(19) (10 DE 601 17 066 T2 2006.08.24

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97) EP 1 160 987 B1 e1ymtcte: HO3M 13/00 (2006.01)

(21) Deutsches Aktenzeichen: 601 17 066.0
(96) Europaisches Aktenzeichen: 01 108 612.1
(96) Europaischer Anmeldetag: 05.04.2001
(97) Erstveroffentlichung durch das EPA: 05.12.2001
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 08.02.2006
(47) Veroffentlichungstag im Patentblatt: 24.08.2006

(30) Unionsprioritat: (84) Benannte Vertragsstaaten:
562133 01.05.2000 us DE, FR, GB
(73) Patentinhaber: (72) Erfinder:
Hewlett-Packard Development Co., L.P., Houston, Das Sharma, Debendra, Santa Clara, CA 95050,
Tex., US US; Wolf, Elizabeth S., Cupertino, CA 95014, US
(74) Vertreter:
Schoppe, Zimmermann, Stockeler & Zinkler, 82049
Pullach

(54) Bezeichnung: Verfahren und Vorrichtung zum Uberpriifen von fehlerkorrigierenden Codes

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 601 17 066 T2 2006.08.24

Beschreibung
Technisches Gebiet

[0001] Das technische Gebiet ist ein Fehlerkorrek-
turcode fur Speicher- oder Kommunikationssysteme.

Hintergrund

[0002] Kommunikations- und Speichersysteme sind
Fehlern unterworfen, die eine Funktionsweise ange-
schlossene Systeme beeinflussen kénnten. Ein typi-
scher Fehler kdnnte resultieren, wenn ein bestimmter
Speicherort einem oder mehreren a-Teilchen ausge-
setzt wird. Eine derartige Strahlung kdnnte bewirken,
dass ein an dem Speicherort gespeichertes Datenbit
von einer ,1" in eine ,0" umgedreht wird.

[0003] Fehlerkorrekturcodes (ECC) werden ver-
wendet, um eine Zuverlassigkeit und Zustandsinteg-
ritdt von Kommunikations- und Speichersystemen zu
verbessern. Fehlerkorrekturcodes sind bekannt, die
einen Einzelfehler korrigieren und einen Doppelfehler
erfassen, jedoch nicht korrigieren. Andere ECCs er-
fassen und korrigieren Mehrfachfehler. Fur ECC-An-
wendungen kdnnten Speicherarraychips so organi-
siert sein, dass in einem Chip erzeugte Fehler durch
den ECC korrigiert werden kénnen.

[0004] Die Korrektur von Einzelbitfehlern und die Er-
fassung von Doppelbitfehlern kénnten durch die Ver-
wendung von Prufbits erzielt werden. Eine typische
ECC-Implementierung hangt eine Anzahl von Pruf-
bits an jedes Datenwort an. Die angehangten Prifbits
werden durch ECC-Logikschaltungen verwendet, um
Fehler innerhalb des Datenworts zu erfassen. Die
einfachste und Ublichste Form der Fehlersteuerung
wird durch die Verwendung von Paritatsbits imple-
mentiert. Ein Einzelparitatsbit wird an ein Datenwort
angehangt und als eine 0 oder eine 1 zugewiesen,
um so die Anzahl von 1en in dem Datenwort in dem
Fall gerader Paritatscodes gerade oder in dem Fall
ungerader Paritdtscodes ungerade zu machen.

[0005] Vor einer Ubertragung des Datenworts in ei-
nem Computersystem wird der Wert des Paritatsbits
an dem Quellenpunkt des Datenworts berechnet und
an das Datenwort angehangt. Auf einen Empfang
des Ubertragenen Datenworts hin berechnet eine Lo-
gik an dem Zielpunkt erneut das Paritatsbit und ver-
gleicht dieses mit dem empfangenen, zuvor ange-
hangten Paritatsbit. Wenn das neu berechnete und
das empfangene Paritatsbit nicht gleich sind, wurde
ein Bitfehler erfasst. Die Verwendung von Paritats-
codes hat jedoch den Nachteil, dass man nicht in der
Lage ist, Bitfehler zu korrigieren, und nicht in der
Lage ist, gerade Anzahlen von Bitfehlern zu erfassen.
Wenn sich z. B. ein Datenbit von einer 0 in eine 1 ver-
andert und ein weiteres Datenbit von einer 1 in eine
0 verandert (ein Doppelbitfehler), verandert sich die

Paritat des Datenworts nicht und der Fehler bleibt un-
erfasst.

[0006] Durch das Anhangen zusatzlicher Paritats-
bits an das Datenwort, wobei jedes einem Teilsatz
von Datenbits innerhalb des Datenworts entspricht,
koénnte das Paritatsbitkonzept erweitert werden, um
eine Erfassung von Mehrfachbitfehlern bereitzustel-
len oder den Ort von Einzel- oder Mehrfachbitfehlern
zu bestimmen. Sobald ein Datenbitfehler erfasst wur-
de, kénnten Logikschaltungen verwendet werden,
um das fehlerhafte Bit zu korrigieren, was eine Ein-
zelfehlerkorrektur bereitstellt.

