BELT-MOUNTED CAN HOLDER

Applicants: Brian Babb, Fayetteville, GA (US); Hunter Simonton, Fayetteville, GA (US)

Inventors: Brian Babb, Fayetteville, GA (US); Hunter Simonton, Fayetteville, GA (US)

Appl. No.: 14/706,323

Filed: May 7, 2015

Publication Classification

Int. Cl.
A45F 3/14 (2006.01)

U.S. Cl.
A45F 3/14 (2013.01); A45F 2003/144 (2013.01)

ABSTRACT

A can holder is disclosed which is designed and constructed to provide the convenience of attaching the can holder to the belt or trousers of a user. The can holder structure consists of a primarily longitudinal, hollow cylinder having an open channel running lengthwise along the cylinder wall. The channel edges further are characterized by a left flare-out of the channel material and a parallel right flare-out of the channel. Each flare-out is further defined by upper and lower sections to which horizontal upper and lower supports are fastened. The means of attachment to a user's belt may be two looped straps attached to the upper support, or a semi-rigid belt clip affixed to the upper support. The axis of the can or other carried object will generally be aligned with the axis of the ey tinder.
BELT-MOUNTED CAN HOLDER

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] Not applicable.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not applicable.

NAMES OF THE PARTIES TO A JOINT RESEARCH AGREEMENT

[0003] Not applicable.

BACKGROUND OF THE INVENTION

[0004] (1) Field of the Invention

[0005] This invention relates to holders which can temporarily store objects and which can be attached to or mounted on the clothing of a user or proximate the body of the user. In particular, this invention relates to a spray-paint can holder that can be attached to a belt or other part of a painter’s clothing. The structure of the inventive concept also lends itself to the storage and/or carriage of compatibly-sized objects other than paint cans.

[0006] (2) Description of the Related Art, including information disclosed under 37 CFR 1.97 and 1.98.

[0007] US 2014/0217256 (Aug. 7, 2014); A cup-carrying device is provided. The device may include a cup ring that is made of either a rigid or semi-rigid material. A basket may extend from the cup ring so that the cup ring forms an opening to the basket. The basket is sized to fit a beverage container within. The cup containing device may further include an attachment component that is configured to attach to a support structure. Therefore, a user may secure the cup carrying device either to their person or a motorcycle for use with the beverage container.

[0008] U.S. Pat. No. 7,959,121 (Jun. 4, 2011) An adjustable cup holder incorporates an elongated clamp assembly and cup support assembly. The clamp assembly has a proximal end and a distal clamping end. The cup support assembly is connected at the proximal end of the clamp assembly, and comprises a body portion and a pair of arcuate cup-encircling arms having respective spaced-apart free ends. A pivot pin enables pivot adjustment of the cup support assembly at the proximal end of the clamp assembly, such that the cup support assembly is movable between a desired in-use position depending from the clamp assembly, and a folded stowed position beside the clamp assembly. In the stowed position, the clamp assembly passes between the spaced-apart free ends of the cup-encircling arms and into an area defined between the cup-encircling arms.

[0009] US published patent application 2010/0096521 A1 (Apr. 22, 2010) A clip-on container holder is provided to hold beverages in which the clip includes a flexible retracting coil and a coil supporting rigid spine. The container holder may have a container supporting ring, flexible supporting prongs to accommodate smaller or larger diameter containers, beverage supporting ribs and a lower supporting disk. The clip-on container holder can be easily attached and detached to many surfaces allowing a person’s hands to be free for other uses.

[0010] US published patent application 2010/0084531 A1 (Apr. 8, 2010) An attachment (A) coupled to a belt clip (B) including a rigid beverage holder frame, and a catch and catch release belt or appliance clip device. The beverage holder comprising a free swinging, rigid, cylindrical frame to perpendicularly harbor a beverage container (C) contained within or not an insulated drink container sleeve (E) attaching to belt clip device (B), providing the wearer convenient mobile storage while minimizing tipping spills and further providing the user freedom of either or both hands for other activities or tasks.

[0011] U.S. Pat. No. 7,404,534 B1 (Jul. 29, 2008) A bottle holder includes a first flexible strap that is clamped around a bottle, with an end of the strap being clamped by pivoting a locking lever in a locking block. A first version of the bottle holder has a clip for attachment to the belt or waistband of the user’s clothing. A second version has a second belt for attachment to a stationary member, such as the rail of an exercise machine.

[0012] U.S. Pat. No. 6,769,659 (Aug. 3, 2004) A bracket for securing an object such as a bottle within a vehicle, the bracket including a body that attaches to the vehicle and one or more straps associated with the body to secure the bottle to the bracket body.

