genomes = vg) were injected (i.v.) into the tail vein of adult hemophilia B mice (3 mice/group). Blood was collected by retro-orbital bleeds under general anesthesia. Human FIX expression was determined in citrated mouse plasma using a chromogenic FIX activity assay, according to the manufacturer (Hyphen Biomed, Neuville-sur-Oise, France) using serially diluted hFIX standards for calibration.

Results

5

10

15

20

30

AAV vectors expressing either the human codon-optimized FIX cDNA (designated as AAV-co-hFIX in Fig. 2) or the human codon-optimized FIX-R338L cDNA (designated as AAV-co-padua-hFIX in Fig. 2) from a chimeric liver-specific promoter (SerpEnh/TTRm) were injected into FIX-deficient hemophilic mice that suffered from hemophilia B. A doseresponse was observed and the AAV vector expressing the codon-optimized FIX-R338L yielded significantly higher FIX activity than the codon-optimzed FIX control without the hyper-activating mutation. Remarkably, the AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L vector reached therapeutic FIX levels at a relatively low dose (>50% of normal FIX levels at 1x10⁹ gc/mouse, >250% of normal FIX levels at 5x10⁹ gc/mouse and >700% of normal FIX levels at 2x10¹⁰ qc/mouse after 5 days), which underscores its potency. These levels typically increase more than 2-fold to stable levels in subsequent weeks, reaching respectively approximately >100%, >500% and >1400% FIX at doses of respectively, 1x10⁹ gc/mouse, 5x10⁹ gc/mouse and 2x10¹⁰ gc/mouse. These levels were still increasing in subsequent days following vector injection. Hence, this new vector produced unprecedented, high levels of human IX and can be used at much lower doses than described in the art to cure hemophilia B in a clinically relevant animal model.

25 Example 2: Enhanced, liver-specific expression of FIX via AAV vector gene delivery.

Materials and methods

Vector constructs

A FIX construct comprising human FIX cDNA (hFIX), was cloned downstream of a liver-specific minimal transthyretin (TTRm) promoter in an adeno-associated viral vector 9 (AAV9) backbone. This vector was further improved to AAV9-SerpEnh-TTRm-hFIX, which comprised an additional hepatocyte-specific regulatory element, namely the Serpin regulatory sequence ("Serp" or "SerpEnh"), upstream of the TTRm promoter. To improve the function of this vector, a minute virus of mice (MVM) intron was cloned in between the

TTRm promoter and the hFIX transgene (AAV9-SerpEnh-TTRm-MVM-hFIX). Next, the hFIX transgene was codon-optimized in order to augment the expression of the protein (AAV9-SerpEnh-TTRm-MVM-co-hFIX). A further improvement encompassed a mutation, namely the R338L, Padua mutation (Fig. 3C), of the co-hFIX fragment (AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L).

Vectors:

5

15

20

25

30

- -AAV9-TTRm-hFIX
- -AAV9-SerpEnh-TTRm-hFIX
- -AAV9-SerpEnh-TTRm-MVM-hFIX
- 10 -AAV9-SerpEnh-TTRm-MVM-co-hFIX (Fig. 3B)
 - -AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L (Fig. 3A,C)

Vector production and purification

Calcium phosphate (Invitrogen Corp, Carlsbad, CA, USA) co-transfection of AAV-293 cells with the AAV plasmid of interest, a chimeric packaging construct and an adenoviral helper plasmid, were used to produce AAV vectors as described in VandenDriessche T et al. (2007, VandenDriessche T., Thorrez L, Acosta-Sanchez, Petrus I, Wang L, Ma L, De Waele L, Iwasaki Y, Giillijns V, Wilson JM, Collen D, Chuah MK; Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost, 2007. 5(1): p. 16-24), which is specifically incorporated by reference herein. Cells were harvested two days after transfection and lysed by freeze/thaw cycles and sonication, followed by bezonase (Novagen, Madison, WI, USA) and deoxycholic acid (Sigma-Aldrich, St Louis, MO, USA) treatments and 3 consecutive rounds of cesium chloride (Invitrogen Corp, Carlsbad, CA, USA) density gradient ultracentrifugation. AAV vector containing fractions were collected and concentrated in Dulbecco's phosphate buffered saline (PBS) (Gibco, BRL) containing 1 mM MgCl₂.

Quantitative real-time PCR with SYBR® Green and primers for the bovine growth hormone polyadenylation sequence (bGHpolyA) was used to determine vector titers. The forward primer sequence was 5'-GCCTTCTAGTTGCCAGCCAT-3' (SEQ ID NO:3). The reverse primer used was 5'-GGCACCTTCCAGGGTCAAG-3' (SEQ ID NO:5). To generate standard curves, known copy numbers (10²–10⁷) of the corresponding vector plasmids were used.

40

Animal experiments and clotting assays

5

10

15

20

25

30

Vector administration was carried out by tail vein injection on adult hemophilia B mice at doses of 1x10⁹vg/mouse, 5x10⁹vg/mouse and 2x10¹⁰vg/mouse. Whole blood was collected into buffered citrate by phlebotomy of the retro-orbital plexus. Human FIX antigen concentration in citrated plasma was determined by enzyme-linked immunosorbent assay (ELISA) specific for hFIX antigen (Diagnostica Stago, France) using manufacturer's protocol. FIX activity was assessed using BIOPHEN Factor IX chromogenic assay (Hyphen BioMed, Neuville-sur-Oise, France) according to the manufacturer's protocol. For both assays, serially diluted hFIX standards were used for calibration.

D-dimer levels were determined by ELISA, according to the manufacturers instructions (Hyphen Biomed, Neuville-sur-Oise, France).

Tail-clipping assay was performed. Mice were anesthetized and tail was placed in prewarmed 37°C normal saline solution for 2 minutes and subsequently cut at 2-3 mm diameter. Tail was then immediately placed in 37°C normal saline solution and monitored for bleeding and survival.

Immunizations and detection of anti-FIX antibodies

Immunizations were carried out by subcutaneous injection of 5 µg of recombinant human (rh)FIX protein (BeneFix, Pfizer, Italy) in incomplete Freund's adjuvant (IFA) (Sigma-Aldrich, USA). Briefly, 96-well microtiter plates were coated with hFIX (1µg/ml) and serially diluted standards made of purified mouse IgG (Invitrogen, Europe). The plate was incubated overnight at 4° C. On day 2, the samples of mouse plasma were diluted in dilution buffer, loaded on the pre-coated plates and incubated overnight at 4°C. Experimental plasma samples were obtained from mice injected with AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L. Plasma from phosphate-buffered saline (PBS)-injected mice immunized with rhFIX was used as control. The plate was then incubated with horseradish peroxidase (HRP)-goat anti-mouse IgG (Invitrogen, Europe) secondary antibody. Anti-hFIX antibody levels were measured following incubation with detection buffer constituting 12ml 0.01M sodium citrate, 12mg o-phenylenediamine and 2.5 µl hydrogen peroxide (Invitrogen, Europe). The chromogenic reaction was monitored by determining the absorbance at 450 nm.

Vector DNA and mRNA quantification

Genomic DNA was extracted from different tissues using the DNeasy Blood & Tissue Kit (Qiagen, Chatsworth, CA, USA). 100ng DNA was analyzed using qPCR ABI Prism 7900HT (Applied Biosystems, Foster City/CA, USA) with bGHPolyA specific primers 5'-GCCTTCTAGTTGCCAGCCAT-3' (SEQ ID NO:3) (forward) and 5'-GGCACCTTCCAGGGTCAAG-3' (SEQ ID NO:4) (Reverse). To generate standard curves, known copy numbers of the corresponding vector plasmid was used.

The mRNA was isolated from different organs using a NucleoSpin RNA extraction kit (Machery-Nagel, Germany). Using a cDNA synthesis kit (Invitrogen corp, Carlsbad, CA, USA), RNA from each organ was reverse transcribed to cDNA. cDNA was then analyzed by qPCR ABI Prism 7900HT (Applied Biosystems, Foster City/CA, USA) using bGHPolyA specific primers 5'-GCCTTCTAGTTGCCAGCCAT-3' (SEQ ID NO:3) (forward) and 5'-GGCACCTTCCAGGGTCAAG-3' (SEQ ID NO:4) (Reverse). To expression levels were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression, obtained by using the forward primer 5'-GAAGGTGAAGGTCGGAGTC-3' (SEQ ID NO:18) and reverse primer 5'-GAAGATGGTGATGGGATTTC-3' (SEQ ID NO:19).

Statistics

5

10

15

30

Data were analyzed using Microsoft Excel Statistics package. Values shown in the figures are the mean + SEM. Specific values were obtained by comparison using t-test.

Results

Figure 4 shows that administration of the AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L vector to hemophilia B mice provides for significantly higher FIX levels and activity compared to the AAV9-SerpEnh-TTRm-MVM-co-hFIX vector. The FIX response was dose-dependent. Therapeutic FIX levels could be attained at relatively low vector doses of 1x10⁹ vgc/mouse, 5x10⁹ vgc/mouse, and 2x10¹⁰ vgc/mouse. Furthermore, these vector doses are safe as no thrombolysis was observed (Fig. 4J). Figure 5 shows that FIX was specifically expressed in the liver (Fig. 5 C-D), despite transduction of the vector in other organs (Fig. 5 A-B).

To further assess the clinical relevance of the AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L vector, a tail-clipping assay was performed on hemophilia B mice treated with 1x10⁹ vg/mouse of the vector (n=5). Wild-type (C57BL6) (n=4) and untreated hemophilia B (HemoB) mice (n=4) were used as controls. Survival rate for each cohort was monitored and the FIX clotting activity were analyzed. The results are summarized in Table 1 and show that administration of the AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L vector allows for correcting the bleeding phenotype.

42

Table 1: Tail-clipping assay

	Survival	FIX activity
Wild-type mice	4/4	-
untreated HemoB mice	0/4	0.0013%
treated HemoB mice	5/5	33%

To assess the immune consequences of expressing the hyper-functional FIX Padua at high levels, the anti-FIX antibody response before and after active immunization with wild-type FIX protein and adjuvant was analyzed. The results show that immune tolerance could be achieved since none of the mice treated with the AAV9-SerpEnh-TTRm-MVM-co-hFIX-R338L vectors developed anti-FIX antibodies, in contrast to the controls that were not treated with this vector (Fig.4K).

Example 3: Liver-specific expression of FVIII via AAV vector gene delivery.

10 Materials and methods

5

15

20

Vector construction

AAV-based vectors were constructed that express a codon-optimized B domain-deleted human coagulation factor VIII (hFVIIIcopt) cDNA (Ward et al., 2011) from the minimal TTR (TTRm) promoter operably linked to the nucleic acid regulatory element Serpin enhancer ("Serp" or "SerpEnh") described in WO 2009/130208, which is specifically incorporated by reference herein. The codon-optimized B domain-deleted human FVIII cDNA was PCR amplified and subcloned into a pGEM-T easy plasmid (Promega, Belgium) and after restriction with Spel-BamHI, the FVIII cDNA was cloned into the Nhel-BgIII restricted pAAV-SerpEnh-TTRm vector to generate AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA (also indicated as AAVss-SerpTTRm-MVM-FVIIIcopt-sv40pA herein). This vector also contained a small intron from minute virus of mouse (MVM) to boost FVIII expression levels.

Vector production

For titration of the AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA vector, primers binding the SV40 polyA region were used, including 5'-TGATGCTATTGCTTTATTTGTAACC-3' (SEQ ID NO:20) as forward primer, 5'-

43

CCTGAACCTGAAACATAAAATGA-3' (SEQ ID NO:21) as reverse primer and 5'-FAM-AGCTGCAATAAACAAGTTAACAACAACAACTTGCA-TAMRA-3' (SEQ ID NO:22)as probe. Titers were achieved in the normal range of 2–5x10¹² vg/ml. Briefly, reactions were performed in TaqMan® Universal PCR Master Mix (Applied Biosystems, Foster City,CA,USA), on an ABI 7500 Real-Time PCR System (Applied Biosystems, Foster City,CA,USA). Known copy numbers (10²–10⁷) of the vector plasmid used to generate the AAV vector were used to generate the standard curves.

Animal studies

5

10

15

20

25

30

The AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA vectors were injected intravenously into adult male SCID mice (CB17/IcrTac/Prkdc scid) at a dose of 5x10⁹ vg/mouse or 2.5x 10¹¹vg/kg.

FVIII expression analysis

Human (h) FVIII antigen levels were assayed in citrated mouse plasma using a hFVIII-specific enzyme-linked immunosorbent assay (ELISA) (Asserachrom® VIII:Ag, Diagnostica Stago, France), as per the manufacturer's instructions. Samples were diluted in sample diluent provided and analyzed in triplicate. Standard curves in percentage FVIII antigen activity were constructed by diluting normal control plasma. In brief, 200 ml diluted samples and standards were pipetted into the wells of the strips pre-coated with mouse monoclonal anti-human FVIII Fab fragments and incubated for 2 hours at room temperature for antigen immobilization. The wells were then washed with the wash buffer for 5 times before adding 200 ml mouse monoclonal anti-hFVIII antibody coupled with peroxidase for immobilization of immunoconjugate. After incubation for 2 hr at room temperature and washing, 200 ml of TMB substrate was added to the wells for color development. This mixture was incubated at room temperature for exactly 5 minutes. The reaction was then stopped by 50ml 1M H₂SO₄ and then read at 450 nm within 1h.

Results

High-titer AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA vectors expressing a codon-optimized B-domain deleted human FVIII cDNA (hFVIIIcopt) from a liver-specific promoter (TTRm) operably linked to a regulatory element ("Serp" or "SerpEnh") could be produced with a total insert size of 4913 bp (excluding ITR) (Fig. 6). Intravenous injection of a very low vector dose (5x10⁹ vg/mouse) resulted in therapeutic FVIII levels approximating 421.8 ± 4.9 ng/ml (i.e. 210.9 ± 3.1% of normal levels) (Fig. 7). To our knowledge, AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA vector is the most robust AAV-FVIII vector design to date.

Example 4: Enhanced, liver-specific expression of FVIII and FIX via transposon-based gene delivery.

Materials and methods

The codon-optimized hyperactive PB transposase (huPB) was cloned into pcDNA3 and 5 expressed from the CAG promoter (Fig. 8A,B). The hyperactive SBmax transposase was cloned into pcDNA3 and expressed from the CAG promoter (Fig. 8K,L). A codonoptimized B-domain deleted FVIII (hFVIIIcopt), described as SQ FVIII (co) in Ward et al. (2011) was cloned by conventional cloning techniques into a PB transposon to generate 10 PB Minimal T (T53C-C136T) D4Z4 TTRminSerpMVM hFVIIIcopt SV40pA-D4Z4 (Fig. 8C,D). The human codon-optimized FIX cDNA and the codon-optimized FIX cDNA with the hyperactivating Padua mutation were cloned by conventional cloning techniques into а PB transposon to generate the PB micro T No Ins TTRminSerpMVM hFIXco bghpA (Fig. 8E,F) and 15 PB micro T No Ins TTRminSerpMVM hFIXco Padua bghpA (Fig. 8G,H), respectively. The human codon-optimized FIX cDNA was cloned by conventional cloning techniques into an SB-based vector to generate pT2BH TTRminSerpMVM hFIXco bghpA (Fig. 81,J). The transgenes were expressed from a liver-specific minimal transthyretin (TTRm) promoter along with the Serpin enhancer ("Serp" or "SerpEnh"). The contructs also 20 contained a mouse mini-intron (MVM) and a polyadenylation site. The recombinant clones

The different FVIII-transposons and matching plasmids encoding the cognate hyperactive transposases (i.e. hyPB and SBmax, respectively) were purified by ion exchange chromatography and transfected by hydrodynamic transfection at varying transposon/transposase ratios and concentrations into adult mice. Controls without transposase were employed. The FIX expression was monitored by ELISA or using chromogenic activity assays in hemophilia B mice. FVIII expression in SCID mice was assessed using a human FVIII-specific ELISA.

were verified by restriction analysis and sequencing.

Results

25

Incorporation of the Serpin enhancer into the PB transposons resulted in robust, stable gene transfer efficiencies in hepatocytes yielding high unprecedented activity of the codon-optimized FIX Padua (hFIXco-R338L), when the hyperactive hyPB transposase was employed (Fig. 9A). Conversely, in the absence of the hyperactive hyPB transposase,

45

expression declined gradually to basal levels, consistent with our previous observations that transposition is required for stable gene expression in the liver. Molecular analysis, performed 1 year post-transfection, confirmed stable genomic integration of the FIX-transposons. Moreover, side-by-side comparisons revealed a nearly 100-fold increase in FIX expression with this optimized FIX transposon compared to early-generation transposon design.

5

10

25

30

Fig. 10 demonstrates that the use of the liver-specific Serpin enhancer ("Serp" or "SerpEnh") in conjunction with codon-optimized B-domain deleted FVIII (hFVIIIcopt), and the hyperactive hyPB system resulted in robust, stable gene transfer efficiencies in hepatocytes, yielding high unprecedented expression levels of FVIII. Conversely, in the absence of the hyperactive hyPB transposase, expression declined gradually to basal levels. This confirms that stable genomic integration by transposition is required for stable hepatic FVIII gene expression.

15 Sleeping Beauty (SB) transposon (pT2BH_TTRminSerpMVM_hFIXco_bghpa) was with PiggyBac (PB) compared side by side the transposon (PB micro T No Ins SerpTTrminMVM hFIXco BGHpA)) in immunodeficient NOD SCID mice using two different doses as indicated (Fig. 11). One month post-injection of the transposon and transposase plasmids, blood was collected. FIX ELISA was performed to 20 determine the amount of FIX expression. About 1500-2000 ng/ml of FIX antigen was detected in both, SB and PB, transposons. These data show that the SB and PB vectors are equally potent and can induce high therapeutic level of FIX expression amounting to about 30-40 % of normal FIX.

No adverse events were noted in the different mouse models with any of the transposons, regardless of the transgene, that could be ascribed to the transposition or to the transient transposase expression.

To further ascertain the safety of the PB transposons we administered the transposons by hydrodynamic transfection into a tumor prone mouse model. In this model, mice were injected repeatedly with the carcinogen N,N-diethylnitrosamine (DEN) and developed hepatocellular carcinoma. The tumor burden was assessed 36 weeks post-DEN injection. We did not observe any statistically significant difference in tumor mass or number of tumor nodules in mice treated with the transposons vs. controls without transposition. These data indicate that PB transposition in itself does not significantly increase tumorigenicity, even in an HCC tumor-prone mouse model, which supports its safety.

46

Example 5: Enhanced expression of FVIII and FIX by cloning the MVM intron into the nucleic acid expression cassette.

Materials and methods

A piggyBac transposon plasmid was constructed that comprises human FIX cDNA cloned downstream of a liver-specific minimal transthyretin (TTRmin) promoter operably linked to the Serpin regulatory sequence ("Serp" or "SerpEnh" or "HSH8"). The bovine growth hormone poly A (bghpA) was provided as a transcription termination signal. Human FIX cDNA comprises a truncated 1.4 kb intron A between exons 1 and the following exons 2-8. A schematic representation of said transposon, denoted as pB_hFIXIA, is shown in Figure 12A.

A piggyBac transposon plasmid was constructed that contains a synthetic codon-optimized human FIX cDNA without intron A. Said codon-optimized hFIX cDNA was cloned downstream of a liver-specific minimal transthyretin (TTRmin) promoter operably linked to the Serpin regulatory sequence ("Serp" or "SerpEnh" or "HSH8"). A minute virus of mice (MVM) intron was cloned between the TTRmin promoter and the hFIXco transgene. The bovine growth hormone poly A (bghpA) was provided as a transcription termination signal. A schematic representation of said transposon, denoted as pB_hFIXco, is shown in Figure 12B.The plasmids were constructed by conventional cloning and DNA synthesis.

Hemophilia B mice were hydrodynamically injected with 10 µg transposon plasmid and 2 µg of mouse transposase plasmid mpBase (Fig. 12C) or empty control plasmid (Fig. 12D) diluted in 2 ml of PBS into the tail vein. Typically, the injection took less than 10 s for each mouse. Determination of hFIX levels and activity occurred as described in Example 2.

25

30

15

20

Transposon genome copy number quantification

Genomic DNA was extracted from frozen liver samples according to DNeasy Blood & Tissue Kit protocol (Qiagen, Chatsworth, CA, USA). RNase A (Qiagen, Chatsworth, CA, USA) treatment was carried out to eliminate carry-over RNA. Transposon copy numbers were quantified by qPCR using a primer set against a specific region common to both transposon constructs using forward primer 5'- AACAGGGGCTAAGTCCACAC -3' (SEQ ID NO: 25) and reverse primer 5'- GAGCGAGTGTTCCGATACTCT -3' (SEQ ID NO: 26). Briefly, 50 ng of genomic DNA from each sample was subjected to qPCR in triplicate

47

using an ABI Prism 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City/CA, USA) and Power SYBR® Green PCR Master Mix (Applied Biosystems, Foster City/CA, USA). Copy number was determined comparing the amplification signal with a standard curve consisting of serial dilutions over a 6 log range of the corresponding linearized plasmid spiked with 50 ng of liver genomic DNA from saline-injected mouse (slope \approx -3,3, intercept \approx 35, efficiency % \approx 100). Average copies per diploid genome were calculated taking into account that one murine diploid genome = 5,92 pg.

hFIX mRNA expression analysis

5

10

15

20

25

30

35

Total RNA was extracted from frozen liver samples using a miRCURY™ RNA isolation kit (Exigon, Denmark). DNase (Thermo Scientific, USA) treatment was carried out. The reverse transcription reaction was performed starting from 1 µg of total RNA from each sample using the SuperScript® III First Strand cDNA Synthesis Kit (Life Technologies, USA). Next, a cDNA amount corresponding to 10 ng of total RNA from each sample was analyzed in triplicate by quantitative (q)PCR using an ABI Prism 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City/CA, USA) and Power SYBR® Green PCR Master Mix (Applied Biosystems, Foster City/CA, USA). The following primer set was used: forward primer 5'-GCCTTCTAGTTGCCAGCCAT-3' (SEQ ID NO:3), reverse primer 5'- GGCACCTTCCAGGGTCAAG-3' (SEQ ID NO:4). The hFIX mRNA levels were normalized using a primer set against the mRNA of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (mGAPDH) which is uniformly constantly expressed in all samples (i.e. forward primer 5'-ATCAAGAAGGTGGTGAAGCAGGCA -3' (SEQ ID NO:27) and reverse primer 5'-TGGAAGAGTGGGAGTTGCTGTTGA -3' (SEQ ID NO:28)). RNA samples were amplified with and without reverse transcriptase to exclude genomic DNA amplification. The 2-ΔΔCt relative quantification method was used to determine the relative changes in hFIX mRNA expression level. The ΔCt was calculated by subtracting the Ct of mGAPDH mRNA from the Ct of the hFIX mRNA (Ct_{hFIX} - Ct_{GAPDH}). The ΔΔCt was calculated by subtracting the Δ Ct of the reference sample (highest Ct) from the Δ Ct of each sample (Δ Ct_{sample} - $\Delta Ct_{reference}$. Fold-change was determined by using the equation 2 $^{-\Delta\Delta Ct}$.

Results

As shown in Figures 12E and F, hFIX expression and activity is transient and gradually declines to basal levels in mice that were co-injected with the empty control plasmid (Fig. 12E: $pB_hFIXIA + empty$ plasmid: 46 ± 13 ng/ml hFIX, $0.87 \pm 0.2\%$ normal clotting activity

and Fig. 12F: pB_hFIXco + empty plasmid: 48 ± 22 ng/ml hFIX, 0,97 ± 0,49% normal clotting activity). These results indicate that stable transposition is necessary for sustained expression, but the non-integrated pB-hFIXIA or pB-hFIXco plasmids may have contributed to the initial surge in hFIX expression

5 The transposon plasmid comprising the MVM intron yielded significantly higher hFIX levels and activity as compared to the plasmid without MVM intron when co-delivered with the mouse transposase plasmid (Fig. 12E,F). Liver-directed hydrodynamic co-transfection of the pB-hFIXIA transposon without MVM intron (10 μg) along with 2 μg mPB plasmid, resulted in stable therapeutic hFIX antigen and activity levels for at least up to 12 months 10 in hemophilic FIX-deficient mice (Fig. 12E, 1168 ± 218 ng/ml hFIX and 32 ± 6% normal clotting activity). Similarly, liver-directed co-transfection of the pB hFIXco transposon with MVM intron and mPB plasmid resulted in a significant ≈12-fold higher (p<0.001) hFIX protein and activity level that stabilized in the supra-physiologic range (Fig. 12F: 13290 ± 990 ng/ml hFIX and 313 ± 7% normal clotting activity). The increase in hFIX protein levels was consistent with a more than 57-fold increase in hFIX mRNA levels when comparing 15 the transposon with and without the MVM intron (Fig. 12 H), although the transposon copies per genome content were similar in the liver of mice that were injected with pB hFIXIA and pB hFIXco (Fig. 12G).

Example 6: Comparison of expression cassettes comprising a FVIII transgene.

20 Material and methods

30

The AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA plasmid of Example 3 was compared to:

- (a) AAV9ss-TTRm-MVM-hFVIII-SV40pA,
- (b) AAV9ss-SerpEnh-TTRm-MVM-hFVIII-SV40pA, and
- 25 (c) AAV9ss-TTRm-MVM-hFVIIIcopt-SV40pA.

AAV9ss-TTRm-MVM-hFVIIIcopt-SV40pA plasmid (c) was constructed by excising the Serpin enhancer from AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA plasmid.

Mice were hydrodynamically injected with 2 μg or 5 μg of the plasmid DNA diluted in 2 ml of phosphate buffered saline (PBS) and injected into the tail vein. Typically, the injection took less than 10 s for each mouse. FVIII expression analysis was carried out as described in Example 3.

Results

25

The AAV9ss-TTRm-MVM-hFVIIIcopt-SV40pA (c) and AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA (d) constructs were hydrodynamically injected in mice at 2 µg and 5 µg DNA, and human FVIII levels were measured 1, 2 and 6 days post-transfection.

- The effect of cloning the Serpin enhancer into the expression cassette on hFVIII levels can be calculated by dividing the hFVIII levels measured in mice injected with construct (d) by the levels measured in mice injected with construct (c). 3- to 6-fold higher hFVIII levels can be obtained by cloning the Serpin enhancer into the expression cassette (Table 2).
- The codon-optimized B domain-deleted human coagulation factor VIII (hFVIIIcopt) cDNA was reported to achieve 29- to 44-fold increase in expression (Ward et al. 2011). We used the average increase in expression of 36.5 to predict the hFVIII levels in mice that are transfected with AAV9ss-SerpEnh-TTRm-MVM-hFVIII-SV40pA construct (b), namely by dividing the hFVIII levels measured in mice transfected with construct (d) by 36.5.
- Based on said predicted hFVIII levels in mice that are hydrodynamically injected with AAV9ss-SerpEnh-TTRm-MVM-hFVIII-SV40pA construct (b), we can further predict the hFVIII levels in mice that are hydrodynamically injected with AAV9ss-TTRm-MVM-hFVIII-SV40pA construct (a) by dividing said predicted hFVIII levels by the calculated effect of cloning the Serpin enhancer into the expression cassette on hFVIII levels.
- The measured and predicted hFVIII levels in mice hydrodynamically injected with the different constructs a-d are summarized in Table 3 and Figures 13A and 13B.

Table 3: hFVIII levels in mice hydrodynamically injected with 2 or 5 µg of plasmids (a) AAV9ss-TTRm-MVM-hFVIII-SV40pA, (b) AAV9ss-SerpEnh-TTRm-MVM-hFVIII-SV40pA, (c) AAV9ss-TTRm-MVM-hFVIIIcopt-SV40pA, and (d) AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA.

	(a) AAVss-TTRm-MVM- hFVIII	(b) AAVss-SERP- TTRm-hFVIII	(c) AAVss-TTR- MVM-hFVIIIcopt	(d) AAVss-SERP- TTR-MVM- hFVIIIcopt
	Predicted level: (a) = (b) : [(d):(c)]	Predicted level: (b) = (d) : 36,5x	Measured level	Measured level
	no SERP, no codon- optimization	SERP	codon-optimization	SERP + codon- optimization
Day 1	2 μg = 11/4 = 3 ng/ml	2 μg = 11 ng/ml	2 μg = 102 ng/ml	2 μg = 412 ng/ml
	5 μg = 20/3,3 = 6 ng/ml	5 μg = 20 ng/ml	5 μg = 227 ng/ml	5 μg = 751 ng/ml
Day 2	2 μg = 4,1/1,9 = 2 ng/ml	2 μg = 4,1 ng/ml	2 μg = 77 ng/ml	2 μg = 150 ng/ml
	5 μg = 11,7/3,3 = 3,5 ng/ml	5 μg = 11,7 ng/ml	5 μg = 129 ng/ml	5 μg = 429 ng/ml
Day 6	2 μg = 1/3,5 = 0,28 ng/ml	2 μg = 1 ng/ml	2 μg = 11 ng/ml	2 μg = 39 ng/ml
	5 μg = 6,4/5,9 = 1 ng/ml	5 μg = 6,4 ng/ml	5 μg = 39 ng/ml	5 μg = 233 ng/ml

The data shows that expression cassettes comprising the specific combination of the codon-optimized B domain-deleted human coagulation factor VIII (hFVIIIcopt) cDNA described in Ward et al. (2011) and the Serpin enhancer can induce hFVIII levels that are significantly higher as compared to the sum of the hFVIII levels that are obtained by expression cassettes comprising each of these elements alone (Table 4, Figures 13C and 13D). In other words, said specific combination of hFVIIIcopt cDNA and the Serpin enhancer provides for a synergistic effect on hFVIII levels.

Table 4: Comparison of hFVIII levels induced by AAV9ss-SerpEnh-TTRm-MVM-hFVIIIcopt-SV40pA construct (d) as compared to the levels induced by (b) AAV9ss-SerpEnh-TTRm-MVM-hFVIII-SV40pA construct and (c) AAV9ss-TTRm-MVM-hFVIIIcopt-SV40pA construct, and as compared to the levels induced by (a) AAV9ss-TTRm-MVM-hFVIII-SV40pA construct.

	(b) + (c)	(d) / [(b)+(c)]	(d) / (a)
Day 1	2 μg = 11 + 102 = 113 ng/ml	2 μg = 412 / 113 = 3,6x >>>	2 μg = 412 / 3 = 137x >>>
	5 μg = 20 + 227 = 247 ng/ml	5 μg = 751 / 247 = 3x >>>	5 μg = 751 / 6 = 125x >>>
Day 2	2 μg = 77 + 4 = 81 ng/ml	2 μg = 150 / 81 = 1,8x >>>	2 μg = 150 / 2 = 75x >>>
	5 μg = 11 + 129 = 140 ng/ml	5 μg = 429 / 140 = 3x >>>	5 μg = 429 / 3,5 = 122x >>>
Day 6	2 μg = 11 + 1 = 12 ng/ml	2 μg = 39 / 12 = 3,25x >>>	2 µg = 39 / 0,28 = 139x >>>
	5 μg = 39 + 6,4 = 45,4 ng/ml	5 μg = 233 / 45,4 = 5,1x >>>	5 μg = 233 / 1 = 223x >>>

15

5

Example 7: Comparison of expression cassettes comprising a FIX transgene.

Material and methods

AAV-based plasmids comprising a FIX transgene were constructed as described in Example 2.

- 20 FIX knockout mice were hydrodynamically injected with 2 μg of each of the following FIX plasmids diluted in 2 ml of phosphate buffered saline (PBS) into the tail vein:
 - (a): AAVsc-TTRm-MVM-hFIX-pA;
 - (b): AAVsc-SerpEnh-TTRm-MVM-hFIX-pA;
 - (c): AAVsc-TTRm-MVM-hFIXco-pA
- 25 (d): AAVsc-SerpEnh-TTRm-MVM-hFIXco-pA

51

(e): AAVsc-TTRm-MVM-hFIXcoPadua-pA

(f): AAVsc-SerpEnh-TTRm-MVM-hFIXcoPadua-pA

Blood was collected from these mice at day 2 and day 6 post-injection. FIX activity was determined as described in Example 2.

5

10

15

20

25

Results

FIX activity as measured in the different mice is summarized in Table 5.

Table 5: hFIX activity at days 2 and 6 post-injection in mice hydrodynamically injected with 2 μg of (a) AAVsc-TTRm-MVM-hFIX-pA plasmid, (b) AAVsc-SerpEnh-TTRm-MVM-hFIX-pA plasmid, (c) AAVsc-TTRm-MVM-hFIXco-pA plasmid, (d) AAVsc-SerpEnh-TTRm-MVM-hFIXco-pA plasmid, (e) AAVsc-TTRm-MVM-hFIXcoPadua-pA plasmid, and (f) AAVsc-SerpEnh-TTRm-MVM-hFIXcoPadua-pA plasmid.

	(a) AAVsc-	(b) AAVsc-	(c) AAVsc-	(d) AAVsc-	(e) AAVsc-	(f) AAVsc-
	TTRm-	SerpEnh-	TTRm-	SerpEnh-	TTRm-	SerpEnh-
	MVM-hFIX-	TTRm-	MVM-	TTRm-	MVM-	TTRm-
	pΑ	MVM-hFIX-	hFIXco-pA	MVM-	hFIXcoPadu	MVM-
		pΑ		hFIXco-pA	a-pA	hFIXcoPadu
						а-рА
	no SERP,	SERP	codon-	SERP +	codon-	SERP +
	no codon-		optimization	codon-	optimization	codon-
	optimization			optimization	+ Padua	optimization
	, no Padua					+ Padua
Day 2	5.92%	42.99%	6.36%	74.25%	75.09%	289.34%
Day 6	1.00%	12.90%	0.23%	34.32%	18.48%	265.71%

The data shows that the specific combination of codon-optimized human coagulation factor IX (hFIXco) cDNA and the Serpin enhancer results in hFIX activity that is higher than would have been predicted based on the sum of the hFIX activity determined in mice hydrodynamically injected with plasmids (b) and (c) comprising either a Serpin enhancer (b) or a codon-optimized hFIX transgene (c) (Table 6, Figures 14A and 14B). In other words, said specific combination of hFIXco cDNA and the Serpin enhancer provides for a synergistic effect on hFIX activity.

To evaluate the combination of the Serpin enhancer and the Padua mutation on hFIX activity, hFIX activity in mice hydrodynamically injected with (f) AAVsc-SerpEnh-TTRm-MVM-hFIXcoPadua-pA plasmid was compared versus hFIX activity in mice hydrodynamically injected with (d) AAVsc-SerpEnh-TTRm-MVM-hFIXco-pA plasmid and (e) AAVsc-TTRm-MVM-hFIXcoPadua-pA plasmid (Table 6, Figures 14C and 14D). The

combination of the Serpin enhancer and the Padua mutation provides for a synergistic effect on hFIX activity.

Also the combination of the Serpin enhancer with codon-optimized transgene encoding hFIX containing the Padua mutation shows synergy on hFIX activity, as revealed by comparing hFIX activity in mice injected with (f) AAVsc-SerpEnh-TTRm-MVM-hFIXcoPadua-pA plasmid versus hFIX activity in mice injected with (b) AAVsc-SerpEnh-TTRm-MVM-hFIX-pA plasmid, and (e) AAVsc-TTRm-MVM-hFIXcoPadua-pA plasmid.

Table 6: Comparison of hFIX activity induced by the different FIX plasmids: (a) AAVsc-10 TTRm-MVM-hFIX-pA plasmid, (b) AAVsc-SerpEnh-TTRm-MVM-hFIX-pA plasmid, (c) AAVsc-TTRm-MVM-hFIXco-pA plasmid, (d) AAVsc-SerpEnh-TTRm-MVM-hFIXco-pA plasmid, (e) AAVsc-TTRm-MVM-hFIXcoPadua-pA plasmid, and (f) AAVsc-SerpEnh-TTRm-MVM-hFIXcoPadua-pA plasmid.

(p) + (c)	(d) / (b) + (c)	(d) + (e)	(f) / (d) + (e)	(b) + (e)	(f) / (b) + (e)	(d) / (a)	(f) / (a)
	SERP + codon-optimization		SERP + Padua		SERP + codon-optimization + Padua		
42,99 + 6,36 = 49,35%	74,25 / 49,35 = 1,5x ↑	74,25 + 75,09 = 149,34%	289,34 / 149,34 = 1,9x ↑	42,99 + 75,09 = 118,08%	289,34 / 118,08 = 2,5x↑	74,25 / 5,92 = 12,5x	289,34 / 5,92 = 48,9x
12,90 + 0,23 = 13,13%	34,32 / 13,13 = 2,6x ↑	34,32 + 18,48 = 52,80%	265,71 / 52,80 = 5,0x ↑	12,90 + 18,48 = 31,38%	265,71 / 31,38 = 8,5x↑	34,32 / 1 = 34,32x	265,71 / 1 = 265,71x

15 Example 8: Evaluation of the piggyBac transposon system.

Materials and methods Transposon constructs

pB_hFIXIA (Fig. 12A) and pB_hFIXco (Fig. 12B) plasmids were constructed as described in Example 5.

A terminal inverted repeat of pB_hFIXco (IR_{wt}) was replaced by a terminal inverted repeat containing T53C and C136T point mutation (IR_{mut16}) to generate pB_hFIXco/IR_{mut16} (Fig. 15A).

The terminal inverted repeats of pB_hFIXco were replaced by micro terminal inverted repeats as described in Meir et al. (2011) (IRmicro) to yield pB_hFIXco/IR_{micro} (Fig. 15B).

53

pB_hFIX-R338L plasmid (Fig. 15C) containing hyper-functional, codon-optimized hFIX transgene with Padua mutation was constructed by site-directed mutagenesis using pB_hFIXco/IR_{micro} as template.

Hydrodynamic injection, analysis of hFIX levels and activity and anti-hFIX antibodies

5 Plasmids were diluted in 2 ml of Dulbecco's PBS and hydrodynamically delivered to adult mice (6-7-week-old) by rapid tail vein injection. At different time intervals, we collected whole blood (≈ 200µl) by phlebotomy of the retro-orbital plexus in eppendorf tubes pre-filled with 20% citrate buffer that were centrifuged at 14000 r.p.m. for 5 min at 4°C. The citrated plasma was stored at -80°C for future analysis.

10 hFIX antigen levels and activity and antibodies directed against hFIX were analyzed as described in Example 2.

Tail clipping assay

A tail-clipping assay was used on hemophilic mice to assess phenotypic correction of the bleeding phenotype. Briefly, the tails of mice were transected (1 cm from the end) and mice were monitored for clotting and survival. Tail clip was performed on immobilized mice, allowing continuous blood collection at room temperature and total blood volume, bleeding time and survival rate were monitored.

Results

15

30

To assess the immune consequences of treating hemophilia B mice with piggyBac transposons expressing hFIXIA, hFIXco or hFIXco-R338L, the anti-FIX antibody response was analyzed after active immunization with recombinant hFIX antigen and adjuvant. None of the hemophilia B mice treated with the *PB* transposons expressing hFIXIA, hFIXco or hFIXco-R338L (Padua) developed an anti-hFIX specific antibody response (Fig.15E). This indicates that liver-directed gene therapy using the various PB transposons encoding either hFIXIA, hFIXco or hFIXco-R338L (Padua) induced immune tolerance to the hFIX protein.

A tail-clip assay showed that the bleeding diathesis of hemophilia B mice transfected with pB-hFIXIA or pB-hFIXco and plasmid encoding mPBase was phenotypically corrected 1 year post-transfection (Table 7). Bleeding time and volume were lower in mice transfected with plasmid comprising codon-optimized hFIX transgene and MVM intron compared to mice transfected with wild-type hFIX transgene.

Table 7: Phenotypic correction of murine hemophilia B following tail clipping 48 weeks after gene transfer. 2 μ g plasmid encoding mPBase was co-delivered with the indicated transposon plasmids via hydrodynamic injection. hFIX concentration (ng/ml) at the time of tail clipping is indicated. Bleeding time and volume were assayed following clipping of a section of tail 1 cm in length. Values represent means \pm SEM

10

15

20

25

Group	Transposon	hFIX (ng/ml)	Bleeding	Bleeding	Survival
	plasmid		time (min)	volume (µI)	
C57BL/6	none	0	30±5	146±31	3/3
FIX ^{-/-}	none	0	294±50	1433±57	0/3
FIX ^{-/-}	pB_hFIXIA	1168±218	109±10	677±52	3/3
FIX ^{-/-}	pB_hFIXco	13290±990	57±12	500±45	3/3

The efficiency of the piggyBac platform could be improved by using the hyperactive PB transposase (hyPBase) described in Yusa et al. (2011) (Fig. 15D), allowing the use of lower transposon/transposase doses. This hyPBase contained several mutated residues compared to the mouse codon-usage optimized mPBase (compare Fig. 15D with 12C). Liver-directed hydrodynamic transfection of immune deficient SCID mice with 500 ng of pB-hFIXco transposon along with 1000 ng hyPB resulted in stable supra-physiologic hFIX levels corresponding to 200% of normal hFIX levels (Fig. 15F). These FIX levels were significantly higher (p<0.001) than what could be achieved with the original mPB transposase. Similarly, liver-directed transfection of SCID mice with 50 ng of pB-hFIXco transposon plasmid along with 100 ng hyPB resulted in a dose-dependent effect yielding therapeutic hFIX levels corresponding to 20% of normal levels. This represented a significant 20-fold increase (p<0.001) in FIX levels compared to when the mPB transposase was used (Fig 15G).