[0007] Ein bekannter Fehlerkorrekturcode ist der
Hamming-Code, der z. B. ein SEC-DED-Code sein
kénnte. Der ECC hangt eine Serie von Prifbits an
das Datenwort an, wenn dieses in einem Speicher
gespeichert wird. Auf eine Leseoperation hin werden
die wiedergewonnenen Prifbits verglichen, um Prif-
bits neu zu berechnen, um einen Einzelbitfehler zu
erfassen und zu lokalisieren (d. h. korrigieren). Durch
ein Hinzufugen mehrerer Prifbits und ein geeignetes
Uberlappen der Teilsatze von Datenbits, die durch die
Prufbits dargestellt werden, kénnten weitere Fehler-
korrekturcodes fur eine Mehrfachfehlerkorrektur und
-erfassung sorgen.

[0008] Ein Verifizieren der Korrektheit des Fehler-
korrekturcodes umfasst zwei Schritte: Verifizieren
des zugrundeliegenden Algorithmus des Fehlerkor-
rekturcodes und Verifizieren der Implementierung
des Fehlerkorrekturcodes an einer Hardware-Vor-
richtung oder an einer Simulation der Hardware-Vor-
richtung. Gegenwartige Verfahren zum Verifizieren
des Fehlerkorrekturcodes verbinden diese beiden
Schritte nicht und liefern so keine vollstandige Verifi-
zierung. Ein Beispiel dieses Problems kénnte in Be-
zug auf lineare Codes gezeigt werden. Lineare Co-
des sind unter Verwendung von Eigenschaften auf-
gebaut, die auf einer Galois-Feld-Arithmetik basie-
ren. Der Beweis der Eigenschaften in einem Konzept
kénnte innerhalb des mathematischen Rahmens von
Galois-Feldern durchgefiihrt werden. Basierend auf
diesem Konzept werden eine Erzeugermatrix (als
eine G-Matrix bekannt), eine Paritatsmatrix (als eine
H-Matrix bekannt) und unterschiedliche Syndrom-
vektoren, die verschiedenen Fehlerszenarien ent-
sprechen, entweder von Hand oder durch ein Com-
puterprogramm erzeugt. Ein Einzelfehlerkorrek-
tur-Doppelfehlererfassungs(SEC-DED-) Code hatte
eine H-Matrix, bei der keine zwei Spalten identisch
sind, und bei der die Galois-Feld-Addition beliebiger
zwei Spalten nicht gleich einer beliebigen Spalten in
der H-Matrix ist. Der mathematische Beweis des
Konzeptes erfasst keinen Fehler, der wahrend der Er-
zeugung der G- und der H-Matrix und der Syndrom-
vektoren eingefuhrt wird. Die G- und die H-Matrix und
die Syndromvektoren werden dann in einer Sprache
auf hoher Ebene verwendet, um den Fehlerkorrektur-

2112

DE 601 17 066 T2 2006.08.24

codeschaltungsaufbau zu erzeugen, der als eine
Hardwarevorrichtung oder als eine Simulation der
Hardwarevorrichtung implementiert sein kdnnte. Eine
Verifizierung der Implementierung wird durch ein Pru-
fen, ob die Implementierung erwartete Ausgaben lie-
fert, basierend auf der G- und der H-Matrix und den
Syndromvektoren, vervollstandigt.

[0009] Ein Problem bei diesem herkémmlichen An-
satz stammt von Fehlern, die wahrend der Erzeu-
gung der G- und der H-Matrix und der Syndromvek-
toren auftreten kdnnten. Derartige Fehler kénnten
unerfasst bleiben, da kein automatisiertes Werkzeug
vorliegt, um direkt den Fehlerkorrekturcodeschal-
tungsaufbau aus den mathematischen Eigenschaf-
ten zu erzeugen.

[0010] R. G. Cooper u. a. offenbaren in ,Diagnostic
error forcing circuit", IBM Technical Disclosure Bulle-
tin, Bd. 19, Nr. 5, Oktober 1976, eine Schaltungsun-
terstlitzung, um sicherzustellen, dass die Fehlerpruf-
und Korrekturschaltungen eines Feldeffekttransistor-
speichers betriebsfahig sind. Die Fehlererzwingungs-
schaltung besteht aus einem FET-Speicher zum
Speichern von Wortern der Datenbits eines Worts
plus einer Gruppe von Prifbits. Die Datenbits werden
von einer zentralen Steuereinheit empfangen und
durch einen ECC-Generator, der wirksam zum Er-
zeugen von Prifbits fur die Daten ist. Wenn das Da-
tenwort von dem Speicher gelesen wird, werden die
Daten- und Prufbits durch einen ECC-Decodierer
empfangen, der Prufbits neu aus den Datenbits er-
zeugt und dieselben mit den urspriinglichen Prifbits
aus dem Speicher prift und ferner Datenbits, in de-
nen ein Fehler gefunden wurde, korrigiert. Die korri-
gierten Datenbits werden dann an die Steuereinheit
gesendet. Die Steuereinheiten kénnen verwendet
werden, um Fehler einzufiihren, um zu bestimmen,
ob dieselben korrigiert sind. Fir diese Einfihrung
wird ein Diagnoseregister angewendet.