[0013] U.S. Pat. No. 6,457,691 (Oct. 1, 2002) A bicycle water bottle clip assembly. The assembly includes a front grip and a water bottle clip with a fixing device formed by two insertion holes before the front grip is fastened to the stem of the handle of the bicycle. Two insertion sections extend from the water bottle clip to connect the gripper and the clip to receive the water bottle provided with a straw at the front end of the stem of the bicycle so that the rider may drink the water as desired, simply by slightly bending forwards without having to remove either of his hands from the handle, thus improving riding safety.

[0014] U.S. Pat. No. 6,866,172 (Mar. 15, 2005) A painter’s belt-mounted paint and brush holder especially adapted for stability relative to the painter. It includes an open topped bucket with a rim that drains into the bucket cavity, and a stabilizer integral with the wall of the bucket that rises above the bucket with a substantial area that is drawn against the body of the painter.

[0015] U. S. Pat. No. 5,497,921 (Mar. 12, 1996) A holder for a paint can or other object having a handle is shown that is worn on the belt of a user. The holder comprises a base having a top and a bottom portion, the top portion being folded over the bottom portion and affixed thereto to form a loop which receives the belt of the user. A bracing means is attached to the top portion to hold the handle so that the object will always be in a vertical position. A swiveling means and a strapping means is attached to the bottom portion of said base for enclosing said object therein.

[0016] U.S. Published Patent Application 2003/0024959 (Feb. 6, 2003) A paint can holder provides an attachment plate with hook, and an attachment device for attaching the paint can holder to a painter’s body or fastening the paint can holder to a painter’s clothing, e.g. a belt. The hook may be provided with a movable retaining device that closes the hook to retain the handle of the paint can. The attachment plate is preferably contoured to the shape of the painter’s body and may be provided with ridges that reinforce the plate and help to stabilize the paint can.

BRIEF SUMMARY OF THE INVENTION

[0017] It is a concern of workers or technicians who must continually carry a can of spray paint or similarly-shaped
container in the everyday course of their job that they have free mobility and movement of both hands to contend with situations requiring manual manipulation. For instance, painters, while painting will often carry a can of spray paint in one hand while frequently needing the ability, to use both hands to support themselves, make written notations, or grasp nearby articles. This inability to use both hands can lead to accidents and substantially reduced efficiency of a worker that is required to move about and utilize a spray paint can on a frequent basis.

The inventive concept disclosed is intended to remedy these types of situations. A belt-mounted can holder is disclosed which is designed and constructed to provide the convenience of attaching the can holder to the belt of a user. The basic structure of the can holder consists of a primarily longitudinal, hollow cylinder. The cylinder is constructed with the modification of having an open channel running lengthwise along the cylinder wall. The edges of the channel further are characterized by a left flare-out of the channel material and a parallel right flare-out of the channel. The two flare-outs are further defined by a left upper flare section and a left lower flare section, a right upper flare section and right lower flare section. The can holder, in its intended use, functions with the axis of the cylinder oriented generally vertical. When a can or other cylindrical object is inserted into the can holder, the axis of the can or other cylindrical object will be aligned with the axis of the cylinder.

BRIEF DESCRIPTION OF THE VIEWS OF THE DRAWINGS

FIG. 1 presents a general three-dimensional view of the inventive concept.

FIG. 2 depicts a belt clip that may be used to form a different embodiment of the inventive concept.

FIG. 3 illustrates a left belt retainer.

FIG. 4 illustrates the right belt retainer.

FIG. 4(A) is a sectional side view of the right belt retainer, along with

FIG. 5 illustrates the bottom support.

FIG. 6 shows the top support for the can holder.

FIG. 7 is a downward-looking edgewise view of the top support.

FIG. 8 is a side profile view of the belt clip.

FIG. 9 is a plan view of the can holder.

FIG. 10 is a top view and profile view of the binding post used in the can holder.

FIG. 11 is a view of the outer surface and “mouth” of either of two snap buttons used to fasten the right and left belt retainers to the can holder.

FIG. 12 is a view typifying the tubular rivets used in the can holder.

FIG. 13-A is an exterior view of a screw post;

FIG. 13-B is a top view of the screw post, showing section lines x-x;

FIG. 13-C is a cross-sectional view of the screw post, as seen from section lines x-x;

FIG. 14 is a view of the Phillips head screw used in conjunction with the screw posts.

DETAILED DESCRIPTION OF THE INVENTION

The objects, features, and advantages of the concept presented in this application are more readily understood when referring to the accompanying drawings. The drawings, totaling eleven figures, show the basic components and functions of embodiments and/or methods of use. In the several figures, like reference numbers are used in each figure to correspond to the same component as may be depicted in other figures.