To evaluate the effect of the terminal repeats IR_{micro} and IR_{mut16} on the *in vivo* potency of the PB transposons, mice were hydrodynamically injected with pB-hFIXco (Fig. 12B), $pB-hFIXco/IR_{mut16}$. (Fig. 15A) or $B-hFIXco/IR_{micro}$ (Fig. 15B) along with hyPBase. A significant 1.5-fold increase in hFIX expression was apparent when the IR_{micro} was used compared to its wild-type counterpart (Fig. 15 H-I). Liver-directed transfection of the $PB-hFIXco/IR_{micro}$ transposon (500 ng) along with 1000 ng hyPB transposase-encoding plasmid resulted in stable FIX levels reaching approximately 300% of normal hFIX levels (Fig. 15H). Similarly, at 10-fold lower $PB-hFIXco/IR_{micro}$ and hyPB doses a dose-dependent decrease in hFIX expression was apparent, yielding 30% of normal hFIX levels (Fig. 15I). In contrast, FIX

expression was not or only slighly increased when the IR_{mut16} was used compared to the IR_{wt} . (Fig. 15 J-K).

55

References

10

20

5 ANNONI A, BROWN BD, CANTORE A, SERGI LS, NALDINI L, and RONCAROLO MG. (2009). In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood 114, 5152–5161

ARRUDA VR, STEDMAN HH, HAURIGOT V, and BUCHLIS G. (2010). Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B. Blood 115, 4678-88.

AXELROD JH, READ MS, BRINKHOUS KM, and VERMA IM. (1990). Phenotypic correction of factor IX deficiency in skin fibroblasts of hemophilic dogs. Proc Natl Acad Sci USA; 87, 5173-7.

BROWN BD, SHI CX, POWELL S HURLBUT D, GRAHAM FL, and LILLICRAP D. (2004).

Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A. Blood 103, 804-10.

BROWN BD, CANTORE A, ANNONI A, SERGI LS, LOMBARDO A, DELLA VALLE P, D'ANGELO A, and NALDINI L. (2007). A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110, 4144-52.

Brunetti-Pierri N, Grove NC, Zuo Y, Edwards R, Palmer D, Cerullo V, Teruya J, Ng P.

Bioengineered factor IX molecules with increased catalytic activity improve the therapeutic index of gene therapy vectors for hemophilia B. Hum Gene Ther. 2009 May;20(5):479-85.

BUCHLIS G, PODSAKOFF GM, RADU A, HAWK SM, FLAKE AW, MINGOZZI F, and HIGH KA. (2012). Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood 119, 3038-41.

BUDKER V, ZHANG G, KNECHTLE S, WOLFF JA. Naked DNA delivered intraportally expresses efficiently in hepatocytes. (1996) Gene Ther. Jul;3(7):593-8.

CANTORE A, NAIR N, DELLA VALLE P, DI MATTEO M, MÀTRAI J, SANVITO F, BROMBIN C, DI SERIO C, D'ANGELO A, CHUAH M, NALDINI L, VANDENDRIESSCHE T. Hyper-functional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice. Blood. 2012. Oct 4.

CHANG, J., JIN, J., LOLLAR, P., BODE, W., BRANDSTETTER, H., HAMAGUCHI, N., STRAIGHT, D. L. &STAFFORD, D. W. (1998). Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity. J Biol Chem 273(20): 12089-12094.

- 5 CHOWDHURY JR, GROSSMAN M, GUPTA S, CHOWDHURY NR, BAKER JR JR, WILSON JM. (1991) Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits. Science. Dec 20;254(5039):1802-5.
- CHUAH MK, SCHIEDNER G, THORREZ L, BROWN B, JOHNSTON M, GILLIJNS V, HERTEL S, VAN ROOIJEN N, LILLICRAP D, COLLEN D, VANDENDRIESSCHE T, and KOCHANEK S. (2003). Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. Blood 101, 1734-43.
 - Chuah MK, Nair N, VandenDriessche T. Recent progress in gene therapy for hemophilia. Hum Gene Ther. 2012a Jun;23(6):557-65.
- 15 Chuah MK, Nair N, VandenDriessche T. Recent progress in gene therapy for hemophilia. Hum Gene Ther. 2012b Jun;23(6):557-65.
 - Chuah MK, VandenDriessche T. Platelet-directed gene therapy overcomes inhibitory antibodies to factor VIII. J Thromb Haemost. 2012c Aug;10(8):1566-9
- DONSANTE A, MILLER DG, LI Y, VOGLER C, BRUNT EM, RUSSELL DW, and SANDS MS. (2007). AAV vector integration sites in mouse hepatocellular carcinoma. Science 317, 477.

25

- DOBRZYNSKI E, FITZGERALD JC, CAO O, MINGOZZI F, WANG L, and HERZOG RW (2006) Prevention of cytotoxic T lymphocyte responses to factor IX-expressing hepatocytes by gene transfer-induced regulatory T cells. Proc Natl Acad Sci USA 103, 4592 4597.
- EHRHARDT A, and KAY MA. (2002). A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo. Blood 99, 3923-30.
- FIELDS PA, ARRUDA VR, ARMSTRONG E, KIRK CHU, MINGOZZI, F. HAGSTROM, J., 30 HERZOG R, HIGH KA. (2001). Risk and prevention of anti-factor IX formation in AAV-mediated gene transfer in the context of a large deletion of F9. Mol. Ther. 4, 201–210.

FOLLENZI A, BATTAGLIA M, LOMBARDO A, ANNONI A, RONCAROLO MG, and NALDINI L. (2004). Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103, 3700-9.

5 GAO GP, ALVIRA MR, WANG L, JOHNSTON J, WILSON JM. (2002). Novel adenoassociated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 99, 11854 -9.

GAO G, VANDENBERGH LH, ALVIRA MR LU Y, CALCEDO R, ZHOU X, and WILSON JM. (2004). Clades of Adeno- associated viruses are widely disseminated in human tissues. J. Viro I78, 6381 – 6388.

10

15

25

HERZOG RW, YANG EY, COUTO LB, HAGSTROM JN, ELWELL D, FIELDS PA, BURTON M, BELLINGER DA, READ MS, BRINKHOUS KM, PODSAKOFF GM, NICHOLS TC, KURTZMAN GJ, and HIGH KA. (1999). Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adenoassociated viral vector. Nat Med. 5, 56–63.

HERZOG RW, MOUNT JD, ARRUDA VR, HIGH KA, and LOTHROP CD Jr. (2001). Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation. Mol Ther. 4, 192-200.

HERZOG RW, HAGSTROM JN, KUNG SH, TAI SJ, WILSON JM, FISHER KJ, and HIGH KA. (1997) Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA. 94, 5804 – 5809.

HERZOG RW, FIELDS PA, ARRUDA VR, BRUBAKER JO, ARMSTRONG E, MCCLINTOCK D, BELLINGER DA, COUTO LB, NICHOLS TC, HIGH KA (2002) Influence of vector dose on factor IX-specific T and B cell responses in muscle- directed gene therapy. Hum Gene Ther 13, 1281–1291.

HIGH KA. (2001). Gene Transfer as an approach to treating Hemophilia. Circ Res. 88, 137-144.

HIGH KA. (2011) Gene therapy for hemophilia: a long and winding road. J Thromb 30 Haemost. 9 Suppl. 1: 2-11.

BAINBRIDGE J, SMITH AJ, BARKER S, et al. (2008) Effect of Gene Therapy on Visual Function in Leber's Congenital Amaurosis. N Engl J Med. 358, 2231-2239.

JIANG H, LILLICRAP D, and PATARROYO-WHITE S. (2006). Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood. 108, 107-15.

KAO, C. Y., LIN, C. N., YU, I. S., TAO, M. H., WU, H. L., SHI, G. Y., YANG, Y. L., KAO, J. T. &LIN, S. W. (2010). FIX-Triple, a gain-of-function factor IX variant, improves haemostasis in mouse models without increased risk of thrombosis. Thromb Haemost 104(2): 355-365.

5

10

15

25

30

KAY MA, BALEY P, ROTHENBERG S, LELAND F, FLEMING L, PONDER KP, LIU T, FINEGOLD M, DARLINGTON G, POKORNY W, WOO SLC. (1992) Expression of human alpha 1 -antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes. Proc Natl Acad Sci U S A. Jan 1;89(1):89-93.

KAY MA, MANNO CS, RAGNI MV, COUTO LB, MCCLELLAND A, GLADER B, CHEW AJ, TAI SJ, HERZOG RW, ARRUDA V, JOHNSON F, SCALLAN C, SKARSGARD E, FLAKE AW, and HIGH KA. (2000). Evidence for gene transfer and expression of factor IX in hemophilia B patients treated with an AAV vector. Nat Genet. 24, 257-61.

KISTNER A, GOSSEN M, ZIMMERMANN F, JERECIC J, ULLMER C, LYBBERT H, BUJARD H. (1996) Doxycycline- mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A. Oct 1;93(20): 10933-8.

KREN BT, UNGER GM, SJEKLOCHA L, TROSSEN AA, KORMAN V, DIETHELEM-OKITA BM, REDING MT, and STEER CJ. (2009). Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia A mice. J Clin Invest. 19, 2086-99.

KURIYAMA S, YOSHIKAWA M, ISHIZAKA S, TSUJII T, LKENAKA K, KAGAWA T, MORITA N, MIKOSHIBA K. (1991) A potential approach for gene therapy targeting hepatoma using a liver-specific promoter on a retroviral vector. Cell Struct Funct. Dec;16(6):503-10.

LI H, MALANI N, HAMILTON SR, SCHLACHTERMAN A, BUSSADORI G, EDMONSON SE, SHAH R, ARRUDA VR, MINGOZZI F, WRIGHT JF, BUSHMAN FD, and HIGH KA. (2011). Assessing the potential for AAV vector genotoxicity in a murine model. Blood. 117, 3311-9.

LIN, C. N., KAO, C. Y., MIAO, C. H., HAMAGUCHI, N., WU, H. L., SHI, G. Y., LIU, Y. L., HIGH, K. A. &LIN, S. W. (2010). Generation of a novel factor IX with augmented clotting activities in vitro and in vivo. J Thromb Haemost 8(8): 1773-1783.

LIU F, SONG Y, LIU D. (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. Jul;6(7):1258-66.

MANNO CS, PIERCE GF, and ARRUDA VR. (2006). Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 12, 342-7.

5

10

15

20

25

30

MÁTÉS L, CHUAH MK, BELAY E, JERCHOW B, MANOJ N, ACOSTA-SANCHEZ A, GRZELA DP, SCHMITT A, BECKER K, MATRAI J, MA L, SAMARA-KUKO E, GYSEMANS C, PRYPUTNIEWICZ D, MISKEY C, FLETCHER B, VANDENDRIESSCHE T,, IVICS Z, and IZSVAK Z. (2009). Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 41, 753-61.

MÁTRAI J, CHUAH MK, and VANDENDRIESSCHE T. (2010a). Pre clinical and clinical progress in hemophilia gene therapy. Curr Opin Hematol. 17, 387-92.

MÁTRAI J, CHUAH MK, and VANDENDRIESSCHE T. (2010b). Recent advances in lentiviral vector development and applications. Mol Ther. 18, 477-90.

MÁTRAI J, CANTORE A, BARTHOLOMAE CC, ANNONI A, WANG W, ACOSTA-SANCHEZ A, SAMARA-KUKO E, DE WAELE L, MA L, GENOVESE P, DAMO M, ARENS A, GOUDY K, NICHOLS TC, VON KALLE C, L CHUAH MK, RONCAROLO MG, SCHMIDT M, VANDENDRIESSCHE T, and NALDINI L. (2011). Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology 53, 1696-707.

MATSUI H, SHIBATA M, BROWN B, LABELLE A, HEGADRON C, ANDREWS C, CHUAH M, VANDENDRIESSCHE T, MIAO CH, HOUGH C, and LILLICRAP D. (2009). A murine model for induction of long-term immunologic tolerance to factor VIII does not require persistent detectable levels of plasma factor VIII and involves contributions from Foxp3+ T regulatory cells. Blood. 114, 677-85.

MATSUI H, HEGADORN C, OZELO M, BURNETT E, TUTTLE A, LABELLE A, McCARY PB Jr., NALDINI L, BROWN B, HOUGH C, and LILLICRAP D. (2011). A microRNA-regulated and GP64-pseudotyped lentiviral vector mediates stable expression of FVIII in a murine model of Hemophilia A. Mol Ther. 19, 723-30.

McCARTY DM, MONAHAN PE, and SAMULSKI RJ. (2001). Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8, 1248-54.

McCARTY DM, FU H, MONAHAN PE, TOULSON CE, NAIK P, and SAMULSKI RJ. (2003). Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 10, 2112-8.

5 McIntosh, J. *et al.* Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. *Blood* (2013).

MIAO CH, OHASHI K, PATIJN GA, MEUSE L, YE X, THOMPSON AR, and KAY MA .(2000). Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther. 1, 522-32.

MIAO H.Z., SIRACHAINAN N., PALMER L., et al. (2004). Bioengineering of coagulation factor VIII for improved secretion. Blood 103(9):3412-3419.

MILANOV, ET AL., 2012 Engineered factor IX variants bypass FVIII and correct hemophilia A phenotype in mice Blood 119:602-611.

15 MILLER AD. (1990) Retrovirus packaging cells. Hum Gene Ther. Spring;1 (1):5-14.

10

25

MINGOZZI F, LIU YL, DOBRZYNSKI E, KAUFHOLD A, LIU JH, WANG Y, ARRUDA VR, HIGH KA, and HERZOG RW. (2003). Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest. 111, 1347-56.

MINGOZZI F, MAUS MV, HUI DJ, SABATINO DE, MURPHY SL, RASKO JE, RAGINI MV, MANNO CS, SOMMER J, JIANG H, PIERCE GF, ERTL HC, and HIGH KA. (2007). CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med. 13, 419-22.

MOUNT JD, HERZOG RW, TILLSON DM, GOODMAN SA, ROBINSON N, MCCLELAND ML, BELLINGER D, NICHOLS TC, ARRUDA VR, LOTHROP CD JR, and HIGH KA. (2002). Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 99, 2670-6.

NALDINI L, BLOMER U, GALLAY P, ORY D, MULLIGAN R, GAGE FH, VERMA IM, TRONO D. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. Apr 12;272(5259):263-7.

30 NATHWANI AC, DAVIDOFF AM, HANAWA H, YUNYU HU, HOFFER FA, NIKANOROV A, SLAUGHTER C, NG CYC, ZHOU J, LOZIER J, MANDRELL TD, VANIN EF, and NIENHUIS AW. (2002). Sustained high-level expression of human factor IX (hFIX) after

liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood 100, 1662–1669.

NATHWANI AC, GRAY JT, NG CY, ZHOU J, SPENCE Y, WADDINGTON SN, TUDDENHAM EG, KEMBALL COOK G, McINTOSH J, BOON-SPIJKER M, MERTENS K, DAVIDOFF AM. (2006).Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 107, 2653-61.

5

NATHWANI AC, TUDDENHAM EG, RANGARAJAN S, ROSALES C, MCINTOSH J, LINCH DC, CHOWDARY P, RIDDELL A, PIE AJ, HARRINGTON C, O'BEIRNE J, SMITH K, PASI J, GLADER B, RUSTAGI P, NG CY, KAY MA, ZHOU J, SPENCE Y, MORTON CL, ALLAY J, COLEMAN J, SLEEP S, CUNNINGHAM JM, SRIVASTAVA D, BASNER-TSCHAKARJAN E, MINGOZZI F, HIGH KA, GRAY JT, REISS UM, NIENHUIS AW, and DAVIDOFF AM. (2011). Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 365, 2357-2365.

- OHLFEST JR, FRANDSEN JL, FRITZ S, LOBITZ PD, PERKINSON SG, CLARK KJ, NELSESTUEN G, KEY NS, MCLVOR RS, HACKETT PB, and LARGAESPADA DA. (2004). Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood 105, 2691-8.
- Petrus, I., Chuah, M. & VandenDriessche, T. Gene therapy strategies for hemophilia: benefits versus risks. *J Gene Med* **12**, 797-809 (2010).SANDBERG H, ALMSTEDT A, BRANDT J, et al. (2001). Structural and functional characteristics of the B domain-deleted recombinant factor VIII proteint, r-VIII SQ. Thromb Haemost. 85(1): 93-100.
- SCHUETTRUMPF, J., HERZOG, R. W., SCHLACHTERMAN, A., KAUFHOLD, A., STAFFORD, D. W. &ARRUDA, V. R. (2005). Factor IX variants improve gene therapy efficacy for hemophilia B. Blood 105(6): 2316-2323.
 - SIMIONI, P., TORMENE, D., TOGNIN, G., GAVASSO, S., BULATO, C., IACOBELLI, N. P., FINN, J. D., SPIEZIA, L., RADU, C. &ARRUDA, V. R. (2009). X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med 361(17): 1671-1675.
- 30 SNYDER RO, MIAO CH, PATIJN GA, SPRATT SK, DANOS O, NAGY D, GOWN AM, WINTHER B, MEUSE L, COHEN LK, THOMPSON AR, and KAY MA. (1997). Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet. 16, 270 276.

SNYDER RO, MIAO C, MEUSE L, TUBB J, DONAHUE BA, HUI-FENG LIN, STAFFORD DW, PATEL S, THOMPSON AR, NICHOLS T, READ MS, BELLINGER DA, BRINKHOUS KM, and KAY MA. (1999). Correction of hemophilia B in canine and murine models using recombinant adeno- associated viral vectors. Nat Med. 5, 64–70.

5 TRAPNELL BC. (1993) Adenoviral vectors for gene transfer. Adv. Drug Del. Rev. 12: 185-199.

VANDENBERGHE LH, WANG L, SOMANATHAN S, ZHI Y, FIGUEREDO J, CALCEDO R, SANMIGUEL J, DESAI RA, CHEN CS, JOHNSTON J, GRANT RL, GAO G, and WILSON JM. (2006). Heparin binding directs activation of T cells against adenoassociated virus serotype 2 capsid. Nat Med. 12, 967-71.

10

25

VANDENDRIESSCHE T, VANSLEMBROUCK V, GOOVAERTS I, ZWINNEN H, VANDERHAEGHEN ML, COLLEN D, and CHUAH MK. (1999). Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci USA. 96, 10379-84.

15 VANDENDRIESSCHE T, THORREZ L, NALDINI L, FOLLENZI A, MOONS L, ZWI BERNEMAN, COLLEN D, and CHUAH MK. (2002). Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 100, 813-22.

VANDENDRIESSCHE T, THORREZ L, ACOSTA-SANCHEZ A, PETRUS I, WANG L, MA
L, DE WAELE L, IWASAKI Y, GILLIJNS V, WILSON JM, COLLEN D, and CHUAH MK.
(2007). Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9
vs. lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost. 5, 16-24.

VANDENDRIESSCHE T, IVICS Z, IZSVÁK Z, and CHUAH MK. (2009). Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 114, 1461-8.

VANDENDRIESSCHE T, and CHUAH MK. (2012). Clinical progress in gene therapy: sustained partial correction of the bleeding disorder in patients suffering from severe hemophilia B. Hum Gene Ther. 23, 4-6.

WANG L, TAKABE K, BIDLINGMAIER SM, ILL CR, and VERMA IM. (1999). Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA 96, 3906–3910.

WANG L, NICHOLS TC, READ MS, BELLINGER DA, and VERMA IM. (2000). Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol Ther. 1, 154–158.

WANG L, CAO O, SWALM B, DOBRZYNSKI E, MINGOZZI F, and HERZOG RW (2005) Major role of local immune responses in antibody formation to factor IX in AAV gene transfer. Gene Ther 12, 1453-464.

5

10

15

25

WARD NJ, BUCKLEY SM, WADDINGTON SN, VANDENDRIESSCHE T, CHUAH MK, NATHWANI AC, McLNTOSH J, TUDDENHAM EG, KINNON C, THRASHER AJ, and McVEY JH (2010) Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood 117, 798-807.

Ward, N.J. *et al.* Codon optimization of human factor VIII cDNAs leads to high-level expression. *Blood* **117**, 798-807 (2011).

WU Z, SUN J, ZHANG T, YIN C, YIN F, VAN DYKE T, SAMULSKI RJ, and MONAHAN PE. (2008). Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther. 16, 280-9.

XU L, GAO C, and SANDS MS. (2003). Neonatal or hepatocyte growth factor-potentiated adult gene therapy with a retroviral vector results in therapeutic levels of canine factor IX for hemophilia B.

Blood 101, 3924 – 3932.

XU L, NICHOLS TC, SARKAR R, Mc CORQUODALE S, BELLINGER DA, PONDER KP.
 (2005). Absence of a desmopressin response after therapeutic expression of factor VIII in hemophilia A dogs with liver-directed neonatal gene therapy. Proc Natl Acad Sci USA 102, 6080–6085.

YAMADA T, IWASAKI Y, TADA H, IWABUKI H, CHUAH MK, VANDENDRIESSCHE T, FUKUDA H, KONDO A, UEDA M, SENO M, TANIZAWA K, KURODA S. (2003) Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol. Aug;21 (8):885-90.

YANT SR, MEUSE L, CHIU W, IVICS Z, IZSVAK Z, and KAY MA. (2000). Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet. 25, 35-41.

Yusa et al. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A. 2011;108(4):1531-6.

64

ZHANG G, BUDKER V, WOLFF JA. (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther. Jul 1;10(10):1735-7.

ZHONG L, LI B, MAH CS, GOVINDASAMY L, AGBANDJE-MCKENNA, COOPER M, HERZOG RW, ZOLOTUKHIN I, WARRINGTON JR. KH, WEIGEL-VAN AKEN K, HOBBS JA, ZOLOTUKHIN S, MUZYCZKA N, and SRIVASTAVA A (2008). Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 105, 7827-32.

20

CLAIMS:

- 1. A vector comprising a nucleic acid expression cassette comprising a Serpin enhancer defined by SEQ ID NO:8 or a sequence having at least 95% identity to SEQ ID NO:8, a promoter, a minute virus of mice (MVM) intron, a codon-optimized transgene encoding for coagulation factor IX (FIX) containing a hyper-activating mutation or a codon-optimized transgene encoding for coagulation factor VIII (FVIII) having a deletion of the B-domain, and a transcriptional termination signal.
- 2. The vector according to claim 1, wherein the B domain of said FVIII is replaced by a linker having SEQ ID NO:16.
- 3. The vector according to any one of claims 1 or 2, wherein said transgene encoding for coagulation factor VIII has SEQ ID NO:7.
 - 4. The vector according to any one of claims 1 to 3, having SEQ ID NO: 6.
 - 5. The vector according to claim 1, wherein said hyper-activating mutation corresponds to an R338L amino acid substitution.
- 15 6. The vector according to any one of claims 1 to 5, having SEQ ID NO: 1 or 2.
 - 7. The vector according to any one of claims 1 to 6, wherein the promoter is derived from the transthyretin (TTR) promoter, preferably the minimal TTR promotor.
 - 8. The vector according to any one of claims 1 to 7, wherein said transcriptional termination signal is derived from the Simian virus 40 polyadenylation signal or the bovine growth hormone polyadenylation signal.
 - 9. The vector according to any one of claims 1 to 8, wherein said vector is a viral vector.
 - 10. The vector according to claim 9, wherein said vector is derived from an adeno-associated virus (AAV).
- 11. The vector according to any one of claims 1 to 10, wherein said vector is a single-stranded AAV.
 - 12. The vector according to claim 10, wherein said vector is a self-complementary AAV.
 - 13. The vector according to any one of claims 1 to 3, 5, 7, or 8, wherein said vector is a non-viral vector.
 - 14. The vector according to claim 13, wherein said vector is a transposon-based vector.

- 15. The vector according to any one of claims 13 or 14, wherein said vector is a PiggyBac-based vector, preferably a PiggyBac-based vector comprising micro inverted repeats, or a Sleeping Beauty-based vector.
- 16. The use of the vector according to any one of claims 1 to 4, and 7 to 15 for the manufacture of a medicament to treat hemophilia A.
 - 17. The use of the vector according to any one of claims 1, 5, 6, and 7 to 15 for the manufacture of a medicament to treat hemophilia B.
 - 18. A method to obtain levels of factor VIII in plasma equal to or higher than the therapeutic threshold concentration of 10 mU/ml plasma in a subject, comprising the transduction or transfection of the vector according to any one of claims 1 to 4, and 7 to 15 into a subject.
 - 19. A method to obtain levels of factor IX in plasma equal to or higher than the therapeutic threshold concentration of 10mU/ml plasma in a subject, comprising the transduction or transfection of the vector according to any one of claims 1, 5, 6, and 7 to 15 into a subject.
- 15 20. The method according to claim 18 or 19, wherein said transduction or transfection is by intravenous administration.
 - 21. The method according to claim 18 or 19, wherein said transfection is by hydrodynamic transfection.
- 22. The method according to any one of claims 18, 19 or 21, wherein a vector according
 to any one of claims 14 or 15 is administered in combination with a vector encoding a transposase, preferably a hyperactive transposase.
 - 23. The method according to any one of claims 18 to 22, wherein said subject is a mammalian subject.
 - 24. The method according to claim 23, wherein said subject is a human subject.
- 25. A method for treating hemophilia A in a mammalian subject, comprising performing the method according to any one of claims 18, or 20 to 24.
 - 26. A method for treating hemophilia B in a mammalian subject, comprising performing the method according to any one of claims 19 to 24.
- 27. The vector according to any one of claims 1 to 4, and 7 to 15 for use in the treatment of hemophilia A.
 - 28. The vector according to any one of claims 1, 5, 6, and 7 to 15 for use in the treatment of hemophilia B.

- 29. A pharmaceutical composition comprising a vector according to any one of claims 1 to 4, and 7-15 and a pharmaceutically acceptable carrier, optionally further comprising an active ingredient for treating hemophilia A.
- 30. The pharmaceutical composition according to claim 29, for use in treating hemophilia A.
 - 31. The pharmaceutical composition for use according to claim 30, or the vector for use according to claim 27, wherein said treatment results in levels of factor VIII in plasma of the treated subject that are equal to or higher than the therapeutic threshold concentration of 10 mU/ml plasma in a subject.
- 32. A pharmaceutical composition comprising a vector according to any one of claims 1, 5, 6, and 7 to 15 and a pharmaceutically acceptable carrier, optionally further comprising an active ingredient for treating hemophilia B.
 - 33. The pharmaceutical composition according to claim 32, for use in treating hemophilia B.
- 34. The pharmaceutical composition for use according to claim 33, or the vector for use according to claim 28, wherein said treatment results in levels of factor IX in plasma of the treated subject that are equal to or higher than the therapeutic threshold concentration of 10 mU/ml plasma in a subject, preferably equal to or higher than the therapeutic concentration of 50 mU/ml plasma in a subject.

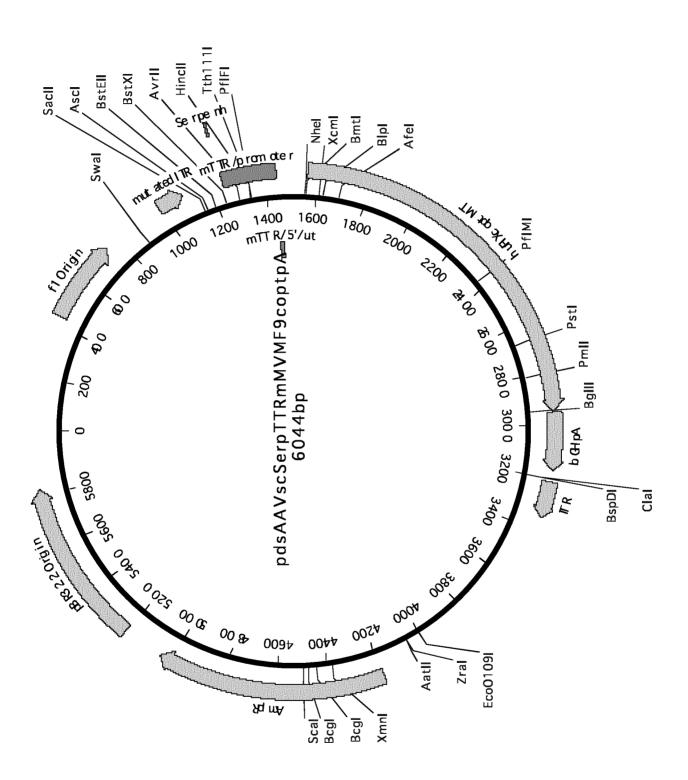


Figure 1A

Figure 1B: SEQ ID 1

	610	620	630	640	650
			CCCCGAGG	GGAAATCCCAA	GGCTAA
GGCTTT	560 CCCGTCAAG	570 Стставатс	580 GGGGGCTCC	590 CCTTTAGGGTT	600 CCGATT
		F1 OR	.IGIN		
				AAGAGCGGTGC	
TAGCGC	510 CCGCTCCTTT	520 CGCTTTCTT	530 CCCTTCCT1	540 TTCTCGCCACG'	550 TTCGCC
				TIGIGAACGGI	
				FACACTTGCCA ATGTGAACGGT	
	460	470			500
ACGAGC	AGTTTCGTTG	GTATCATGC	GCGGGACAI	CGCCGCGTAA	TTCGCG
TGCTCG:	-			440 AGCGGCGCATT	
	410	420	430	440	450
GGAGGA	CAAATCGAGG	GCGAGACTA	AGATTGCTC	CCTTTCGTGCA	ATATGC
CCTCCT				GGAAAGCACGT'	
	360	370	380	390	400
				TTTAGGGAAA'	
ACTTCT	310 CAGGATTCTG			340 AAATCCCTTT	350 AATCGG
	210	320	220	240	250
				AGTGACTAATA'	
TGCGTG	260 ATGGACAGAC	270 TCTTTTACT		290 CACTGATTAT	300 Aaaaac
	260	270	200	200	200
				ACGCTGTTGCC	
GGCAAG'	210 TGATGTTATT	220 actaatcaa	230 AGAAGTATI	240 [GCGACAACGG	250 דדם אדד
					0.5.0
				AACTCAAGAAG	
7 mm/cmm/	160	170	180	190 "TGAGTTCTTC"	200
				GTTACCGACCG	
л m с m л с (120		140 CAATGGCTGGC	150 תממת ב
				CTGCTAACTCG	
7 CMMCC/	60	70 mccccaamc	80	90 SACGATTGAGC	100
010010			000000		000==0
				CGATCGCCCTT(GCTAGCGGGAA(
		7 0007 7 07 0	000000700		

TAGTGCTTTACGG ATCACGAAATGCC				
		ORIGIN		>
660	670	680	690	700
CACGTAGTGGGCC				
GTGCATCACCCGG				
	F1 (ORIGIN		>
710	720	730	740	750
GAGTCCACGTTCT				
CTCAGGTGCAAGA			GTTTGACCTT	GTTGTGA
	F1 ORI	IGIN		>
760	770	780	790	800
CAACCCTATCTCG	_			
GTTGGGATAGAGC				
810	820	830	840	850
CGGCCTATTGGTT	AAAAAATGAGO	CTGATTTAAC	AAAAATTTAA	CGCGAAT
GCCGGATAACCAA	TTTTTTACTC	GACTAAATTG	TTTTAAATTT	GCGCTTA
2	27.5	0.0.5	0.0.5	0.6.5
860	870	880	890	900
TTTAACAAAATAT AAATTGTTTTATA				
AAATTGTTTTATA	ATTGCAAATGT	LLAAATITTAT	AAACGAATAT	JTTAGAA
910	920	930	940	950
CCTGTTTTTGGGG				
GGACAAAAACCCC				
960	970	980	990	1000
TGCTAGTTTTACG	ATTACCGTTCA	ATCGCCTGCA	CTGCGCGCTC	GCTCGCT
ACGATCAAAATGC	TAATGGCAAGT	FAGCGGACGT		
			MUTATED	ITR>
1010	1020	1030	1040	1050
CACTGAGGCCGCC				
GTGACTCCGGCGG				
		EDITR		>
1060	1070	1080	1090	1100
CGGCCTCAGTGAG	CGAGCGAGCGC	CGCAGAGAGG	GAGTGGAATT	CACGCGT
GCCGGAGTCACTC	GCTCGCTCGCG	GCGTCTCTCC	CTCACCTTAA	GTGCGCA
	_MUTATEDITF	₹	>	
1110	1100	1120	1110	1150
1110 GGTACGATCTGAA	1120	1130 гтсасссстс	1140 GTACGGCCCC	1150 GGTACCG
CCATGCTAGACTT				
COMMISSIONO	221000A1011F	11010COCAC		00111000
1160	1170	1180	1190	1200
GCGCGCCGGGGA				
CGCGCGGCCCCT				
		>Serp	_enh >mT	TR/promot

TGCATGGAGGAGAA ACGTACCTCCTCTT				
1760	1770	1780	1790	1800
TGTTGTCGCCGTTC		AAGCACGTCC XCOPTMT	CGTTGGACCT	'CGCGCTC >
ACAACAGCGGCAAG	CTGGAGGAG	TTCGTGCAGG	GCAACCTGGA	GCGCGAG
1710	1720	 1730	1740	1750
CAAGGACCTGGTGC		TGTTCTAGGA XCOPTMT	CTTGGCGGGG	GTTCGCGA >
1660 GTTCCTGGACCACG	1670 JAGAACGCCA	1680 ACAAGATCCT	1690 'GAACCGCCC	1700 CAAGCGCT
1.000			1.000	1700
GACTAGTGGTAGAC		GATGGACGAC XCOPTMT	CTCGCGGCTCA	CGTGGCA >
1610 CTGATCACCATCTG	1620 CCTGCTGGG	1630 CTACCTGCTG	1640 SAGCGCCGAGT	1650 GCACCGT:
CCAACCGATCGTAC			ACCGGCTCTC	
1560 GGTTGGCTAGCATG	1570 CAGCGCGTG	1580 AACATGATCA	1590 TGGCCGAGAG	1600 CCCCGGC
GTATTAATGTTTAA CATAATTACAAATT				
1510	1520	1530	1540	1550
AGGTGTTCGAGGAC				
1460 TCCACAAGCTCCTG	1	1480 .GGGTTTAAGG	1490 GATGGTTGGT	1500 TGGTGGG
>M\	Mint 			
			0 1 1 0 0 0 0 1 1 0	
GGAAGGAGGGGTA CCTTCCTCCCCAT				
1410	1420	1430	1440	1450
			>mTTR	k/5 ' /ut
GTCTTAGTCGTCCA	AACCTCAGT	CGAACCGTCC	CCTAGTCGTCG	GACCCAA
CAGAATCAGCAGGT	'TTGGAGTCA	GCTTGGCAG	GATCAGCAGC	CTGGGTT
1360	1370	1380	1390	1400
TCATATTTGTGTAG AGTATAAACACATC				
1310	1320	1330	1340	1350
GTGTAAAGCATCTC	GCTCACAAG	GCTATGAGAI	TAGAGGGATC	CGTTCCA
1260 CACATTTCGTAGAG	1270 CGAGTGTTC			1300 GCAAGGT
1260	1270	1280	1290	1200
TCGGAGGAGCAAAC AGCCTCCTCGTTTG				
1210	1220	1230	1240	

	PTMT	HUFIX	
1840 1850 ACGTGGACGGCGACCAGT	1830	1820	1810
GCACCTGCCGCTGGTC?			
.002100100000100102		HUFIX	0100001001
1890 1900	1880	1870	1860
GCAAGGACGACATCAAC			
CGTTCCTGCTGTAGTT			CTCGTTGGGG
	PTMT	HUFIX	
1940 1950	1930	1920	1910
GGCAAGAACTGCGAGCT			
CCCGTTCTTGACGCTCGA	CGAAGCT	CGGGGAAG	TGCTCACGAC
	PTMT	HUFIX	
1990 2000	1980	1970	1960
GCGAGCAGTTCTGCAAGA	1000		
CGCTCGTCAAGACGTTCT	CCGGCGA	ragttct1	CACTGGACGT
	PTMT	HUFIX	
2040 2050	2030	2020	2010
CCGAGGGCTACCGCCTG			
GGCTCCCGATGGCGGAC			
		HUFIX	
2090 2100	2080	2070	2060
2090 2100 GCCCTTCCCCTGCGGCCG			
:GGGAAGGGGACGCCGGC			
		HUFIX	
2140 2150	2130	2120	2110
GCGCCGAGGCCGTGTTCC			-
CGCGGCTCCGGCACAAGG			
	PTMT	HUFIX	
2190 2200	2180	2170	2160
2190 2200 AGACCATCCTGGACAAC			
CTCTGGTAGGACCTGTTG			
		HUFIX	
2240 225	2222	2220	2212
2240 2250 CACCCGCGTGGTGGCGG	2230	2220 NGNGCTTC	2210
ACCCGCG1GG1GGCGC TGGGCGCACCACCCGCC			
TOUCUCACCACCACC		HUFIX	0001010010
2200		2270	2262
2290 2300 CCTCCTCCTCAACCCCA	2280 CCTCCC	2270 CCCA CTT	2260
\GGTGGTGCTGAACGGC <i>F</i> 'CCACCACGACTTGCCG1			
		HUFIX	
2242			2210
2340 2350	2330	2320	2310
ACGAGAAGTGGATCGT			GGACGCCTTC CCTGCGGAAG

	HUFI	XCOPTMT		
2360	2370		2390	2400
ACCGCCGCCCACTG(
rggcggcgggtgaco		CCCGCACTTO XCOPTMT	JTAGTGGCACC	ACCGGCC
		ACOPIMI		
2410	2420	2430	2440	2450
CGAGCACAACATCGA	AGGAGACCG	AGCACACCG	AGCAGAAGCGC	AACGTGA
GCTCGTGTTGTAGCT	CCTCTGGC	TCGTGTGGC'	TCGTCTTCGCG	TTGCACT
	HUFI	XCOPTMT		
2460	2470	2480	2490	2500
CCGCATCATCCCC	· · -			
AGGCGTAGTAGGGG(
	HUFI	XCOPTMT		
2510	2520	2530	2540	2550
CACGACATCGCCCT	GCTGGAGCT	GGACGAGCC	CCTGGTGCTGA	ACAGCTA
GTGCTGTAGCGGGA	CGACCTCGA	.CCTGCTCGG	GGACCACGACT	TGTCGAT
	HUFI	XCOPTMT		
2560	2570	2580	2590	2600
CGTGACCCCCATCT	GCATCGCCG	ACAAGGAGT	ACACCAACATC	TTCCTGA
GCACTGGGGGTAGA(CGTAGCGGC	TGTTCCTCA	TGTGGTTGTAG	SAAGGACT
	HUFI	XCOPTMT		
2610	2620	2630	2640	2650
AGTTCGGCAGCGGC			CGCGTGTTCCA	CAAGGGC
ICAAGCCGTCGCCG <i>I</i>	ATGCACTCG	CCGACCCCG	GCGCACAAGGT	GTTCCCG
	HUFI	XCOPTMT		
2660	2670	2680	2690	2700
CGCAGCGCCCTGGT	GCTGCAGTA	CCTGCGCGT	GCCCTGGTGG	ACCGCGC
GCGTCGCGGGACCA(CGACGTCAT	GGACGCGCA	CGGGGACCACC	TGGCGCG
	HUFI	XCOPTMT		
2710	2720	2730	2740	2750
CACCTGCCTGCGCA	GCACCAAGT	TCACCATCT	ACAACAACATG	TTCTGCG
GTGGACGGACGCGT(CGTGGTTCA	AGTGGTAGA'	IGTTGTTGTAC	AAGACGC
	HUFI	XCOPTMT		
2760	2770	2780	2790	2800
CCGGCTTCCACGAG				
GCCGAAGGTGCTC(
	HUFI	XCOPTMT		
2810	2820	2830	2840	2850
CCCCACGTGACCGA	GTGGAGGG	CACCAGCTT	CCTGACCGGCA	TCATCAG
GGGTGCACTGGCT	CCACCTCCC	GTGGTCGAA	GGACTGGCCGT	'AGTAGTC
	HUFI	XCOPTMT		
2860	2870	2880	2890	2900
CTGGGGCGAGGAGT				
GACCCCGCTCCTCAC	CGCGGTACT	TCCCGTTCA'	IGCCGTAGATG	STGGTTCC