[0011] Die US 5,502,732 A offenbart ein Verfahren
zum Testen einer ECC-Logik. Insbesondere wird die
in einem Computerspeichersystem enthaltene Test-
logik derart geprift, dass mdgliche Fehler vor dem
Beginn der Verarbeitungsoperation bestimmt und fur
die Systemsoftware verfliigbar gemacht werden kon-
nen. Eine CPU vergleicht die Daten, die in den Spei-
cher geschrieben werden, mit den Daten, die riickge-
lesen werden. Da bekannt ist, dass aufgrund des in-
duzierten Fehlers ein Fehler auftritt, werden identi-
sches Daten verifizieren, dass die ECC-Korrekturlo-
gik ordnungsgemal arbeitet. Deshalb ist ein Multiple-
xer in dem Datenschreibpfad vorgesehen, der den
konstanten Satz identischer Bits fur die tatsachlichen
Daten, die durch die CPU erzeugt werden, ersetzt
und so wird ein Fehler eingefiihrt. ECC-Bits werden
dann basierend auf den tatsachlichen erzeugten
Testdaten, und nicht den eingefiihrten identischen
Bits erzeugt. Die ersetzten Datenbits und die erzeug-

ten ECC-Bits werden dann in dem Speicher gespei-
chert. Dieses Verfahren offenbart ferner, dass Dop-
pelbitfehler injiziert werden kénnen.

[0012] Die Aufgabe der vorliegenden Erfindung be-
steht darin, eine Vorrichtung und ein Verfahren zum
Verifizieren einer Korrektheit eines Fehlerkorrektur-
codealgorithmus und einer Korrektheit einer Fehler-
korrekturcodeimplementierung in einem realen Uber-
tragungsszenario bereitzustellen, in dem ein codier-
tes Signal, das Datenbits und Prifbits aufweist, durch
Fehler verfalscht werden konnte.

[0013] Diese Aufgabe wird durch eine Vorrichtung
zum Verifizieren eines Fehlerkorrekturcodes geman
Anspruch 1 oder durch das Verfahren zum Verifizie-
ren des Fehlerkorrekturcodes gemaf Anspruch 3 ge-
I8st.

[0014] Ein Verfahren und eine Vorrichtung verifizie-
ren die Korrektheit des Fehlerkorrekturcodealgorith-
mus und die Korrektheit der Fehlerkorrekturcodeimp-
lementierung. Ein Fehlerinjektionsmodul wird ver-
wendet, um zuféllige Fehler in eine ECC-Schaltung
zwischen einem Codierer und einem Decodierer zu
injizieren. Der Codierer codiert Datenbits mit Prufbits,
um ein codiertes Signal zu erzeugen. Ein Decodierer
decodiert das codierte Signal nach einer Modifizie-
rung durch das Fehlerinjektionsmodul. Das Fehlerin-
jektionsmodul kénnte Null-Fehler injizieren. Die Feh-
lerinjektionsschaltung kdnnte Einzelfehler oder Mehr-
fachfehler injizieren. Die Ausgabe des Decodierers
ist ein Null-Fehler-Signal, ein Einzelfehlersignal, ein
Mehrfehlersignal und ein Fehlerortssignal. Weitere
Signale sind ebenso mdéglich. Die Ausgabe des De-
codierers wird unter Verwendung eines Uberwa-
chungsmoduls mit erwarteten Werten fiir jedes Sig-
nal verglichen. Mégliche Unterschiede zwischen den
Ausgangssignalen und den erwarteten Werten zei-
gen einen Fehler in dem ECC oder in der Schaltung,
die zur Implementierung des ECC verwendet wird,
an.

[0015] Der ECC koénnte durch ein Implementieren
der Verifizierungsvorrichtung in einer tatsachlichen
Hardwarevorrichtung verifiziert werden. Bei diesem
Ausfuhrungsbeispiel kénnten das Fehlerinjektions-
modul und das Uberwachungsmodul auf einem glei-
chen Chip wie der Decodierer und der Codierer ange-
ordnet sein. Alternativ kdnnten das Fehlerinjektions-
modul und das Uberwachungsmodul auf Chips sepa-
rat von dem Decodierer und dem Codierer angeord-
net sein. Die ECC-Verifizierungsvorrichtung kénnte
auch als eine Simulation der tatsachlichen Hardware-
vorrichtung oder in einem formalen Verifizierungsmo-
dell der tatsachlichen Hardware implementiert sein.