The discussion of the present inventive concept will be initiated with FIG. 1, which illustrates a three-dimensional view of the can holder. The basic structure of the can holder consists of a primarily longitudinal, hollow cylinder. The cylinder 2 features an open channel 9 running lengthwise along the cylinder 2. The channel 9, by its orientation, creates a flare-out of a first section of the outer wall of the cylinder 2, terminating in a lengthwise flare having a left upper flare 3 and a left lower flare 5. Similarly, the open channel 9 creates a flare-out of a second section of the outer wall of the cylinder 2 terminates in a lengthwise flare having a right upper flare 4 and a right lower flare 6. The can holder 1, in its intended use, functions with the axis 10 of the cylinder 2 oriented generally vertical, as is shown in FIG. 1. When a can or other cylindrical object is inserted into the can holder 1, the axis of the can will be aligned with the axis 10 of the cylinder 2.

In the preferred embodiment the cylinder 2 is constructed from a semi-rigid material and has an inner diameter of the cylinder 2 is 2 & 3/4 inches. A range of dimensions of the inner diameter of the can holder 1 is between 2.0 inches and 3.5 inches. The length 49 of the cylinder 2 is optimally 5.0 inches but may be longer or shorter, depending on the type of can to be bolstered within the cylinder 2. The open channel 9 of the cylinder 2 has a width equal to approximately twenty-five percent (25.0%) of the circumference of the cylinder 2. Preferably, the flexibility of the cylinder 2 is such as to require some degree of force to place a can or other cylindrical container lengthwise within the cylinder 2 and consequently have a grasping effect on the outer walls of the can.

Again, viewing FIG. 1, the left upper flare 3 and the right upper flare 4 are connected proximate the upper edge 11 of the cylinder 2 by a cross-member, referred to as an upper support 40, which is of rectangular shape and outwardly bent in two places: a left bend 44 and a right bend 45. Each of the two bends 44, 45 are at respective angles of approximately twenty-five degrees each, thereby forming three integral surfaces: a main tab 41, a left tab 42, and a right tab 43, which are more clearly shown in FIG. 6 and FIG. 7. The left bend 44 and right bend 45 are bent at such angles as to correspond to the flare-out angles of the left upper flare 3 and right upper flare 4 of the cylinder 2, respectively. The upper support 40 is fastened to the cylinder 2 by means of two tubular rivets 17, one which connects the left tab 42 of the upper support 40 to the left upper flare 3 of the cylinder 2 and a second tubular rivet 17, which connects the right tab 43 of the upper support 40 to the right upper flare 4 of the cylinder 2.

The two tubular rivets 17 are not visible in FIG. 1. This is due to the depiction of both the left loop 22 and right loop 32 being fastened, by means of a left upper fastening system 13 and a right upper fastening system 14 to the can holder 1. A detailed view of the tubular rivet 17, showing before and after assembly, is shown in FIG. 11.

In a similar manner, in viewing FIG. 1, it is seen that the left lower flare 5 and the right lower flare 6 are connected proximate the bottom edge 12 of the cylinder 2 by
a cross-member, referred to as a bottom support 50. The bottom support 50 is of rectangular shape, being bent outwardly in two places at respective angles of approximately twenty degrees, the two places forming a left bend 54 and a right bend 55. The two bends 54, 55 thereby form three surfaces, a center tab 51, a left tab 52, and a right tab 53, which are more clearly shown in FIG. 5. The center tab 51 also consists of a protrusion, referred to as a bottom tab 58. The bottom support 50 is fastened to the cylinder 2 also by means of tubular rivets 17 previously described. The left bend 54 and right bend 55 are bent at such angles as to correspond to the flare-out angles of the lower left flare and lower right flare of the cylinder 2, respectively. A first tubular rivet 17 connects the left tab 52 of the bottom support 50 to the left lower flare 2 of the cylinder, while a second tubular rivet 17 connects the right tab 53 of the bottom support 50 to the lower right flare 6 of the cylinder 2.

[0042] The can holder 1 utilizes a plurality of rivets 17, Phillips-head machine screws, and other fastening means to attach the upper support 40 and the bottom support 50 to the flared segments 3, 4, 5, 6 of the can holder 1. FIG. 1 depicts an upper left fastening system 13 attaching the left tab 42 of the upper support 40 and the left belt retainer 20 to the left upper flare 3. Also shown is the right upper fastening system 14, attaching the right tab 43 of the upper support 40 and the right belt retainer 30 to the right upper flare 4. Further shown is the lower left fastening system 15 and the lower right fastening system 16, each of which consists of a tubular rivet 17 fastening the bottom support 50 to the left lower flare 5 and the right lower flare 6, respectively.