	HUFI	XCOPTMT		>
2910 TGAGCCGCTACGTO ACTCGGCGATGCAO	GAACTGGATC		CCAAGCTGAC	
	HUFIXC			>
2960 TCTGATCAGCCTCC		2980 TCTAGTTGCC		3000 TGTTTGC
AGACTAGTCGGAG(AGATCAACGG BGHPA	TCGGTAGAC <i>i</i>	ACAAACG >
3010 CCCTCCCCCGTGCC	3020		3040 GCCACTCCCA	3050
GGGAGGGGCACG	GAAGGAACTG			
3060 TTCCTAATAAAAT0		3080 CATCGCATTG		3100 STGTCATT
AAGGATTATTTTA(GTAGCGTAAC HPA	AGACTCATCO	CACAGTAA >
3110 CTATTCTGGGGGGG GATAAGACCCCCC	rggggtgggg ACCCCACCC		AGGGGGAGGA	ATTGGGAA
3160 GACAATAGCAGGCA CTGTTATCGTCCGT BGHPA	FACGACCCCT	TCTGATAGCA	GGCATGCTGG	
3210 TCGATCTAGGAACC AGCTAGATCCTTGC	CCTAGTGAT		ACTCCCTCTC	
3260 TCGCTCGCTCACTO AGCGAGCGAGTGAO		GGGCAAAGCC	CGGGCGTCGG	GCGACCT
3310 TTGGTCGCCCGGCC AACCAGCGGGCCGC				
3360 AACCCCCCCCCCC TTGGGGGGGGGGGC _>				
3410 GACTCTCAGGCAA CTGAGAGTCCGTTA				

WO 2014/064277 PCT/EP2013/072450

3 CTACCCT					
CTACCCT				3490	
O A MOOO A					
GATGGGA	GAGGCCGTA	ACTTAAATAG:	ICGATCTTGCC	CAACTTATAGI	ATAA
3	510	3520	3530	3540	3550
_				GTTTGAATCTI	0000
				CAAACTTAGAA	
3	560	3570	3580	3590	3600
TACACAT	TACTCAGG	CATTGCATTT	AAAATATATG <i>A</i>	AGGGTTCTAAA	TTAA
ATGTGTA	ATGAGTCC	GTAACGTAAA:	TTTTATATACT	rcccaagatti	TTAA
		0.500	0.500	0.5.1.0	0.650
_	610		3630		3650
				AAAGTATTAC <i>I</i>	
AAATAGG	AACGCAAC:	rrrattreccg <i>i</i>	AAGAGGGCGT	[TTCATAATG]	CCCA
ર	660	3670	3680	3690	3700
_	000			CTCTGAGGCTI	
				GAGACTCCGA	
<u> </u>					
3	710	3720	3730	3740	3750
GCTTAAT	TTTGCTAAT	TTCTTTGCCTT	rgcctgtatg <i>i</i>	ATTTATTGGAT	GTTG
CGAATTA	AAACGATTA	AAGAAACGGA <i>I</i>	ACGGACATACT	TAAATAACCT <i>A</i>	ACAAC
_	760		3780		3800
				GTGCGGTATTI	
CTTAAGG	ACTACGCC	ATAAAAGAGGA	AATGCGTAGAC	CACGCCATAAA	AGTGT
3	810	3820	3830	3840	3850
_		3020	3030	3040	
	TGGTGCACT	rctcagtaca?	Λ TCTGCTCTGZ	чтсссссать с	
GGCGTAT				ATGCCGCATAC	GTTAA
GGCGTAT					GTTAA
		AGAGTCATGT		TACGGCGTATO	GTTAA
3	accacgtg <i>i</i> 860	AGAGTCATGT: 3870	ragacgagact 3880	TACGGCGTATO	STTAA CAATT 3900
3 GCCAGCC	ACCACGTGA 860 CCGACACCO	AGAGTCATGT: 3870 CGCCAACACC	TAGACGAGACT 3880 CGCTGACGCGC	racggcgtato 3890	GTTAA CAATT 3900 CTTGT
3 GCCAGCC CGGTCGG	ACCACGTGA 860 CCGACACCC GGCTGTGGC	AGAGTCATGT 3870 CGCCAACACC GCGGTTGTGG	TAGACGAGACT 3880 CGCTGACGCGC GCGACTGCGCC	FACGGCGTATC 3890 CCCTGACGGGC GGGACTGCCCG	STTAA CAATT 3900 CTTGT GAACA
3 GCCAGCC CGGTCGG 3	ACCACGTGA 860 CCGACACCC GGCTGTGGC	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920	TAGACGAGACT 3880 CGCTGACGCGC GCGACTGCGCC	FACGGCGTATC 3890 CCCTGACGGGC GGGACTGCCCG 3940	STTAA CAATT 3900 CTTGT GAACA 3950
3 GCCAGCC CGGTCGG 3 CTGCTCC	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA	TAGACGAGACT 3880 CGCTGACGCGC GCGACTGCGCC 3930 AAGCTGTGACC	FACGGCGTATC 3890 CCCTGACGGGC GGGACTGCCCG 3940 CGTCTCCGGG	GTTAA CAATT 3900 CTTGT GAACA 3950 AGCTG
3 GCCAGCC CGGTCGG 3 CTGCTCC	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA	TAGACGAGACT 3880 CGCTGACGCGC GCGACTGCGCC 3930 AAGCTGTGACC	FACGGCGTATC 3890 CCCTGACGGGC GGGACTGCCCG 3940	GTTAA CAATT 3900 CTTGT GAACA 3950 AGCTG
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA	TAGACGAGACT 3880 CGCTGACGCGC GCGACTGCGCC 3930 AAGCTGTGACC	TACGGCGTATO 3890 CCCTGACGGGC GGGACTGCCCC 3940 CGTCTCCGGGA GCAGAGGCCCT	GTTAA CAATT 3900 CTTGT GAACA 3950 AGCTG CCGAC
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA CGAATGTCTGT	TAGACGAGACT 3880 CGCTGACGCGC GCGACTGCGCC 3930 AAGCTGTGACC TTCGACACTGC	FACGGCGTATC 3890 CCCTGACGGGC GGGACTGCCCG 3940 CGTCTCCGGG	GTTAA CAATT 3900 CTTGT GAACA 3950 AGCTG CCGAC 4000
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTT	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA CGAATGTCTG: 3970 FTCACCGTCA:	TAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACC TTCGACACTGC	TACGGCGTATO 3890 CCCTGACGGGC GGGACTGCCCC 3940 CGTCTCCGGGA GCAGAGGCCCT	GTTAA CAATT 3900 CTTGT GAACA 3950 AGCTG CCGAC 4000 AAAGG
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTT	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA CGAATGTCTG: 3970 FTCACCGTCA:	TAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACC TTCGACACTGC	IACGGCGTATO 3890 CCCTGACGGGC GGGACTGCCCC 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 GCGCGAGACGA	GTTAA CAATT 3900 CTTGT GAACA 3950 AGCTG CCGAC 4000 AAAGG
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG CATGTGT GTACACA	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTT	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA CGAATGTCTG: 3970 FTCACCGTCA:	TAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACC TTCGACACTGC	IACGGCGTATO 3890 CCCTGACGGGC GGGACTGCCCC 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 GCGCGAGACGA	GTTAA CAATT 3900 CTTGT GAACA 3950 AGCTG CCGAC 4000 AAAGG
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT GTACACA	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTTT GTCTCCAAA	AGAGTCATGT: 3870 CGCCAACACCG GCGGTTGTGGG 3920 GCTTACAGACA CGAATGTCTG: 3970 FTCACCGTCA: AAGTGGCAGTA	TAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACC TTCGACACTGC 3980 FCACCGAAACC AGTGGCTTTGC	IACGGCGTATO 3890 CCCTGACGGGO GGGACTGCCCO 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 ECGCGAGACGA	3900 CTTGT GAACA 3950 AGCTG CCGAC 4000 AAAGG CTTCC
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT GTACACA 4 GCCTCGT	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTTT GTCTCCAAA	AGAGTCATGTT 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA CGAATGTCTGT 17CACCGTCAT AAGTGGCAGTA 4020 FATTTTTATAC	TAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACCTGC TCGACACTGC 4030 GGTTAATGTCA	IACGGCGTATO 3890 CCCTGACGGGO GGGACTGCCCO 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 ECGCGAGACGA CGCGCTCTGCT	3900 CTTGT GAACA 3950 AGCTG CCGAC 4000 AAAGG CTTCC 4050
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT GTACACA 4 GCCTCGT CGGAGCA	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTTT GTCTCCAAA 010 GATACGCCT	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA CGAATGTCTGT 3970 FTCACCGTCAT AAGTGGCAGTA 4020 FATTTTTATACATAAAAATATC	TAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACCTGC TCGACACTGC 4030 GGTTAATGTCACCAATTACAGTGCCAATTACAGTCACCGACTCACCCAATTACAGTCACCAATTACAGTCACCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACACCCCAATTACAGTCACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCCAATTACAGTCACCCAATTACAGTCACCCCAATTACAGTCACCACCACCACCACCACCACCACCACCACCACCACCAC	TACGGCGTATO 3890 CCCTGACGGGC GGGACTGCCCG 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 GCGCGAGACGA CGCGCTCTGCT 4040 ATGATAATAAT	3900 CTTGT GAACA 3950 AGCTG CCGAC 4000 AAAGG CTTCC 4050 AGGTT ACCAA
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT GTACACA 4 GCCTCGT CGGAGCA	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTTT GTCTCCAAA 010 GATACGCCT CTATGCGGA	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACAC CGAATGTCTG: 3970 FTCACCGTCA: AAGTGGCAGTA 4020 FATTTTTATACATAAAAATATC	TAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACCT TCGACACTGC 3980 TCACCGAAACC AGTGGCTTTGC 4030 GGTTAATGTCA CCAATTACAGT	TACGGCGTATO 3890 CCCTGACGGGC GGGACTGCCCG 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 GCGCGAGACGA CGCGCTCTGCT 4040 ATGATAATAAT TACTATTATTA	3900 CTTGT GAACA 3950 AGCTG CCGAC 4000 AAAGG CTTCC 4050 CGGTT ACCAA
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT GTACACA 4 GCCTCGT CGGAGCA 4 TCTTAGA	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTT GTCTCCAAA 010 GATACGCCT CTATGCGGA	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACAC CGAATGTCTG: 4070 GGCACTTTTCC GGCACTTTCC	TAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACCT TTCGACACTGC 4030 GGTTAATGTCA CCAATTACAGT 4080 GGGGAAATGTC	TACGGCGTATO 3890 CCCTGACGGGC GGGACTGCCCC 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 GCGCGAGACGA CGCGCTCTGCT 4040 ATGATAATAAT TACTATTATTA 4090 GCGCGGAAACCC	3900 CTTGT SAACA 3950 AGCTG CCGAC 4000 AAAGG CTTCC 4050 CGGTT ACCAA 4100 CCTAT
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT GTACACA 4 GCCTCGT CGGAGCA 4 TCTTAGA	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTT GTCTCCAAA 010 GATACGCCT CTATGCGGA	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACAC CGAATGTCTG: 4070 GGCACTTTTCC GGCACTTTCC	TAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACCT TTCGACACTGC 4030 GGTTAATGTCA CCAATTACAGT 4080 GGGGAAATGTC	TACGGCGTATO 3890 CCCTGACGGGC GGGACTGCCCG 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 GCGCGAGACGA CGCGCTCTGCT 4040 ATGATAATAAT TACTATTATTA	3900 CTTGT SAACA 3950 AGCTG CCGAC 4000 AAAGG CTTCC 4050 CGGTT ACCAA 4100 CCTAT
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT GTACACA 4 GCCTCGT CGGAGCA 4 TCTTAGA AGAATCT	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTT GTCTCCAAA 010 GATACGCCT CTATGCGGA	AGAGTCATGT: 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACAC CGAATGTCTG: 4070 GGCACTTTTCC GGCACTTTCC	IAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACC ITCGACACTGC 3980 ICACCGAAACC AGTGGCTTTGC 4030 EGTTAATGTCA CCAATTACAGT 4080 EGGGAAATGTC	TACGGCGTATO 3890 CCCTGACGGGC GGGACTGCCCC 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 GCGCGAGACGA CGCGCTCTGCT 4040 ATGATAATAAT TACTATTATTA 4090 GCGCGGAAACCC	3900 CTTGT SAACA 3950 AGCTG CCGAC 4000 AAAGG CTTCC 4050 CGGTT ACCAA 4100 CCTAT
3 GCCAGCC CGGTCGG 3 CTGCTCC GACGAGG 3 CATGTGT GTACACA 4 GCCTCGT CGGAGCA 4 TCTTAGA AGAATCT 4	ACCACGTGA 860 CCGACACCC GGCTGTGGC 910 CGGCATCCC GCCGTAGGC 960 CAGAGGTTT GTCTCCAAA 010 GATACGCCT CTATGCGGA 060 CGTCAGGTCCACC	AGAGTCATGTT 3870 CGCCAACACCC GCGGTTGTGGC 3920 GCTTACAGACA CGAATGTCTGT 4070 GGCACTTTTATACA ATAAAAATATC 4070 GGCACTTTTCC CCGTGAAAAGCC 4120	IAGACGAGACT 3880 CGCTGACGCGC 3930 AAGCTGTGACCTGC 3980 ICACCGAAACC AGTGGCTTTGC 4030 EGTTAATGTCA CCAATTACAGT 4080 EGGGAAATGCACCCCTTTACACC	IACGGCGTATO 3890 CCCTGACGGGO GGGACTGCCCO 3940 CGTCTCCGGGA GCAGAGGCCCT 3990 GCGCGAGACGA CGCGCTCTGCT 4040 ATGATAATAAT IACTATTATTA 4090 GCGCGGGAACCO	3900 CTTGT 3900 CTTGT GAACA 3950 AGCTG CCGAC 4000 AAAGG CTTCC 4050 CGGTT ACCAA 4100 CCTAT AGATA

AACAAATAAAAA	GATTTATGTAAG	GTTTATACAT	AGGCGAGTAC	CTCTGTTA
4160	-	4180		
AACCCTGATAAA	TGCTTCAATAAT	TATTGAAAAA	AGGAAGAGTAI	GAGTATT
TTGGGACTATTT.	ACGAAGTTATTA	ATAACTTTTI	CCTTCTCATA	CTCATAA
				>
4210		4230	-	4250
CAACATTTCCGT				
GTTGTAAAGGCA			CGCCGTAAAA	CGGAAGG
	AN	1PR		>
4260	4270		4290	4300
TGTTTTTGCTCA				
ACAAAAACGAGT			ATTTTCTACGA	CTTCTAG
	AN	1PR		>
4310	4320	4330	4340	4350
AGTTGGGTGCAC	GAGTGGGTTACA	ATCGAACTGG	GATCTCAACAG	CGGTAAG
TCAACCCACGTG	CTCACCCAATGI	TAGCTTGACC	CTAGAGTTGTC	CGCCATTC
	AN	1PR		>
4360	4370	4380	4390	4400
ATCCTTGAGAGT	TTTCGCCCCGA			GCACTTT
TAGGAACTCTCA	AAAGCGGGGCT7	CTTGCAAAA	GGTTACTACT	CGTGAAA
	AN	1PR		>
4410	4420	4430	4440	4450
TAAAGTTCTGCT.	-		-	
ATTTCAAGACGA				
		1PR		>
4460	4470	4480	4490	4500
AGCAACTCGGTC				-000
TCGTTGAGCCAG				
		1PR		>
4510	4520	4530	4540	4550
TCACCAGTCACA				
	CTTTTCGTAGA			
		1PR		>
45.00	4570	4500	4500	4600
4560 ATGCAGTGCTGC	4570	4580	4590	4600
TACGTCACGACG				
TACGICACGACG		ACIAIIGIG IPR	OI I DDOODDOAG	DAADIAA: <
4610	4620	4630	4640	4650
TGACAACGATCG				
ACTGTTGCTAGC		OTCGATTGGC 1PR	JGAAAAAACGI	GTTGTAC >
4660	4670	4680	4690	4700
GGGGATCATGTA				
CCCCTAGTACAT	TGAGCGGAACTA	AGCAACCCTI	'GGCCTCGACT	TACTTCG

	A	MPR		
4710 CATACCAAACGAC GTATGGTTTGCTG	GCTCGCACTGT			
4760 CGTTGCGCAAACT GCAACGCGTTTGA	TAATTGACCG	GAACTACTTA		
4810 CAATTAATAGACT GTTAATTATCTGA	CCTACCTCCG			
4860 CTCGGCCCTTCCG GAGCCGGGAAGGC	CCGACCGACCA			
4910 AGCGTGGGTCTCG TCGCACCCAGAGC	CGCCATAGTAA	GCAGCACTGG		
4960 TCCCGTATCGTAG AGGGCATAGCATC	CAATAGATGTG			
5010 ACGAAATAGACAG TGCTTTATCTGTC	CTAGCGACTCT.			
5060 AACTGTCAGACCA TTGACAGTCTGGT >				
5110 CATTTTTAATTTA GTAAAAATTAAAT	AAAGGATCTA		CTTTTTGATA	
5160 GACCAAAATCCCI CTGGTTTTAGGGA				
5210 TAGAAAAGATCAA ATCTTTTCTAGTT	TCCTAGAAGA		AAAAAGACGC	

5260	5270	5280	5290	5300
TGCTGCTTGCAAA				
ACGACGAACGTTT		rggegarggr 2 ORIGIN	CGCCACCAAA	ACAAACGG
	FBR322	2 ORIGIN		
5310	5320	5330	5340	5350
GGATCAAGAGCTAG	CCAACTCTTT	TTCCGAAGGT	AACTGGCTT	CAGCAGAG
CCTAGTTCTCGAT	GGTTGAGAAA	AAGGCTTCCA	TTGACCGAAC	STCGTCTC
	PBR322	ORIGIN		>
5360	5370	5380	5390	5400
CGCAGATACCAAA!				
GCGTCTATGGTTT			GCATCAATC(CGGTGGTG
	PBR322	2 ORIGIN		>
5410	5420	5430	5440	5450
TTCAAGAACTCTG			0 0	
AAGTTCTTGAGAC				
	PBR322	2 ORIGIN		>
5460	5470	5480	5490	5500
ACCAGTGGCTGCT				
TGGTCACCGACGA			AGAATGGCC	CAACCTGA
	PBR322	2 ORIGIN		>
5510	5520	5530	5540	5550
CAAGACGATAGTTA	00-0		00-0	0000
GTTCTGCTATCAA:				
011010011110111		ORIGIN	.00000110110	>
5560	5570	5580	5590	5600
TCGTGCACACAGC	CCAGCTTGGA	GCGAACGACC	TACACCGAAC	CTGAGATA
AGCACGTGTGTCG(GTCGAACCT	CGCTTGCTGG	ATGTGGCTT	GACTCTAT
	PBR322	2 ORIGIN		>
F.C.1.0	F.C.O.O.	F.C.2.0	F.C.4.0	F.C.F.O.
5610	5620	5630	5640	5650
CCTACAGCGTGAGG GGATGTCGCACTCG				
OGATOTCOCACTC		2 ORIGIN	MOOOCIICC	>
				·
5660	5670	5680	5690	5700
CGGACAGGTATCC	GGTAAGCGGC <i>I</i>	AGGGTCGGAA	.CAGGAGAGC	GCACGAGG
GCCTGTCCATAGG	CCATTCGCCG	ICCCAGCCTT	GTCCTCTCGC	CGTGCTCC
	PBR322	ORIGIN		>
E = 4.0	E 7 6 6	E = 0.0	E	E
5710	5720	5730	5740	5750
GAGCTTCCAGGGGGCCCCCCCCCCCCCCCCCCCCCCCCC				
CICGAAGGICCCC		ZATAGAAATA 2 ORIGIN	LICAGGACAGC	ZEAAAGC \
		- ONIGIN—		
5760	5770	5780	5790	5800
CCACCTCTGACTT				
GGTGGAGACTGAA	CTCGCAGCTA	AAAACACTAC	GAGCAGTCC	CCCGCCT
	PBR322	ORIGIN		>

5810	5820	5830	5840	5850
GCCTATGGAAAA	ACGCCAGCAAC	GCGGCCTTTI	TACGGTTCCT	GGCCTTT
CGGATACCTTTT	TGCGGTCGTTG	CGCCGGAAAA	ATGCCAAGGA	CCGGAAA
PBR322	ORIGIN	>		
5860	5870	5880	5890	5900
TGCTGGCCTTTT	GCTCACATGTT(CTTTCCTGCG	TTATCCCCTG	ATTCTGT
ACGACCGGAAAA	CGAGTGTACAA	GAAAGGACGC	CAATAGGGGAC	TAAGACA
5910	5920	5930	5940	5950
GGATAACCGTAT	TACCGCCTTTGA	AGTGAGCTGA	TACCGCTCGC	CGCAGCC
CCTATTGGCATA	ATGGCGGAAAC:	TCACTCGACT	'ATGGCGAGCG	GCGTCGG
5960	5970	5980	5990	6000
GAACGACCGAGC	GCAGCGAGTCA	GTGAGCGAGG	AAGCGGAAGA	GCGCCCA
CTTGCTGGCTCG	CGTCGCTCAGT	CACTCGCTCC	TTCGCCTTCT	CGCGGGT
6010	6020	6030	6040	
ATACGCAAACCG	CCTCTCCCCGC	GCGTTGGCCG	ATTCATTAAT	G
TATGCGTTTGGC	GGAGAGGGGCG(CGCAACCGGC	TAAGTAATTA	С

Figure 1C: SEQ ID 2

10	20	30	40	50
CAGCAGCTGGCGTAA				
GTCGTCGACCGCATT	raregerrer		CTAGCGGGAA	UUUUU
60	70	80	90	100
AGTTGCGCAGCCTGA				
TCAACGCGTCGGACT	TTACCGCTTA	CCTTAAGGTC	CTGCTAACTCG	CAGTTT
110	120	130	140	150
ATGTAGGTATTTCC	ATGAGCGTTT'	TTCCTGTTGC	CAATGGCTGGC	GGTAAT
TACATCCATAAAGG	PACTCGCAAA2	AAGGACAACG	STTACCGACCG	CCATTA
160	170	180	190	200
ATTGTTCTGGATATT	TACCAGCAAG(GCCGATAGTI	TGAGTTCTTC	TACTCA
TAACAAGACCTATAA	ATGGTCGTTC(CGGCTATCAA	ACTCAAGAAG	ATGAGT
210	220	230	240	250
GGCAAGTGATGTTAT	TACTAATCA	AAGAAGTATI	GCGACAACGG	TTAATT
CCGTTCACTACAATA	ATGATTAGT:	ITCTTCATAA	CGCTGTTGCC	AATTAA
260	270	280	290	300
TGCGTGATGGACAGA		_ 0 0		
ACGCACTACCTGTCT				
310	320	330	340	350
ACTTCTCAGGATTCT				
TGAAGAGTCCTAAGA	ACCGCATGGC2	AAGGACAGA'I	''I''I''I'AGGGAAA	TTAGCC
360	370	380	390	400
CCTCCTGTTTAGCTC				
GGAGGACAAATCGAC	GGCGAGACT2	AAGATTGCTC	CCTTTCGTGCA	ATATGC
410	420	430	440	450
TGCTCGTCAAAGCAA				
ACGAGCAGTTTCGTT	rggtatcatg(CGCGGGACAI	CGCCGCGTAA!	TTCGCG
460	470	480	490	500
GGCGGGTGTGGTGGT				
CCGCCCACACCACCA		GCACTGGCGA RIGIN	TGTGAACGGT	
	FI OI	XIGIN		>
510	520	530	540	550
TAGCGCCCGCTCCTT				
ATCGCGGGCGAGGA		AGGGAAGGAA RIGIN	AGAGCGGTGC	AAGCGG >
560	570	580	590	600
GGCTTTCCCCGTCAA				
CCGAAAGGGGCAGT		JCCCCCGAGG RIGIN	JAAAICCCAA	AATJUU

610 TAGTGCTTTACGGC ATCACGAAATGCCG	TGGAGCTGG			
660 CACGTAGTGGGCCA GTGCATCACCCGGT	AGCGGGACT			
710 GAGTCCACGTTCTT CTCAGGTGCAAGAA	ATTATCACC		GTTTGACCTT	
760 CAACCCTATCTCGG GTTGGGATAGAGCC				
810 CGGCCTATTGGTTA GCCGGATAACCAAT				
860 TTTAACAAAATATT AAATTGTTTTATAA				
910 CCTGTTTTTGGGGC GGACAAAAACCCCG				
960 TGCTAGTTTTACGA ACGATCAAAATGCT			GACGCGCGAG	
1010 CACTGAGGCCGCCC GTGACTCCGGCGGG	CCCGTTTCG			
1060 CGGCCTCAGTGAGC GCCGGAGTCACTCG		GCGTCTCTCC		
1110 GGTACGATCTGAAT CCATGCTAGACTTA				
1160 GCGCGCCGGGGAG CGCGCGGCCCCTC				

1210	1220	1230		1250
TCGGAGGAGCAAA	=			
AGCCTCCTCGTTT				
1260	1270	1280	1290	1300
CACATTTCGTAGA	GCGAGTGTTCC	CGATACTCTA	ATCTCCCTAG	GCAAGGT
GTGTAAAGCATCT	CGCTCACAAGG	GCTATGAGAT	TAGAGGGATC	CGTTCCA
1310	1320	1330	1340	1350
TCATATTTGTGTA				
AGIAIAAACACAI	CAAIGAAIAA	JAAAADDADA	AACIGATICA	GIIAIIA
1360	1370	1380	1390	1400
CAGAATCAGCAGG	TTTGGAGTCAG	GCTTGGCAGG	GATCAGCAGC	CTGGGTT
GTCTTAGTCGTCC.	AAACCTCAGTC	CGAACCGTCC	CTAGTCGTCG	GACCCAA
			>mTTR	/5 ' /ut
1 / 1 / 0	1.400	1.420	1.4.4.0	1 1/50
1410 GGAAGGAGGGGT.	1420 ataaaacccc	1430	1440 AGAACCCCTC	1450
CCTTCCTCCCCCA				
0011001000001	1711111100000	37110100100	10110000110	1010101
>M	VMint			
	1			
1460	1470	1480	1490	1500
TCCACAAGCTCCT				
AGGTGTTCGAGGA	CTTCTCCATTC	CCCAAATTCC	CTACCAACCA	ACCACCC
1510	1520	1530	1540	1550
GTATTAATGTTTA				
CATAATTACAAAT				
1560	1570	1580	1590	1600
GGTTGGCTAGCAT	GCAGCGCGTGA	AACATGATCA	TGGCCGAGAG	CCCCGGC
CCAACCGATCGTA	CGTCGCGCACT			GGGGCCG
		_HUFIXCOPT	MT	>
1610	1620	1630	1640	1650
CTGATCACCATCT				
GACTAGTGGTAGA				
		KCOPTMT		>
1660	1670	1680	1690	1700
GTTCCTGGACCAC				
CAAGGACCTGGTG			.CTTGGCGGGG	
-	HUF12	KCOPTMT		>
1710	1720	1730	1740	1750
ACAACAGCGGCAA				
TGTTGTCGCCGTT				
	HUFIX	KCOPTMT		>
	. – .			
1760	1770	1780	1790	1800
TGCATGGAGGAGA.	AGTGCAGCTT(JGAGGAGGCC	CGCGAGGTGT	TUGAGAA

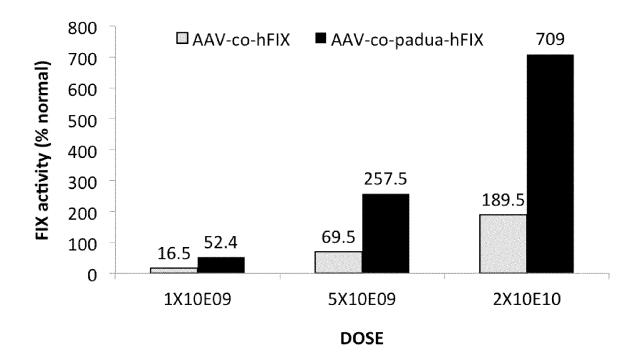
ACGTACCTCCT	CTTCACGTCGAAC	GCTCCTCCG(XCOPTMT	GGCGCTCCACA	AGCTCTT >
	1820 ACCACCGAGTTCT(GGAAGCAGT <i>I</i>	ACGTGGACGGC	
GTGGCTCGCG1	GGTGGCTCAAGAG HUFIX	CCTTCGTCA: XCOPTMT	FGCACCTGCCG	CTGGTCA >
	1870 CCCCTGCCTGAAC GGGGACGGACTTG HUFIX	GGCGGCAGC		
	1920 GCTGGTGCCCCTT(CGACCACGGGGAA(HUFI)	CGGCTTCGAC		
	1970 IGCAACATCAAGAA ACGTTGTAGTTCTI HUFIX	ACGGCCGCT(CGCTCGTCAAG	TGCAAGA
	2020 CAACAAGGTGGTG GTTGTTCCACCACA HUF1:	IGCAGCTGC <i>I</i>		
	AGAAGAGCTGCGA CCTTCTCGACGCT			
	2120 AGCCAGACCAGCAI ICGGTCTGGTCGTT HUF11	AGCTGACCC		
	2170 CTACGTGAACAGCA GATGCACTTGTCG HUFIX			
	2220 GCACCCAGAGCTT CGTGGGTCTCGAAC HUFIX			
	2270 AAGCCCGGCCAGT TTCGGGCCGGTCAA			
2310 AGGTGGACGCC	2320 CTTCTGCGGCGGCZ		2340 AACGAGAAGTG	2350 GATCGTG

ACCGCCGCCACTGCGTGGAGACCGGCGTGAAGATCACCGTGGTGGCGG TGGCGGCGGGTGACGCACTTCTGGCCGCACTTCTAGTGGCACCACCGGCC HUFTXCOPTMT 2410 2420 2430 2440 2450 CGAGCACAACATCGAGGAGACCCACCGAGCACACCGAGCACACCGGCCACTTCTAGTGGCACCACCGGCCACTTCTAGTGGCACCACCGGCCACTTCTAGTGGCACCACCGAGCACACCGAGCACACCGAGCACACCGAGCACACCGAGCACACCGAGCACACCGAGCACACCGAGCACACCGAGCACACCGAGCACACCGAGCACACCGTGTGCACTTCCCCTTTCCCCTTCTCCCTTTCCCCTTTCCCCTTTCCCC	TCCACCTGCGGAA		XCOPTMT	TIGCICITCAC	CIAGCAC
ACCGCCGCCACTGCGTGAGACCGCGTGAAGATCACCGTGGTGGCCGC IGGCGGCGGGTGACCTCTGGCCGCACTTCTAGTGGCACCACCGCC HUFIXCOPTMT 2410 2420 2430 2440 2456 GCGAGCACAACATCGAGGAGACCGAGCACCAGAGAGCGCAACGTGAG GCTCGTGTTGTAGCTCCTCTGGCTCGTGTGGCTCGTCTTCGCGTTGCACT HUFIXCOPTMT 2460 2470 2480 2490 2500 ICCGCATCATCCCCCACCACAACTACAACGCCGCCATCAACAAGTACAAC AGGCGTAGTAGGGGGGTGTTTGATGTTGCGGCGCGATCAACAAGTACAAC AGGCGTAGTAGGGGGGTGTTTGATGTTGCGGCGGCGATCAACAAGTACAAC AGGCGTAGTAGGGGGGTGTTGATGTTGCGGCGGTAGTTGTTCATGTTG HUFIXCOPTMT 2510 2520 2530 2540 2550 CACGACATCGCCCTGCTGGAGCAGCCCCTGGTGCTGAACAACACCTTGCCGAT HUFIXCOPTMT 2560 2570 2580 2590 2600 CGTGACCCCCATCTGCATGGCCGACAAGGAGTACACCAACATCTTCCTGAGCGGGGTAGACGCCCCATCTGCACCTTGCACCTGCACCTTGCATGTTCCTCATGTGGTTGTAGAAGGACT HUFIXCOPTMT 2610 2620 2630 2640 2650 AGGTTCGGCAGCGGCGTACGTAGCGGGCTGCCCCGGCGGTTCCCCCACCTCGCGCGCG					
### TOTAL PROPRET ### TOTAL PRO	2360	2370	2380	2390	2400
HUFIXCOPTMT	ACCGCCGCCCACT	GCGTGGAGAC	CGGCGTGAA	GATCACCGTG(GTGGCCGG
2410 2420 2430 2440 2450 CGAGCACAACATCAGAGAGAGCCGAGCACCGAGCAGAAGCGCAACGTGAGCACACACA	TGGCGGCGGGTGA	CGCACCTCTG	GCCGCACTT	CTAGTGGCAC	CACCGGCC
CGAGCACAACATCGAGGAGACCGAGCACCGAGCAGAAGCGCAACGTCA GCTCGTGTTGTAGCTCCTCTGGCTCGTGTGGCTCGTCTTCGCGTTGCACT HUFTXCOPTMT 2460 2470 2480 2490 2500 FCCGCATCATCCCCCACCACAACTACAACGCCGCCATCAACAAGTACAACA AGGCGTAGTAGGGGGTGTTGTAGTTTCATGTTG HUFTXCOPTMT 2510 2520 2530 2540 2550 CACGACATCGCCCTGCTGGAGCTGGACCGCCTGGTGCTGAACAGCTA GTGCTGTAGCGGGACCACCTGCTCGGAGCCCCTGGTGCTGAACAGCTA GTGCTGTAGCGGGACCACCTCCACTGCTCGGGGACCACGACTTGTCGAT HUFTXCOPTMT 2560 2570 2580 2590 2600 CGTGACCCCCATCTGCATCGCCGACAAGGAGTACAACAACATCTTCCTGA GCACTGGGGGTAGACGTAGCCGCGACAAGGAGTACAACAACATCTTCCTGA GCACTGGGGGTAGACGTAGCGCGCACAAGGAGTACAACAACATCTTCCTGA GCACTGGGGGTAGACGTAGCGGCGCACAAGGAGTACAACAACATCTTCCTGA GCACTGGGGGTAGACGTAGCGGCGCTGTTCCTCATGTGGTTGTAGAAGGACT HUFTXCOPTMT 2610 2620 2630 2640 2650 AGTTCGGCAGCGCGCACAAGGGTGTCCCCACAAGGGC GCAAGCCGCTGCGCGACCACGGGGCCCCGGGGGCACAAGGTTCCCCG HUFTXCOPTMT 2660 2670 2680 2690 2700 CGCGAGCGCCCTGGTGCTGCAGGACCCCGGGGGCCCCTGGTGGACCGCGCGCG		HUFI	XCOPTMT		
CGAGCACAACATCGAGGAGACCGAGCACCGAGCAGAAGCGCAACGTCA GCTCGTGTTGTAGCTCCTCTGGCTCGTGTGGCTCGTCTTCGCGTTGCACT HUFTXCOPTMT 2460 2470 2480 2490 2500 FCCGCATCATCCCCCACCACAACTACAACGCCGCCATCAACAAGTACAACA AGGCGTAGTAGGGGGTGTTGTAGTTTCATGTTG HUFTXCOPTMT 2510 2520 2530 2540 2550 CACGACATCGCCCTGCTGGAGCTGGACCGCCTGGTGCTGAACAGCTA GTGCTGTAGCGGGACCACCTGCTCGGAGCCCCTGGTGCTGAACAGCTA GTGCTGTAGCGGGACCACCTCCACTGCTCGGGGACCACGACTTGTCGAT HUFTXCOPTMT 2560 2570 2580 2590 2600 CGTGACCCCCATCTGCATCGCCGACAAGGAGTACAACAACATCTTCCTGA GCACTGGGGGTAGACGTAGCCGCGACAAGGAGTACAACAACATCTTCCTGA GCACTGGGGGTAGACGTAGCGCGCACAAGGAGTACAACAACATCTTCCTGA GCACTGGGGGTAGACGTAGCGGCGCACAAGGAGTACAACAACATCTTCCTGA GCACTGGGGGTAGACGTAGCGGCGCTGTTCCTCATGTGGTTGTAGAAGGACT HUFTXCOPTMT 2610 2620 2630 2640 2650 AGTTCGGCAGCGCGCACAAGGGTGTCCCCACAAGGGC GCAAGCCGCTGCGCGACCACGGGGCCCCGGGGGCACAAGGTTCCCCG HUFTXCOPTMT 2660 2670 2680 2690 2700 CGCGAGCGCCCTGGTGCTGCAGGACCCCGGGGGCCCCTGGTGGACCGCGCGCG	2410	2420	2/30	2440	2450
### ACT CONTROL CONTRO		•			
HUFTXCOPTMT					
CCCCACCACACACACTACAACGCCGCCATCAACAAGTACAACACGCGCGTAGTTAGT	GCICGIGIIGIAG			10010110000	FIIGCACI
CCCCACCACACACACTACAACGCCGCCATCAACAAGTACAACACGCGCGTAGTTAGT	0.4.60	0.450		0.1.0.0	0.5.00
AGGCGTAGTAGGGGGTGTTTGATGTTGCGGCGGTAGTTGTTCATGTTG		•			
### HUFIXCOPTMT					
2510 2520 2530 2540 2550 CACGACATCGCCCTGCTGGAGCTGGACGAGCCCTGGTGCTGAACAGCTAGTGCTGAACAGCTAGTCTGAACAGCTAGCT	AGGCGTAGTAGGG			CGGTAGTTGT	rCATGTTG
CACGACATCGCCTGCTGCAGCTGGAGCCGAGCCCTGGTGCTGAACAGCTAGTGTTAGCGGGACCACCTCGACCTGCTCGGGGACCACGACTTGTCGATTGTCGCCGACCAGGGGGACCACAACATCTTCCTGAGCGCACAAGGAGTACACCAACATCTTCCTGAGCGCACTGGGGGGTAGACCGACAAGGAGTACACCAACATCTTCCTGAGCGCACTGGGGGGTAGAAGCATTGTAGAAGAGACTTGTAGAAGGACTTGTCCCGACAAGGGGGTAGCAGCGGCGAGCGCGGGGGACCACAAGGTGTTCCCGACAAGCCGTCGCCGATGCACCACGAGGGGCTCCACAAGGGGATCCACAAGGGGCTCAAGCCGTCGCCGACCCCGGGCGCACAAAGGTGTTCCCGACGCGCGCG		HUF1	.xcoptmt		
### Transport of the control of the	2510	2520	2530	2540	2550
	CACGACATCGCCC	TGCTGGAGCT	GGACGAGCC	CCTGGTGCTG	AACAGCTA
2560 2570 2580 2590 2600 CGTGACCCCCATCTGCATCGCCGACAAGGAGTACACCAACATCTTCCTGA CGACTGGGGGTAGACGTAGCGGCTGTTCCTCATGTGGTTGTAGAAGGACT HUFIXCOPTMT 2610 2620 2630 2640 2650 AGTTCGGCAGCGCGACACGCGGCGCGCGCGCGCGCGCGCG	GTGCTGTAGCGGG	ACGACCTCGA	CCTGCTCGG	GGACCACGACT	TGTCGAT
CGTGACCCCATCTGCATCGCCGACAAGGAGTACACCAACATCTTCCTGAGCACTTGGGGGTAGACGTAGCGGCTGTTCCTCATGTGGTTGTAGAAGACTTTCCTGAGACTTGGGGGGTAGACGTAGCGGCTGTTCCTCATGTGGTTGTAGAAGACTTTCCTGAGACTGGGGGGGG		HUFI	XCOPTMT		
CGTGACCCCATCTGCATCGCCGACAAGGAGTACACCAACATCTTCCTGAGCACTTGGGGGTAGACGTAGCGGCTGTTCCTCATGTGGTTGTAGAAGACTTTCCTGAGACTTGGGGGGTAGACGTAGCGGCTGTTCCTCATGTGGTTGTAGAAGACTTTCCTGAGACTGGGGGGGG	2560	2570	2500	2590	2600
### 2610 2620 2630 2640 2650 ####################################					
######################################					
2610 2620 2630 2640 2650 AGTTCGGCAGCGGCTACGTGAGCGGCTGGGGCCGCGTGTTCCACAAGGGC TCAAGCCGTCGCCGATGCACTCGCCGACCCCGGCGCACAAGGTGTTCCCG HUFIXCOPTMT 2660 2670 2680 2690 2700 CGCAGCGCCTGGTGCTGCAGTACCTGCGCGTGCCCCTGGTGGACCGCGG GCGTCGCGGGACCACGACGTCATGGACGCGCACGGGGACCACCTGGCGCG GCGTCGCGGGACCACGACGTCATGGACGCCACGGGGACCACCTGGCGCGCGGGCGCCTGCTGCTGAGCACACACA	GCACIGGGGIAG			IGIGGIIGIAC	JAAGGACI
AGTTCGGCAGCGGCTACGTGAGCGGCTGGGGCCGCGTGTTCCACAAGGGC TCAAGCCGTCGCCGATGCACTCGCCGACCCCGGCGCACAAGGTGTTCCCG HUFIXCOPTMT 2660 2670 2680 2690 2700 CGCAGCGCCCTGGTGCTGCAGTACCTGCGCGTGCCCCTGGTGGACCGCGCGCG		1101 1			
100 100	2610	2620	2630	2640	2650
	AGTTCGGCAGCGG	CTACGTGAGC	GGCTGGGGC	CGCGTGTTCC	ACAAGGGC
2660 2670 2680 2690 2700 CGCAGCGCCTGGTGCTGCAGTACCTGCGCGTGCCCCTGGTGGACCGCGC GCGTCGCGGGACCACGACGTCATGGACGCGCACGGGGACCACCTGGCGCGC HUFIXCOPTMT 2710 2720 2730 2740 2750 CACCTGCCTGAGCACCAAGTTCACCATCTACAACAACATGTTCTGCGGTGGACGGAC	TCAAGCCGTCGCC	GATGCACTCG	CCGACCCCG	GCGCACAAGG	GTTCCCG
CGCAGCGCCTGGTGCTGCAGTACCTGCGCGTGCCCCTGGTGGACCGCGCGCG		HUFI	XCOPTMT		
CGCAGCGCCTGGTGCTGCAGTACCTGCGCGTGCCCCTGGTGGACCGCGCGCG	2660	2670	2680	2690	2700
### 2710					
2710 2720 2730 2740 2750 CACCTGCTGCTGAGCACCAAGTTCACCATCTACAACAACATGTTCTGCGGTGGACGGAC					
CACCTGCTGCTGAGCACCAAGTTCACCATCTACAACAACATGTTCTGCCGTGGACGACGTCGTGGTTCAAGTGGTAGATGTTGTTGTACAAGACGTTGGACGGAC		HUFI	XCOPTMT		
CACCTGCTGCTGAGCACCAAGTTCACCATCTACAACAACATGTTCTGCCGTGGACGACGTCGTGGTTCAAGTGGTAGATGTTGTTGTACAAGACGTTGGACGGAC	0710	0700	0720	27.40	0750
### Transfer of Company of Compan	MC000000000000000000000000000000000000				
	20000000				
2760 2770 2780 2790 2800 CCGGCTTCCACGAGGGCGGCCGCGACAGCTGCCAGGGCGACAGCGGCGCGCGC	GIGGACGACGAC	1		AIGIIGIIGI	ACAAGACG
CCGGCTTCCACGAGGGCGGCCGCGACAGCTGCCAGGGCGACAGCGGCGGCGCGCGC					
GGCCGAAGGTGCTCCCGCCGGCGCTGTCGACGGTCCCGCTGTCGCCGCCGCCGCGCGCG					2800
HUFIXCOPTMT 2810 2820 2830 2840 2850 CCCCACGTGACCGAGGTGGAGGGCACCAGCTTCCTGACCGGCATCATCAG GGGGTGCACTGGCTCCACCTCCCGTGGTCGAAGGACTGGCCGTAGTAGTC HUFIXCOPTMT 2860 2870 2880 2890 2900					
2810 2820 2830 2840 2850 CCCCACGTGACCGAGGTGGAGGGCACCAGCTTCCTGACCGGCATCATCAG GGGGTGCACTGGCTCCACCTCCCGTGGTCGAAGGACTGGCCGTAGTAGTC HUFIXCOPTMT 2860 2870 2880 2890 2900	GGCCGAAGGTGCT			GTCCCGCTGT	CGCCGCCG
CCCCACGTGACCGAGGTGGAGGGCACCAGCTTCCTGACCGGCATCATCAGGGGGTGCACTGGCCGTAGTAGTCGGGGTGCACTGGCCGTAGTAGTCGCGGTGCAAGGACTGGCCGTAGTAGTCGCGTGTXCOPTMT		HUFI	XCOPTMT		
CCCCACGTGACCGAGGTGGAGGGCACCAGCTTCCTGACCGGCATCATCAGGGGGTGCACTGGCCGTAGTAGTCGGGGTGCACTGGCCGTAGTAGTCGCGGTGCAAGGACTGGCCGTAGTAGTCGCGTGTXCOPTMT	2810	2820	2830	2840	2850
GGGGTGCACTGGCTCCACCTCCCGTGGTCGAAGGACTGGCCGTAGTAGTC HUFIXCOPTMT 2860 2870 2880 2890 2900					
HUFIXCOPTMT					
	2060	2072	2000	2000	0000
- MARTER ARTER ARTERACIONAL PROPERTA ARTERA ARTERA ARTERACIONAL ARTERACIONAL ARTERACIONAL ARTERACIONAL ARTERAC					