[0016] Die detaillierte Beschreibung nimmt Bezug
auf die folgenden Figuren, in denen gleiche Bezugs-
zeichen sich auf gleiche Gegenstande beziehen, und

3/12

DE 601 17 066 T2 2006.08.24

in denen:

[0017] Fig. 1A Blockdiagramme einer Fehlerkorrek-
turschaltung und Fig. 1B sind;

[0018] Fig. 2 ein Blockdiagramm einer Vorrichtung
zum Verifizieren eines Fehlerkorrekturcodes und ei-
ner -schaltung ist; und

[0019] Fig. 3A Flussdiagramme sind, die Prozesse
zeigen, die und Fig. 3B auf der Vorrichtung aus
Fig. 2 ausgeflihrt werden.

Detaillierte Beschreibung

[0020] Fehlerkorrekturcode- (ECC-) Schaltungen
werden haufig in Halbleiterspeicherentwirfen ver-
wendet, um Einzelbitfehler zu korrigieren und Dop-
pelbitfehler zu erfassen. Ein ublicher ECC-Code ist
der SEC-DED- (Einzelfehlerkorrektur-Doppelfehler-
erfassungs-) Code. Andere ECC-Codes sind in der
Lage, mehr als zwei Fehler zu erfassen und mehr als
Einzelfehler zu korrigieren.

[0021] Die ECC-Schaltungen flihren ihre Fehler-
pruffunktionen durch ein Erzeugen einer Anzahl von
Prifbits flr eine spezifische Anzahl von Datenbits
und ein folgendes Schreiben der Prifbits mit den Da-
tenbits in einen Speicher durch. Die Prifbits werden
dann wahrend nachfolgenden Lese-Schreib-Zyklen
oder anderen Speicherzugriffen verwendet, um die
korrekten Werte fiir die Datenbits zu verifizieren. Die
Anzahl von Prifbits, die zur Implementierung des
ECCs erforderlich ist, hangt von der Anzahl gerade
gelesener Datenbits ab. Wie in Tabelle 1 gezeigt ist,
nimmt mit zunehmender Anzahl gerade gelesener
Datenbits auch die Anzahl erforderlicher ECC-Bits
Zu.

Tabelle 1
Datenbits ECC-Bits
16 - 31 6
32 - 63 7
64 - 127 8
128 - 255 9

[0022] Eine Hardware zur Implementierung von
ECC-Prufbits unter Verwendung gegenwartiger Sys-
teme ist in Fig. 1A dargestellt. Eine Fehlerkorrektur-
codeschaltung 10 umfasst eine Speicherzeile 11, die
in Fig. 1A als 30 Datenbits umfassend gezeigt ist.
Der Speicherzeile 11 zugeordnet ist eine ECC-Zelle
12. Bezug nehmend auf die Tabelle 1 oben missen
sechs ECC-Bits in der ECC-Zelle 12 gespeichert wer-
den, um eine Einzelbitfehlerkorrektur und eine Dop-
pelbitfehlererfassung in der Speicherzeile 11 zu er-
zielen. Ein ECC-Block 13 wird verwendet, um die

ECC-Bits zu erzeugen und die Fehlerkorrektur-/Er-
fassungscodeoperationen, einschliellich eines Pri-
fens der Datenbits in der Speicherzeile 11 wahrend
Lese- und Schreiboperationen durchzufihren.

[0023] Fig. 1B ist ein Blockdiagramm eines Ab-
schnitts des ECC-Blocks 13, der Prifbits und Synd-
rombits erzeugt. Wie in der Technik bekannt ist, sind
Syndrombits das Produkt eines Vergleichs der
ECC-Bits, die urspriinglich mit den Daten wahrend ei-
ner Datenspeicheroperation in dem Speicher gespei-
chert wurden, und eines neuen Satzes von ECC-Bits,
die basierend auf den Daten erzeugt werden, die aus
dem Speicher geholt wurden, wie wahrend der Aus-
fuhrung eines Lesebefehls oder eines Speicherzu-
griffs in einem Computersystem auftreten wiirde.
Dies bedeutet, dass ein Syndrombit einfach XOR ei-
nes entsprechenden empfangenen ECC-Bits mit ei-
nem neu erzeugten ECC-Bit ist. Wenn die Kombina-
tion des wiedergewonnenen und des neu erzeugten
ECC-Bits Nicht-Null-Syndrombits erzeugt, wurde ein
Fehler innerhalb der wiedergewonnenen Daten er-
fasst.

[0024] In Fig. 1B umfasst eine Schaltung 20 einen
XOR-Baum 21 und ein Bitweise-XOR-Modul 22. Bei
einer Schreiboperation werden die ECC-Bits gleich-
zeitig durch ein Verarbeiten der Datenbits z. B. unter
Verwendung einer Paritatsprifmatrix erzeugt. Eine
derartige Erzeugung von ECC-Bits ist in der Technik
bekannt. Bei einer Leseoperation werden die Synd-
rombits gleichzeitig gemal Standarddecodierungs-
verfahren aus den gelesenen Datenbits erzeugt. Der
gleiche XOR-Baum 21 konnte fir sowohl die
ECC-Bits als auch die Syndrombits verwendet wer-
den, wie in Eig. 1B gezeigt ist.