GACCCCGCTCCT(TCCCGTTCAT XCOPTMT	GCCGTAGATG	TGGTTCC >
2910 TGAGCCGCTACGT ACTCGGCGATGCA		AAGGAGAAGA TTCCTCTTC1		
2960 TCTGATCAGCCTO AGACTAGTCGGAO	GCTGACACGGA			
3010 CCCTCCCCGTGG GGGAGGGGGCACG	GGAAGGAACTG	CCTGGAAGG1		
3060 TTCCTAATAAAA AAGGATTATTTT	ACTCCTTTAAC		STCTGAGTAGG	
3110 CTATTCTGGGGGG GATAAGACCCCC	CACCCCACCCC	CAGGACAGC		
3160 GACAATAGCAGGC CTGTTATCGTCCC	GTACGACCCCT.			
3210 TCGATCTAGGAA(AGCTAGATCCTT(GGAGTTGGCC	CACTCCCTCTC	
3260 TCGCTCGCTCACT AGCGAGCGAGTGA	ACTCCGGCGGG			
3310 TTGGTCGCCCGGC AACCAGCGGGCCC	GGAGTCACTCG			
3360 AACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC				
3410 GACTCTCAGGCAA	3420 ATGACCTGATA	3430 GCCTTTGTAG	3440 GAGACCTCTCA	3450 AAAATAG

CTC A C A CTC C CTT T	λ CTCC λ CT λ TCCC λ λ	ACATCTCTGGAGAGTTTTTATC
CIGAGAGICCGII	ACIGACIAICGGAA	ACAICICIGGAGAGIIIIIAIC

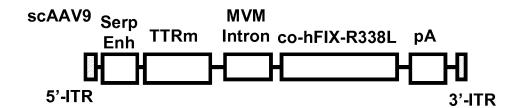
- 3460 3470 3480 3490 3500 CTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAATATCATATT GATGGGAGAGGCCGTACTTAAATAGTCGATCTTGCCAACTTATAGTATAA
- 3510 3520 3530 3540 3550
 GATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACC
 CTACCACTAAACTGACAGAGGCCGGAAAGAGTGGGCAAACTTAGAAATGG
- 3610 3620 3630 3640 3650 TTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGT AAATAGGAACGCAACTTTATTTCCGAAGAGGGCGTTTTCATAATGTCCCA
- 3660 3670 3680 3690 3700 CATAATGTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATT GTATTACAAAAACCATGTTGGCTAAATCGAAATACGAGACTCCGAAATAA
- 3760 3770 3780 3790 3800
 GAATTCCTGATGCGGTATTTCTCCTTACGCATCTGTGCGGTATTTCACA
 CTTAAGGACTACGCCATAAAAGAGGAATGCGTAGACACGCCATAAAGTGT
- 3810 3820 3830 3840 3850 CCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAA GGCGTATACCACGTGAGAGTCATGTTAGACGAGACTACGGCGTATCAATT
- 3860 3870 3880 3890 3900 GCCAGCCCGACACCCGCCAACACCCGCTGACGCGCCTGACGGGCTTGT CGGTCGGGGGTTGTGGGCGACTGCCCGAACA
- 3910 3920 3930 3940 3950 CTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTG GACGAGGGCCGTAGGCGAATGTCTGTTCGACACTGGCAGAGGCCCTCGAC
- 3960 3970 3980 3990 4000 CATGTGTCAGAGGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGG GTACACAGTCTCCAAAAGTGGCAGTAGTGGCTTTGCGCGCTCTGCTTTCC
- 4010 4020 4030 4040 4050 GCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTT CGGAGCACTATGCGGATAAAAATATCCAATTACAGTACTATTATTACCAA
- 4060 4070 4080 4090 4100 TCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTAT AGAATCTGCAGTCCACCGTGAAAAGCCCCTTTACACGCGCCTTTGGGGATA
 - 4110 4120 4130 4140 4150

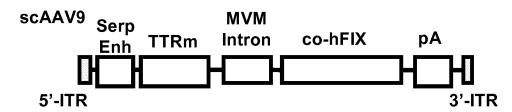

TTGTTTATTTTTC AACAAATAAAAAG				
4160 AACCCTGATAAAT	GCTTCAATAA:	_		
TTGGGACTATTTA	.CGAAGTTATT <i>i</i>	ATAACTTTTI	CCTTCTCATA —	CTCATAA >
4210 CAACATTTCCGTG	4220	4230 rcccrrrrrr	4240 'GCGGCATTTT	4250
GTTGTAAAGGCAC	AGCGGGAATA			
4260	4270	4280	4290	4300
TGTTTTTGCTCAC ACAAAAACGAGTG	GGTCTTTGCG			
4310	4320	4330	4340	4350
AGTTGGGTGCACG TCAACCCACGTGC	TCACCCAATG			
4360	4370	4380	4390	4400
ATCCTTGAGAGTT TAGGAACTCTCAA	TTCGCCCCGA	AGAACGTTTI	CCAATGATGA	GCACTTT
	Al	MPR		>
4410 TAAAGTTCTGCTA	4420 TGTGGCGCGG	4430 FATTATCCCG	4440 STATTGACGCC	4450 CGGCAAG
ATTTCAAGACGAT		ATAATAGGGC MPR	CATAACTGCGG	CCCGTTC >
4460 AGCAACTCGGTCG	4470	4480	4490	4500
TCGTTGAGCCAGC	GGCGTATGTG			
4510	4520	4530	4540	4550
TCACCAGTCACAG AGTGGTCAGTGTC	TTTTCGTAGA			
4560	4570	4580	4590	4600
ATGCAGTGCTGCC TACGTCACGACGG	TATTGGTACT(
4610	4620	4630	4640	4650
TGACAACGATCGG ACTGTTGCTAGCC	TCCTGGCTTC			
4660	4670	4680	4690	4700
GGGGATCATGTAA	.C1CGCCTTGA'.	TCGTTGGGAA	AUTUUAUUUU	MIGAAGC

CCCCTAGTACATT		AGCAACCCTT MPR	GGCCTCGACT	TACTTCG
4710 CATACCAAACGAC				
GTATGGTTTGCTG		.'GGTGCTACGG .MPR	ACATCGTTAC	CGTTGTT
4760	4770	4780	4790	4800
GTTGCGCAAACT	- · · · -			
GCAACGCGTTTGA	TAATTGACCG			
4810	4820	4830	4840	4850
CAATTAATAGACT	GGATGGAGGC	GGATAAAGTT	GCAGGACCAC	CTTCTGCC
GTTAATTATCTGA		CCTATTTCAA MPR	CGTCCTGGTG	SAAGACGO
4860	4870	4880	4890	4900
CTCGGCCCTTCCG				
GAGCCGGGAAGGC		AATAACGACT MPR	'ATTTAGACCT	CGGCCAC
4910	4920	4930	4940	4950
AGCGTGGGTCTCG	CGGTATCATI	GCAGCACTGG	GGCCAGATGG	STAAGCCC
rcgcacccagagc		CGTCGTGACC	CCGGTCTACC	CATTCGG(
4960	4970	4980	4990	5000
ICCCGTATCGTAG	TTATCTACAC	GACGGGGAGT	CAGGCAACTA	TGGATG
AGGGCATAGCATC		CTGCCCCTCA MPR	GTCCGTTGAT	'ACCTAC'
5010	5020	5030	5040	5050
ACGAAATAGACAG	ATCGCTGAGA	TAGGTGCCTC	ACTGATTAAG	CATTGG1
IGCTTTATCTGTC		'ATCCACGGAG MPR	TGACTAATTO	CGTAACCA
5060	5070	5080	5090	5100
AACTGTCAGACCA ITGACAGTCTGGT >				
— E110	F100	5130	E140	E1E/
5110 CATTTTTAATTTA				515(מתכתכם
GTAAAAATTAAAT				
5160	5170	5180	5190	5200
GACCAAAATCCCT CTGGTTTTAGGGA				
5210	0220	5230	02.0	525(
TAGAAAAGATCAA NTCTTTTCTNCTT				
ATCTTTTCTAGTT	ICCIAGAAGA	MCICIAGGAA	JUNADAAAAA	GCATTAC

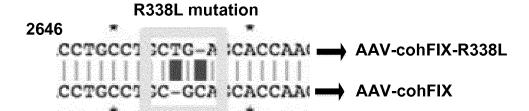
5260 TGCTGCTTGCAAACAA ACGACGAACGTTTGTT		GCGATGGTCG		
5310 GGATCAAGAGCTACCA CCTAGTTCTCGATGGT	— 5320 ACTCTTTTT	5330 CCGAAGGTAA GGCTTCCATT		
5360 CGCAGATACCAAATAC GCGTCTATGGTTTATG	ACAGGAAGA'			
5410 TTCAAGAACTCTGTAG AAGTTCTTGAGACATC	CACCGCCTA	GTATGGAGCG.		
5460 ACCAGTGGCTGCCC TGGTCACCGACGACGG	AGTGGCGAT.	TTCAGCACAG.		
5510 CAAGACGATAGTTACC GTTCTGCTATCAATGG		CGTCGCCAGC(GGCTGAACGG	
5560 TCGTGCACACAGCCCA AGCACGTGTGTCGGGT	GCTTGGAGC CGAACCTCG		GTGGCTTGAC'	
5610 CCTACAGCGTGAGCTA GGATGTCGCACTCGAT.	TGAGAAAGC	CGGTGCGAAG		
5660 CGGACAGGTATCCGGT GCCTGTCCATAGGCCA		CCAGCCTTGT		
5710 GAGCTTCCAGGGGGAA CTCGAAGGTCCCCCTT		TAGAAATATC		
5760 CCACCTCTGACTTGAG GGTGGAGACTGAACTC		AACACTACGA		

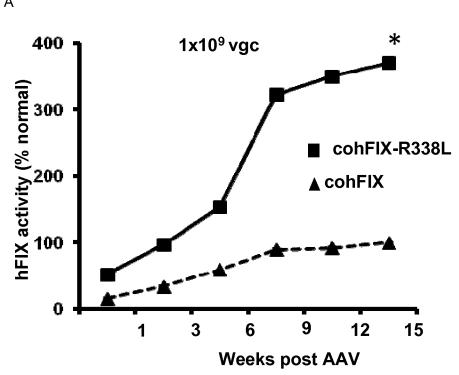
5810	5820	5830	5840	5850
GCCTATGGAAAA	ACGCCAGCAAC	GCGGCCTTTT	TACGGTTCCT	GGCCTTT
CGGATACCTTTT'	IGCGGTCGTTG(CGCCGGAAAA	ATGCCAAGGA	CCGGAAA
PBR322	ORIGIN	>		
5860	5870	5880	5890	5900
TGCTGGCCTTTT	GCTCACATGTT(CTTTCCTGCG	TTATCCCCTG	ATTCTGT
ACGACCGGAAAA	CGAGTGTACAA	GAAAGGACGC	AATAGGGGAC'	TAAGACA
5910	5920	5930	5940	5950
GGATAACCGTAT!	FACCGCCTTTG:	AGTGAGCTGA	TACCGCTCGC	CGCAGCC
CCTATTGGCATA	ATGGCGGAAAC'	TCACTCGACT	ATGGCGAGCG	GCGTCGG
5960	5970	5980	5990	6000
GAACGACCGAGC	GCAGCGAGTCA(GTGAGCGAGG	AAGCGGAAGA	GCGCCCA
CTTGCTGGCTCG	CGTCGCTCAGT	CACTCGCTCC	TTCGCCTTCT	CGCGGGT
6010	6020	6030	6040	
ATACGCAAACCG	CCTCTCCCCGC	GCGTTGGCCG	ATTCATTAAT	G
TATGCGTTTGGCGGAGAGGGGCGCGCAACCGGCTAAGTAATTAC				

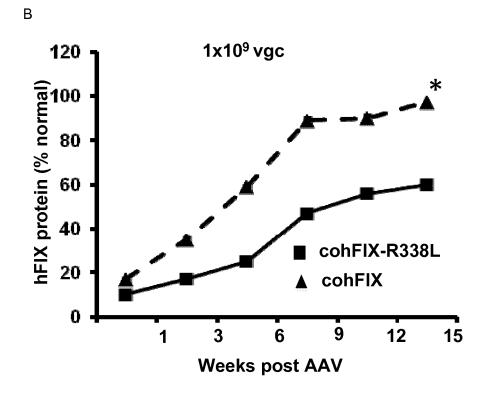

Fig. 2


WO 2014/064277 PCT/EP2013/072450

25/75


Fig. 3 A


В



С

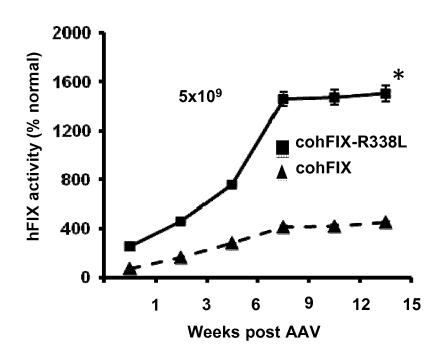


Fig. 4 C

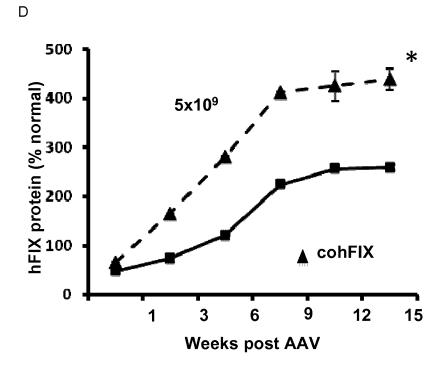
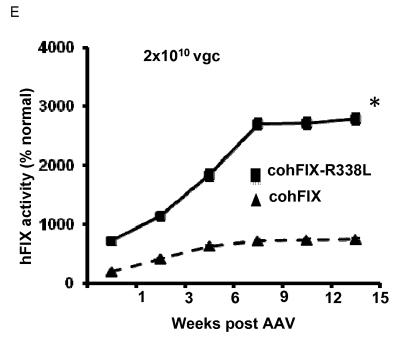



Fig. 4

F

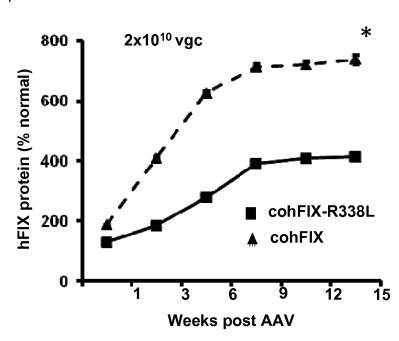
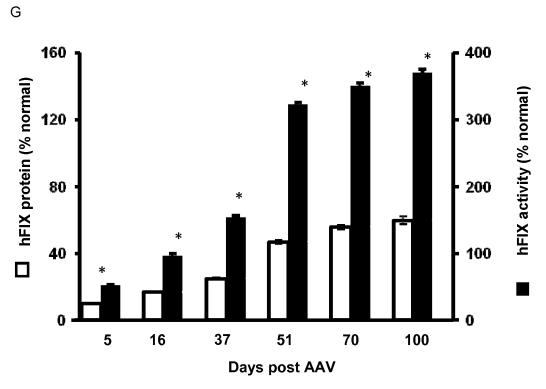



Fig. 4

Н

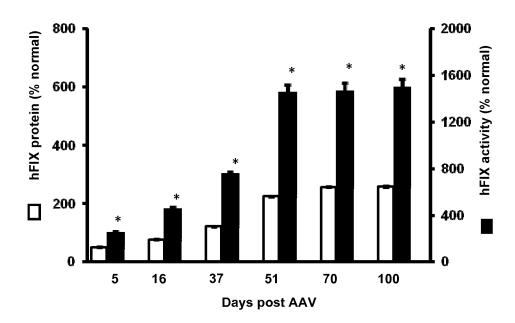
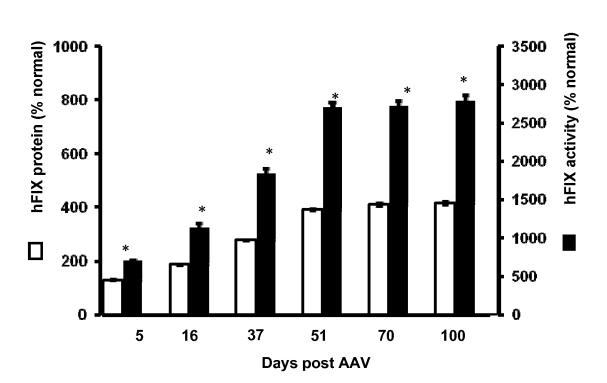
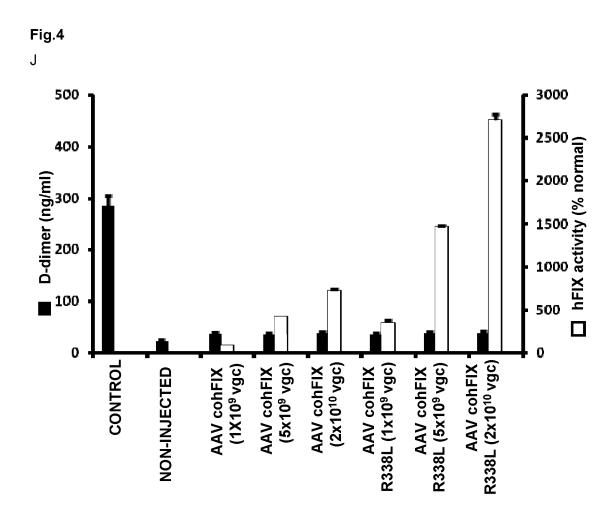
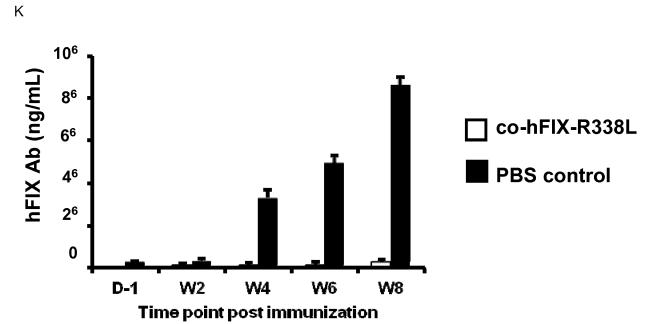
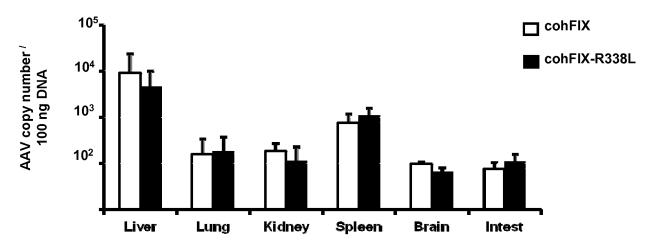
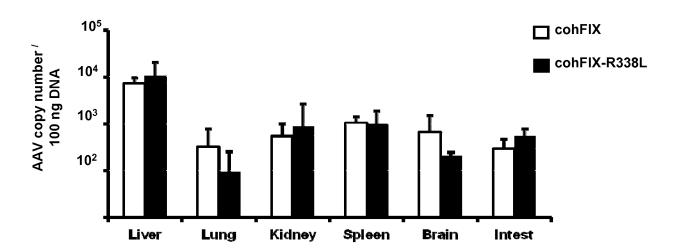
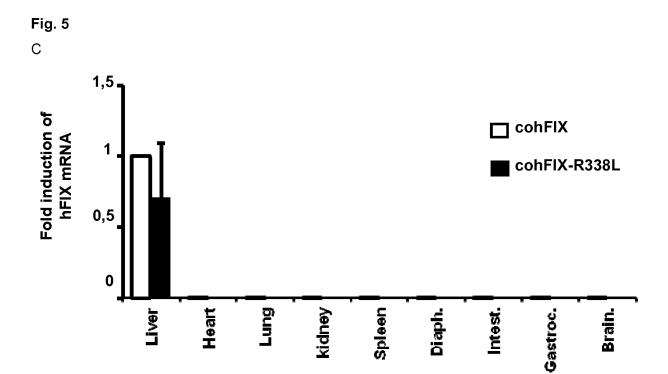
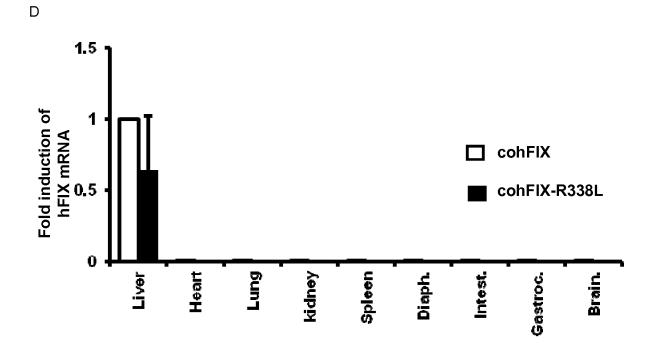




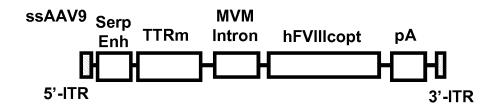
Fig. 4



Fig.5 A



В



WO 2014/064277 PCT/EP2013/072450

34/75

Fig. 6 A

В

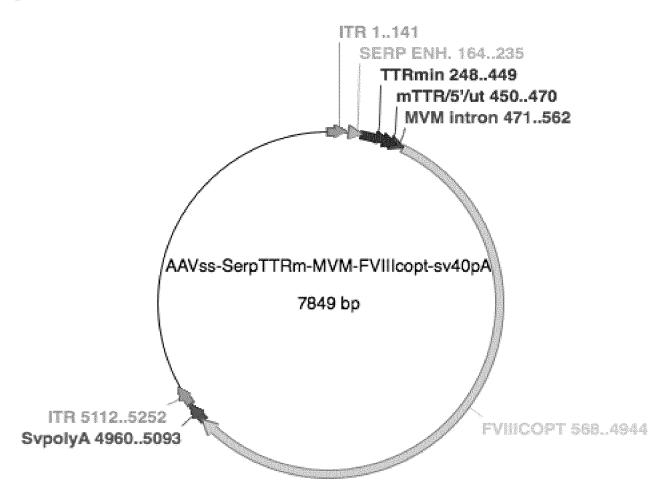


Fig. 6

C

SEQ ID NO: 6

CCTGCAGGCAGCTGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCGGTACCGGCGC GCCGGGGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGTTATCG ATTTCGTAGAGCGAGTGTTCCGATACTCTAATCTCCCTAGGCAAGGTTCATAT TTGTGTAGGTTACTTATTCTCCTTTTGTTGACTAAGTCAATAATCAGAATCAG CAGGTTTGGAGTCAGCTTGGCAGGGATCAGCAGCCTGGGTTGGAAGGAGGGG GTATAAAAGCCCCTTCACCAGGAGAAGCCGTCACACAGATCCACAAGCTCCT ${f G}AAGAGGTAAGGGTTTAAGGGATGGTTGGTTGGTGGGGNATTAATGTTTAATTACC$ TGGAGCACCTGCCTGAAATCACTTTTTTCAGGTTGGCTAGTATGCAGATCGAG CTGTCCACCTGCTTTTTTCTGTGCCTGCTGCGGTTCTGCTTCAGCGCCAC CCGGCGTACTACCTGGGCGCCGTGGAGCTGTCCTGGGACTACATGCAG AGCGACCTGGGCGAGCTGCCCGTGGACGCCCGGTTCCCCCCCAGAGTG CCCAAGAGCTTCCCCTTCAACACCAGCGTGGTGTACAAGAAAACCCTGT TCGTGGAGTTCACCGACCACCTGTTCAATATCGCCAAGCCCAGGCCCCC CTGGATGGGCCTGCTGGGCCCCACCATCCAGGCCGAGGTGTACGACACC GTGGTGATCACCCTGAAGAACATGGCCAGCCACCCCGTGAGCCTGCACG CCGTGGGCGTGAGCTACTGGAAGGCCAGCGAGGGCGCCGAGTACGACG ACCAGACCAGCCAGCGGGAGAAAGAAGATGACAAGGTGTTCCCTGGCG <u>GCAGCCACACCTACGTGTGGCAGGTGCTGAAAGAAAACGGCCCCATGGC</u> CTCCGACCCCTGTGCCTGACCTACAGCTACCTGAGCCACGTGGACCTG GTGAAGGACCTGAACAGCGGCCTGATCGGCGCTCTGCTCGTCTGCCGGG **AGGGCAGCCTGGCCAAAGAGAAAACCCAGACCCTGCACAAGTTCATCCT** <u>GCTGTTCGCCGTGTTCGACGAGGGCAAGAGCTGGCACAGCGA</u>GACAAA GAACAGCCTGATGCAGGACCGGGACGCCGCCTCTGCCAGAGCCTGGCC CAAGATGCACACCGTGAACGGCTACGTGAACAGAAGCCTGCCCGGCCTG ATTGGCTGCCACCGGAAGAGCGTGTACTGGCACGTGATCGGCATGGGCA CCACACCCGAGGTGCACAGCATCTTTCTGGAAGGGCACACCTTTCTGGT CCGGAACCACCGCAGGCCAGCCTGGAAATCAGCCCTATCACCTTCCTG ACCGCCCAGACACTGCTGATGGACCTGGGCCAGTTCCTGCTGTTTTGCC <u>ACATCAGCTCTCACCAGCACGACGGCATGGAAGCCTACGTGAAGGTGGA</u> CTCTTGCCCCGAGGAACCCCAGCTGCGGATGAAGAACAACGAGGAAGCC <u>GAGGACTACGACGACGACCTGACCGACAGCGAGATGGACGTGGTGCGG</u> ${f TTCGACGACGACAACAGCCCCAGCTTCATCCAGATCAGAAGCGTGGCCA}$ AGAAGCACCCCAAGACCTGGGTGCACTATATCGCCGCCGAGGAAGAGGA <u>CTGGGACTACGCCCCCTGGTGCTGGCCCCCGACGACAGAAGCTACAAG</u> <u>AGCCAGTACCTGAACAATGGCCCCCAGCGGATCGGCCGGAAGTACAAGA</u> AAGTGCGGTTCATGGCCTACACCGACGAGACATTCAAGACCCGGGAGGC CATCCAGCACGAGAGCGCCATCCTGGGCCCCCTGCTGTACGGCGAAGTG GGCGACACACTGCTGATCATCTTCAAGAACCAGGCTAGCCGGCCCTACA

ACATCTACCCCCACGGCATCACCGACGTGCGGCCCCTGTACAGCAGGCG GCTGCCCAAGGGCGTGAAGCACCTGAAGGACTTCCCCATCCTGCCCGGC <u>GAGATCTTCAAGTACAAGTGGACCGTGACCGTGGAGGACGGCCCCACCA</u> AGAGCGACCCCAGATGCCTGACCCGGTACTACAGCAGCTTCGTGAACAT GGAACGGGACCTGGCCTCCGGGCTGATCGGACCTCTGCTGATCTGCTAC <u>AAAGAAAGCGTGGACCAGCGGGGCAACCAGATCATGAGCGACAAGCGG</u> AACGTGATCCTGTTCAGCGTGTTCGATGAGAACCGGTCCTGGTATCTGA CCGAGAACATCCAGCGGTTTCTGCCCAACCCTGCCGGCGTGCAGCTGGA AGATCCCGAGTTCCAGGCCAGCAACATCATGCACTCCATCAATGGCTAC GTGTTCGACTCTCTGCAGCTCTCCGTGTGTCTGCACGAGGTGGCCTACT GGTACATCCTGAGCATCGGCGCCCAGACCGACTTCCTGAGCGTGTTCTT CAGCGGCTACACCTTCAAGCACAAGATGGTGTACGAGGACACCCTGACC CTGTTCCCTTTCAGCGGCGAGACAGTGTTCATGAGCATGGAAAACCCCG GCCTGTGGATTCTGGGCTGCCACAACAGCGACTTCCGGAACCGGGGCAT GACCGCCCTGCTGAAGGTGTCCAGCTGCGACAAGAACACCGGCGACTAC TACGAGGACAGCTACGAGGATATCAGCGCCTACCTGCTGTCCAAGAACA ACGCCATCGAACCCCGGAGCTTCAGCCAGAACCCCCCCGTGCTGACGCG TCACCAGCGGAGATCACCCGGACAACCCTGCAGTCCGACCAGGAAGAG **ATCGATTACGACGACACCATCAGCGTGGAGATGAAGAAGAGGATTTCG** <u>ATATCTACGACGAGGACGAGAACCAGAGCCCCAGAAGCTTCCAGAAGAA</u> <u>AACCCGGCACTACTTCATTGCCGCCGTGGAGAGGCTGTGGGACTACGGC</u> <u>ATGAGTTCTAGCCCCCACGTGCTGCGGAACCGGGCCCAGAGCGGCAGC</u> **GTGCCCCAGTTCAAGAAAGTGGTGTTCCAGGAATTCACAGACGGCAGCT** TCACCCAGCCTCTGTATAGAGGCGAGCTGAACGAGCACCTGGGGCTGCT GGGGCCCTACATCAGGGCCGAAGTGGAGGACAACATCATGGTGACCTTC CGGAATCAGGCCAGCAGACCCTACTCCTTCTACAGCAGCCTGATCAGCT AGCCCAACGAAACCAAGACCTACTTCTGGAAAGTGCAGCACCACATGGC CCCCACCAAGGACGAGTTCGACTGCAAGGCCTGGGCCTACTTCAGCGAC GTGGATCTGGAAAAGGACGTGCACTCTGGACTGATTGGCCCACTCCTGG TCTGCCACACTAACACCCTCAACCCCGCCCACGGCCGCCAGGTGACCGT GCAGGAATTCGCCCTGTTCTTCACCATCTTCGACGAGACAAAGTCCTGG <u>TACTTCACCGAGAATATGGAACGGAACTGCAGAGCCCCCTGCAACATCC</u> <u>AGATGGAAGATCCTACCTTCAAAGAGAACTACCGGTTCCACGCCATCAA</u> CGGCTACATCATGGACACCCTGCCTGGCCTGGTGATGGCCCAGGACCAG AGAATCCGGTGGTATCTGCTGTCCATGGGCAGCAACGAGAATATCCACA <u>CAAGATGGCCCTGTACAACCTGTACCCCGGC</u>GTGTTCGAGACAGTGGAG ATGCTGCCCAGCAAGGCCGGCATCTGGCGGGTGGAGTGTCTGATCGGC GAGCACCTGCACGCTGGCATGAGCACCCTGTTTCTGGTGTACAGCAACA AGTGCCAGACCCCACTGGGCATGGCCTCTGGCCACATCCGGGACTTCCA GATCACCGCCTCCGGCCAGTACGGCCAGTGGGCCCCCAAGCTGGCCAGA **CTGCACTACAGCGGCAGCATCAACGCCTGGTCCACCAAAGAGCCCTTCA** GCTGGATCAAGGTGGACCTGCTGGCCCCTATGATCATCCACGGCATTAA GACCCAGGCGCCAGGCAGAAGTTCAGCAGCCTGTACATCAGCCAGTTC

WO 2014/064277

ATCATCATGTACAGCCTGGACGGCAAGAAGTGGCAGACCTACCGGGGCA ACAGCACCGGCACCCTGATGGTGTTCTTCGGCAATGTGGACAGCAGCGG CATCAAGCACAACATCTTCAACCCCCCCATCATTGCCCGGTACATCCGGC TGCACCCCACCCACTACAGCATTAGATCCACACTGAGAATGGAACTGAT GGGCTGCGACCTGAACTCCTGCAGCATGCCTCTGGGCATGGAAAGCAAG <u>GCCATCAGCGACGCCCAGATCACAGCCAGCAGCTACTTCACCAACATGT</u> TCGCCACCTGGTCCCCCTCCAAGGCCAGGCTGCACCTGCAGGGCCGGTC CAACGCCTGGCGGCCTCAGGTCAACAACCCCAAAGAATGGCTGCAGGTG GACTTTCAGAAAACCATGAAGGTGACCGGCGTGACCACCCAGGGCGTGA AAAGCCTGCTGACCAGCATGTACGTGAAAGAGTTTCTGATCAGCAGCTC TCAGGATGGCCACCAGTGGACCCTGTTCTTTCAGAACGGCAAGGTGAAA GTGTTCCAGGGCAACCAGGACTCCTTCACCCCGTGGTGAACTCCCTGG <u>ACCCCCCCTGCTGACCCGCTACCTGAGAATCCACCCCCAGTCTTGGGT</u> GCACCAGATCGCCCTCAGGATGGAAGTCCTGGGATGTGAGGCCCAGGAT CTGTACTGATGAGGATCTAGGCTCGACATGCTTTATTTGTGAAATTTGTGATG <u>CTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACA</u> ATTGCATTCATTTTATGTTTC<u>AGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAA</u> $\mathsf{CTCGAGATCCACGGCCGC}$ GCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCA TACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCG GGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGC CCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCC GTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGG CACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCAT CGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAAT AGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTC TTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGC TGATTTAACAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATT CCGACACCCGCCAACACCCGCTGACGCCCCTGACGGGCTTGTCTGCTCCCG GCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGA GGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACG CCTATTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTG GCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATA CATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATA ATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTC CCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAGAAACGCTGGTGA AAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTC CAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATT GACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACT TGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGT AAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAAC

WO 2014/064277 PCT/EP2013/072450

38/75

TTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACA ACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAAC AACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAAC AATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTC GGCCCTTCCGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTG GGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTAT CGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGA CAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACC AAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTAATTTAAAA GGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGT GAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTT ${\sf CCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCC}$ GAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTG TAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCT CGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTC TTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGG GAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAG GGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGC GCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGG GTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGC GGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTT TGCTGGCCTTTTGCTCACATGT

Fig. 6

SEQ ID NO: 7

ATGCAGATCGAGCTGTCCACCTGCTTTTTTCTGTGCCTGCTGCGGTTCTGCTTCAG CGCCACCGGCGGTACTACCTGGGCGCCGTGGAGCTGTCCTGGGACTACATGCA GAGCGACCTGGGCGAGCTGCCCGTGGACGCCCGGTTCCCCCCAGAGTGCCCAA GAGCTTCCCCTTCAACACCAGCGTGGTGTACAAGAAAACCCTGTTCGTGGAGTTCA CCGACCACCTGTTCAATATCGCCAAGCCCAGGCCCCCCTGGATGGGCCTGCTGGG CCCCACCATCCAGGCCGAGGTGTACGACACCGTGGTGATCACCCTGAAGAACATG GCCAGCCACCCGTGAGCCTGCACGCCGTGGGCGTGAGCTACTGGAAGGCCAGC CCATGGCCTCCGACCCCTGTGCCTGACCTACAGCTACCTGAGCCACGTGGACCT GGTGAAGGACCTGAACAGCGGCCTGATCGGCGCTCTGCTCGTCTGCCGGGAGGG CAGCCTGGCCAAAGAGAAAACCCAGACCCTGCACAAGTTCATCCTGCTGTTCGCC GTGTTCGACGAGGGCAAGAGCTGGCACAGCGAGACAAAGAACAGCCTGATGCAGG ACCGGGACGCCCCCTCTGCCAGAGCCTGGCCCAAGATGCACACCGTGAACGGCT ACGTGAACAGAAGCCTGCCCGGCCTGATTGGCTGCCACCGGAAGAGCGTGTACTG GCACGTGATCGGCATGGGCACCACACCCGAGGTGCACAGCATCTTTCTGGAAGGG CACACCTTTCTGGTCCGGAACCACCGGCAGGCCAGCCTGGAAATCAGCCCTATCA CCTTCCTGACCGCCCAGACACTGCTGATGGACCTGGGCCAGTTCCTGCTGTTTTGC CACATCAGCTCTCACCAGCACGACGGCATGGAAGCCTACGTGAAGGTGGACTCTT GCCCCGAGGAACCCCAGCTGCGGATGAAGAACAACGAGGAAGCCGAGGACTACG ACGACGACCTGACCGACAGCGAGATGGACGTGGTGCGGTTCGACGACGACAACA GCCCCAGCTTCATCCAGATCAGAAGCGTGGCCAAGAAGCACCCCAAGACCTGGGT GCACTATATCGCCGCCGAGGAAGAGGACTGGGACTACGCCCCCCTGGTGCTGGC CCCCGACGACAGAGCTACAAGAGCCAGTACCTGAACAATGGCCCCCAGCGGATC GGCCGGAAGTACAAGAAAGTGCGGTTCATGGCCTACACCGACGAGACATTCAAGA CCCGGGAGGCCATCCAGCACGAGAGCGGCATCCTGGGCCCCCTGCTGTACGGCG AAGTGGGCGACACACTGCTGATCATCTTCAAGAACCAGGCTAGCCGGCCCTACAA CATCTACCCCCACGCCATCACCGACGTGCGGCCCCTGTACAGCAGGCGGCTGCCC AAGGGCGTGAAGCACCTGAAGGACTTCCCCATCCTGCCCGGCGAGATCTTCAAGT ACAAGTGGACCGTGACCGTGGAGGACGCCCCACCAAGAGCGACCCCAGATGCC TGACCCGGTACTACAGCAGCTTCGTGAACATGGAACGGGACCTGGCCTCCGGGCT GATCGGACCTCTGCTGATCTGCTACAAAGAAAGCGTGGACCAGCGGGGCAACCAG ATCATGAGCGACAAGCGGAACGTGATCCTGTTCAGCGTGTTCGATGAGAACCGGT CCTGGTATCTGACCGAGAACATCCAGCGGTTTCTGCCCAACCCTGCCGGCGTGCA GCTGGAAGATCCCGAGTTCCAGGCCAGCAACATCATGCACTCCATCAATGGCTACG TGTTCGACTCTCTGCAGCTCTCCGTGTGTCTGCACGAGGTGGCCTACTGGTACATC CTGAGCATCGGCGCCCAGACCGACTTCCTGAGCGTGTTCTTCAGCGGCTACACCT TCAAGCACAAGATGGTGTACGAGGACACCCTGACCCTGTTCCCTTTCAGCGGCGA GACAGTGTTCATGAGCATGGAAAACCCCGGCCTGTGGATTCTGGGCTGCCACAAC AGCGACTTCCGGAACCGGGGCATGACCGCCCTGCTGAAGGTGTCCAGCTGCGACA AGAACACCGGCGACTACTACGAGGACAGCTACGAGGATATCAGCGCCTACCTGCT GTCCAAGAACACGCCATCGAACCCCGGAGCTTCAGCCAGAACCCCCCGTGCTG ACGCGTCACCAGCGGGAGATCACCCGGACAACCCTGCAGTCCGACCAGGAAGAG ATCGATTACGACGACACCATCAGCGTGGAGATGAAGAAGAGGGATTTCGATATCTA CGACGAGGACGAGAACCAGAGCCCCAGAAGCTTCCAGAAGAAAACCCGGCACTAC TTCATTGCCGCCGTGGAGAGGCTGTGGGACTACGGCATGAGTTCTAGCCCCCACG

TGCTGCGGAACCGGGCCCAGAGCGGCAGCGTGCCCCAGTTCAAGAAAGTGGTGTT CCAGGAATTCACAGACGCCAGCTTCACCCAGCCTCTGTATAGAGGCGAGCTGAAC GAGCACCTGGGGCTGCTGGGGCCCTACATCAGGGCCGAAGTGGAGGACAACATC ATGGTGACCTTCCGGAATCAGGCCAGCAGACCCTACTCCTTCTACAGCAGCCTGAT GCCCAACGAAACCAAGACCTACTTCTGGAAAGTGCAGCACCACATGGCCCCCACC AAGGACGAGTTCGACTGCAAGGCCTGGGCCTACTTCAGCGACGTGGATCTGGAAA AGGACGTGCACTCTGGACTGATTGGCCCACTCCTGGTCTGCCACACTAACACCCTC AACCCCGCCACGGCCGCCAGGTGACCGTGCAGGAATTCGCCCTGTTCTTCACCA TCTTCGACGAGACAAAGTCCTGGTACTTCACCGAGAATATGGAACGGAACTGCAGA GCCCCTGCAACATCCAGATGGAAGATCCTACCTTCAAAGAGAACTACCGGTTCCA CAGAGAATCCGGTGGTATCTGCTGTCCATGGGCAGCAACGAGAATATCCACAGCAT CCACTTCAGCGGCCACGTGTTCACCGTGCGGAAGAAGAAGAGTACAAGATGGCC CTGTACAACCTGTACCCCGGCGTGTTCGAGACAGTGGAGATGCTGCCCAGCAAGG CCGGCATCTGGCGGGTGGAGTGTCTGATCGGCGAGCACCTGCACGCTGGCATGA GCACCCTGTTTCTGGTGTACAGCAACAAGTGCCAGACCCCACTGGGCATGGCCTC TGGCCACATCCGGGACTTCCAGATCACCGCCTCCGGCCAGTACGGCCAGTGGGCC CCCAAGCTGGCCAGACTGCACTACAGCGGCAGCATCAACGCCTGGTCCACCAAAG AGCCCTTCAGCTGGATCAAGGTGGACCTGCTGGCCCCTATGATCATCCACGGCATT AAGACCCAGGGCGCAGGCAGAAGTTCAGCAGCCTGTACATCAGCCAGTTCATCA TCATGTACAGCCTGGACGGCAAGAAGTGGCAGACCTACCGGGGCAACAGCACCGG CACCCTGATGGTGTTCTTCGGCAATGTGGACAGCAGCGGCATCAAGCACAACATCT AGATCCACACTGAGAATGGAACTGATGGGCTGCGACCTGAACTCCTGCAGCATGC CTTCACCAACATGTTCGCCACCTGGTCCCCCTCCAAGGCCAGGCTGCACCTGCAG GGCCGGTCCAACGCCTGGCGCCTCAGGTCAACACCCCAAAGAATGGCTGCAG GTGGACTTTCAGAAAACCATGAAGGTGACCGGCGTGACCACCCAGGGCGTGAAAA GCCTGCTGACCAGCATGTACGTGAAAGAGTTTCTGATCAGCAGCTCTCAGGATGGC CACCAGTGGACCCTGTTCTTTCAGAACGGCAAGGTGAAAGTGTTCCAGGGCAACCA GGACTCCTTCACCCCGTGGTGAACTCCCTGGACCCCCCCTGCTGACCCGCTAC CTGAGAATCCACCCCAGTCTTGGGTGCACCAGATCGCCCTCAGGATGGAAGTCC TGGGATGTGAGGCCCAGGATCTGTACTGATGA

41/75

Fig. 6 E

SEQ ID NO: 8

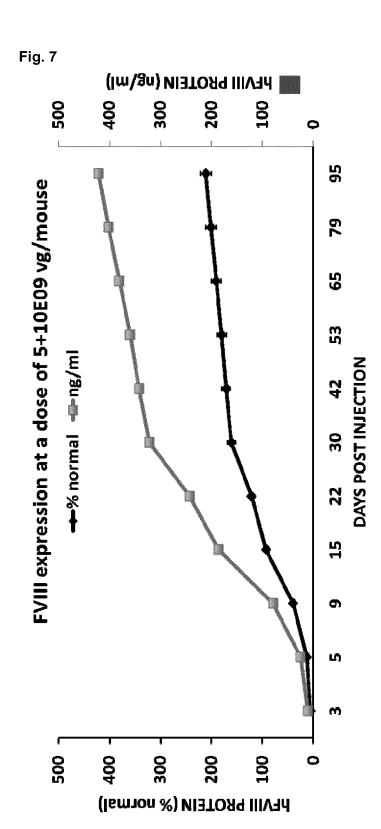
GGGGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGTTATCGGAGGAGCAA ACAGGGGCTAAGTCCAC

F

SEQ ID NO: 9

GTCTGTCTGCACATTTCGTAGAGCGAGTGTTCCGATACTCTAATCTCCCTAGGCAA GGTTCATATTTGTGTAGGTTACTTATTCTCCTTTTGTTGACTAAGTCAATAATCAGAA TCAGCAGGTTTGGAGTCAGCTTGGCAGGGATCAGCAGCCTGGGTTGGAAGGAGGG GGTATAAAAGCCCCTTCACCAGGAGAAGCCGTC

G


SEQ ID NO: 10

AAGAGGTAAGGGTTTAAGGGATGGTTGGTTGGTGGGGNATTAATGTTTAATTACCT GGAGCACCTGCCTGAAATCACTTTTTTTCAGGTTGG

Н

SEQ ID NO: 11

ATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGC AATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAG GTGTGGGAGGTTTTTTAAA

Fig. 8 A.

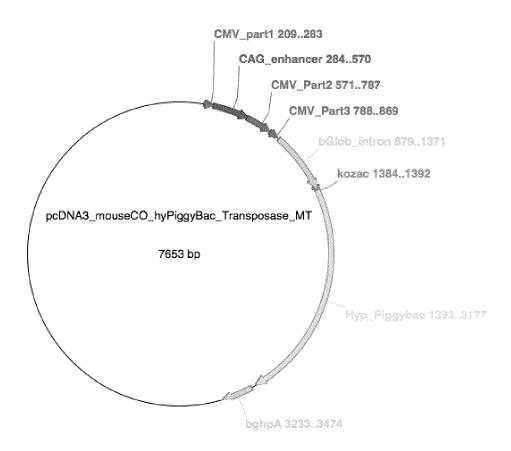
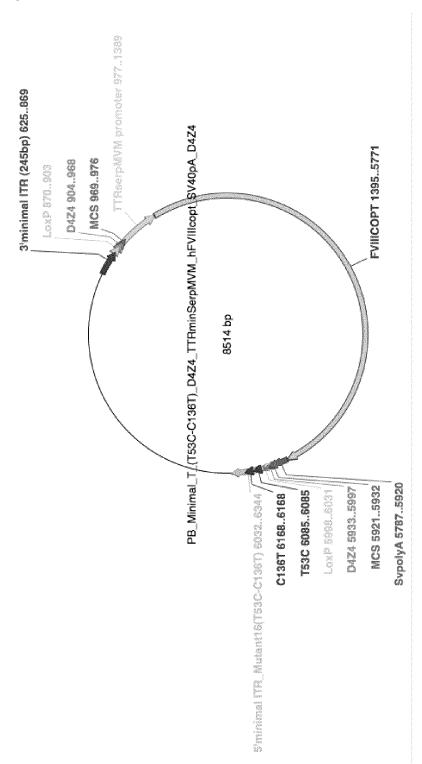


Fig. 8

В.

SEQ ID NO: 12


GACGGATCGGGAGATCTCCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATGCCG AAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTT AGGCGTTTTGCGCTGCTCGCGCGTGGAGCTAGTTATTAATAGTAATCAATTACGGGGTCATT AGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTG ACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGTCAAT AGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACACTACACTTCACTCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTG GCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTC ATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGT GTACGGTGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACG CCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGA ATCCCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACC ATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTT TGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCAT ATAAATATTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTA CAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAA GCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACGT GCTGGTCTGTGTGCCGCCATCACTTTGGCAAAGAATTGGGATTCGAACATCGATGCCGCCA CCatgggcagcagcagcagagagacatcctgagcgccctgctgcagagcgacgacgaggtggtgggcgaggacagcgaggaggtgagc gaccacgtgagcgaggacgacgtcgacaccgaggaggccttcatcgacgaggtgcacgaggtgcagcctaccagcagcgctccgagatcc tggacgagcagaacgtgatcgagcagcagcagctccttggccagcaacaggatcctgacctgcccagaggaccatcaggggcaagaacaagca ctgctggtccacctccaagcccaccaggcggagcagggtgtccgccctgaacatcgtgagaagccagaggggccccaccaggatgtgcaggaacatct acgacccctgctgtgcttcaagctgttcttcaccgacgagatcatcagcgagatcgtgaagtggaccaacgccgagatcagcctgaagaggggggaga gcaccgacgacctgttcgacagatccctgagcatggtgtacgtgatggtgtagggggacaggatcgacttcgactgatcagatgcctgaggatggacga caagagcatcaggccaccctgcgggagaacgacgtgttcacccccgtgagaaagatctgggacctgttcatccaccagtgcatccagaactacacccct ggggcccacctgaccatcgacgagcagctgctgggcttcaggggcaggtgccccttcagggtgtatatccccaacaagcccagcaagtacggcatcaag atcetgatgatgtgegacageggeaccaagtacatgatcaaeggcatgccctacetgggeagggcacceagaccaaeggegtgcccetgggegagta ctaegtgaaggagetgteeaageeegteeaeggeagetgeagaaacateacetgegaeaactggtteaeeageateeeetggeeaagaacetgetgea agcatgttetgettegaeggeeecetgaeeetggtgteetaeaageeeaageeggeaagatgtaeetgetgteeagetgegaegaeggeageatgt caacgagagcaccggcaagccccagatggtgatgtactacaaccagaccaagggcggcgtggacaccctggaccagatgtgcagcgtgatgacctgca gcagaaagaccaacaggtggcccatggcctgctgtacggcatgatcaacatcgcctgcatcaacagcttcatcatctacagccacaacgtgagcagcaa gggcgagaaggtgcagagccggaaaaagttcatgcggaacctgtacatgggcctgacctccagcttcatgaggaagaggctggaggccccaccctga agagatacctgagggacaacatcagcaacatcctgcccaaggaggtgcccggcaccagcgacgacagcaccgaggagcccgtgatgaagaagagga cctactgcacctactgtcccagcaagatcagaagaaaggccagcgccagctgcaagaagtgtaagaaggtcatctgccgggagcacaacatcgacatgt $\tt gccagagctgtttctgaCTCGAGCATGCATCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGGGCCCTATTCTATAGTGTCACTAGAGGGCCCTATTCTATAGTGTAGAGGGCCCTATTCTATAGTGTAGAGGGCCCTATTCTATAGTGTAGAGGGCCCTATTCTATAGTGTAGAGGGCCCTATTCTATAGTGTAGAGGGCCCTATTCTATAGTGTAGAGGGCCCTATTCTAGAGGGCCCTATTCTAGAGGGCCCTATTCTAGAGGGCCCTATTCTAGAGGGCCCTATTCTAGAGGGCCCTATTCTAGAGGGCCCTATTCTAGAGGGCCCTATTCTAGAGGGCCCCTATTCTAGAGGCCCCTATTCTAGAGGGCCCCTATTCTAGAGGGCCCCTATTCTAGAGGGCCCCTATTCTAGAGGGCCCCTATTCTAGAGGGCCCCTATTCTAGAGGGCCCCTATTCTAGAGGGCCCCTATTCAGAGGGCCCCTATTCAGAGGGCCCCTATTAGAGGGCCCCTAGAGGGCCCCTATTAGAGGGCCCCTAGAGGGCCCCTATTAGAGGGCCCCTAGAGGCCCCTAGAGGGCCCCTAGAGGGCCCCTAGAGGGCCCCCTAGAGGGCCCCTAGAGGGCCCCTAGAGGCCCCTAGAGGAGGCCCCTAGAGGGCCCCTAGAGGCCCCAGGGCCCCTAGAGGAGGCCCCCTA$ GCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGC ATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGGTGGGGTGGGGCAGGACAGCAAGG GCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGCCCTGTAGCGGCGCATTAAG CGCGGCGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATC GGGGCATCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATT

AGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGG AGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGT CTATTCTTTTGATTTATAAGGGATTTTGGGGATTTCGGCCTATTGGTTAAAAAATGAGCTGATT TAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTCAGTTAGGGTGTGGAAAGTCCC CAGGCTCCCAGGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTG CAACCATAGTCCCGCCCTAACTCCGCCCATCCCGCCCTAACTCCGCCCAGTTCCGCCCATTC TCCGCCCCATGGCTGACTAATTTTTTTTTTTATTCAGAGGCCGAGGCCGCCTCTGCCTCTGAG CTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGA GCTTGTATATCCATTTTCGGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAA CAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGG CTATCGTGGCTGGCCACGACGGCCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCG GGAAGGGACTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCT CGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCCCAGCCGAACTGTT CGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCT GCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGG GTGTGGCGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCG GCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCG AGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGG CTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGA GTTCTTCGCCCACCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATC ACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCA GCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCAT AAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGG GAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTC GTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCA GGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAA AGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGAC GCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGA AGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCC ${\tt CTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGT}$ TCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGG TAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGG TAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTA ACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTG TTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTA CGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAA ATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCT GTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGG GCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATT TATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCC TTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTT CATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAG

46/75

Fig. 8

C.

Fig.8

D

SEQ ID NO: 13

 ${\tt CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTT}$ TTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGG GTTGAGTGTTGCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAA AGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTT TTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAG GCGCTAGGGCGCTGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTT AATGCGCCGCTACAGGGCGCGTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCG ATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATT AAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAGCGCG CTTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGTAAAATTGAC AAAAAAAAAAAACTCAAAATTTCTTCTATAAAGTAACAAAACTTTTATCGATAACTTCGT ATAATGTATGCTATACGAAGTTATagagggggggaaggacgttaggagggaggcagggaggcagggaggcagggaagc ggaggagGCGGCCGCGGTACCGGCGCGCGCGGGGGGGGCTGCTGGTGAATATTAACCAAGGTCA ATTTCGTAGAGCGAGTGTTCCGATACTCTAATCTCCCTAGGCAAGGTTCATATTTGTGTAGGTT GGGATCAGCAGCCTGGGTTGGAAGGAGGGGGTATAAAAGCCCCTTCACCAGGAGAAGCCGTC AATGTTTAATTACCTGGAGCACCTGCCTGAAATCACTTTTTTTCAGGTTGGCTAGTATGCAGAT CGAGCTGTCCACCTGCTTTTTTCTGTGCCTGCTGCGGTTCTGCTTCAGCGCCACCCGGCGGTAC TACCTGGGCGCCGTGGAGCTGTCCTGGGACTACATGCAGAGCGACCTGGGCGAGCTGCCCGT GGACGCCGGTTCCCCCCAGAGTGCCCAAGAGCTTCCCCTTCAACACCAGCGTGGTGTACAA GAAAACCCTGTTCGTGGAGTTCACCGACCACCTGTTCAATATCGCCAAGCCCAGGCCCCCTG GATGGGCCTGCTGGGCCCACCATCCAGGCCGAGGTGTACGACACCGTGGTGATCACCCTGA AGAACATGGCCAGCCACCCGTGAGCCTGCACGCCGTGGGCGTGAGCTACTGGAAGGCCAGC ${\tt CCCCTGTGCCTGACCTACAGCTACCTGAGCCACGTGGACCTGGAGGACCTGAACAGCGGC}$ GCACAAGTTCATCCTGCTGTTCGCCGTGTTCGACGAGGGCAAGAGCTGGCACAGCGAGACAA AGAACAGCCTGATGCAGGACCGGGACGCCCCCCTCTGCCAGAGCCTGGCCCAAGATGCACACC GTGAACGGCTACGTGAACAGAAGCCTGCCCGGCCTGATTGGCTGCCACCGGAAGAGCGTGTA CCTTTCTGGTCCGGAACCACCGGCAGGCCAGCCTGGAAATCAGCCCTATCACCTTCCTGACCG $\tt CCCAGACACTGCTGATGGACCTGGGCCAGTTCCTGCTGTTTTGCCACATCAGCTCTCACCAGC$ ACGACGCATGGAAGCCTACGTGAAGGTGGACTCTTGCCCCGAGGAACCCCAGCTGCGGATG AAGAACAACGAGGAAGCCGAGGACTACGACGACGACCTGACCGACAGCGAGATGGACGTGG TGCGGTTCGACGACGACAACAGCCCCAGCTTCATCCAGATCAGAAGCGTGGCCAAGAAGCAC CCCAAGACCTGGGTGCACTATATCGCCGCGAGGAAGAGGACTGGGACTACGCCCCCTGGT GCTGGCCCCGACGACAGAAGCTACAAGAGCCAGTACCTGAACAATGGCCCCCAGCGGATCG GCCGGAAGTACAAGAAAGTGCGGTTCATGGCCTACACCGACGAGACATTCAAGACCCGGGAG GCCATCCAGCACGAGAGCGGCATCCTGGGCCCCCTGCTGTACGGCGAAGTGGGCGACACACT GCTGATCATCTTCAAGAACCAGGCTAGCCGGCCCTACAACATCTACCCCCACGGCATCACCGA CGTGCGGCCCTGTACAGCAGGCGGCTGCCCAAGGGCGTGAAGCACCTGAAGGACTTCCCCA TCCTGCCGGCGAGATCTTCAAGTACAAGTGGACCGTGACCGTGGAGGACGGCCCCACCAAG AGCGACCCAGATGCCTGACCCGGTACTACAGCAGCTTCGTGAACATGGAACGGGACCTGGC

AGATCATGAGCGACAAGCGGAACGTGATCCTGTTCAGCGTGTTCGATGAGAACCGGTCCTGGT ATCTGACCGAGAACATCCAGCGGTTTCTGCCCAACCCTGCCGGCGTGCAGCTGGAAGATCCCG AGTTCCAGGCCAGCAACATCATGCACTCCATCAATGGCTACGTGTTCGACTCTCTGCAGCTCT ${\tt CCGTGTGTCTGCACGAGGTGGCCTACTGGTACATCCTGAGCATCGGCGCCCAGACCGACTTCC}$ TGAGCGTGTTCTTCAGCGGCTACACCTTCAAGCACAAGATGGTGTACGAGGACACCCTGACCC TGTTCCCTTTCAGCGGCGAGACAGTGTTCATGAGCATGGAAAACCCCGGCCTGTGGATTCTGG GCTGCCACAACAGCGACTTCCGGAACCGGGGCATGACCGCCCTGCTGAAGGTGTCCAGCTGC GACAAGAACACCGGCGACTACTACGAGGACAGCTACGAGGATATCAGCGCCTACCTGCTGTC CAAGAACAACGCCATCGAACCCCGGAGCTTCAGCCAGAACCCCCCGTGCTGACGCGTCACC AGCGGGAGATCACCCGGACAACCCTGCAGTCCGACCAGGAAGAGATCGATTACGACGACACC ATCAGCGTGGAGATGAAGAAGAGGATTTCGATATCTACGACGAGGACGAGAACCAGAGCCC CAGAAGCTTCCAGAAGAAAACCCGGCACTACTTCATTGCCGCCGTGGAGAGGCTGTGGGACT ACGGCATGAGTTCTAGCCCCCACGTGCTGCGGAACCGGGCCCAGAGCGGCAGCGTGCCCCAG TTCAAGAAAGTGGTGTTCCAGGAATTCACAGACGGCAGCTTCACCCAGCCTCTGTATAGAGGC GAGCTGAACGAGCACCTGGGGCTGCTGGGGCCCTACATCAGGGCCGAAGTGGAGGACAACAT CGAAGAGGACCAGCGCAGGGCGCCGAACCCCGGAAGAACTTCGTGAAGCCCAACGAAACC AAGACCTACTTCTGGAAAGTGCAGCACCACATGGCCCCCACCAAGGACGAGTTCGACTGCAA GGCCTGGGCCTACTTCAGCGACGTGGATCTGGAAAAGGACGTGCACTCTGGACTGATTGGCCC ACTCCTGGTCTGCCACACTAACACCCTCAACCCCGCCCACGCCCAGGTGACCGTGCAGGA ATTCGCCCTGTTCTTCACCATCTTCGACGAGACAAAGTCCTGGTACTTCACCGAGAATATGGA ACGGAACTGCAGAGCCCCCTGCAACATCCAGATGGAAGATCCTACCTTCAAAGAGAACTACC AGAGAATCCGGTGGTATCTGCTGTCCATGGGCAGCAACGAGAATATCCACAGCATCCACTTCA GCGCCACGTGTTCACCGTGCGGAAGAAGAAGAGTACAAGATGGCCCTGTACAACCTGTAC CCCGGCGTGTTCGAGACAGTGGAGATGCTGCCCAGCAAGGCCGGCATCTGGCGGGTGGAGTG TCTGATCGGCGAGCACCTGCACGCTGGCATGAGCACCCTGTTTCTGGTGTACAGCAACAAGTG CCAGACCCCACTGGGCATGGCCTCTGGCCACATCCGGGACTTCCAGATCACCGCCTCCGGCCA GTACGCCAGTGGGCCCCAAGCTGGCCAGACTGCACTACAGCGCAGCATCAACGCCTGGT TTAAGACCCAGGGCGCCAGGCAGAAGTTCAGCAGCCTGTACATCAGCCAGTTCATCATCATGT ACAGCCTGGACGCAAGAAGTGGCAGACCTACCGGGGCAACAGCACCGGCACCCTGATGGTG TTCTTCGGCAATGTGGACAGCAGCGGCATCAAGCACAACATCTTCAACCCCCCCATCATTGCC CGGTACATCCGGCTGCACCCCACCACTACAGCATTAGATCCACACTGAGAATGGAACTGATG GGCTGCGACCTGAACTCCTGCAGCATGCCTCTGGGCATGGAAAGCAAGGCCATCAGCGACGC GCTGCACCTGCAGGGCCGGTCCAACGCCTGGCGGCCTCAGGTCAACACCCCAAAGAATGGC TGCAGGTGGACTTTCAGAAAACCATGAAGGTGACCGGCGTGACCACCCAGGGCGTGAAAAGC CTGCTGACCAGCATGTACGTGAAAGAGTTTCTGATCAGCAGCTCTCAGGATGGCCACCAGTGG ACCCTGTTCTTTCAGAACGCCAAGGTGAAAGTGTTCCAGGGCAACCAGGACTCCTTCACCCC GTGGTGAACTCCCTGGACCCCCCTGCTGACCCGCTACCTGAGAATCCACCCCAGTCTTGG GTGCACCAGATCGCCCTCAGGATGGAAGTCCTGGGATGTGAGGCCCAGGATCTGTACTGATG AGGATCTAGGCTCGACATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCAT GGAGGTGTGGGAGGTTTTTTAAACTCGAGACCGGTagaggggggggaagggacgttaggagggaggcagggaggcag $\tt ggaggcaggaggaggagATAACTTCGTATAATGTATGCTATACGAAGTTATGATATCTATAAC$ AAGAAAATATATATATAATAAGTTATCACGTAAGTAGAACACGAAATAACAATATAATTATC GTATGAGTTAAAATCTTAAAAGTCACGTAAAAGATAATCATGCGTCATTTTGACTCACGCGGTT GTTATAGTTCAAAATCAGTGACACTTACCGCATTGACAAGCACGCCTCACGGGAGCTCCAAGC ATTTCAAGAATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAAGCGCGCTTGGCGT AATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACG

CGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCG GCCAACGCGCGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACT TATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGC CAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCA TCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGG CGTTTCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCT GTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGT TCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTG GCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTT GAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAA GCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAACCACCGCTGGTAG CGGTGGTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCC TTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATC AATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACC TATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACT ACGATACGGGAGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTC ACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTC GCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTC GTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT AGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGA TGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCG AGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTG ${\tt CTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCC}$ AGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTT CTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAA ATGTTGAATACTCATACTCTTTCTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCA TGAGCGGATACATATTTGAATGTATTTAGAAAAAATAAACAAATAGGGGTTCCGCGCACATTTC CCCGAAAAGTGCCAC

Fig.8

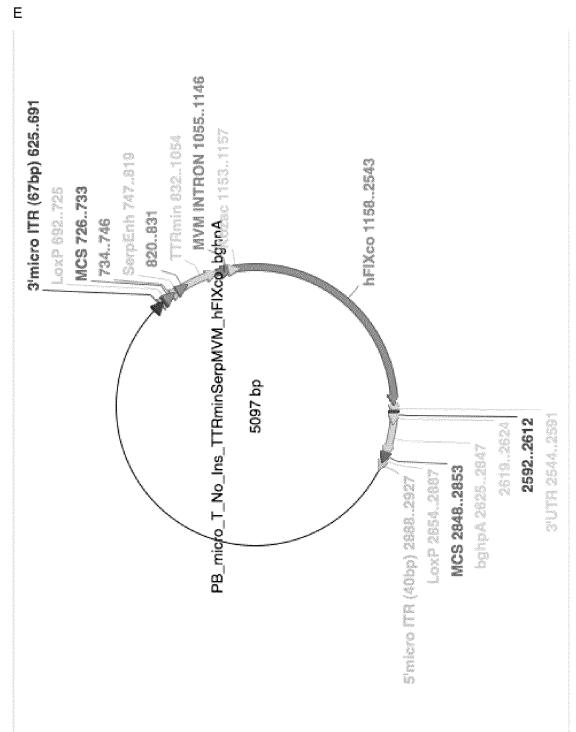


Fig. 8

F

SEQ ID NO:14

 ${\tt CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTT}$ TTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGG GTTGAGTGTTGCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAA AGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTT TTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAG CTTGACGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGG GCGCTAGGGCGCTGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTT AATGCGCCGCTACAGGGCGCGTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCG ATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATT AAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAGCGCG CTTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGTAAAATTGAC GGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGTTATCGGAGGAGCAAACAGGGGCT AAGTCCACACGCGTGGTACCGTCTGTCTGCACATTTCGTAGAGCGAGTGTTCCGATACTCTAA TCTCCCTAGGCAAGGTTCATATTTGTGTAGGTTACTTATTCTCCTTTTGTTGACTAAGTCAATA ATCAGAATCAGCAGGTTTGGAGTCAGCTTGGCAGGGATCAGCAGCCTGGGTTGGAAGGAGGG GGTATAAAAGCCCCTTCACCAGGAGAAGCCGTCACACAGATCCACAAGCTCCTGAAGAGGTA AATCACTTTTTTCAGGTTGGGCTAGCCCACCATGCAGCGCGTGAACATGATCATGGCCGAGA GCCCGGCCTGATCACCATCTGCCTGCTGGGCTACCTGCTGAGCGCCGAGTGCACCGTGTTCC TGGACCACGAGAACGCCAACAAGATCCTGAACCGCCCCAAGCGCTACAACAGCGGCAAGCTG GAGGAGTTCGTGCAGGCCAACCTGGAGCGCGAGTGCATGGAGGAGAAGTGCAGCTTCGAGGA GGCCGCGAGGTGTTCGAGAACACCGAGCGCACCACCGAGTTCTGGAAGCAGTACGTGGACG GCGACCAGTGCGAGAGCAACCCCTGCCTGAACGGCGGCAGCTGCAAGGACGACATCAACAGC TACGAGTGCTGGTGCCCCTTCGGCTTCGAGGGCAAGAACTGCGAGCTGGACGTGACCTGCAAC ATCAAGAACGGCCGCTGCGAGCAGTTCTGCAAGAACAGCGCCGACAACAAGGTGGTGTGCAG $\tt CTGCACCGAGGGCTACCGCCTGGCCGAGAACCAGAAGAGCTGCGAGCCCGCCGTGCCCTTCC$ ${\tt CCTGCGGCCGTGAGCGTGAGCCAGACCAGCAGCTGACCCGCGCGAGGCCGTGTTCCCC}$ GACGTGGACTACGTGAACAGCACCGAGGCCGAGACCATCCTGGACAACATCACCCAGAGCAC CCAGAGCTTCACGACTTCACCCGCGTGGTGGGCGGCGAGGACGCCAAGCCCGGCCAGTTCC AAGTGGATCGTGACCGCCGCCCACTGCGTGGAGACCGGCGTGAAGATCACCGTGGTGGCCGG CGAGCACAACATCGAGGAGACCGAGCACACCGAGCAGAAGCGCAACGTGATCCGCATCATCC CCCACCACAACTACAACGCCGCCATCAACAAGTACAACCACGACATCGCCCTGCTGGAGCTG GACGAGCCCTGGTGCTGAACAGCTACGTGACCCCCATCTGCATCGCCGACAAGGAGTACAC CAACATCTTCCTGAAGTTCGGCAGCGGCTACGTGAGCGGCTGGGGCCGCGTGTTCCACAAGGG CAGCACCAAGTTCACCATCTACAACAACATGTTCTGCGCCGGCTTCCACGAGGGCGGCCGCGA CAGCTGCCAGGGCGACAGCGGCCCCCACGTGACCGAGGTGGAGGGCACCAGCTTCCTGA CCGGCATCATCAGCTGGGGCGAGGAGTGCGCCATGAAGGGCAAGTACGGCATCTACACCAAG GTGAGCCGCTACGTGAACTGGATCAAGGAGAAGACCAAGCTGACCTAATGAAAGATGGATTT GTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATT GCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAG GGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACCGGTATAACTTCGTATAATGTAT GCTATACGAAGTTATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAAGCGCGCTTG GCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACA

ATTGCGTTGCGCTCACTGCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGA ATCGGCCAACGCGGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACT CGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAA AGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACG AGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC CAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGAT ACCTGTCCGCCTTCCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCT CAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGCACGAACCCCCGGTTCAGCCCGA CCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCC ACTGGCAGCAGCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGT GTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAA GATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATT TTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTT AAATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAG GCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGA TAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCAC GGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGT AGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCT CGTCGTTTGGTATGGCTTCAGTTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCC CGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTA AGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGA CCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAA GTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGA TCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCG TTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACG GAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGT CTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACA TTTCCCCGAAAAGTGCCAC

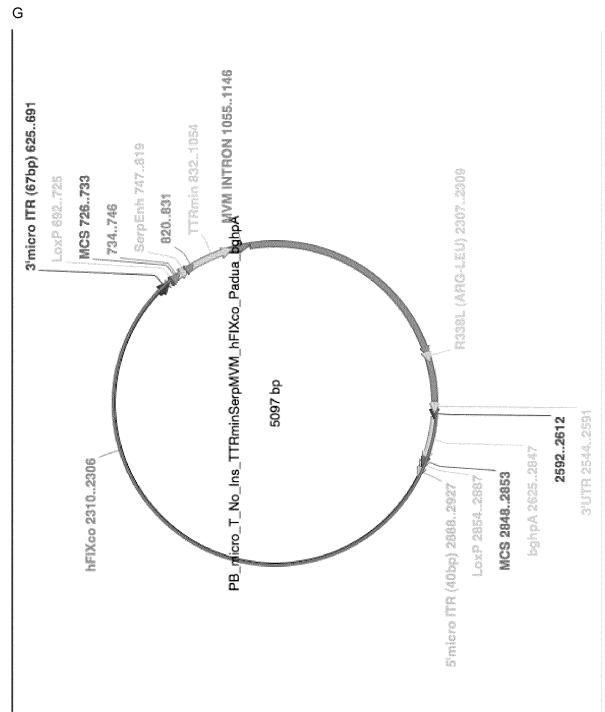
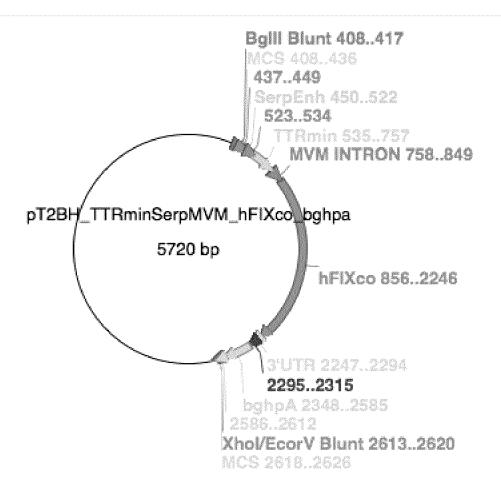


Fig. 8 H


SEQ ID NO:15

 ${\sf CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTT}$ TTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGG GTTGAGTGTTGCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAA AGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTT TTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAG CTTGACGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGG GCGCTAGGGCGCTGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTT AATGCGCCGCTACAGGGCGCGTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCG ATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATT AAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAGCGCG CTTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGTAAAATTGAC GGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGTTATCGGAGGAGCAAACAGGGGCT AAGTCCACACGCGTGGTACCGTCTGTCTGCACATTTCGTAGAGCGAGTGTTCCGATACTCTAA TCTCCCTAGGCAAGGTTCATATTTGTGTAGGTTACTTATTCTCCTTTTGTTGACTAAGTCAATA ATCAGAATCAGCAGGTTTGGAGTCAGCTTGGCAGGGATCAGCAGCCTGGGTTGGAAGGAGGG GGTATAAAAGCCCCTTCACCAGGAGAAGCCGTCACACAGATCCACAAGCTCCTGAAGAGGTA AATCACTTTTTTCAGGTTGGGCTAGCCCACCATGCAGCGCGTGAACATGATCATGGCCGAGA GCCCGGCCTGATCACCATCTGCCTGCTGGGCTACCTGCTGAGCGCCGAGTGCACCGTGTTCC TGGACCACGAGAACGCCAACAAGATCCTGAACCGCCCCAAGCGCTACAACAGCGGCAAGCTG GAGGAGTTCGTGCAGGCCAACCTGGAGCGCGAGTGCATGGAGGAGAAGTGCAGCTTCGAGGA GGCCGCGAGGTGTTCGAGAACACCGAGCGCACCACCGAGTTCTGGAAGCAGTACGTGGACG GCGACCAGTGCGAGAGCAACCCCTGCCTGAACGGCGGCAGCTGCAAGGACGACATCAACAGC TACGAGTGCTGGTGCCCCTTCGGCTTCGAGGGCAAGAACTGCGAGCTGGACGTGACCTGCAAC ATCAAGAACGGCCGCTGCGAGCAGTTCTGCAAGAACAGCGCCGACAACAAGGTGGTGTGCAG $\tt CTGCACCGAGGGCTACCGCCTGGCCGAGAACCAGAAGAGCTGCGAGCCCGCCGTGCCCTTCC$ ${\tt CCTGCGGCCGTGAGCGTGAGCCAGACCAGCAGCTGACCCGCGCGAGGCCGTGTTCCCC}$ GACGTGGACTACGTGAACAGCACCGAGGCCGAGACCATCCTGGACAACATCACCCAGAGCAC CCAGAGCTTCACGACTTCACCCGCGTGGTGGGCGGCGAGGACGCCAAGCCCGGCCAGTTCC AAGTGGATCGTGACCGCCGCCCACTGCGTGGAGACCGGCGTGAAGATCACCGTGGTGGCCGG CGAGCACAACATCGAGGAGACCGAGCACACCGAGCAGAAGCGCAACGTGATCCGCATCATCC CCCACCACAACTACAACGCCGCCATCAACAAGTACAACCACGACATCGCCCTGCTGGAGCTG GACGAGCCCTGGTGCTGAACAGCTACGTGACCCCCATCTGCATCGCCGACAAGGAGTACAC CAACATCTTCCTGAAGTTCGGCAGCGGCTACGTGAGCGGCTGGGGCCGCGTGTTCCACAAGGG GAGCACCAAGTTCACCATCTACAACAACATGTTCTGCGCCGGCTTCCACGAGGGCGGCCGCGA CAGCTGCCAGGGCGACAGCGGCCCCCACGTGACCGAGGTGGAGGGCACCAGCTTCCTGA CCGGCATCATCAGCTGGGGCGAGGAGTGCGCCATGAAGGGCAAGTACGGCATCTACACCAAG GTGAGCCGCTACGTGAACTGGATCAAGGAGAAGACCAAGCTGACCTAATGAAAGATGGATTT GTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATT GCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAG GGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACCGGTATAACTTCGTATAATGTAT GCTATACGAAGTTATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAAGCGCGCTTG GCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACA

ATTGCGTTGCGCTCACTGCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGA ATCGGCCAACGCGGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACT CGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAA AGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACG AGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC CAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGAT ACCTGTCCGCCTTCCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCT CAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGCACGAACCCCCGGTTCAGCCCGA CCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCC ACTGGCAGCAGCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGT GTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAA GATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATT TTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTT AAATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAG GCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGA TAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCAC GGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGT AGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCT CGTCGTTTGGTATGGCTTCAGTTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCC CGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTA AGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGA CCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAA GTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGA TCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCG TTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACG GAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGT CTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACA TTTCCCCGAAAAGTGCCAC

57/75

Fig. 8

58/75

Fig. 8

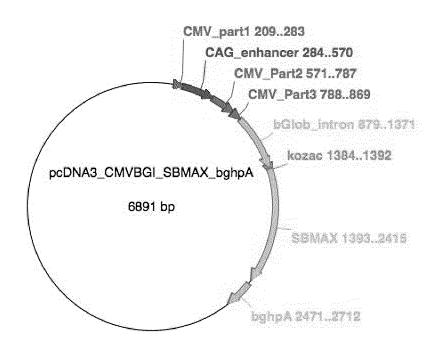


Fig. 8 K

SEQ ID NO: 17

GACGGATCGGGAGATCTCCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATGCCG CATAGTTAAGCCAGTATCTGCTCCCTGCTTGTGTGTGGAGGTCGCTGAGTAGTGCGCGAGCA AAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTT AGGCGTTTTGCGCTGCTCGCGCGTGGAGCTAGTTATTAATAGTAATCAATTACGGGGTCATT AGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTG ACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGTCAAT AGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACA TCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTG GCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTC ATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGAC CAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGT GTACGGTGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACG CCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGA ATCCCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACC ATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTT TGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCAT ATAAATATTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTA CAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAA GCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACGT GCTGGTCTGTGTGCCGCCATCACTTTGGCAAAGAATTGGGATTCGAACATCGATGCCGCCA CCATGGGAAAATCAAAAGAAATCAGCCAAGACCTCAGAAAAAGAATTGTAGACCTCCACAAG TCTGGTTCATCCTTGGGAGCAATTTCCCGACGCCTGGCGGTACCACGTTCATCTGTACAAACA AGCAAAGGACCTTGTGAAGATGCTGGAGGAAACAGGTACAAAAGTATCTATATCCACAGTAA AACGAGTCCTATATCGACATAACCTGAAAGGCCACTCAGCAAGGAAGAAGCCACTGCTCCAA AACCGACATAAGAAAGCCAGACTACGGTTTGCAACTGCACATGGGGACAAAGATCTAACTTT TTGGAGAAATGTCCTCTGGTCTGATGAAACAAAAATAGAACTGTTTGGCCATAATGACCATCG TTATGTTTGGAGGAAGAAGGGGGGGGGCTTGCAAGCCGAAGAACACCATCCCAACCGTGAAGC ACGGGGGTGCAGCATCATGTTGTGGGGGTGCTTTGCTGCAGGAGGGACTGGTAAACTTGTCC GAATAGAAGCATCATGGACGCGGTGCAGTATGTGGATATATTGAAGCAACATCTCAAGACA TCAGTCAGGAAGTTAAAGCTTGGTCGCAAATGGGTCTTCCAACACGACAATGACCCCAAGCAT ACTTCCAAAGTTGTGGCAAAATGGCTTAAGGACAACAAAGTCAAGGTATTGGACTGGCCATC ACAAAGCCCTGACCTCAATCCTATAGAAAATTTGTGGGCAGAACTGAAAAAGCGTGTGCGAG CAAGGAGGCCTACAAACCTGACTCAGTTACACCAGCTCTGTCAGGAGGAATGGGCCAAAATT CACCCAAATTATTGTGGGAAGCTTGTGGAAGGCTACCCGAAACGTTTGACCCAAGTTAAACAA GTTTGCCCCTCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAAT GGCAGGACAGCAAGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGG CTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCCCCTG TAGCGGCGCATTAAGCGCGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCA CGTCAAGCTCTAAATCGGGGCATCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACC CCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTC

GCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACT CAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGGGGATTTCGGCCTATTGGTTA ATCTCAATTAGTCAGCAACCATAGTCCCGCCCTAACTCCGCCCATCCCGCCCTAACTCCGCC GCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTTGGAGGCCTAGGCTTTTGC AAAAAGCTCCCGGGAGCTTGTATATCCATTTTCGGATCTGATCAAGAGACAGGATGAGGATCG TTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTA TTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCA GACGAGGCAGCGGCTATCGTGGCTGGCCACGACGGCGTTCCTTGCGCAGCTGTGCTCGAC GTTGTCACTGAAGCGGGAAGGGACTGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCT GTCATCTCACCTTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCA TACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCG CGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTG ACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATC GACTGTGGCCGGCTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATT GCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCC GATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGGTT CGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTT GGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAA TAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTT GTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATA TGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAAT CGGCCAACGCGCGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGA GTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAG GCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAG CATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCA GGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATAC CTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCA GTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACC GCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCAC TGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTC TTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTG AAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAACCACCGCTGGT AGCGGTGGTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGA TCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTG GTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAA TCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCA CCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAA ${\tt CTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCT}$ CACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGT CGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTC GTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT AGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGA

61/75

Fig. 9

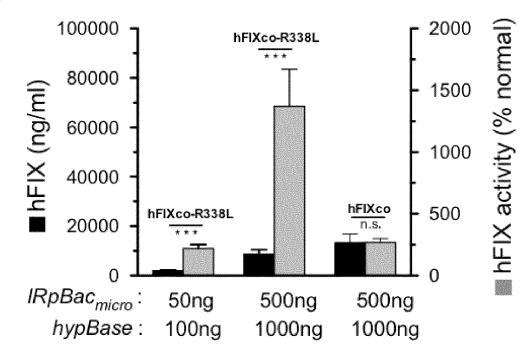
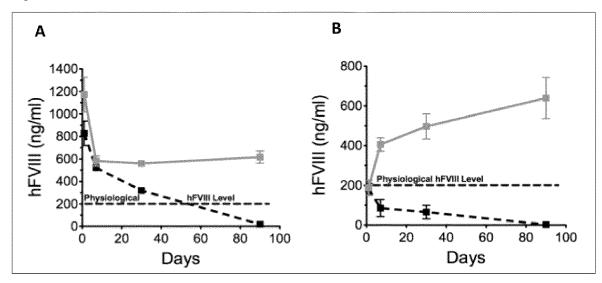
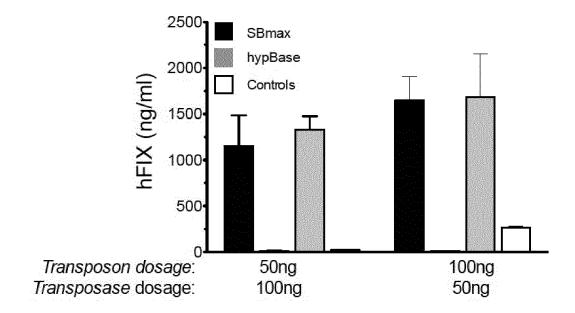




Fig. 10

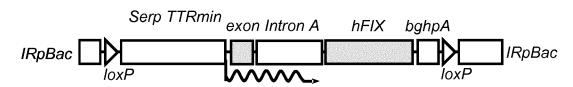
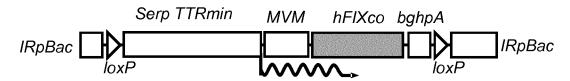

PCT/EP2013/072450

Fig. 11



64/75

Fig. 12 A.