[0025] Gegenwartige Ansatze zum Erzeugen des
ECC und eines zugeordneten Schaltungsaufbaus
(Hardware oder Hardwaresimulation) berlcksichti-
gen mogliche Fehler in dem zugrundeliegenden Al-
gorithmus nicht. So kénnte eine Anwendung des
ECC bei einer Implementierung unter Umstanden
nicht sicherstellen, dass alle Fehler korrekt korrigiert
oder erfasst werden. Dies kdnnte besonders zutref-
fen, wenn der ECC eine Kombination linearer Codes
und arithmetischer Codes oder bestimmter anderer
kundenspezifischer Codes ist, die keinen Standard-
prozeduren folgen.

[0026] Um dieses Problem zu Uberwinden, unter-
werfen eine Vorrichtung und ein Verfahren die Imple-
mentierung der ECC-Schaltung den verschiedenen
Fehlern, die die ECC-Schaltung vermutlich korri-
giert/erfasst. Die Vorrichtung und das Verfahren veri-
fizieren das ECC-Konzept, den Algorithmus und die
Implementierung gleichzeitig.

[0027] Fig. 2 ist ein Blockdiagramm, das die Vor-
richtung und das Verfahren zum Verifizieren eines

4/12

DE 601 17 066 T2 2006.08.24

ECC darstellt. In Fig. 2 umfasst eine Vorrichtung 100
einen Sender 110 mit einem Codierer 115. Der Sen-
der 110 und der Codierer 115 sind durch eine Fehle-
rinjektionsschaltung 120 mit einem Empfanger 130
mit einem Decodierer 135 gekoppelt. Ebenso mit
dem Codierer 115 und dem Decodierer 135 gekop-
pelt ist ein Uberwachungsmodul 140. Wie oben ange-
merkt wurde, kénnte die Vorrichtung 100 als eine tat-
sachliche Hardwarevorrichtung implementiert sein
oder kénnte als eine Simulation einer Hardwarevor-
richtung implementiert sein, unter Verwendung einer
Hardwarebeschreibungssprache, wie z. B. VHDL
oder Verilog, die beide in der Technik bekannt sind.

[0028] Das Verfahren und die Vorrichtung 100 arbei-
ten, um den ECC durch das Koppeln des Codierers
115 und des Decodierers 135 und ein darauffolgen-
des Injizieren méglicher Fehler vollstandig zu testen.
In Betrieb werden Daten in den Codierer 115 einge-
geben. Der Codierer 115 codiert die Daten, um einen
Ausgangsvektor 112 zu erzeugen. Bei dem in Fig. 2
dargestellten Beispiel sind die eingegebenen Daten
64 Bits breit. Bezug nehmend auf die Tabelle 1 co-
diert der Codierer zusatzliche acht Bits zu den einge-
gebenen Daten, derart, dass der Ausgangsvektor
112 72 Bits breit ist. Der Ausgangsvektor 112 wird
durch eine Fehlerinjektionsschaltung 120 gesendet,
die Fehler einfiihrt, die der ECC korrigieren oder er-
fassen kann. Die Fehlerinjektionsschaltung 120 tes-
tet auBerdem den ECC und dessen Implementierung
durch Nicht-Einfihrung von Fehlern (ein Null-Feh-
ler-Fall). Die modifizierten Daten werden dann direkt
dem Decodierer 135 zugefuhrt.

[0029] Der Decodierer 135 decodiert die modifizier-
ten Daten und erzeugt mehrere Ausgangssignale.
Die Ausgangssignale kdnnten ein Daten-Aus-Signal,
ein Kein-Fehler-Signal, ein Einzelfehlersignal und ein
Doppel- (Mehrfach-) Fehlersignal umfassen. Der De-
codierer 135 kénnte auRerdem ein Fehler_Ort-Signal
bereitstellen, das einen Ort eines Bits in einem Fehler
anzeigt. Das Fehler_Ort-Signal kdnnte dem oben er-
wahnten Syndrom ahneln. Andere Ausgangssignale
kénnten ebenso bereitgestellt werden. Diese Aus-
gangssignale werden an das Uberwachungsmodul
140 geliefert. Das Uberwachungsmodul 140 be-
stimmt, ob die bereitgestellten Ausgangssignale wie
erwartet sind. Wenn die Ausgangssignale nicht wie
erwartet sind, kénnte ein Problem bei dem ECC oder
der ECC-Schaltung vorliegen. Fur das Beispiel eines
SEC-DED-ECC sind, wenn keine Fehler injiziert wur-
den, die erwarteten Ergebnisse: ein Ausgangssignal
Kein_Fehler ist gleich 1 gesetzt; Ausgangssignale
Einzel_Fehler und Mehrfach_Fehler sind gleich 0 ge-
setzt und ein 64-Bit-Signal Daten_Aus = Daten_Ein.