В

С

D

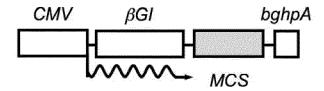


Fig. 12 E.

F.

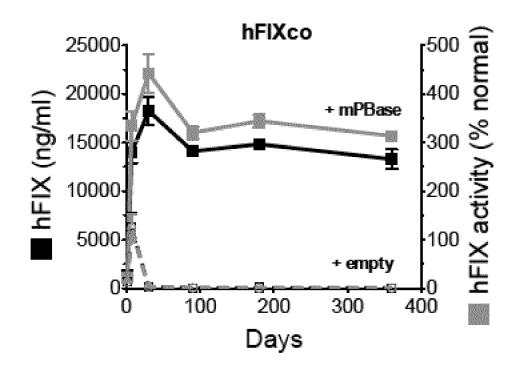
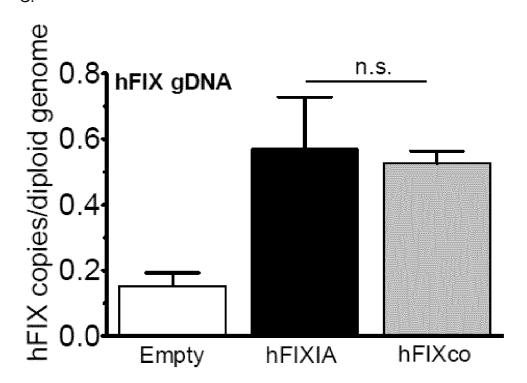
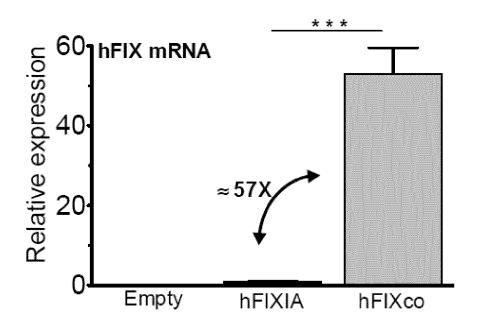
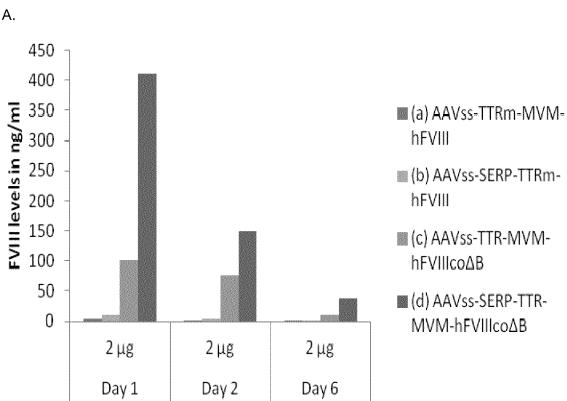
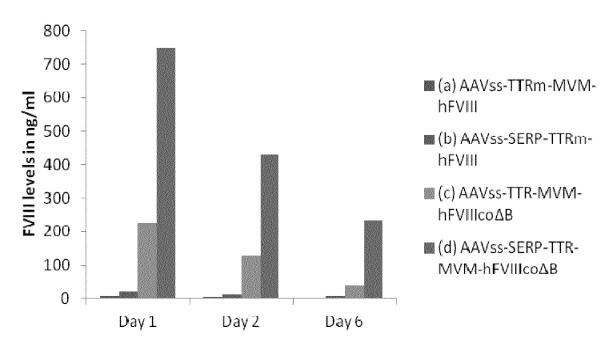




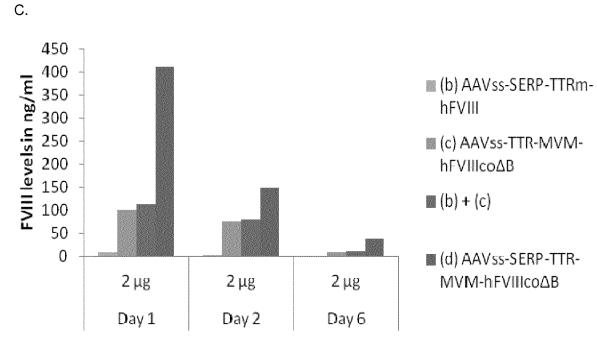
Fig. 12 G.

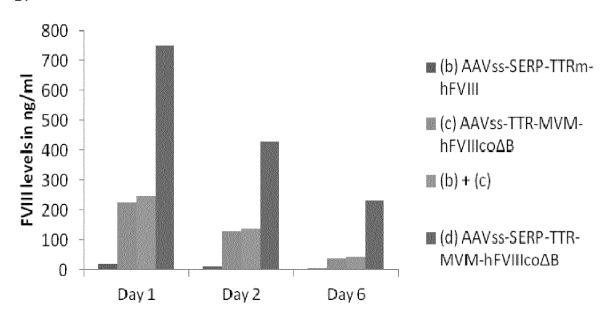


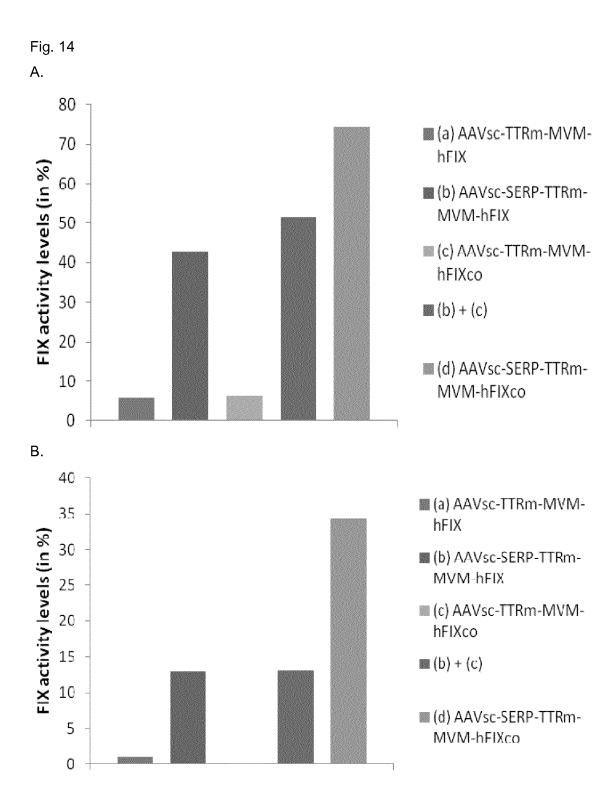
Н.



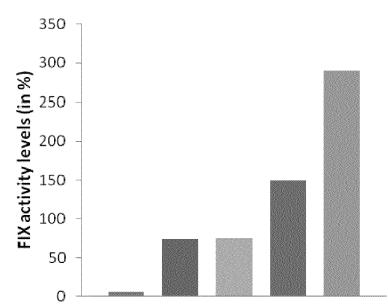
PCT/EP2013/072450




В.



D.



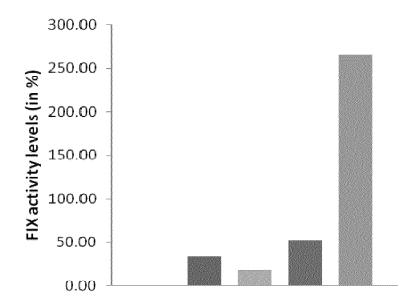
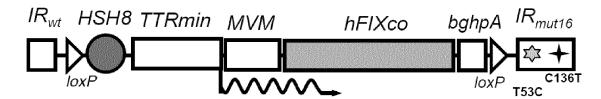
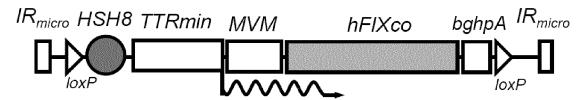

70/75

Fig. 14

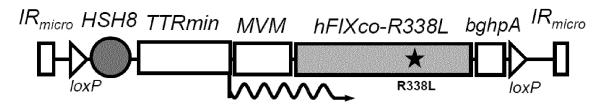
C.



D.



71/75


Fig. 15 A

В

С

D

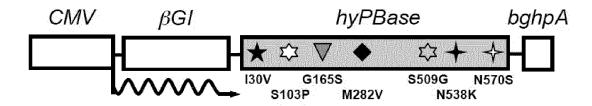


Fig. 15 E

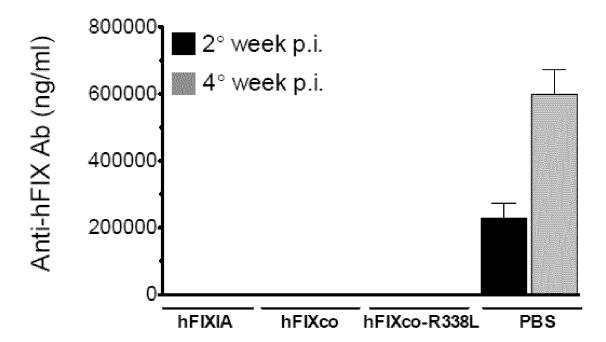
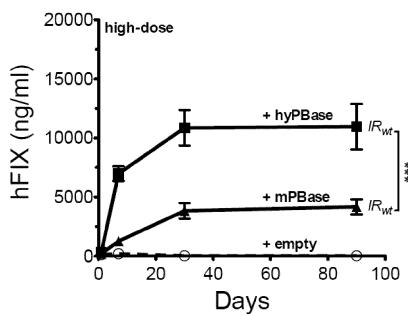
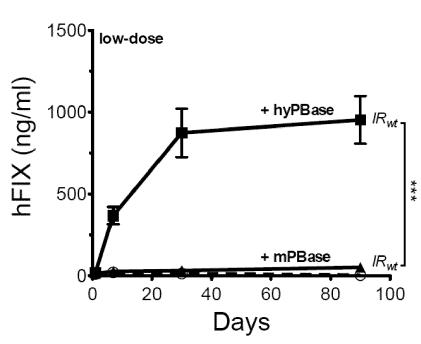
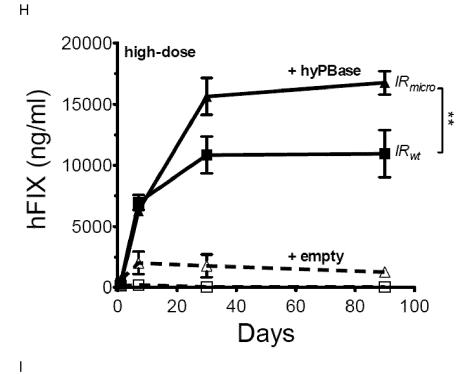
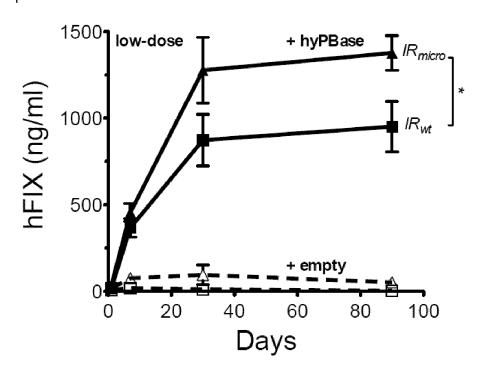
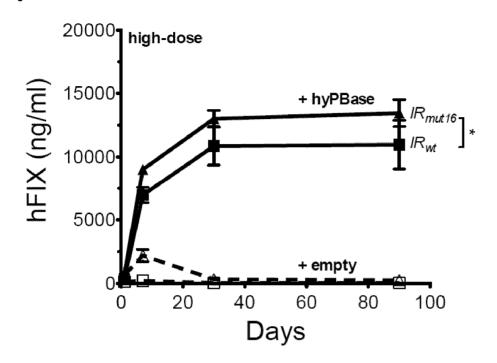



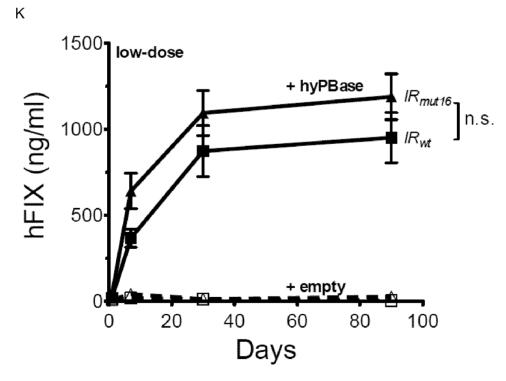
Fig. 15

F

G


Fig. 15



WO 2014/064277 PCT/EP2013/072450

eolf-seql.txt SEQUENCE LISTING

<110> Vrije Universiteit Brussel <120> Vectors for liver-directed gene therapy of hemophilia and methods and use thereof <130> VUB-057-PCT2 <150> PCT/EP2012/071297 <151> 2012-10-26 PCT/EP2013/064054 <150> 2013-07-03 <151> <160> 30 <170> PatentIn version 3.3 <210> <211> 6044 <212> DNA Arti fi ci al <213> <220> Adenoviral expression vector pdsAAVsc SerpEnh TTRmin MVM <223> FI XcoptMT-bghpA <400> cagcagctgg cgtaatagcg aagaggcccg caccgatcgc ccttcccaac agttgcgcag 60 120 cctgaatggc gaatggaatt ccagacgatt gagcgtcaaa atgtaggtat ttccatgagc 180 gtttttcctg ttgcaatggc tggcggtaat attgttctgg atattaccag caaggccgat 240 agtttgagtt cttctactca ggcaagtgat gttattacta atcaaagaag tattgcgaca acggttaatt tgcgtgatgg acagactctt ttactcggtg gcctcactga ttataaaaac 300 acttctcagg attctggcgt accgttcctg tctaaaatcc ctttaatcgg cctcctgttt 360 agctcccgct ctgattctaa cgaggaaagc acgttatacg tgctcgtcaa agcaaccata 420 gtacgcgccc tgtagcggcg cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac 480 540 cgctacactt gccagcgccc tagcgcccgc tcctttcgct ttcttccctt cctttctcgc cacgttcgcc ggctttcccc gtcaagctct aaatcggggg ctccctttag ggttccgatt 600 tagtgcttta cggcacctcg accccaaaaa acttgattag ggtgatggtt cacgtagtgg 660 720 gccatcgccc tgatagacgg tttttcgccc tttgacgttg gagtccacgt tctttaatag 780 tggactcttg ttccaaactg gaacaacact caaccctatc tcggtctatt cttttgattt ataagggatt ttgccgattt cggcctattg gttaaaaaat gagctgattt aacaaaaatt 840 taacgcgaat tttaacaaaa tattaacgtt tacaatttaa atatttgctt atacaatctt 900 cctgtttttg gggcttttct gattatcaac cggggtacat atgattgaca tgctagtttt 960 acgattaccg ttcatcgcct gcactgcgcg ctcgctcgct cactgaggcc gcccgggcaa 1020 agcccgggcg tcgggcgacc tttggtcgcc cggcctcagt gagcgagcga gcgcgcagag 1080 1140 agggagtgga attcacgcgt ggtacgatct gaattcggta caattcacgc gtggtacggc cgcggtaccg gcgccgcgg ggaggctgct ggtgaatatt aaccaaggtc accccagtta 1200 Page 1

tcggaggagc	aaacaggggc	taagtccaca	cgcgtggtac	cgtctgtctg	cacatttcgt	1260
agagcgagtg	ttccgatact	ctaatctccc	taggcaaggt	tcatatttgt	gtaggttact	1320
tattctcctt	ttgttgacta	agtcaataat	cagaatcagc	aggtttggag	tcagcttggc	1380
agggatcagc	agcctgggtt	ggaaggaggg	ggtataaaag	ccccttcacc	aggagaagcc	1440
gtcacacaga	tccacaagct	cctgaagagg	taagggttta	agggatggtt	ggttggtggg	1500
gtattaatgt	ttaattacct	ggagcacctg	cctgaaatca	cttttttca	ggttggctag	1560
catgcagcgc	gtgaacatga	tcatggccga	gagccccggc	ctgatcacca	tctgcctgct	1620
gggctacctg	ctgagcgccg	agtgcaccgt	gttcctggac	cacgagaacg	ccaacaagat	1680
cctgaaccgc	cccaagcgct	acaacagcgg	caagctggag	gagttcgtgc	agggcaacct	1740
ggagcgcgag	tgcatggagg	agaagtgcag	cttcgaggag	gcccgcgagg	tgttcgagaa	1800
caccgagcgc	accaccgagt	tctggaagca	gtacgtggac	ggcgaccagt	gcgagagcaa	1860
ccctgcctg	aacggcggca	gctgcaagga	cgacatcaac	agctacgagt	gctggtgccc	1920
cttcggcttc	gagggcaaga	actgcgagct	ggacgtgacc	tgcaacatca	agaacggccg	1980
ctgcgagcag	ttctgcaaga	acagcgccga	caacaaggtg	gtgtgcagct	gcaccgaggg	2040
ctaccgcctg	gccgagaacc	agaagagctg	cgagcccgcc	gtgcccttcc	cctgcggccg	2100
cgtgagcgtg	agccagacca	gcaagctgac	ccgcgccgag	gccgtgttcc	ccgacgtgga	2160
ctacgtgaac	agcaccgagg	ccgagaccat	cctggacaac	atcacccaga	gcacccagag	2220
cttcaacgac	ttcacccgcg	tggtgggcgg	cgaggacgcc	aagcccggcc	agttcccctg	2280
gcaggtggtg	ctgaacggca	aggtggacgc	cttctgcggc	ggcagcatcg	tgaacgagaa	2340
gtggatcgtg	accgccgccc	actgcgtgga	gaccggcgtg	aagatcaccg	tggtggccgg	2400
cgagcacaac	atcgaggaga	ccgagcacac	cgagcagaag	cgcaacgtga	tccgcatcat	2460
ccccaccac	aactacaacg	ccgccatcaa	caagtacaac	cacgacatcg	ccctgctgga	2520
gctggacgag	cccctggtgc	tgaacagcta	cgtgaccccc	atctgcatcg	ccgacaagga	2580
gtacaccaac	atcttcctga	agttcggcag	cggctacgtg	agcggctggg	gccgcgtgtt	2640
ccacaagggc	cgcagcgccc	tggtgctgca	gtacctgcgc	gtgcccctgg	tggaccgcgc	2700
cacctgcctg	cgcagcacca	agttcaccat	ctacaacaac	atgttctgcg	ccggcttcca	2760
cgagggcggc	cgcgacagct	gccagggcga	cagcggcggc	ccccacgtga	ccgaggtgga	2820
gggcaccagc	ttcctgaccg	gcatcatcag	ctggggcgag	gagtgcgcca	tgaagggcaa	2880
gtacggcatc	tacaccaagg	tgagccgcta	cgtgaactgg	atcaaggaga	agaccaagct	2940
gacctggaga	tctgatcagc	ctcgactgtg	ccttctagtt	gccagccatc	tgttgtttgc	3000
ccctccccg	tgccttcctt	gaccctggaa	ggtgccactc	ccactgtcct	ttcctaataa	3060
aatgaggaaa	ttgcatcgca	ttgtctgagt	aggtgtcatt	ctattctggg	gggtggggtg	3120
gggcaggaca	gcaaggggga	ggattgggaa	gacaatagca	ggcatgctgg	ggatctgata	3180
gcaggcatgc	tggggagaga	tcgatctagg	aacccctagt Page 2	gatggagttg	gccactccct	3240

ctctgcgcgc	tcgctcgctc	actgaggccg	cccgggcaaa	gcccgggcgt	cgggcgacct	3300
ttggtcgccc	ggcctcagtg	agcgagcgag	cgcgcagaga	gggagtggcc	aaccccccc	3360
cccccccc	tgcatgcagg	cgattctctt	gtttgctcca	gactctcagg	caatgacctg	3420
atagcctttg	tagagacctc	tcaaaaatag	ctaccctctc	cggcatgaat	ttatcagcta	3480
gaacggttga	atatcatatt	gatggtgatt	tgactgtctc	cggcctttct	cacccgtttg	3540
aatctttacc	tacacattac	tcaggcattg	catttaaaat	atatgagggt	tctaaaaatt	3600
tttatccttg	cgttgaaata	aaggcttctc	ccgcaaaagt	attacagggt	cataatgttt	3660
ttggtacaac	cgatttagct	ttatgctctg	aggctttatt	gcttaatttt	gctaattctt	3720
tgccttgcct	gtatgattta	ttggatgttg	gaattcctga	tgcggtattt	tctccttacg	3780
catctgtgcg	gtatttcaca	ccgcatatgg	tgcactctca	gtacaatctg	ctctgatgcc	3840
gcatagttaa	gccagccccg	acacccgcca	acacccgctg	acgcgccctg	acgggcttgt	3900
ctgctcccgg	catccgctta	cagacaagct	gtgaccgtct	ccgggagctg	catgtgtcag	3960
aggttttcac	cgtcatcacc	gaaacgcgcg	agacgaaagg	gcctcgtgat	acgcctattt	4020
ttataggtta	atgtcatgat	aataatggtt	tcttagacgt	caggtggcac	ttttcgggga	4080
aatgtgcgcg	gaacccctat	ttgtttattt	ttctaaatac	attcaaatat	gtatccgctc	4140
atgagacaat	aaccctgata	aatgcttcaa	taatattgaa	aaaggaagag	tatgagtatt	4200
caacatttcc	gtgtcgccct	tattcccttt	tttgcggcat	tttgccttcc	tgtttttgct	4260
cacccagaaa	cgctggtgaa	agtaaaagat	gctgaagatc	agttgggtgc	acgagtgggt	4320
tacatcgaac	tggatctcaa	cagcggtaag	atccttgaga	gttttcgccc	cgaagaacgt	4380
tttccaatga	tgagcacttt	taaagttctg	ctatgtggcg	cggtattatc	ccgtattgac	4440
gccgggcaag	agcaactcgg	tcgccgcata	cactattctc	agaatgactt	ggttgagtac	4500
tcaccagtca	cagaaaagca	tcttacggat	ggcatgacag	taagagaatt	atgcagtgct	4560
gccataacca	tgagtgataa	cactgcggcc	aacttacttc	tgacaacgat	cggaggaccg	4620
aaggagctaa	ccgcttttt	gcacaacatg	ggggatcatg	taactcgcct	tgatcgttgg	4680
gaaccggagc	tgaatgaagc	cataccaaac	gacgagcgtg	acaccacgat	gcctgtagca	4740
atggcaacaa	cgttgcgcaa	actattaact	ggcgaactac	ttactctagc	ttcccggcaa	4800
caattaatag	actggatgga	ggcggataaa	gttgcaggac	cacttctgcg	ctcggccctt	4860
ccggctggct	ggtttattgc	tgataaatct	ggagccggtg	agcgtgggtc	tcgcggtatc	4920
attgcagcac	tggggccaga	tggtaagccc	tcccgtatcg	tagttatcta	cacgacgggg	4980
agtcaggcaa	ctatggatga	acgaaataga	cagatcgctg	agataggtgc	ctcactgatt	5040
aagcattggt	aactgtcaga	ccaagtttac	tcatatatac	tttagattga	tttaaaactt	5100
catttttaat	ttaaaaggat	ctaggtgaag	atcctttttg	ataatctcat	gaccaaaatc	5160
ccttaacgtg	agttttcgtt	ccactgagcg	tcagaccccg	tagaaaagat	caaaggatct	5220
tcttgagatc	cttttttct	gcgcgtaatc	tgctgcttgc Page 3	aaacaaaaaa	accaccgcta	5280

ccagcggtgg	tttgtttgcc	ggatcaagag	ctaccaactc	tttttccgaa	ggtaactggc	5340
ttcagcagag	cgcagatacc	aaatactgtc	cttctagtgt	agccgtagtt	aggccaccac	5400
ttcaagaact	ctgtagcacc	gcctacatac	ctcgctctgc	taatcctgtt	accagtggct	5460
gctgccagtg	gcgataagtc	gtgtcttacc	gggttggact	caagacgata	gttaccggat	5520
aaggcgcagc	ggtcgggctg	aacggggggt	tcgtgcacac	agcccagctt	ggagcgaacg	5580
acctacaccg	aactgagata	cctacagcgt	gagctatgag	aaagcgccac	gcttcccgaa	5640
gggagaaagg	cggacaggta	tccggtaagc	ggcagggtcg	gaacaggaga	gcgcacgagg	5700
gagcttccag	ggggaaacgc	ctggtatctt	tatagtcctg	tcgggtttcg	ccacctctga	5760
cttgagcgtc	gatttttgtg	atgctcgtca	ggggggcgga	gcctatggaa	aaacgccagc	5820
aacgcggcct	ttttacggtt	cctggccttt	tgctggcctt	ttgctcacat	gttctttcct	5880
gcgttatccc	ctgattctgt	ggataaccgt	attaccgcct	ttgagtgagc	tgataccgct	5940
cgccgcagcc	gaacgaccga	gcgcagcgag	tcagtgagcg	aggaagcgga	agagcgccca	6000
atacgcaaac	cgcctctccc	cgcgcgttgg	ccgattcatt	aatg		6044

<210> 2 <211> 6044

<212> DNA

<213> Artificial

<220>

<223> Adenoviral expression vector pdsAAVsc SerpEnh TTRmin MVM FIXcopt-PADUA-bghpA

<400> cagcagctgg cgtaatagcg aagaggcccg caccgatcgc ccttcccaac agttgcgcag 60 cctgaatggc gaatggaatt ccagacgatt gagcgtcaaa atgtaggtat ttccatgagc 120 gtttttcctg ttgcaatggc tggcggtaat attgttctgg atattaccag caaggccgat 180 agtttgagtt cttctactca ggcaagtgat gttattacta atcaaagaag tattgcgaca 240 acggttaatt tgcgtgatgg acagactctt ttactcggtg gcctcactga ttataaaaac 300 actteteagg attetggegt accepticetg tetaaaatce etttaategg eeteetgttt 360 agctcccgct ctgattctaa cgaggaaagc acgttatacg tgctcgtcaa agcaaccata 420 gtacgcgccc tgtagcggcg cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac 480 cgctacactt gccagcgccc tagcgcccgc tcctttcgct ttcttccctt cctttctcgc 540 cacgttcgcc ggctttcccc gtcaagctct aaatcggggg ctccctttag ggttccgatt 600 tagtgcttta cggcacctcg accccaaaaa acttgattag ggtgatggtt cacgtagtgg 660 gccatcgccc tgatagacgg tttttcgccc tttgacgttg gagtccacgt tctttaatag 720 tggactettg ttccaaactg gaacaacact caaccctatc tcggtctatt cttttgattt 780 ataagggatt ttgccgattt cggcctattg gttaaaaaat gagctgattt aacaaaaatt 840 taacgcgaat tttaacaaaa tattaacgtt tacaatttaa atatttgctt atacaatctt 900

eolf-seql.txt 960 cctgtttttg gggcttttct gattatcaac cggggtacat atgattgaca tgctagtttt acgattaccg ttcatcgcct gcactgcgcg ctcgctcgct cactgaggcc gcccgggcaa 1020 1080 agcccgggcg tcgggcgacc tttggtcgcc cggcctcagt gagcgagcga gcgcgcagag agggagtgga attcacgcgt ggtacgatct gaattcggta caattcacgc gtggtacggc 1140 1200 cgcggtaccg gcgccggg ggaggctgct ggtgaatatt aaccaaggtc accccagtta 1260 teggaggage aaacagggge taagtecaca egegtggtae egtetgtetg cacatttegt 1320 agagcgagtg ttccgatact ctaatctccc taggcaaggt tcatatttgt gtaggttact tattctcctt ttgttgacta agtcaataat cagaatcagc aggtttggag tcagcttggc 1380 agggatcagc agcctgggtt ggaaggaggg ggtataaaag ccccttcacc aggagaagcc 1440 gtcacacaga tccacaagct cctgaagagg taagggttta agggatggtt ggttggtggg 1500 gtattaatgt ttaattacct ggagcacctg cctgaaatca cttttttca ggttggctag 1560 1620 catgcagcgc gtgaacatga tcatggccga gagccccggc ctgatcacca tctgcctgct 1680 gggctacctg ctgagcgccg agtgcaccgt gttcctggac cacgagaacg ccaacaagat 1740 cctgaaccgc cccaagcgct acaacagcgg caagctggag gagttcgtgc agggcaacct 1800 ggagcgcgag tgcatggagg agaagtgcag cttcgaggag gcccgcgagg tgttcgagaa caccgagcgc accaccgagt tctggaagca gtacgtggac ggcgaccagt gcgagagcaa 1860 1920 cccctgcctg aacggcggca gctgcaagga cgacatcaac agctacgagt gctggtgccc 1980 cttcggcttc gagggcaaga actgcgagct ggacgtgacc tgcaacatca agaacggccg 2040 ctgcgagcag ttctgcaaga acagcgccga caacaaggtg gtgtgcagct gcaccgaggg 2100 ctaccgcctg gccgagaacc agaagagctg cgagcccgcc gtgcccttcc cctgcggccg 2160 cgtgagcgtg agccagacca gcaagctgac ccgcgccgag gccgtgttcc ccgacgtgga 2220 ctacgtgaac agcaccgagg ccgagaccat cctggacaac atcacccaga gcacccagag 2280 cttcaacgac ttcacccgcg tggtgggcgg cgaggacgcc aagcccggcc agttcccctg gcaggtggtg ctgaacggca aggtggacgc cttctgcggc ggcagcatcg tgaacgagaa 2340 2400 gtggatcgtg accgccgcc actgcgtgga gaccggcgtg aagatcaccg tggtggccgg cgagcacaac atcgaggaga ccgagcacac cgagcagaag cgcaacgtga tccgcatcat 2460 ccccaccac aactacaacg ccgccatcaa caagtacaac cacgacatcg ccctgctgga 2520 gctggacgag cccctggtgc tgaacagcta cgtgaccccc atctgcatcg ccgacaagga 2580 2640 gtacaccaac atcttcctga agttcggcag cggctacgtg agcggctggg gccgcgtgtt 2700 ccacaagggc cgcagcgccc tggtgctgca gtacctgcgc gtgcccctgg tggaccgcgc 2760 cacctgcctg ctgagcacca agttcaccat ctacaacaac atgttctgcg ccggcttcca 2820 cgagggcggc cgcgacagct gccagggcga cagcggcggc ccccacgtga ccgaggtgga gggcaccage tteetgaceg geateateag etggggegag gagtgegeea tgaagggeaa 2880 2940 gtacggcatc tacaccaagg tgagccgcta cgtgaactgg atcaaggaga agaccaagct

eolf-seql.txt 3000 gacctggaga tctgatcagc ctcgactgtg ccttctagtt gccagccatc tgttgtttgc ccctccccg tgccttcctt gaccctggaa ggtgccactc ccactgtcct ttcctaataa 3060 3120 3180 gggcaggaca gcaaggggga ggattgggaa gacaatagca ggcatgctgg ggatctgata 3240 gcaggcatgc tggggagaga tcgatctagg aacccctagt gatggagttg gccactccct 3300 ctctgcgcgc tcgctcgctc actgaggccg cccgggcaaa gcccgggcgt cgggcgacct ttggtcgccc ggcctcagtg agcgagcgag cgcgcagaga gggagtggcc aaccccccc 3360 cccccccc tgcatgcagg cgattctctt gtttgctcca gactctcagg caatgacctg 3420 atagcctttg tagagacctc tcaaaaatag ctaccctctc cggcatgaat ttatcagcta 3480 gaacggttga atatcatatt gatggtgatt tgactgtctc cggcctttct cacccgtttg 3540 aatctttacc tacacattac tcaggcattg catttaaaat atatgagggt tctaaaaatt 3600 3660 tttatccttg cgttgaaata aaggcttctc ccgcaaaagt attacagggt cataatgttt 3720 ttggtacaac cgatttagct ttatgctctg aggctttatt gcttaatttt gctaattctt 3780 tgccttgcct gtatgattta ttggatgttg gaattcctga tgcggtattt tctccttacg 3840 catctgtgcg gtatttcaca ccgcatatgg tgcactctca gtacaatctg ctctgatgcc 3900 gcatagttaa gccagcccg acacccgcca acacccgctg acgcgccctg acgggcttgt 3960 ctgctcccgg catccgctta cagacaagct gtgaccgtct ccgggagctg catgtgtcag 4020 aggttttcac cgtcatcacc gaaacgcgcg agacgaaagg gcctcgtgat acgcctattt 4080 ttataggtta atgtcatgat aataatggtt tcttagacgt caggtggcac ttttcgggga aatgtgcgcg gaacccctat ttgtttattt ttctaaatac attcaaatat gtatccgctc 4140 4200 atgagacaat aaccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt 4260 caacatttcc gtgtcgccct tattcccttt tttgcggcat tttgccttcc tgtttttgct 4320 cacccagaaa cgctggtgaa agtaaaagat gctgaagatc agttgggtgc acgagtgggt tacatcgaac tggatctcaa cagcggtaag atcettgaga gttttcgccc cgaagaacgt 4380 4440 tttccaatga tgagcacttt taaagttctg ctatgtggcg cggtattatc ccgtattgac gccgggcaag agcaactcgg tcgccgcata cactattctc agaatgactt ggttgagtac 4500 tcaccagtca cagaaaagca tcttacggat ggcatgacag taagagaatt atgcagtgct 4560 gccataacca tgagtgataa cactgcggcc aacttacttc tgacaacgat cggaggaccg 4620 4680 aaggagctaa ccgctttttt gcacaacatg ggggatcatg taactcgcct tgatcgttgg 4740 gaaccggagc tgaatgaagc cataccaaac gacgagcgtg acaccacgat gcctgtagca 4800 atggcaacaa cgttgcgcaa actattaact ggcgaactac ttactctagc ttcccggcaa 4860 caattaatag actggatgga ggcggataaa gttgcaggac cacttctgcg ctcggccctt ccggctggct ggtttattgc tgataaatct ggagccggtg agcgtgggtc tcgcggtatc 4920 4980 attgcagcac tggggccaga tggtaagccc tcccgtatcg tagttatcta cacgacgggg

agtcaggcaa ctatggatga acg	eolf-seql. gaaataga cagatcgctg		ctcactgatt	5040
aagcattggt aactgtcaga cca	aagtttac tcatatatac	tttagattga	tttaaaaactt	5100
catttttaat ttaaaaggat cta	aggtgaag atcctttttg	ataatctcat	gaccaaaatc	5160
ccttaacgtg agttttcgtt cca	actgagcg tcagaccccg	tagaaaagat	caaaggatct	5220
tcttgagatc cttttttct gcg	gcgtaatc tgctgcttgc	aaacaaaaaa	accaccgcta	5280
ccagcggtgg tttgtttgcc gga	atcaagag ctaccaactc	tttttccgaa	ggtaactggc	5340
ttcagcagag cgcagatacc aaa	atactgtc cttctagtgt	agccgtagtt	aggccaccac	5400
ttcaagaact ctgtagcacc gcc	ctacatac ctcgctctgc	taatcctgtt	accagtggct	5460
gctgccagtg gcgataagtc gtg	gtcttacc gggttggact	caagacgata	gttaccggat	5520
aaggcgcagc ggtcgggctg aac	cggggggt tcgtgcacac	agcccagctt	ggagcgaacg	5580
acctacaccg aactgagata cct	tacagcgt gagctatgag	aaagcgccac	gcttcccgaa	5640
gggagaaagg cggacaggta tcc	cggtaagc ggcagggtcg	gaacaggaga	gcgcacgagg	5700
gagcttccag ggggaaacgc ctg	ggtatctt tatagtcctg	tcgggtttcg	ccacctctga	5760
cttgagcgtc gatttttgtg atg	gctcgtca ggggggcgga	gcctatggaa	aaacgccagc	5820
aacgcggcct ttttacggtt cct	tggccttt tgctggcctt	ttgctcacat	gttctttcct	5880
gcgttatccc ctgattctgt gga	ataaccgt attaccgcct	ttgagtgagc	tgataccgct	5940
cgccgcagcc gaacgaccga gcg	gcagcgag tcagtgagcg	aggaagcgga	agagcgccca	6000
atacgcaaac cgcctctccc cgc	cgcgttgg ccgattcatt	aatg		6044
<210> 3 <211> 20 <212> DNA <213> Artificial <220> <223> primer				
<400> 3 gccttctagt tgccagccat				20
<210> 4 <211> 20 <212> DNA <213> Artificial <220>				
<223> probe				
<400> 4 tgtttgcccc tccccgtgc				20
<210> 5 <211> 19 <212> DNA <213> Artificial				
<220> <223> primer				
•	Page 7			