[0030] Die Fehlerinjektionsschaltung 120 injiziert
dann Einzelfehler, namlich einen fir jedes der 72
Bits. Wieder werden die Ausgangssignale aus dem
Decodierer 135 an das Uberwachungsmodul 140 ge-

liefert, das bestimmt, ob die bereitgestellien Aus-
gangssignale mit den erwarteten Ausgangssignalen
Ubereinstimmen. Fir das Beispiel eines
SEC-DED-ECC sind die erwarteten Ergebnisse:
Daten_Aus = Daten_Ein (zeigt an, dass der Fehler
korrigiert wurde), Einzel_Fehler = 1 und Kein_Fehler
= Mehrfachfehler = 0. Ein Fehler_Ort-Signal kénnte
ebenso ausgegeben werden.

[0031] Die Vorrichtung 100 priift auBerdem auf eine
ordnungsgemale Operation des ECC bei Vorliegen
von Mehrfachfehlern. Zur Prifung nach Doppelfeh-
lern injiziert die Fehlerinjektionsschaltung 120 Dop-
pelfehler (es gibt bei diesem Beispiel 2.556 Mdglich-
keiten). Das erwartete Ergebnis ist Kein_Fehler =
Einzel_Fehler = Null; Mehrfach_Fehler = 1. Da der
ECC bei diesem Beispiel ein SEC-DED ist, vergleicht
das Uberwachungsmodul nicht Daten_Aus = Daten
Ein.

[0032] Die Vorrichtung 100 kdnnte abhangig von der
ECC-Verifizierungsmethodik in verschiedenen Wei-
sen implementiert sein. Die Fehlerinjektionsschal-
tung 120 kénnte als XOR der Daten_Aus-Bits mit ei-
nem binaren Fehlervektor mit der gleichen Breite wie
die Daten_Aus-Bits implementiert sein. Der binare
Fehlervektor konnte in einer Simulationsumgebung
zufallig fir alle unterschiedlichen Fehlertypen er-
zeugt werden. Diese Fehlertypen umfassen z. B. kei-
nen Fehler, Einzelfehler und Doppelfehler. Der binare
Fehlervektor kénnte auch handkopiert und an die
Fehlerinjektionsschaltung 120 geliefert werden. Ahn-
lich kénnte ein formales Verifizierungsmodul alle
Fehlerszenarien umfassen.

[0033] Zur Verifizierung einer ordnungsgemalfien
Operation des ECC, einschlief3lich des zugrunde lie-
genden Algorithmus und der ECC-Schaltung, kénnte
die Vorrichtung 100 mit jedem beliebigen Typ Spei-
cher in einem Computersystem verwendet werden.
Die ECC-Schaltung 100 kénnte z. B. mit einem Ca-
che-Speicher und mit einem Hauptspeicher verwen-
det werden. Die Vorrichtung kénnte mit einem belie-
bigen ECC verwendet werden. Wahrend die voran-
gegangene Beschreibung eine Operation der Vor-
richtung 100 mit einem SEC-DED beschrieben hat,
wirde ein Fachmann auf diesem Gebiet verstehen,
dass das Verfahren und die Vorrichtung 100 mit
ECCs verwendet werden kénnten, die in der Lage
sind, Mehrfachfehler zu erfassen und zu korrigieren
(z. B. DEC-TED-Codes).

[0034] Die Vorrichtung 100 koénnte bei einer Du-
al-In-Line-Speichermodul- (DIMM-) Karte gemein-
sam mit einem oder mehreren Speicherchips enthal-
ten sein und kénnte z. B. innerhalb eines ASIC-Chips
implementiert sein. Der ASIC-Chip wirde dazu die-
nen, einen Datenbus (nicht gezeigt) des Computer-
systems mit dem Speicherchip zu verbinden. Daten,
die wahrend der Ausflihrung einer Schreiboperation

5/12

DE 601 17 066 T2 2006.08.24

von dem Datenbus zu den Speicherchips laufen, wiir-
den vor einer Speicherung in den Speicherchips
durch die Vorrichtung 100 laufen. Ahnlich wiirden
auch Daten, die von den Speicherchips zu dem Da-
tenbus laufen, durch die Vorrichtung 100 laufen. So
arbeitet ein Fehlererfassungs- und Korrekturmecha-
nismus an den Daten, wenn die Daten gerade durch
das Computersystem in den Speicherchips gespei-
chert werden.

[0035] Beidem in Fig. 2 gezeigten Ausfuhrungsbei-
spiel weist der Datenbus, der den Sender 110 und
den Empfanger 130 koppelt, eine ausreichende
Bandbreite auf, um alle 72 Bits bei einem Taktzyklus
zu tragen. Die Vorrichtung 100 jedoch kénnte auch
mit Systembussen verwendet werden, die kleinere
Bandbreiten aufweisen. In diesem Fall kénnten meh-
rere Zyklen bendtigt werden, um alle Daten an Priif-
bits zu Ubertragen.

[0036] Die Fig. 3A und Fig. 3B stellen Verfahren
dar, die unter Verwendung der in Fig. 2 gezeigten
Vorrichtung 100 ausgefiihrt werden konnten. Fig. 3A
stellt ein Verfahren 200 dar, wenn ein Kein-Fehler-Si-
gnal injiziert wird. Das Verfahren beginnt bei einem
Block 210. Bei einem Block 220 codiert der Codierer
115 eine Transaktion mit einem ECC. Die Transakti-
on wird dann in einer Fehlerinjektionsschaltung 120
verarbeitet und ein Kein-Fehler-Signal wird bei einem
Block 230 injiziert.

[0037] Beieinem Block 240 wird die Transaktion un-
ter Verwendung des ECC decodiert. Bei einem Block
250 (iberwacht das Uberwachermodul 140 die deco-
dierte Transaktion. Bei einem Block 260 vergleicht
das Uberwachermodul die decodierte Transaktion
mit den erwarteten Ergebnissen. In diesem Fall ist,
wenn der ECC-Code und die Schaltung korrekt arbei-
ten, das 64-Bit-Signal Daten_Aus = Daten_Ein, das
Ausgangsignal Kein_Fehler ist gleich 1 gesetzt und
die Ausgangssignale Einzel_Fehler und
Mehrfach_Fehler sind gleich 0. Wenn kein Fehler bei
der Operation des ECC oder der ECC-Schaltung be-
merkt wird, bewegt sich das Verfahren zu einem
Block 280 und endet. Andernfalls bewegt sich das
Verfahren zu einem Block 270 und ein Fehler wird de-
klariert. Das Verfahren bewegt sich dann zu Block
280 und endet.

[0038] Fig. 3B stellt ein Verfahren 300 dar, bei dem
die Fehlerinjektionsschaltung 120 einen Einzelbitfeh-
ler einfugt. Das Verfahren 300 ahnelt dem Verfahren
200, mit der Ausnahme, dass die erwarteten Aus-
gangssignale Daten_Aus = Daten_Ein (wobei der
Einzelbitfehler durch den ECC Kkorrigiert wird),
Einzel_Fehler = 1 und Mehrfach_Fehler und
Kein_Fehler gleich 0 sind.

Patentanspriiche

1. Eine Vorrichtung (100) zum Verifizieren eines
Fehlerkorrekturcodes ECC, der in einer ECC-Schal-
tung wirkt, mit folgenden Merkmalen:
einem Codierer (115), der ein Dateneingangssignal
empfangt und die Datenbits desselben codiert, um
ein codiertes Signal zu erzeugen, wobei das codierte
Signal die Datenbits und Prifbits aufweist;
einem Fehlerinjektionsmodul (120), das mit dem Co-
dierer (115) gekoppelt ist und in der Lage ist, ein Feh-
lersignal in das codierte Signal zu injizieren, um ein
modifiziertes Signal zu erzeugen, wobei das Fehler-
signal kein Fehler, ein Einzelfehler oder ein Mehr-
fachfehler ist;
einem Decodierer (135), der mit dem Fehlerinjekti-
onsmodul (120) gekoppelt ist, der das modifizierte Si-
gnal decodiert, um eine Mehrzahl von Ausgangssig-
nalen zu erzeugen, wobei die Mehrzahl von Aus-
gangssignalen ein Datenaisgangssignal, ein
Kein-Fehler-Signal, ein Einzelfehlersignal und ein
Mehrfachfehlersignal aufweist; und
einem Uberwachermodul (140), das mit dem Fehle-
rinjektionsmodul (120), dem Codierer (115) und dem
Decodierer (135) gekoppelt ist, wobei das Uberwa-
chermodul (140) das Dateneingangssignal und die
Mehrzahl von Ausgangssignalen empfangt, wobei
das Uberwachermodul (140) bestimmt, ob die Mehr-
zahl von Ausgangssignalen, die von dem Decodierer
empfangen werden, mit erwarteten Ausgangssigna-
len flr die Mehrzahl von Ausgangssignalen Uberein-
stimmt, und das Uberwachermodul (140) in der Lage
ist, Fehler in dem ECC und der ECC-Schaltung auf
der Basis der Bestimmung zu deklarieren,
wobei das Fehlerinjektionsmodul (120) angepasst ist,
um fur unterschiedliche Tests des ECC und der
ECC-Schaltung keine Fehler, Einzelfehler oder Mehr-
fachfehler in das codierte Signal zu injizieren, wobei
die erwarteten Ausgangssignale folgende sind:
—wenn keine Fehler durch das Fehlerinjektionsmodul
(120) injiziert werden, ist das Kein-Fehler-Signal 1,
das Einzelfehlersignal und das Mehrfachfehlersignal
sind 0 und das Dateneingangssignal ist gleich dem
Datenausgangssignal;

—wenn Einzelfehler durch das Fehlerinjektionsmodul
(120) injiziert werden, ist das Einzelfehlersignal 1,
das Kein-Fehler-Signal und das Mehrfachfehlersig-
nal sind 0 und das Dateneingangssignal ist gleich
dem Datenausgangssignal; und

— wenn Mehrfachfehler durch das Fehlerinjektions-
modul (120) injiziert werden, ist das Mehrfachfehler-
signal 1 und das Kein-Fehler-Signal und das Einzel-
fehlersignal sind 0, wobei das Dateneingangssignal
und das Datenausgangssignal nicht verglichen wer-
den.