<400> 5 19 ggcaccttcc agggtcaag <210> 6 7849 <211> <212> DNA Arti fi ci al <213> <220> <223> Adenoviral expression vector AAVss-SerpEnh-TTRm-MVM-hFVIIIcopt-sv40pA <220> <221> misc_feature <222> (508).. (508) <223> nisa, c, g, or t <400> 6 cctgcaggca gctgcgcgct cgctcgctca ctgaggccgc ccgggcaaag cccgggcgtc 60 gggcgacctt tggtcgcccg gcctcagtga gcgagcgagc gcgcagagag ggagtggcca 120 actocatcae taggggttee tgeggeegeg gtaceggege geegggggag getgetggtg 180 240 aatattaacc aaggtcaccc cagttatcgg aggagcaaac aggggctaag tccacacgcg tggtaccgtc tgtctgcaca tttcgtagag cgagtgttcc gatactctaa tctccctagg 300 caaggttcat atttgtgtag gttacttatt ctccttttgt tgactaagtc aataatcaga 360 420 atcagcaggt ttggagtcag cttggcaggg atcagcagcc tgggttggaa ggagggggta 480 taaaagcccc ttcaccagga gaagccgtca cacagatcca caagctcctg aagaggtaag 540 ggtttaaggg atggttggtt ggtggggnat taatgtttaa ttacctggag cacctgcctg aaatcacttt ttttcaggtt ggctagtatg cagatcgagc tgtccacctg ctttttctg 600 tgcctgctgc ggttctgctt cagcgccacc cggcggtact acctgggcgc cgtggagctg 660 720 tectgggact acatgeagag egacetggge gagetgeeeg tggaegeeeg gtteeeeee 780 agagtgccca agagcttccc cttcaacacc agcgtggtgt acaagaaaac cctgttcgtg gagttcaccg accacctgtt caatatcgcc aagcccaggc ccccctggat gggcctgctg 840 ggccccacca tccaggccga ggtgtacgac accgtggtga tcaccctgaa gaacatggcc 900 960 agccaccccg tgagcctgca cgccgtgggc gtgagctact ggaaggccag cgagggcgcc 1020 gagtacgacg accagaccag ccagcgggag aaagaagatg acaaggtgtt ccctggcggc agccacacct acgtgtggca ggtgctgaaa gaaaacggcc ccatggcctc cgaccccctg 1080 1140 tgcctgacct acagctacct gagccacgtg gacctggtga aggacctgaa cagcggcctg 1200 ateggegete tgetegtetg eegggaggge ageetggeea aagagaaaae eeagaeeetg cacaagttca tcctgctgtt cgccgtgttc gacgaggca agagctggca cagcgagaca 1260 1320 aagaacagcc tgatgcagga ccgggacgcc gcctctgcca gagcctggcc caagatgcac 1380 accgtgaacg gctacgtgaa cagaagcctg cccggcctga ttggctgcca ccggaagagc gtgtactggc acgtgatcgg catgggcacc acacccgagg tgcacagcat ctttctggaa 1440

Page 8

gggcacacct	ttctggtccg	gaaccaccgg	caggccagcc	tggaaatcag	ccctatcacc	1500
ttcctgaccg	cccagacact	gctgatggac	ctgggccagt	tcctgctgtt	ttgccacatc	1560
agctctcacc	agcacgacgg	catggaagcc	tacgtgaagg	tggactcttg	ccccgaggaa	1620
ccccagctgc	ggatgaagaa	caacgaggaa	gccgaggact	acgacgacga	cctgaccgac	1680
agcgagatgg	acgtggtgcg	gttcgacgac	gacaacagcc	ccagcttcat	ccagatcaga	1740
agcgtggcca	agaagcaccc	caagacctgg	gtgcactata	tcgccgccga	ggaagaggac	1800
tgggactacg	ccccctggt	gctggccccc	gacgacagaa	gctacaagag	ccagtacctg	1860
aacaatggcc	cccagcggat	cggccggaag	tacaagaaag	tgcggttcat	ggcctacacc	1920
gacgagacat	tcaagacccg	ggaggccatc	cagcacgaga	gcggcatcct	gggccccctg	1980
ctgtacggcg	aagtgggcga	cacactgctg	atcatcttca	agaaccaggc	tagccggccc	2040
tacaacatct	accccacgg	catcaccgac	gtgcggcccc	tgtacagcag	gcggctgccc	2100
aagggcgtga	agcacctgaa	ggacttcccc	atcctgcccg	gcgagatctt	caagtacaag	2160
tggaccgtga	ccgtggagga	cggccccacc	aagagcgacc	ccagatgcct	gacccggtac	2220
tacagcagct	tcgtgaacat	ggaacgggac	ctggcctccg	ggctgatcgg	acctctgctg	2280
atctgctaca	aagaaagcgt	ggaccagcgg	ggcaaccaga	tcatgagcga	caagcggaac	2340
gtgatcctgt	tcagcgtgtt	cgatgagaac	cggtcctggt	atctgaccga	gaacatccag	2400
cggtttctgc	ccaaccctgc	cggcgtgcag	ctggaagatc	ccgagttcca	ggccagcaac	2460
atcatgcact	ccatcaatgg	ctacgtgttc	gactctctgc	agctctccgt	gtgtctgcac	2520
gaggtggcct	actggtacat	cctgagcatc	ggcgcccaga	ccgacttcct	gagcgtgttc	2580
ttcagcggct	acaccttcaa	gcacaagatg	gtgtacgagg	acaccctgac	cctgttccct	2640
ttcagcggcg	agacagtgtt	catgagcatg	gaaaaccccg	gcctgtggat	tctgggctgc	2700
cacaacagcg	acttccggaa	ccggggcatg	accgccctgc	tgaaggtgtc	cagctgcgac	2760
aagaacaccg	gcgactacta	cgaggacagc	tacgaggata	tcagcgccta	cctgctgtcc	2820
aagaacaacg	ccatcgaacc	ccggagcttc	agccagaacc	ccccgtgct	gacgcgtcac	2880
cagcgggaga	tcacccggac	aaccctgcag	tccgaccagg	aagagatcga	ttacgacgac	2940
accatcagcg	tggagatgaa	gaaagaggat	ttcgatatct	acgacgagga	cgagaaccag	3000
agccccagaa	gcttccagaa	gaaaacccgg	cactacttca	ttgccgccgt	ggagaggctg	3060
tgggactacg	gcatgagttc	tagcccccac	gtgctgcgga	accgggccca	gagcggcagc	3120
gtgccccagt	tcaagaaagt	ggtgttccag	gaattcacag	acggcagctt	cacccagcct	3180
ctgtatagag	gcgagctgaa	cgagcacctg	gggctgctgg	ggccctacat	cagggccgaa	3240
gtggaggaca	acatcatggt	gaccttccgg	aatcaggcca	gcagacccta	ctccttctac	3300
agcagcctga	tcagctacga	agaggaccag	cggcagggcg	ccgaaccccg	gaagaacttc	3360
gtgaagccca	acgaaaccaa	gacctacttc	tggaaagtgc	agcaccacat	ggcccccacc	3420
aaggacgagt	tcgactgcaa	ggcctgggcc	tacttcagcg Page 9	acgtggatct	ggaaaaggac	3480

gtgcactctg	gactgattgg	cccactcctg	gtctgccaca	ctaacaccct	caaccccgcc	3540
cacggccgcc	aggtgaccgt	gcaggaattc	gccctgttct	tcaccatctt	cgacgagaca	3600
aagtcctggt	acttcaccga	gaatatggaa	cggaactgca	gagccccctg	caacatccag	3660
atggaagatc	ctaccttcaa	agagaactac	cggttccacg	ccatcaacgg	ctacatcatg	3720
gacaccctgc	ctggcctggt	gatggcccag	gaccagagaa	tccggtggta	tctgctgtcc	3780
atgggcagca	acgagaatat	ccacagcatc	cacttcagcg	gccacgtgtt	caccgtgcgg	3840
aagaaagaag	agtacaagat	ggccctgtac	aacctgtacc	ccggcgtgtt	cgagacagtg	3900
gagatgctgc	ccagcaaggc	cggcatctgg	cgggtggagt	gtctgatcgg	cgagcacctg	3960
cacgctggca	tgagcaccct	gtttctggtg	tacagcaaca	agtgccagac	cccactgggc	4020
atggcctctg	gccacatccg	ggacttccag	atcaccgcct	ccggccagta	cggccagtgg	4080
gccccaagc	tggccagact	gcactacagc	ggcagcatca	acgcctggtc	caccaaagag	4140
cccttcagct	ggatcaaggt	ggacctgctg	gcccctatga	tcatccacgg	cattaagacc	4200
cagggcgcca	ggcagaagtt	cagcagcctg	tacatcagcc	agttcatcat	catgtacagc	4260
ctggacggca	agaagtggca	gacctaccgg	ggcaacagca	ccggcaccct	gatggtgttc	4320
ttcggcaatg	tggacagcag	cggcatcaag	cacaacatct	tcaacccccc	catcattgcc	4380
cggtacatcc	ggctgcaccc	cacccactac	agcattagat	ccacactgag	aatggaactg	4440
atgggctgcg	acctgaactc	ctgcagcatg	cctctgggca	tggaaagcaa	ggccatcagc	4500
gacgcccaga	tcacagccag	cagctacttc	accaacatgt	tcgccacctg	gtcccctcc	4560
aaggccaggc	tgcacctgca	gggccggtcc	aacgcctggc	ggcctcaggt	caacaacccc	4620
aaagaatggc	tgcaggtgga	ctttcagaaa	accatgaagg	tgaccggcgt	gaccacccag	4680
ggcgtgaaaa	gcctgctgac	cagcatgtac	gtgaaagagt	ttctgatcag	cagctctcag	4740
gatggccacc	agtggaccct	gttctttcag	aacggcaagg	tgaaagtgtt	ccagggcaac	4800
caggactcct	tcaccccgt	ggtgaactcc	ctggaccccc	ccctgctgac	ccgctacctg	4860
agaatccacc	cccagtcttg	ggtgcaccag	atcgccctca	ggatggaagt	cctgggatgt	4920
gaggcccagg	atctgtactg	atgaggatct	aggctcgaca	tgctttattt	gtgaaatttg	4980
tgatgctatt	gctttatttg	taaccattat	aagctgcaat	aaacaagtta	acaacaacaa	5040
ttgcattcat	tttatgtttc	aggttcaggg	ggaggtgtgg	gaggttttt	aaactcgaga	5100
tccacggccg	caggaacccc	tagtgatgga	gttggccact	ccctctctgc	gcgctcgctc	5160
gctcactgag	gccgggcgac	caaaggtcgc	ccgacgcccg	ggctttgccc	gggcggcctc	5220
agtgagcgag	cgagcgcgca	gctgcctgca	ggggcgcctg	atgcggtatt	ttctccttac	5280
gcatctgtgc	ggtatttcac	accgcatacg	tcaaagcaac	catagtacgc	gccctgtagc	5340
ggcgcattaa	gcgcggcggg	tgtggtggtt	acgcgcagcg	tgaccgctac	acttgccagc	5400
gccctagcgc	ccgctccttt	cgctttcttc	ccttcctttc	tcgccacgtt	cgccggcttt	5460
ccccgtcaag	ctctaaatcg	ggggctccct	ttagggttcc Page 10		tttacggcac	5520

ctcgacccca	aaaaacttga	tttgggtgat	ggttcacgta	gtgggccatc	gccctgatag	5580
acggttttc	gccctttgac	gttggagtcc	acgttcttta	atagtggact	cttgttccaa	5640
actggaacaa	cactcaaccc	tatctcgggc	tattcttttg	atttataagg	gattttgccg	5700
atttcggcct	attggttaaa	aaatgagctg	atttaacaaa	aatttaacgc	gaattttaac	5760
aaaatattaa	cgtttacaat	tttatggtgc	actctcagta	caatctgctc	tgatgccgca	5820
tagttaagcc	agccccgaca	cccgccaaca	cccgctgacg	cgccctgacg	ggcttgtctg	5880
ctcccggcat	ccgcttacag	acaagctgtg	accgtctccg	ggagctgcat	gtgtcagagg	5940
ttttcaccgt	catcaccgaa	acgcgcgaga	cgaaagggcc	tcgtgatacg	cctattttta	6000
taggttaatg	tcatgataat	aatggtttct	tagacgtcag	gtggcacttt	tcggggaaat	6060
gtgcgcggaa	cccctatttg	tttatttttc	taaatacatt	caaatatgta	tccgctcatg	6120
agacaataac	cctgataaat	gcttcaataa	tattgaaaaa	ggaagagtat	gagtattcaa	6180
catttccgtg	tcgcccttat	tccctttttt	gcggcatttt	gccttcctgt	ttttgctcac	6240
ccagaaacgc	tggtgaaagt	aaaagatgct	gaagatcagt	tgggtgcacg	agtgggttac	6300
atcgaactgg	atctcaacag	cggtaagatc	cttgagagtt	ttcgccccga	agaacgtttt	6360
ccaatgatga	gcacttttaa	agttctgcta	tgtggcgcgg	tattatcccg	tattgacgcc	6420
gggcaagagc	aactcggtcg	ccgcatacac	tattctcaga	atgacttggt	tgagtactca	6480
ccagtcacag	aaaagcatct	tacggatggc	atgacagtaa	gagaattatg	cagtgctgcc	6540
ataaccatga	gtgataacac	tgcggccaac	ttacttctga	caacgatcgg	aggaccgaag	6600
gagctaaccg	cttttttgca	caacatgggg	gatcatgtaa	ctcgccttga	tcgttgggaa	6660
ccggagctga	atgaagccat	accaaacgac	gagcgtgaca	ccacgatgcc	tgtagcaatg	6720
gcaacaacgt	tgcgcaaact	attaactggc	gaactactta	ctctagcttc	ccggcaacaa	6780
ttaatagact	ggatggaggc	ggataaagtt	gcaggaccac	ttctgcgctc	ggcccttccg	6840
gctggctggt	ttattgctga	taaatctgga	gccggtgagc	gtgggtctcg	cggtatcatt	6900
gcagcactgg	ggccagatgg	taagccctcc	cgtatcgtag	ttatctacac	gacggggagt	6960
caggcaacta	tggatgaacg	aaatagacag	atcgctgaga	taggtgcctc	actgattaag	7020
cattggtaac	tgtcagacca	agtttactca	tatatacttt	agattgattt	aaaacttcat	7080
ttttaattta	aaaggatcta	ggtgaagatc	ctttttgata	atctcatgac	caaaatccct	7140
taacgtgagt	tttcgttcca	ctgagcgtca	gaccccgtag	aaaagatcaa	aggatcttct	7200
tgagatcctt	tttttctgcg	cgtaatctgc	tgcttgcaaa	caaaaaaaacc	accgctacca	7260
gcggtggttt	gtttgccgga	tcaagagcta	ccaactcttt	ttccgaaggt	aactggcttc	7320
agcagagcgc	agataccaaa	tactgtcctt	ctagtgtagc	cgtagttagg	ccaccacttc	7380
aagaactctg	tagcaccgcc	tacatacctc	gctctgctaa	tcctgttacc	agtggctgct	7440
gccagtggcg	ataagtcgtg	tcttaccggg	ttggactcaa	gacgatagtt	accggataag	7500
gcgcagcggt	cgggctgaac	ggggggttcg	tgcacacagc Page 11		gcgaacgacc	7560

	tacaccgaac	tgagatacct	acagcgtgag	ctatgagaaa	gcgccacgct	tcccgaaggg	7620
•	agaaaggcgg	acaggtatcc	ggtaagcggc	agggtcggaa	caggagagcg	cacgagggag	7680
•	cttccagggg	gaaacgcctg	gtatctttat	agtcctgtcg	ggtttcgcca	cctctgactt	7740
9	gagcgtcgat	ttttgtgatg	ctcgtcaggg	gggcggagcc	tatggaaaaa	cgccagcaac	7800
(gcggcctttt	tacggttcct	ggccttttgc	tggccttttg	ctcacatgt		7849

<210> 7 <211> 4377 <212> DNA

<213> Artificial

<220>

<223> Codon-optimized B domain deleted human coagulation factor VIII (hFVIIIcopt)

<400> 60 atgcagatcg agctgtccac ctgctttttt ctgtgcctgc tgcggttctg cttcagcgcc 120 acceggeggt actacetggg egeegtggag etgteetggg actacatgea gagegacetg 180 ggcgagctgc ccgtggacgc ccggttcccc cccagagtgc ccaagagctt ccccttcaac 240 accagcgtgg tgtacaagaa aaccctgttc gtggagttca ccgaccacct gttcaatatc gccaagccca ggccccctg gatgggcctg ctgggcccca ccatccaggc cgaggtgtac 300 gacaccgtgg tgatcaccct gaagaacatg gccagccacc ccgtgagcct gcacgccgtg 360 420 ggcgtgagct actggaaggc cagcgagggc gccgagtacg acgaccagac cagccagcgg 480 gagaaagaag atgacaaggt gttccctggc ggcagccaca cctacgtgtg gcaggtgctg 540 aaagaaaacg gccccatggc ctccgacccc ctgtgcctga cctacagcta cctgagccac 600 gtggacctgg tgaaggacct gaacagcggc ctgatcggcg ctctgctcgt ctgccgggag ggcagcctgg ccaaagagaa aacccagacc ctgcacaagt tcatcctgct gttcgccgtg 660 720 ttcgacgagg gcaagagctg gcacagcgag acaaagaaca gcctgatgca ggaccgggac 780 geogeetetg ceagageetg geocaagatg cacacegtga aeggetaegt gaacagaage 840 ctgcccggcc tgattggctg ccaccggaag agcgtgtact ggcacgtgat cggcatgggc accacaccg aggtgcacag catctttctg gaagggcaca cctttctggt ccggaaccac 900 cggcaggcca gcctggaaat cagccctatc accttcctga ccgcccagac actgctgatg 960 1020 gacctgggcc agttcctgct gttttgccac atcagctctc accagcacga cggcatggaa 1080 gcctacgtga aggtggactc ttgccccgag gaaccccagc tgcggatgaa gaacaacgag 1140 gaagccgagg actacgacga cgacctgacc gacagcgaga tggacgtggt gcggttcgac 1200 gacgacaaca gccccagctt catccagatc agaagcgtgg ccaagaagca ccccaagacc 1260 tgggtgcact atatcgccgc cgaggaagag gactgggact acgccccct ggtgctggcc cccgacgaca gaagctacaa gagccagtac ctgaacaatg gcccccagcg gatcggccgg 1320 1380 aagtacaaga aagtgcggtt catggcctac accgacgaga cattcaagac ccgggaggcc

				A		
atccagcacg	agagcggcat	cctgggcccc	eol f-seql . ctgctgtacg	gcgaagtggg	cgacacactg	1440
ctgatcatct	tcaagaacca	ggctagccgg	ccctacaaca	tctaccccca	cggcatcacc	1500
gacgtgcggc	ccctgtacag	caggcggctg	cccaagggcg	tgaagcacct	gaaggacttc	1560
cccatcctgc	ccggcgagat	cttcaagtac	aagtggaccg	tgaccgtgga	ggacggcccc	1620
accaagagcg	accccagatg	cctgacccgg	tactacagca	gcttcgtgaa	catggaacgg	1680
gacctggcct	ccgggctgat	cggacctctg	ctgatctgct	acaaagaaag	cgtggaccag	1740
cggggcaacc	agatcatgag	cgacaagcgg	aacgtgatcc	tgttcagcgt	gttcgatgag	1800
aaccggtcct	ggtatctgac	cgagaacatc	cagcggtttc	tgcccaaccc	tgccggcgtg	1860
cagctggaag	atcccgagtt	ccaggccagc	aacatcatgc	actccatcaa	tggctacgtg	1920
ttcgactctc	tgcagctctc	cgtgtgtctg	cacgaggtgg	cctactggta	catcctgagc	1980
atcggcgccc	agaccgactt	cctgagcgtg	ttcttcagcg	gctacacctt	caagcacaag	2040
atggtgtacg	aggacaccct	gaccctgttc	cctttcagcg	gcgagacagt	gttcatgagc	2100
atggaaaacc	ccggcctgtg	gattctgggc	tgccacaaca	gcgacttccg	gaaccggggc	2160
atgaccgccc	tgctgaaggt	gtccagctgc	gacaagaaca	ccggcgacta	ctacgaggac	2220
agctacgagg	atatcagcgc	ctacctgctg	tccaagaaca	acgccatcga	accccggagc	2280
ttcagccaga	accccccgt	gctgacgcgt	caccagcggg	agatcacccg	gacaaccctg	2340
cagtccgacc	aggaagagat	cgattacgac	gacaccatca	gcgtggagat	gaagaaagag	2400
gatttcgata	tctacgacga	ggacgagaac	cagagcccca	gaagcttcca	gaagaaaacc	2460
cggcactact	tcattgccgc	cgtggagagg	ctgtgggact	acggcatgag	ttctagcccc	2520
cacgtgctgc	ggaaccgggc	ccagagcggc	agcgtgcccc	agttcaagaa	agtggtgttc	2580
caggaattca	cagacggcag	cttcacccag	cctctgtata	gaggcgagct	gaacgagcac	2640
ctggggctgc	tggggcccta	catcagggcc	gaagtggagg	acaacatcat	ggtgaccttc	2700
cggaatcagg	ccagcagacc	ctactccttc	tacagcagcc	tgatcagcta	cgaagaggac	2760
cagcggcagg	gcgccgaacc	ccggaagaac	ttcgtgaagc	ccaacgaaac	caagacctac	2820
ttctggaaag	tgcagcacca	catggccccc	accaaggacg	agttcgactg	caaggcctgg	2880
gcctacttca	gcgacgtgga	tctggaaaag	gacgtgcact	ctggactgat	tggcccactc	2940
ctggtctgcc	acactaacac	cctcaacccc	gcccacggcc	gccaggtgac	cgtgcaggaa	3000
ttcgccctgt	tcttcaccat	cttcgacgag	acaaagtcct	ggtacttcac	cgagaatatg	3060
gaacggaact	gcagagcccc	ctgcaacatc	cagatggaag	atcctacctt	caaagagaac	3120
taccggttcc	acgccatcaa	cggctacatc	atggacaccc	tgcctggcct	ggtgatggcc	3180
caggaccaga	gaatccggtg	gtatctgctg	tccatgggca	gcaacgagaa	tatccacagc	3240
atccacttca	gcggccacgt	gttcaccgtg	cggaagaaag	aagagtacaa	gatggccctg	3300
tacaacctgt	accccggcgt	gttcgagaca	gtggagatgc	tgcccagcaa	ggccggcatc	3360
tggcgggtgg	agtgtctgat	cggcgagcac	ctgcacgctg	gcatgagcac	cctgtttctg	3420

gtgtacag	ca acaagtgcca	gaccccactg	eol f-seql . ggcatggcct		ccgggacttc	3480
cagatcac	cg cctccggcca	gtacggccag	tgggccccca	agctggccag	actgcactac	3540
agcggcag	ca tcaacgcctg	gtccaccaaa	gagcccttca	gctggatcaa	ggtggacctg	3600
ctggcccc	ta tgatcatcca	cggcattaag	acccagggcg	ccaggcagaa	gttcagcagc	3660
ctgtacat	ca gccagttcat	catcatgtac	agcctggacg	gcaagaagtg	gcagacctac	3720
cggggcaa	ca gcaccggcac	cctgatggtg	ttcttcggca	atgtggacag	cagcggcatc	3780
aagcacaa	ca tcttcaaccc	ccccatcatt	gcccggtaca	tccggctgca	ccccacccac	3840
tacagcat	ta gatccacact	gagaatggaa	ctgatgggct	gcgacctgaa	ctcctgcagc	3900
atgcctct	gg gcatggaaag	caaggccatc	agcgacgccc	agatcacagc	cagcagctac	3960
ttcaccaa	ca tgttcgccac	ctggtccccc	tccaaggcca	ggctgcacct	gcagggccgg	4020
tccaacgc	ct ggcggcctca	ggtcaacaac	cccaaagaat	ggctgcaggt	ggactttcag	4080
aaaaccat	ga aggtgaccgg	cgtgaccacc	cagggcgtga	aaagcctgct	gaccagcatg	4140
tacgtgaa	ag agtttctgat	cagcagctct	caggatggcc	accagtggac	cctgttcttt	4200
cagaacgg	ca aggtgaaagt	gttccagggc	aaccaggact	ccttcacccc	cgtggtgaac	4260
tccctgga	cc ccccctgct	gacccgctac	ctgagaatcc	accccagtc	ttgggtgcac	4320
cagatcgc	cc tcaggatgga	agtcctggga	tgtgaggccc	aggatctgta	ctgatga	4377
<212> D <213> A <220>	2 NA rtificial erpin enhance	r (SerpEnh)				
<400> 8	ct gctggtgaat	attaaccaag	atcaccccaa	ttatcagaga	agcaaacagg	60
ggctaagt			g		-999	72
<210> 9 <211> 2 <212> D <213> A <220>	02 NA rti fi ci al	ovroti p. prop	motor (TTDm)			, =
<223> M <400> 9	linimal transtl	nyretin proi	noter (TIKIII))		
	gc acatttcgta	gagcgagtgt	tccgatactc	taatctccct	aggcaaggtt	60
catatttg	tg taggttactt	attctccttt	tgttgactaa	gtcaataatc	agaatcagca	120
ggtttgga	gt cagcttggca	gggatcagca	gcctgggttg	gaaggagggg	gtataaaagc	180
cccttcac	ca ggagaagccg	tc				202
<211> 9	0 2 NA		Page 14			

Page 14

acttggcagt acatctacgt attagtcatc gctattacca tggtgatgcg gttttggcag

tacatcaatg ggcgtggata gcggtttgac tcacggggat ttccaagtct ccaccccatt

gacgtcaatg ggagtttgtt ttggcaccaa aatcaacggg actttccaaa atgtcgtaac

aactccgccc cattgacgca aatgggcggt aggcgtgtac ggtgggaggt ctatataagc

600

660

720 780

eolf-seql.txt 840 agagetegtt tagtgaaceg teagategee tggagaegee atecaegetg ttttgaeete catagaagac accgggaccg atccagcctc cgcggattcg aatcccggcc gggaacggtg 900 960 cattggaacg cggattcccc gtgccaagag tgacgtaagt accgcctata gagtctatag 1020 gcccacaaaa aatgctttct tcttttaata tacttttttg tttatcttat ttctaatact 1080 ttccctaatc tctttctttc agggcaataa tgatacaatg tatcatgcct ctttgcacca 1140 ttctaaagaa taacagtgat aatttctggg ttaaggcaat agcaatattt ctgcatataa atatttctgc atataaattg taactgatgt aagaggtttc atattgctaa tagcagctac 1200 aatccagcta ccattctgct tttattttat ggttgggata aggctggatt attctgagtc 1260 caagctaggc ccttttgcta atcatgttca tacctcttat cttcctccca cagctcctgg 1320 gcaacgtgct ggtctgtgtg ctggcccatc actttggcaa agaattggga ttcgaacatc 1380 gatgccgcca ccatgggcag cagcctggac gacgagcaca tcctgagcgc cctgctgcag 1440 1500 agcgacgacg agctggtcgg cgaggacagc gacagcgagg tgagcgacca cgtgagcgag gacgacgtgc agtccgacac cgaggaggcc ttcatcgacg aggtgcacga ggtgcagcct 1560 1620 accagcagcg gctccgagat cctggacgag cagaacgtga tcgagcagcc cggcagctcc 1680 ctggccagca acaggatect gaccetgeee cagaggaeca teaggggeaa gaacaageae 1740 tgctggtcca cctccaagcc caccaggcgg agcagggtgt ccgccctgaa catcgtgaga 1800 agccagaggg gccccaccag gatgtgcagg aacatctacg accccctgct gtgcttcaag 1860 ctgttcttca ccgacgagat catcagcgag atcgtgaagt ggaccaacgc cgagatcagc 1920 ctgaagaggc gggagagcat gaccagcgcc accttcaggg acaccaacga ggacgagatc tacgccttct tcggcatcct ggtgatgacc gccgtgagga aggacaacca catgagcacc 1980 2040 gacgacctgt tcgacagatc cctgagcatg gtgtacgtga gcgtgatgag cagggacaga 2100 ttcgacttcc tgatcagatg cctgaggatg gacgacaaga gcatcaggcc caccctgcgg 2160 gagaacgacg tgttcacccc cgtgagaaag atctgggacc tgttcatcca ccagtgcatc 2220 cagaactaca cccctggcgc ccacctgacc atcgacgagc agctgctggg cttcaggggc 2280 aggtgcccct tcagggtgta tatccccaac aagcccagca agtacggcat caagatcctg atgatgtgcg acagcggcac caagtacatg atcaacggca tgccctacct gggcaggggc 2340 acccagacca acggcgtgcc cctgggcgag tactacgtga aggagctgtc caagcccgtc 2400 cacggcagct gcagaaacat cacctgcgac aactggttca ccagcatccc cctggccaag 2460 2520 aacctgctgc aggagcccta caagctgacc atcgtgggca ccgtgagaag caacaagaga 2580 gagatccccg aggtcctgaa gaacagcagg tccaggcccg tgggcaccag catgttctgc 2640 ttcgacggcc ccctgaccct ggtgtcctac aagcccaagc ccgccaagat ggtgtacctg 2700 ctgtccagct gcgacgagga cgccagcatc aacgagagca ccggcaagcc ccagatggtg atgtactaca accagaccaa gggcggcgtg gacaccctgg accagatgtg cagcgtgatg 2760 2820 acctgcagca gaaagaccaa caggtggccc atggccctgc tgtacggcat gatcaacatc

eolf-seql.txt gcctgcatca acagcttcat catctacagc cacaacgtga gcagcaaggg cgagaaggtg 2880 2940 cagagccgga aaaagttcat gcggaacctg tacatgggcc tgacctccag cttcatgagg 3000 aagaggctgg aggccccac cctgaagaga tacctgaggg acaacatcag caacatcctg 3060 cccaaggagg tgcccggcac cagcgacgac agcaccgagg agcccgtgat gaagaagagg 3120 acctactgca cctactgtcc cagcaagatc agaagaaagg ccagcgccag ctgcaagaag 3180 tgtaagaagg tcatctgccg ggagcacaac atcgacatgt gccagagctg tttctgactc gagcatgcat ctagagggcc ctattctata gtgtcaccta aatgctagag ctcgctgatc 3240 agectegact gtgccttcta gttgccagec atetgttgtt tgcccctccc ccgtgccttc 3300 cttgaccctg gaaggtgcca ctcccactgt cctttcctaa taaaatgagg aaattgcatc 3360 gcattgtctg agtaggtgtc attctattct ggggggtggg gtggggcagg acagcaaggg 3420 ggaggattgg gaagacaata gcaggcatgc tggggatgcg gtgggctcta tggcttctga 3480 3540 ggcggaaaga accagctggg gctctagggg gtatccccac gcgccctgta gcggcgcatt 3600 aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca gcgccctagc 3660 gecegeteet ttegetttet teeetteett tetegecaeg ttegeegget tteeeegtea 3720 agctctaaat cggggcatcc ctttagggtt ccgatttagt gctttacggc acctcgaccc 3780 caaaaaactt gattagggtg atggttcacg tagtgggcca tcgccctgat agacggtttt 3840 tcgccctttg acgttggagt ccacgttctt taatagtgga ctcttgttcc aaactggaac 3900 aacactcaac cctatctcgg tctattcttt tgatttataa gggattttgg ggatttcggc 3960 ctattggtta aaaaatgagc tgatttaaca aaaatttaac gcgaattaat tctgtggaat gtgtgtcagt tagggtgtgg aaagtcccca ggctccccag gcaggcagaa gtatgcaaag 4020 4080 catgcatctc aattagtcag caaccaggtg tggaaagtcc ccaggctccc cagcaggcag 4140 aagtatgcaa agcatgcatc tcaattagtc agcaaccata gtcccgcccc taactccgcc 4200 catecegeee ctaacteege ceagtteege ceatteteeg ceceatgget gactaatttt ttttatttat gcagaggccg aggccgcctc tgcctctgag ctattccaga agtagtgagg 4260 4320 aggetttttt ggaggeetag gettttgeaa aaageteeeg ggagettgta tateeatttt cggatctgat caagagacag gatgaggatc gtttcgcatg attgaacaag atggattgca 4380 cgcaggttct ccggccgctt gggtggagag gctattcggc tatgactggg cacaacagac 4440 aatcggctgc tctgatgccg ccgtgttccg gctgtcagcg caggggcgcc cggttctttt 4500 4560 tgtcaagacc gacctgtccg gtgccctgaa tgaactgcag gacgaggcag cgcggctatc 4620 gtggctggcc acgacgggcg ttccttgcgc agctgtgctc gacgttgtca ctgaagcggg 4680 aagggactgg ctgctattgg gcgaagtgcc ggggcaggat ctcctgtcat ctcaccttgc 4740 tectgeegag aaagtateea teatggetga tgeaatgegg eggetgeata egettgatee ggctacctgc ccattcgacc accaagcgaa acatcgcatc gagcgagcac gtactcggat 4800 ggaagccggt cttgtcgatc aggatgatct ggacgaagag catcaggggc tcgcccagc 4860

eolf-seql.txt 4920 cgaactgttc gccaggctca aggcgcgcat gcccgacggc gaggatctcg tcgtgaccca tggcgatgcc tgcttgccga atatcatggt ggaaaatggc cgcttttctg gattcatcga 4980 5040 ctgtggccgg ctgggtgtgg cggaccgcta tcaggacata gcgttggcta cccgtgatat 5100 tgctgaagag cttggcggcg aatgggctga ccgcttcctc gtgctttacg gtatcgccgc 5160 tecegatteg cagegeateg cettetateg cettettgae gagttettet gagegggaet 5220 ctggggttcg aaatgaccga ccaagcgacg cccaacctgc catcacgaga tttcgattcc accgccgcct tctatgaaag gttgggcttc ggaatcgttt tccgggacgc cggctggatg 5280 atcctccagc gcggggatct catgctggag ttcttcgccc accccaactt gtttattgca 5340 gcttataatg gttacaaata aagcaatagc atcacaaatt tcacaaataa agcatttttt 5400 tcactgcatt ctagttgtgg tttgtccaaa ctcatcaatg tatcttatca tgtctgtata 5460 ccgtcgacct ctagctagag cttggcgtaa tcatggtcat agctgtttcc tgtgtgaaat 5520 5580 tgttatccgc tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg 5640 ggtgcctaat gagtgagcta actcacatta attgcgttgc gctcactgcc cgctttccag 5700 tegggaaacc tgtegtgeea getgeattaa tgaateggee aacgegeggg gagaggeggt 5760 ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg 5820 ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg 5880 gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaaag 5940 gccgcgttgc tggcgttttt ccataggctc cgccccctg acgagcatca caaaaatcga 6000 cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc gtttcccct ggaageteec tegtgegete teetgtteeg accetgeege ttaceggata eetgteegee 6060 6120 tttctccctt cgggaagcgt ggcgctttct caatgctcac gctgtaggta tctcagttcg 6180 gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgaccgc 6240 tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag 6300 6360 ttcttgaagt ggtggcctaa ctacggctac actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc 6420 accgctggta gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga 6480 tctcaagaag atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca 6540 6600 cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat ccttttaaat 6660 taaaaatgaa gttttaaatc aatctaaagt atatatgagt aaacttggtc tgacagttac 6720 caatgcttaa tcagtgaggc acctatctca gcgatctgtc tatttcgttc atccatagtt 6780 gcctgactcc ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca ccggctccag atttatcagc aataaaccag 6840 6900 ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagtct

6960 attaattgtt gccgggaagc tagagtaagt agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctacaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc 7020 7080 teeggtteec aacgateaag gegagttaca tgateeccca tgttgtgeaa aaaageggtt agctccttcg gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg 7140 7200 gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta tgcggcgacc gagttgctct 7260 7320 tgcccggcgt caatacggga taataccgcg ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct taccgctgtt gagatccagt 7380 tcgatgtaac ccactcgtgc acccaactga tcttcagcat cttttacttt caccagcgtt 7440 7500 tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatattatt gaagcattta tcagggttat 7560 tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg 7620 7653 cgcacatttc cccgaaaagt gccacctgac gtc <210> 13 8514 <211> <212> DNA <213> Arti fi ci al <220> <223> PB_Mi ni maI _T_(T53C-C136T)_D4Z4_TTRmi nSerpMVM_hFVI I I copt_SV40pA_D4 Z4 transposon <220> <221> misc_feature $(133\overline{5})..(1335)$ <222> n is a, c, g, or t <400> ctaaattgta agcgttaata ttttgttaaa attcgcgtta aatttttgtt aaatcagctc 60 120 attttttaac caataggccg aaatcggcaa aatcccttat aaatcaaaag aatagaccga 180 gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc 240 300 ctaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc ctaaagggag 360 cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac 420 480 cacaccegee gegettaatg egeegetaca gggegegtee cattegeeat teaggetgeg caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg 540 gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg 600 660 taaaacgacg gccagtgagc gcgcttaacc ctagaaagat aatcatattg tgacgtacgt 720 taaagataat catgcgtaaa attgacgcat gtgttttatc ggtctgtata tcgaggttta tttattaatt tgaatagata ttaagtttta ttatatttac acttacatac taataataaa 780 Page 19

eol f-seql.txt

ttcaacaaac	aatttattta	tgtttattta	tttattaaaa	aaaaacaaaa	actcaaaatt	840
tcttctataa	agtaacaaaa	cttttatcga	taacttcgta	taatgtatgc	tatacgaagt	900
tatagagggg	cggaagggac	gttaggaggg	aggcagggag	gcagggaggc	agggaggaac	960
ggagggaggc	ggccgcggta	ccggcgcgcc	gggggaggct	gctggtgaat	attaaccaag	1020
gtcaccccag	ttatcggagg	agcaaacagg	ggctaagtcc	acacgcgtgg	taccgtctgt	1080
ctgcacattt	cgtagagcga	gtgttccgat	actctaatct	ccctaggcaa	ggttcatatt	1140
tgtgtaggtt	acttattctc	cttttgttga	ctaagtcaat	aatcagaatc	agcaggtttg	1200
gagtcagctt	ggcagggatc	agcagcctgg	gttggaagga	gggggtataa	aagccccttc	1260
accaggagaa	gccgtcacac	agatccacaa	gctcctgaag	aggtaagggt	ttaagggatg	1320
gttggttggt	ggggnattaa	tgtttaatta	cctggagcac	ctgcctgaaa	tcacttttt	1380
tcaggttggc	tagtatgcag	atcgagctgt	ccacctgctt	ttttctgtgc	ctgctgcggt	1440
tctgcttcag	cgccacccgg	cggtactacc	tgggcgccgt	ggagctgtcc	tgggactaca	1500
tgcagagcga	cctgggcgag	ctgcccgtgg	acgcccggtt	ccccccaga	gtgcccaaga	1560
gcttcccctt	caacaccagc	gtggtgtaca	agaaaaccct	gttcgtggag	ttcaccgacc	1620
acctgttcaa	tatcgccaag	cccaggcccc	cctggatggg	cctgctgggc	cccaccatcc	1680
aggccgaggt	gtacgacacc	gtggtgatca	ccctgaagaa	catggccagc	cacccgtga	1740
gcctgcacgc	cgtgggcgtg	agctactgga	aggccagcga	gggcgccgag	tacgacgacc	1800
agaccagcca	gcgggagaaa	gaagatgaca	aggtgttccc	tggcggcagc	cacacctacg	1860
tgtggcaggt	gctgaaagaa	aacggcccca	tggcctccga	cccctgtgc	ctgacctaca	1920
gctacctgag	ccacgtggac	ctggtgaagg	acctgaacag	cggcctgatc	ggcgctctgc	1980
tcgtctgccg	ggagggcagc	ctggccaaag	agaaaaccca	gaccctgcac	aagttcatcc	2040
tgctgttcgc	cgtgttcgac	gagggcaaga	gctggcacag	cgagacaaag	aacagcctga	2100
tgcaggaccg	ggacgccgcc	tctgccagag	cctggcccaa	gatgcacacc	gtgaacggct	2160
acgtgaacag	aagcctgccc	ggcctgattg	gctgccaccg	gaagagcgtg	tactggcacg	2220
tgatcggcat	gggcaccaca	cccgaggtgc	acagcatctt	tctggaaggg	cacacctttc	2280
tggtccggaa	ccaccggcag	gccagcctgg	aaatcagccc	tatcaccttc	ctgaccgccc	2340
agacactgct	gatggacctg	ggccagttcc	tgctgttttg	ccacatcagc	tctcaccagc	2400
acgacggcat	ggaagcctac	gtgaaggtgg	actcttgccc	cgaggaaccc	cagctgcgga	2460
tgaagaacaa	cgaggaagcc	gaggactacg	acgacgacct	gaccgacagc	gagatggacg	2520
tggtgcggtt	cgacgacgac	aacagcccca	gcttcatcca	gatcagaagc	gtggccaaga	2580
agcaccccaa	gacctgggtg	cactatatcg	ccgccgagga	agaggactgg	gactacgccc	2640
ccctggtgct	ggcccccgac	gacagaagct	acaagagcca	gtacctgaac	aatggccccc	2700
agcggatcgg	ccggaagtac	aagaaagtgc	ggttcatggc	ctacaccgac	gagacattca	2760
agacccggga	ggccatccag	cacgagagcg	gcatcctggg Page 20		tacggcgaag	2820