2. Die Vorrichtung gemaf Anspruch 1, wobei die
Vorrichtung als eine tatsachliche Hardware-Vorrich-
tung ausgefihrt ist.

6/12

DE 601 17 066 T2 2006.08.24

3. Ein Verfahren zum Verifizieren eines Fehler-
korrekturcodes ECC, der an einer ECC-Schaltung
wirkt, mit folgenden Schritten:

Bereitstellen eines Dateneingangssignals an einen
Datencodierer (115);

Erzeugen (220, 320) eines ECC-codierten Datensig-
nals, das Datenbits und Prifbits aufweist;
Bereitstellen (230, 330) eines Fehlerinjektionssig-
nals, wobei das Fehlerinjektionssignal das codierte
Datensignal modifiziert, um ein modifiziertes Daten-
signal zu erzeugen, wobei das Fehlerinjektionssignal
kein Fehler, ein Einzelfehler oder ein Mehrfachfehler
ist;

Decodieren (240, 340) des modifizierten Datensig-
nals, um eine Mehrzahl von Ausgangssignalen zu er-
zeugen, wobei die Mehrzahl von Ausgangssignalen
ein Datenausgangssignal, ein Kein-Fehler-Signal,
ein Einzelfehlersignal und ein Mehrfachfehlersignal
aufweist;

Bestimmen, ob die Mehrzahl von Ausgangssignalen,
die von dem Decodierer empfangen werden, mit er-
warteten Ausgangssignalen fir die Mehrzahl von
Ausgangssignalen Ubereinstimmt; und

wenn die Mehrzahl von Ausgangssignalen und die
entsprechenden erwarteten Signale nicht Uberein-
stimmen, Deklarieren (270, 370) eines Fehlers in
dem ECC oder der ECC-Schaltung,

wobei fir unterschiedliche Tests des ECC und der
ECC-Schaltung keine Fehler, Einzelfehler oder Mehr-
fachfehler in das codierte Signal injiziert werden, wo-
bei die erwarteten Signale folgende sind:

— wenn keine Fehler injiziert werden, ist das
Kein-Fehler-Signal 1, das Einzelfehlersignal und das
Mehrfachfehlersignal sind 0 und das Dateneingangs-
signal ist gleich dem Datenausgangssignal;

— wenn Einzelfehler injiziert werden, ist das Einzel-
fehlersignal 1, das Kein-Fehler-Signal und das Mehr-
fachfehlersignal sind 0 und das Dateneingangssignal
ist gleich dem Datenausgangssignal; und

—wenn Mehrfachfehler injiziert werden, ist das Mehr-
fachfehlersignal 1 und das Kein-Fehler-Signal und
das Einzelfehlersignal sind 0, wobei das Datenein-
gangssignal und das Datenausgangssignal nicht ver-
glichen werden.

4. Das Verfahren gemafR Anspruch 3, bei dem die
Verifizierung eine Simulation ist.

Es folgen 5 Blatt Zeichnungen

7/12

DE 601 17 066 T2 2006.08.24

Anhangende Zeichnungen

ECC-ZELLE
(7 BITS)

~

10

7

SPEICHER
(30 BITS)

4

30-BIT-
ECC-BLOCK

AN

A

11

FIGUR 1A

N

13

(STAND DER TECHNIK)

8/12

DE 601 17 066 T2 2006.08.24

: 20
/ PRUFBITS
(LESEN)
k DATENBITS
XOR-BAUM
21
22
|
BITWEISE /
._ XOR
PRUFBITS
(SCHREIBEN) |
r SYNDROMBITS

FIGUR 1B

9/12

DE 601 17 066 T2 2006.08.24

¢ dN9l

/140 43THI4

$ HITHI4 HOVHYHIN

HITHI4 13ZNI3-

N HTHI NI

|

O
-

TNAOW
\\ > -HIHOVMY34N
SNV N3Lva b9 r/
ovt
Sel it
\\ 4 //
d34310003¢ | / NOIDAIPNI Ly
s BYESTER 7 43431000
2L / 2L
HIONY4dN3
. ozt \\ H3AN3S
OEl

NI N3Lva

10/12

DE 601 17 066 T2 2006.08.24

210

START

CODIEREN EINER
TRANSAKTION

N
(]
o

N

220

INJIZIEREN VON
KEIN-FEHLER

230

DECODIEREN DER
— TRANSAKTION

240

| UBERWACHEN DER
AUSGABE

250

260

AUSGABE =
ERWARTET?

280

270

N\

| DEKLARIEREN EINES
FEHLERS

FIGUR 3A

11/12

340

350

DE 601 17 066 T2 2006.08.24

310

START

CODIEREN EINER
TRANSAKTION

N

320

INJIZIEREN EINES

EINZEL-BIT-FEHLERS N

330

DECODIEREN DER
| TRANSAKTION

| UBERWACHEN DER
AUSGABE

360

AUSGABE =
ERWARTET?

370

N\

| DEKLARIEREN EINES
FEHLERS

FIGUR 3B

12/12

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