tgggcgacac	actgctgatc	atcttcaaga	accaggctag	ccggccctac	aacatctacc	2880
cccacggcat	caccgacgtg	cggcccctgt	acagcaggcg	gctgcccaag	ggcgtgaagc	2940
acctgaagga	cttccccatc	ctgcccggcg	agatcttcaa	gtacaagtgg	accgtgaccg	3000
tggaggacgg	ccccaccaag	agcgacccca	gatgcctgac	ccggtactac	agcagcttcg	3060
tgaacatgga	acgggacctg	gcctccgggc	tgatcggacc	tctgctgatc	tgctacaaag	3120
aaagcgtgga	ccagcggggc	aaccagatca	tgagcgacaa	gcggaacgtg	atcctgttca	3180
gcgtgttcga	tgagaaccgg	tcctggtatc	tgaccgagaa	catccagcgg	tttctgccca	3240
accctgccgg	cgtgcagctg	gaagatcccg	agttccaggc	cagcaacatc	atgcactcca	3300
tcaatggcta	cgtgttcgac	tctctgcagc	tctccgtgtg	tctgcacgag	gtggcctact	3360
ggtacatcct	gagcatcggc	gcccagaccg	acttcctgag	cgtgttcttc	agcggctaca	3420
ccttcaagca	caagatggtg	tacgaggaca	ccctgaccct	gttccctttc	agcggcgaga	3480
cagtgttcat	gagcatggaa	aaccccggcc	tgtggattct	gggctgccac	aacagcgact	3540
tccggaaccg	gggcatgacc	gccctgctga	aggtgtccag	ctgcgacaag	aacaccggcg	3600
actactacga	ggacagctac	gaggatatca	gcgcctacct	gctgtccaag	aacaacgcca	3660
tcgaaccccg	gagcttcagc	cagaaccccc	ccgtgctgac	gcgtcaccag	cgggagatca	3720
cccggacaac	cctgcagtcc	gaccaggaag	agatcgatta	cgacgacacc	atcagcgtgg	3780
agatgaagaa	agaggatttc	gatatctacg	acgaggacga	gaaccagagc	cccagaagct	3840
tccagaagaa	aacccggcac	tacttcattg	ccgccgtgga	gaggctgtgg	gactacggca	3900
tgagttctag	ccccacgtg	ctgcggaacc	gggcccagag	cggcagcgtg	ccccagttca	3960
agaaagtggt	gttccaggaa	ttcacagacg	gcagcttcac	ccagcctctg	tatagaggcg	4020
agctgaacga	gcacctgggg	ctgctggggc	cctacatcag	ggccgaagtg	gaggacaaca	4080
tcatggtgac	cttccggaat	caggccagca	gaccctactc	cttctacagc	agcctgatca	4140
gctacgaaga	ggaccagcgg	cagggcgccg	aaccccggaa	gaacttcgtg	aagcccaacg	4200
aaaccaagac	ctacttctgg	aaagtgcagc	accacatggc	ccccaccaag	gacgagttcg	4260
actgcaaggc	ctgggcctac	ttcagcgacg	tggatctgga	aaaggacgtg	cactctggac	4320
tgattggccc	actcctggtc	tgccacacta	acaccctcaa	ccccgcccac	ggccgccagg	4380
tgaccgtgca	ggaattcgcc	ctgttcttca	ccatcttcga	cgagacaaag	tcctggtact	4440
tcaccgagaa	tatggaacgg	aactgcagag	cccctgcaa	catccagatg	gaagatccta	4500
ccttcaaaga	gaactaccgg	ttccacgcca	tcaacggcta	catcatggac	accctgcctg	4560
gcctggtgat	ggcccaggac	cagagaatcc	ggtggtatct	gctgtccatg	ggcagcaacg	4620
agaatatcca	cagcatccac	ttcagcggcc	acgtgttcac	cgtgcggaag	aaagaagagt	4680
acaagatggc	cctgtacaac	ctgtaccccg	gcgtgttcga	gacagtggag	atgctgccca	4740
gcaaggccgg	catctggcgg	gtggagtgtc	tgatcggcga	gcacctgcac	gctggcatga	4800
gcaccctgtt	tctggtgtac	agcaacaagt	gccagacccc Page 21		gcctctggcc	4860

acatccggga	cttccagatc	accgcctccg	gccagtacgg	ccagtgggcc	cccaagctgg	4920
ccagactgca	ctacagcggc	agcatcaacg	cctggtccac	caaagagccc	ttcagctgga	4980
tcaaggtgga	cctgctggcc	cctatgatca	tccacggcat	taagacccag	ggcgccaggc	5040
agaagttcag	cagcctgtac	atcagccagt	tcatcatcat	gtacagcctg	gacggcaaga	5100
agtggcagac	ctaccggggc	aacagcaccg	gcaccctgat	ggtgttcttc	ggcaatgtgg	5160
acagcagcgg	catcaagcac	aacatcttca	accccccat	cattgcccgg	tacatccggc	5220
tgcaccccac	ccactacagc	attagatcca	cactgagaat	ggaactgatg	ggctgcgacc	5280
tgaactcctg	cagcatgcct	ctgggcatgg	aaagcaaggc	catcagcgac	gcccagatca	5340
cagccagcag	ctacttcacc	aacatgttcg	ccacctggtc	ccctccaag	gccaggctgc	5400
acctgcaggg	ccggtccaac	gcctggcggc	ctcaggtcaa	caaccccaaa	gaatggctgc	5460
aggtggactt	tcagaaaacc	atgaaggtga	ccggcgtgac	cacccagggc	gtgaaaagcc	5520
tgctgaccag	catgtacgtg	aaagagtttc	tgatcagcag	ctctcaggat	ggccaccagt	5580
ggaccctgtt	ctttcagaac	ggcaaggtga	aagtgttcca	gggcaaccag	gactccttca	5640
ccccgtggt	gaactccctg	gaccccccc	tgctgacccg	ctacctgaga	atccaccccc	5700
agtcttgggt	gcaccagatc	gccctcagga	tggaagtcct	gggatgtgag	gcccaggatc	5760
tgtactgatg	aggatctagg	ctcgacatgc	tttatttgtg	aaatttgtga	tgctattgct	5820
ttatttgtaa	ccattataag	ctgcaataaa	caagttaaca	acaacaattg	cattcatttt	5880
atgtttcagg	ttcaggggga	ggtgtgggag	gtttttaaa	ctcgagaccg	gtagaggggc	5940
ggaagggacg	ttaggaggga	ggcagggagg	cagggaggca	gggaggaacg	gagggagata	6000
acttcgtata	atgtatgcta	tacgaagtta	tgatatctat	aacaagaaaa	tatatata	6060
ataagttatc	acgtaagtag	aacacgaaat	aacaatataa	ttatcgtatg	agttaaatct	6120
taaaagtcac	gtaaaagata	atcatgcgtc	attttgactc	acgcggttgt	tatagttcaa	6180
aatcagtgac	acttaccgca	ttgacaagca	cgcctcacgg	gagctccaag	cggcgactga	6240
gatgtcctaa	atgcacagcg	acggattcgc	gctatttaga	aagagagagc	aatatttcaa	6300
gaatgcatgc	gtcaatttta	cgcagactat	ctttctaggg	ttaagcgcgc	ttggcgtaat	6360
catggtcata	gctgtttcct	gtgtgaaatt	gttatccgct	cacaattcca	cacaacatac	6420
gagccggaag	cataaagtgt	aaagcctggg	gtgcctaatg	agtgagctaa	ctcacattaa	6480
ttgcgttgcg	ctcactgccc	gctttccagt	cgggaaacct	gtcgtgccag	ctgcattaat	6540
gaatcggcca	acgcgcgggg	agaggcggtt	tgcgtattgg	gcgctcttcc	gcttcctcgc	6600
tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	cactcaaagg	6660
cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	6720
gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgttttc	cataggctcc	6780
gccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	6840
gactataaag	ataccaggcg	tttcccctg	gaagctccct Page 22		cctgttccga	6900

ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	gcgctttctc	6960
atagctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	tcgctccaag	ctgggctgtg	7020
tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatc	cggtaactat	cgtcttgagt	7080
ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	cactggtaac	aggattagca	7140
gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	gtggcctaac	tacggctaca	7200
ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	agttaccttc	ggaaaaagag	7260
ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	cggtggtttt	tttgtttgca	7320
agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	tcctttgatc	ttttctacgg	7380
ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	tttggtcatg	agattatcaa	7440
aaaggatctt	cacctagatc	cttttaaatt	aaaaatgaag	ttttaaatca	atctaaagta	7500
tatatgagta	aacttggtct	gacagttacc	aatgcttaat	cagtgaggca	cctatctcag	7560
cgatctgtct	atttcgttca	tccatagttg	cctgactccc	cgtcgtgtag	ataactacga	7620
tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgat	accgcgagac	ccacgctcac	7680
cggctccaga	tttatcagca	ataaaccagc	cagccggaag	ggccgagcgc	agaagtggtc	7740
ctgcaacttt	atccgcctcc	atccagtcta	ttaattgttg	ccgggaagct	agagtaagta	7800
gttcgccagt	taatagtttg	cgcaacgttg	ttgccattgc	tacaggcatc	gtggtgtcac	7860
gctcgtcgtt	tggtatggct	tcattcagct	ccggttccca	acgatcaagg	cgagttacat	7920
gatcccccat	gttgtgcaaa	aaagcggtta	gctccttcgg	tcctccgatc	gttgtcagaa	7980
gtaagttggc	cgcagtgtta	tcactcatgg	ttatggcagc	actgcataat	tctcttactg	8040
tcatgccatc	cgtaagatgc	ttttctgtga	ctggtgagta	ctcaaccaag	tcattctgag	8100
aatagtgtat	gcggcgaccg	agttgctctt	gcccggcgtc	aatacgggat	aataccgcgc	8160
cacatagcag	aactttaaaa	gtgctcatca	ttggaaaacg	ttcttcgggg	cgaaaactct	8220
caaggatctt	accgctgttg	agatccagtt	cgatgtaacc	cactcgtgca	cccaactgat	8280
cttcagcatc	ttttactttc	accagcgttt	ctgggtgagc	aaaaacagga	aggcaaaatg	8340
ccgcaaaaaa	gggaataagg	gcgacacgga	aatgttgaat	actcatactc	ttcctttttc	8400
aatattattg	aagcatttat	cagggttatt	gtctcatgag	cggatacata	tttgaatgta	8460
tttagaaaaa	taaacaaata	ggggttccgc	gcacatttcc	ccgaaaagtg	ccac	8514

<210> 14
<211> 5097
<212> DNA
<213> Artificial
<220>
<223> PB_mi cro_T_No_i ns_TTRmi nSerpMVM_FI Xco_bghpA transposon
<400> 14
ctaaattgta agcgttaata ttttgttaaa attcgcgtta aatttttgtt aaatcagctc
atttttaac caataggccg aaatcggcaa aatcccttat aaatcaaaag aatagaccga

Page 23

60

120

gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	acgtggactc	180
caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgtg	aaccatcacc	240
ctaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	aatcggaacc	ctaaagggag	300
ccccgattt	agagcttgac	ggggaaagcc	ggcgaacgtg	gcgagaaagg	aagggaagaa	360
agcgaaagga	gcgggcgcta	gggcgctggc	aagtgtagcg	gtcacgctgc	gcgtaaccac	420
cacacccgcc	gcgcttaatg	cgccgctaca	gggcgcgtcc	cattcgccat	tcaggctgcg	480
caactgttgg	gaagggcgat	cggtgcgggc	ctcttcgcta	ttacgccagc	tggcgaaagg	540
gggatgtgct	gcaaggcgat	taagttgggt	aacgccaggg	ttttcccagt	cacgacgttg	600
taaaacgacg	gccagtgagc	gcgcttaacc	ctagaaagat	aatcatattg	tgacgtacgt	660
taaagataat	catgcgtaaa	attgacgcat	gataacttcg	tataatgtat	gctatacgaa	720
gttatgcggc	cgcggtaccg	gcgcgccggg	ggaggctgct	ggtgaatatt	aaccaaggtc	780
accccagtta	tcggaggagc	aaacaggggc	taagtccaca	cgcgtggtac	cgtctgtctg	840
cacatttcgt	agagcgagtg	ttccgatact	ctaatctccc	taggcaaggt	tcatatttgt	900
gtaggttact	tattctcctt	ttgttgacta	agtcaataat	cagaatcagc	aggtttggag	960
tcagcttggc	agggatcagc	agcctgggtt	ggaaggaggg	ggtataaaag	cccttcacc	1020
aggagaagcc	gtcacacaga	tccacaagct	cctgaagagg	taagggttta	agggatggtt	1080
ggttggtggg	gtattaatgt	ttaattacct	ggagcacctg	cctgaaatca	cttttttca	1140
ggttgggcta	gcccaccatg	cagcgcgtga	acatgatcat	ggccgagagc	cccggcctga	1200
tcaccatctg	cctgctgggc	tacctgctga	gcgccgagtg	caccgtgttc	ctggaccacg	1260
agaacgccaa	caagatcctg	aaccgcccca	agcgctacaa	cagcggcaag	ctggaggagt	1320
tcgtgcaggg	caacctggag	cgcgagtgca	tggaggagaa	gtgcagcttc	gaggaggccc	1380
gcgaggtgtt	cgagaacacc	gagcgcacca	ccgagttctg	gaagcagtac	gtggacggcg	1440
accagtgcga	gagcaacccc	tgcctgaacg	gcggcagctg	caaggacgac	atcaacagct	1500
acgagtgctg	gtgccccttc	ggcttcgagg	gcaagaactg	cgagctggac	gtgacctgca	1560
acatcaagaa	cggccgctgc	gagcagttct	gcaagaacag	cgccgacaac	aaggtggtgt	1620
gcagctgcac	cgagggctac	cgcctggccg	agaaccagaa	gagctgcgag	cccgccgtgc	1680
ccttcccctg	cggccgcgtg	agcgtgagcc	agaccagcaa	gctgacccgc	gccgaggccg	1740
tgttccccga	cgtggactac	gtgaacagca	ccgaggccga	gaccatcctg	gacaacatca	1800
cccagagcac	ccagagcttc	aacgacttca	cccgcgtggt	gggcggcgag	gacgccaagc	1860
ccggccagtt	cccctggcag	gtggtgctga	acggcaaggt	ggacgccttc	tgcggcggca	1920
gcatcgtgaa	cgagaagtgg	atcgtgaccg	ccgcccactg	cgtggagacc	ggcgtgaaga	1980
tcaccgtggt	ggccggcgag	cacaacatcg	aggagaccga	gcacaccgag	cagaagcgca	2040
acgtgatccg	catcatcccc	caccacaact	acaacgccgc	catcaacaag	tacaaccacg	2100
acatcgccct	gctggagctg	gacgagcccc	tggtgctgaa Page 24		accccatct	2160

gcatcgccga	caaggagtac	accaacatct	tcctgaagtt	cggcagcggc	tacqtqaqcq	2220
	cgtgttccac					2280
	ccgcgccacc					2340
	cttccacgag					2400
	ggtggagggc					2460
	gggcaagtac					2520
	caagctgacc					2580
aaaattaaca	gcccccccc	ccccccct	gcagatctag	agctcgctga	tcagcctcga	2640
ctgtgccttc	tagttgccag	ccatctgttg	tttgcccctc	ccccgtgcct	tccttgaccc	2700
tggaaggtgc	cactcccact	gtcctttcct	aataaaatga	ggaaattgca	tcgcattgtc	2760
tgagtaggtg	tcattctatt	ctggggggtg	gggtggggca	ggacagcaag	ggggaggatt	2820
gggaagacaa	tagcaggcat	gctggggacc	ggtataactt	cgtataatgt	atgctatacg	2880
aagttatgca	tgcgtcaatt	ttacgcagac	tatctttcta	gggttaagcg	cgcttggcgt	2940
aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	ccacacaaca	3000
tacgagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	taactcacat	3060
taattgcgtt	gcgctcactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	cagctgcatt	3120
aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggcgctct	tccgcttcct	3180
cgctcactga	ctcgctgcgc	tcggtcgttc	ggctgcggcg	agcggtatca	gctcactcaa	3240
aggcggtaat	acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	3300
aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	3360
tccgccccc	tgacgagcat	cacaaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	3420
caggactata	aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	3480
cgaccctgcc	gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	3540
ctcatagctc	acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	3600
gtgtgcacga	acccccgtt	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	3660
agtccaaccc	ggtaagacac	gacttatcgc	cactggcagc	agccactggt	aacaggatta	3720
gcagagcgag	gtatgtaggc	ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	3780
acactagaag	gacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	3840
gagttggtag	ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	3900
gcaagcagca	gattacgcgc	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	3960
cggggtctga	cgctcagtgg	aacgaaaact	cacgttaagg	gattttggtc	atgagattat	4020
caaaaaggat	cttcacctag	atccttttaa	attaaaaaatg	aagttttaaa	tcaatctaaa	4080
gtatatatga	gtaaacttgg	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	4140
cagcgatctg	tctatttcgt	tcatccatag	ttgcctgact Page 25		tagataacta	4200

eol f-seql . txt	
cgatacggga gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct	4260
caccggctcc agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg	4320
gtcctgcaac tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa	4380
gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt	4440
cacgctcgtc gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta	4500
catgatcccc catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca	4560
gaagtaagtt ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta	4620
ctgtcatgcc atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct	4680
gagaatagtg tatgcggcga ccgagttgct cttgcccggc gtcaatacgg gataataccg	4740
cgccacatag cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac	4800
tctcaaggat cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact	4860
gatcttcagc atcttttact ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa	4920
atgccgcaaa aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt	4980
ttcaatatta ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat	5040
gtatttagaa aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccac	5097
<210> 15 <211> 5097 <212> DNA <213> Artificial	
<pre><220> <223> PB_mi cro_T_No_i ns_TTRmi nSerpMVM_FI Xco_Padua_bghpA transposor</pre>	l
<400> 15 ctaaattgta agcgttaata ttttgttaaa attcgcgtta aatttttgtt aaatcagctc	60
	100

attttttaac caataggccg aaatcggcaa aatcccttat aaatcaaaag aatagaccga 120 gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga acgtggactc 180 240 caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc ctaaagggag 300 360 cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa 420 agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacaccegee gegettaatg egeegetaea gggegegtee cattegeeat teaggetgeg 480 540 caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg 600 taaaacgacg gccagtgagc gcgcttaacc ctagaaagat aatcatattg tgacgtacgt 660 720 taaagataat catgcgtaaa attgacgcat gataacttcg tataatgtat gctatacgaa 780 gttatgcggc cgcggtaccg gcgcgccggg ggaggctgct ggtgaatatt aaccaaggtc 840 accccagtta tcggaggagc aaacaggggc taagtccaca cgcgtggtac cgtctgtctg

Page 26

cacatttcgt	agagcgagtg	ttccgatact	ctaatctccc	taggcaaggt	tcatatttgt	900
gtaggttact	tattctcctt	ttgttgacta	agtcaataat	cagaatcagc	aggtttggag	960
tcagcttggc	agggatcagc	agcctgggtt	ggaaggaggg	ggtataaaag	cccttcacc	1020
aggagaagcc	gtcacacaga	tccacaagct	cctgaagagg	taagggttta	agggatggtt	1080
ggttggtggg	gtattaatgt	ttaattacct	ggagcacctg	cctgaaatca	cttttttca	1140
ggttgggcta	gcccaccatg	cagcgcgtga	acatgatcat	ggccgagagc	cccggcctga	1200
tcaccatctg	cctgctgggc	tacctgctga	gcgccgagtg	caccgtgttc	ctggaccacg	1260
agaacgccaa	caagatcctg	aaccgcccca	agcgctacaa	cagcggcaag	ctggaggagt	1320
tcgtgcaggg	caacctggag	cgcgagtgca	tggaggagaa	gtgcagcttc	gaggaggccc	1380
gcgaggtgtt	cgagaacacc	gagcgcacca	ccgagttctg	gaagcagtac	gtggacggcg	1440
accagtgcga	gagcaacccc	tgcctgaacg	gcggcagctg	caaggacgac	atcaacagct	1500
acgagtgctg	gtgccccttc	ggcttcgagg	gcaagaactg	cgagctggac	gtgacctgca	1560
acatcaagaa	cggccgctgc	gagcagttct	gcaagaacag	cgccgacaac	aaggtggtgt	1620
gcagctgcac	cgagggctac	cgcctggccg	agaaccagaa	gagctgcgag	cccgccgtgc	1680
ccttcccctg	cggccgcgtg	agcgtgagcc	agaccagcaa	gctgacccgc	gccgaggccg	1740
tgttccccga	cgtggactac	gtgaacagca	ccgaggccga	gaccatcctg	gacaacatca	1800
cccagagcac	ccagagcttc	aacgacttca	cccgcgtggt	gggcggcgag	gacgccaagc	1860
ccggccagtt	cccctggcag	gtggtgctga	acggcaaggt	ggacgccttc	tgcggcggca	1920
gcatcgtgaa	cgagaagtgg	atcgtgaccg	ccgcccactg	cgtggagacc	ggcgtgaaga	1980
tcaccgtggt	ggccggcgag	cacaacatcg	aggagaccga	gcacaccgag	cagaagcgca	2040
acgtgatccg	catcatcccc	caccacaact	acaacgccgc	catcaacaag	tacaaccacg	2100
acatcgccct	gctggagctg	gacgagcccc	tggtgctgaa	cagctacgtg	accccatct	2160
gcatcgccga	caaggagtac	accaacatct	tcctgaagtt	cggcagcggc	tacgtgagcg	2220
gctggggccg	cgtgttccac	aagggccgca	gcgccctggt	gctgcagtac	ctgcgcgtgc	2280
ccctggtgga	ccgcgccacc	tgcctgctga	gcaccaagtt	caccatctac	aacaacatgt	2340
tctgcgccgg	cttccacgag	ggcggccgcg	acagctgcca	gggcgacagc	ggcggccccc	2400
acgtgaccga	ggtggagggc	accagcttcc	tgaccggcat	catcagctgg	ggcgaggagt	2460
gcgccatgaa	gggcaagtac	ggcatctaca	ccaaggtgag	ccgctacgtg	aactggatca	2520
aggagaagac	caagctgacc	taatgaaaga	tggatttcca	aggttaattc	attggaattg	2580
aaaattaaca	gcccccccc	ccccccct	gcagatctag	agctcgctga	tcagcctcga	2640
ctgtgccttc	tagttgccag	ccatctgttg	tttgcccctc	ccccgtgcct	tccttgaccc	2700
tggaaggtgc	cactcccact	gtcctttcct	aataaaatga	ggaaattgca	tcgcattgtc	2760
tgagtaggtg	tcattctatt	ctggggggtg	gggtggggca	ggacagcaag	ggggaggatt	2820
gggaagacaa	tagcaggcat	gctggggacc	ggtataactt Page 27		atgctatacg	2880

aagttatgca	tgcgtcaatt	ttacgcagac	tatctttcta	gggttaagcg	cgcttggcgt	2940
aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	ccacacaaca	3000
tacgagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	taactcacat	3060
taattgcgtt	gcgctcactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	cagctgcatt	3120
aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggcgctct	tccgcttcct	3180
cgctcactga	ctcgctgcgc	tcggtcgttc	ggctgcggcg	agcggtatca	gctcactcaa	3240
aggcggtaat	acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	3300
aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	3360
tccgccccc	tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	3420
caggactata	aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	3480
cgaccctgcc	gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	3540
ctcatagctc	acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	3600
gtgtgcacga	acccccgtt	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	3660
agtccaaccc	ggtaagacac	gacttatcgc	cactggcagc	agccactggt	aacaggatta	3720
gcagagcgag	gtatgtaggc	ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	3780
acactagaag	gacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	3840
gagttggtag	ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	3900
gcaagcagca	gattacgcgc	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	3960
cggggtctga	cgctcagtgg	aacgaaaact	cacgttaagg	gattttggtc	atgagattat	4020
caaaaaggat	cttcacctag	atccttttaa	attaaaaaatg	aagttttaaa	tcaatctaaa	4080
gtatatatga	gtaaacttgg	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	4140
cagcgatctg	tctatttcgt	tcatccatag	ttgcctgact	ccccgtcgtg	tagataacta	4200
cgatacggga	gggcttacca	tctggcccca	gtgctgcaat	gataccgcga	gacccacgct	4260
caccggctcc	agatttatca	gcaataaacc	agccagccgg	aagggccgag	cgcagaagtg	4320
gtcctgcaac	tttatccgcc	tccatccagt	ctattaattg	ttgccgggaa	gctagagtaa	4380
gtagttcgcc	agttaatagt	ttgcgcaacg	ttgttgccat	tgctacaggc	atcgtggtgt	4440
cacgctcgtc	gtttggtatg	gcttcattca	gctccggttc	ccaacgatca	aggcgagtta	4500
catgatcccc	catgttgtgc	aaaaaagcgg	ttagctcctt	cggtcctccg	atcgttgtca	4560
gaagtaagtt	ggccgcagtg	ttatcactca	tggttatggc	agcactgcat	aattctctta	4620
ctgtcatgcc	atccgtaaga	tgcttttctg	tgactggtga	gtactcaacc	aagtcattct	4680
gagaatagtg	tatgcggcga	ccgagttgct	cttgcccggc	gtcaatacgg	gataataccg	4740
cgccacatag	cagaacttta	aaagtgctca	tcattggaaa	acgttcttcg	gggcgaaaac	4800
tctcaaggat	cttaccgctg	ttgagatcca	gttcgatgta	acccactcgt	gcacccaact	4860
gatcttcagc	atcttttact	ttcaccagcg	tttctgggtg Page 28		ggaaggcaaa	4920

4980 atgccgcaaa aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat 5040 5097 gtatttagaa aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccac <210> 16 <211> 14 **PRT** <212> <213> Arti fi ci al <220> <223> linker <400> 16 Ser Phe Ser Gln Asn Pro Pro Val Leu Thr Arg His Gln Arg <210> 17 <211> 6891 DNA <212> Arti fi ci al <213> <220> pCDNA3 _CMVBGI _SBMAX_bghpA plasmid <223> <400> gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60 120 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 180 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 240 ttagggttag gcgttttgcg ctgcttcgcg cgtggagcta gttattaata gtaatcaatt acggggtcat tagttcatag cccatatatg gagttccgcg ttacataact tacggtaaat 300 ggcccgcctg gctgaccgcc caacgacccc cgcccattga cgtcaataat gacgtatgtt 360 cccatagtaa cgtcaatagg gactttccat tgacgtcaat gggtggagta tttacggtaa 420 480 actgcccact tggcagtaca tcaagtgtat catatgccaa gtacgccccc tattgacgtc aatgacggta aatggcccgc ctggcattat gcccagtaca tgaccttatg ggactttcct 540 acttggcagt acatctacgt attagtcatc gctattacca tggtgatgcg gttttggcag 600 tacatcaatg ggcgtggata gcggtttgac tcacggggat ttccaagtct ccaccccatt 660 720 gacgtcaatg ggagtttgtt ttggcaccaa aatcaacggg actttccaaa atgtcgtaac aactccgccc cattgacgca aatgggcggt aggcgtgtac ggtgggaggt ctatataagc 780 840 agagetegtt tagtgaaceg teagategee tggagaegee atecaegetg tittgacete 900 catagaagac accgggaccg atccagcctc cgcggattcg aatcccggcc gggaacggtg cattggaacg cggattcccc gtgccaagag tgacgtaagt accgcctata gagtctatag 960 gcccacaaaa aatgctttct tcttttaata tacttttttg tttatcttat ttctaatact 1020 1080 ttccctaatc tctttctttc agggcaataa tgatacaatg tatcatgcct ctttgcacca ttctaaagaa taacagtgat aatttctggg ttaaggcaat agcaatattt ctgcatataa 1140

Page 29

atatttctgc	atataaattg	taactgatgt	aagaggtttc	atattgctaa	tagcagctac	1200
aatccagcta	ccattctgct	tttattttat	ggttgggata	aggctggatt	attctgagtc	1260
caagctaggc	ccttttgcta	atcatgttca	tacctcttat	cttcctccca	cagctcctgg	1320
gcaacgtgct	ggtctgtgtg	ctggcccatc	actttggcaa	agaattggga	ttcgaacatc	1380
gatgccgcca	ccatgggaaa	atcaaaagaa	atcagccaag	acctcagaaa	aagaattgta	1440
gacctccaca	agtctggttc	atccttggga	gcaatttccc	gacgcctggc	ggtaccacgt	1500
tcatctgtac	aaacaatagt	acgcaagtat	aaacaccatg	ggaccacgca	gccgtcatac	1560
cgctcaggaa	ggagacgcgt	tctgtctcct	agagatgaac	gtactttggt	gcgaaaagtg	1620
caaatcaatc	ccagaacaac	agcaaaggac	cttgtgaaga	tgctggagga	aacaggtaca	1680
aaagtatcta	tatccacagt	aaaacgagtc	ctatatcgac	ataacctgaa	aggccactca	1740
gcaaggaaga	agccactgct	ccaaaaccga	cataagaaag	ccagactacg	gtttgcaact	1800
gcacatgggg	acaaagatct	aactttttgg	agaaatgtcc	tctggtctga	tgaaacaaaa	1860
atagaactgt	ttggccataa	tgaccatcgt	tatgtttgga	ggaagaaggg	ggaggcttgc	1920
aagccgaaga	acaccatccc	aaccgtgaag	cacgggggtg	gcagcatcat	gttgtggggg	1980
tgctttgctg	caggagggac	tggtaaactt	gtccgaatag	aaggcatcat	ggacgcggtg	2040
cagtatgtgg	atatattgaa	gcaacatctc	aagacatcag	tcaggaagtt	aaagcttggt	2100
cgcaaatggg	tcttccaaca	cgacaatgac	cccaagcata	cttccaaagt	tgtggcaaaa	2160
tggcttaagg	acaacaaagt	caaggtattg	gactggccat	cacaaagccc	tgacctcaat	2220
cctatagaaa	atttgtgggc	agaactgaaa	aagcgtgtgc	gagcaaggag	gcctacaaac	2280
ctgactcagt	tacaccagct	ctgtcaggag	gaatgggcca	aaattcaccc	aaattattgt	2340
gggaagcttg	tggaaggcta	cccgaaacgt	ttgacccaag	ttaaacaatt	taaaggcaat	2400
gctaccaaat	actagctcga	gcatgcatct	agagggccct	attctatagt	gtcacctaaa	2460
tgctagagct	cgctgatcag	cctcgactgt	gccttctagt	tgccagccat	ctgttgtttg	2520
ccctcccc	gtgccttcct	tgaccctgga	aggtgccact	cccactgtcc	tttcctaata	2580
aaatgaggaa	attgcatcgc	attgtctgag	taggtgtcat	tctattctgg	ggggtggggt	2640
ggggcaggac	agcaaggggg	aggattggga	agacaatagc	aggcatgctg	gggatgcggt	2700
gggctctatg	gcttctgagg	cggaaagaac	cagctggggc	tctagggggt	atccccacgc	2760
gccctgtagc	ggcgcattaa	gcgcggcggg	tgtggtggtt	acgcgcagcg	tgaccgctac	2820
acttgccagc	gccctagcgc	ccgctccttt	cgctttcttc	ccttcctttc	tcgccacgtt	2880
cgccggcttt	ccccgtcaag	ctctaaatcg	gggcatccct	ttagggttcc	gatttagtgc	2940
tttacggcac	ctcgacccca	aaaaacttga	ttagggtgat	ggttcacgta	gtgggccatc	3000
gccctgatag	acggttttc	gccctttgac	gttggagtcc	acgttcttta	atagtggact	3060
cttgttccaa	actggaacaa	cactcaaccc	tatctcggtc	tattcttttg	atttataagg	3120
gattttgggg	atttcggcct	attggttaaa	aaatgagctg Page 30		aatttaacgc	3180

gaattaattc	tgtggaatgt	gtgtcagtta	gggtgtggaa	agtccccagg	ctcccaggc	3240
aggcagaagt	atgcaaagca	tgcatctcaa	ttagtcagca	accaggtgtg	gaaagtcccc	3300
aggctcccca	gcaggcagaa	gtatgcaaag	catgcatctc	aattagtcag	caaccatagt	3360
cccgccccta	actccgccca	tcccgcccct	aactccgccc	agttccgccc	attctccgcc	3420
ccatggctga	ctaattttt	ttatttatgc	agaggccgag	gccgcctctg	cctctgagct	3480
attccagaag	tagtgaggag	gcttttttgg	aggcctaggc	ttttgcaaaa	agctcccggg	3540
agcttgtata	tccattttcg	gatctgatca	agagacagga	tgaggatcgt	ttcgcatgat	3600
tgaacaagat	ggattgcacg	caggttctcc	ggccgcttgg	gtggagaggc	tattcggcta	3660
tgactgggca	caacagacaa	tcggctgctc	tgatgccgcc	gtgttccggc	tgtcagcgca	3720
ggggcgcccg	gttctttttg	tcaagaccga	cctgtccggt	gccctgaatg	aactgcagga	3780
cgaggcagcg	cggctatcgt	ggctggccac	gacgggcgtt	ccttgcgcag	ctgtgctcga	3840
cgttgtcact	gaagcgggaa	gggactggct	gctattgggc	gaagtgccgg	ggcaggatct	3900
cctgtcatct	caccttgctc	ctgccgagaa	agtatccatc	atggctgatg	caatgcggcg	3960
gctgcatacg	cttgatccgg	ctacctgccc	attcgaccac	caagcgaaac	atcgcatcga	4020
gcgagcacgt	actcggatgg	aagccggtct	tgtcgatcag	gatgatctgg	acgaagagca	4080
tcaggggctc	gcgccagccg	aactgttcgc	caggctcaag	gcgcgcatgc	ccgacggcga	4140
ggatctcgtc	gtgacccatg	gcgatgcctg	cttgccgaat	atcatggtgg	aaaatggccg	4200
cttttctgga	ttcatcgact	gtggccggct	gggtgtggcg	gaccgctatc	aggacatagc	4260
gttggctacc	cgtgatattg	ctgaagagct	tggcggcgaa	tgggctgacc	gcttcctcgt	4320
gctttacggt	atcgccgctc	ccgattcgca	gcgcatcgcc	ttctatcgcc	ttcttgacga	4380
gttcttctga	gcgggactct	ggggttcgaa	atgaccgacc	aagcgacgcc	caacctgcca	4440
tcacgagatt	tcgattccac	cgccgccttc	tatgaaaggt	tgggcttcgg	aatcgttttc	4500
cgggacgccg	gctggatgat	cctccagcgc	ggggatctca	tgctggagtt	cttcgcccac	4560
cccaacttgt	ttattgcagc	ttataatggt	tacaaataaa	gcaatagcat	cacaaatttc	4620
acaaataaag	cattttttc	actgcattct	agttgtggtt	tgtccaaact	catcaatgta	4680
tcttatcatg	tctgtatacc	gtcgacctct	agctagagct	tggcgtaatc	atggtcatag	4740
ctgtttcctg	tgtgaaattg	ttatccgctc	acaattccac	acaacatacg	agccggaagc	4800
ataaagtgta	aagcctgggg	tgcctaatga	gtgagctaac	tcacattaat	tgcgttgcgc	4860
tcactgcccg	ctttccagtc	gggaaacctg	tcgtgccagc	tgcattaatg	aatcggccaa	4920
cgcgcgggga	gaggcggttt	gcgtattggg	cgctcttccg	cttcctcgct	cactgactcg	4980
ctgcgctcgg	tcgttcggct	gcggcgagcg	gtatcagctc	actcaaaggc	ggtaatacgg	5040
ttatccacag	aatcagggga	taacgcagga	aagaacatgt	gagcaaaagg	ccagcaaaag	5100
gccaggaacc	gtaaaaaggc	cgcgttgctg	gcgtttttcc	ataggctccg	ccccctgac	5160
gagcatcaca	aaaatcgacg	ctcaagtcag	aggtggcgaa Page 31		actataaaga	5220

taccaggcgt	ttcccctgg	aagctccctc	gtgcgctctc	ctgttccgac	cctgccgctt	5280
accggatacc	tgtccgcctt	tctcccttcg	ggaagcgtgg	cgctttctca	atgctcacgc	5340
tgtaggtatc	tcagttcggt	gtaggtcgtt	cgctccaagc	tgggctgtgt	gcacgaaccc	5400
cccgttcagc	ccgaccgctg	cgccttatcc	ggtaactatc	gtcttgagtc	caacccggta	5460
agacacgact	tatcgccact	ggcagcagcc	actggtaaca	ggattagcag	agcgaggtat	5520
gtaggcggtg	ctacagagtt	cttgaagtgg	tggcctaact	acggctacac	tagaaggaca	5580
gtatttggta	tctgcgctct	gctgaagcca	gttaccttcg	gaaaaagagt	tggtagctct	5640
tgatccggca	aacaaaccac	cgctggtagc	ggtggttttt	ttgtttgcaa	gcagcagatt	5700
acgcgcagaa	aaaaaggatc	tcaagaagat	cctttgatct	tttctacggg	gtctgacgct	5760
cagtggaacg	aaaactcacg	ttaagggatt	ttggtcatga	gattatcaaa	aaggatcttc	5820
acctagatcc	ttttaaatta	aaaatgaagt	tttaaatcaa	tctaaagtat	atatgagtaa	5880
acttggtctg	acagttacca	atgcttaatc	agtgaggcac	ctatctcagc	gatctgtcta	5940
tttcgttcat	ccatagttgc	ctgactcccc	gtcgtgtaga	taactacgat	acgggagggc	6000
ttaccatctg	gccccagtgc	tgcaatgata	ccgcgagacc	cacgctcacc	ggctccagat	6060
ttatcagcaa	taaaccagcc	agccggaagg	gccgagcgca	gaagtggtcc	tgcaacttta	6120
tccgcctcca	tccagtctat	taattgttgc	cgggaagcta	gagtaagtag	ttcgccagtt	6180
aatagtttgc	gcaacgttgt	tgccattgct	acaggcatcg	tggtgtcacg	ctcgtcgttt	6240
ggtatggctt	cattcagctc	cggttcccaa	cgatcaaggc	gagttacatg	atcccccatg	6300
ttgtgcaaaa	aagcggttag	ctccttcggt	cctccgatcg	ttgtcagaag	taagttggcc	6360
gcagtgttat	cactcatggt	tatggcagca	ctgcataatt	ctcttactgt	catgccatcc	6420
gtaagatgct	tttctgtgac	tggtgagtac	tcaaccaagt	cattctgaga	atagtgtatg	6480
cggcgaccga	gttgctcttg	cccggcgtca	atacgggata	ataccgcgcc	acatagcaga	6540
actttaaaag	tgctcatcat	tggaaaacgt	tcttcggggc	gaaaactctc	aaggatctta	6600
ccgctgttga	gatccagttc	gatgtaaccc	actcgtgcac	ccaactgatc	ttcagcatct	6660
tttactttca	ccagcgtttc	tgggtgagca	aaaacaggaa	ggcaaaatgc	cgcaaaaaaag	6720
ggaataaggg	cgacacggaa	atgttgaata	ctcatactct	tcctttttca	atattattga	6780
agcatttatc	agggttattg	tctcatgagc	ggatacatat	ttgaatgtat	ttagaaaaat	6840
aaacaaatag	gggttccgcg	cacatttccc	cgaaaagtgc	cacctgacgt	С	6891

<210> 18 <211> 19 <212> DNA <213> Artificial

<220> <223> primer

<400> 18 gaaggtgaag gtcggagtc

```
<210>
       19
<211>
      20
      DNA
<212>
<213>
      Arti fi ci al
<220>
<223>
       primer
<400> 19
gaagatggtg atgggatttc
                                                                          20
<210>
       20
<211>
       25
<212>
      DNA
<213>
      Arti fi ci al
<220>
<223>
      pri mer
<400>
       20
tgatgctatt gctttatttg taacc
                                                                          25
<210>
       21
<211>
       23
<212>
       DNA
<213> Artificial
<220>
<223>
      pri mer
<400> 21
                                                                          23
cctgaacctg aaacataaaa tga
<210>
       22
<211>
      34
<212>
      DNA
      Arti fi ci al
<213>
<220>
<223>
       probe
<400>
agctgcaata aacaagttaa caacaacaat tgca
                                                                          34
       23
<210>
<211>
       19
<212>
      DNA
       Arti fi ci al
<213>
<220>
<223>
       Fragment codon-optimized human coagulation factor IX with Padua
       mutati on
<400>
       23
cctgcctgct gagcaccaa
                                                                          19
<210>
       24
       19
<211>
<212>
      DNA
<213> Artificial
```

000	eol f-seql.txt	
<220> <223>	Fragment codon-optimized human coagulation factor IX	
<400> cctgcc	24 tgcg cagcaccaa	19
	25 20 DNA Arti fi ci al	
<220> <223>	primer	
<400> aacagg	25 ggct aagtccacac	20
	26 21 DNA Artificial	
<220> <223>	primer	
<400> gagcgag	26 gtgt tccgatactc t	21
<210><211><211><212><213>	27 24 DNA Artificial	
<220> <223>	primer	
<400> atcaaga	27 aagg tggtgaagca ggca	24
<210> <211> <212> <213>	28 24 DNA Artificial	
<220> <223>	pri mer	
<400> tggaaga	28 agtg ggagttgctg ttga	24
<210><211><211><212><213>	29 67 DNA Artificial	
<220> <223>	IR micro	
<400> ttaacco	29 ctag aaagataatc atattgtgac gtacgttaaa gataatcatg cgtaaaattg	60
acgcat	g	67

```
<210> 30
<211> 40
<212> DNA
<213> Artificial
<220>
<223> IR micro
<400> 30
gcatgcgtca attttacgca gactatcttt ctagggttaa
```

40