[0043] In the preferred embodiment of the inventive concept, a left belt retainer 20 and a right belt retainer 30 are attached to the left upper flare 3 and the right upper flare 4, respectively, of the can holder 1. The attachments are shown in FIG. 1 and details of these attachments are explained in greater detail below in this disclosure.

[0044] In an alternative embodiment of the inventive concept, a belt clip 60, as shown in FIG. 2, may be used in conjunction with the can holder 1 and thereby provide an alternative means for a user to mount the can holder 1 to the user’s belt. The belt clip 60 comprises an irregularly bent plate, the profile of which is depicted in FIG. 8. The belt clip 60 comprises an upper brace 61, an angled retainer 62, a vertical retainer 63, a lower brace 64, and a hook portion 65. The belt clip 60 is constructed and dimensioned so as to fasten the upper brace 61 to the upper support 50 of the can holder 1.

[0045] As shown in FIG. 2, two holes 68, 69 in the upper brace 61 permit the insertion of two machine screws which may then be fastened directly into two correspondingly-threaded holes 78, 79 machined into the upper support. FIG. 6 and FIG. 7 show the relative location of the two holes 78, 79. When a user wears the can holder 1 with the belt clip 60 attached, the user’s belt is retained between the angled retainer 62 and the hook 65. Owing to the semi-rigid nature of the can holder 1, the belt clip 60 may be bent slightly in the vicinity of the angled retainer 62 so as to allow the belt clip 60 to also fit in a gripping manner over the waistline of trousers.

[0046] FIG. 3 illustrates the left belt retainer 20. Preferably, the left belt retainer 20 is constructed from an elastomeric material, with dimensions approximately 5.5 inches in length and 0.75 inches in width. In actual use, the left belt retainer 20 is attached, by the left upper fastening system 13 to the can holder 1 to form a left loop 22 for insertion of a user’s belt. The top half of the left belt retainer 20 functions as a left front strap 21, while the lower half of the left belt retainer 20 functions as a left rear strap 23. Three lower apertures 25 are centered axially and equally spaced along the left belt retainer 20 to allow for adjustment of the size of the left loop 22 formed by the left belt retainer 20. A top aperture 24 is utilized for the insertion of a left snap button 27, which then comprises part of the components of the left upper fastening system 13.

[0047] FIG. 4 illustrates the right belt retainer 30. The right left belt retainer 30 is also constructed from an elastomeric material, with dimensions approximately 5.5 inches in length and 0.75 inches in width, in the preferred embodiment. The right belt retainer 30 is attached, by the right upper fastening system 14 to the can holder 1 thereby forming a loop for insertion of a user’s belt through the right belt retainer 30. The top half of the right belt retainer 30 also functions as a right front strap 31, while the lower half of the right belt retainer 30 functions as a right rear strap 33. Three lower apertures 35 are centered axially and equally spaced along the right belt retainer 30 to allow for adjustment of the size of the right loop 32 that may be formed. A right top aperture 34 is utilized for the affixing of a right snap button 37, which then comprises part of the components of the right upper fastening system 14.

[0048] For illustrative purposes, FIG. 4(A) shows a cross-sectional view of the right belt retainer 30 as seen from section line 4-4 of FIG. 4. FIG. 4(A) illustrates the relationship of the components of the right upper fastening system 14. Also illustrated, in the upper portion of FIG. 4(A), is a right snap-button 37 and the mouth 37(a) of the right snap-button, both of which are permanently fastened, through the right top aperture 34 and a tubular rivet 17 (not visible), to the right front strap 31.

[0049] The tubular rivets 17, as explained earlier, connect the right tab 43 of the upper support 40 to the right upper flare 4 and also connect the left tab 42 of the upper support 40 to the left upper flare 3. Viewing the lower portion of FIG. 4(A), it is seen that an internally-threaded Phillips-head screw post 38 is placed, in succession, through the tubular rivet 17 attached to the right upper flare 4, through the right tab 43 of the upper support 40 (which is also bound by the same tubular rivet 17 by means of the left aperture 7), and through the lower aperture 35 of the right rear strap 33.

[0050] After the Phillips-head screw post 38 is arranged so as to protrude through the lower aperture 35, a binding post 36 is placed over the shunt of the screw post 38. Next, a Phillips-head machine screw 39 is inserted through the binding post 36 and rotated into the corresponding internal threads of the Phillips-head screw post 38. A user, by means of pressing the mouth 37(a) of the right snap button 37 against the right binding post 36, thereby completes the functioning of the right upper fastening system 14 and provides a securely fastened loop 32. In like manner, the left upper fastening system 13 comprises a left snap button 27 attached to the top aperture 24 of the left belt retainer 20 and a left Phillips-head screw post 28, left binding post 26 and left Phillips-head machine screw 29.

[0051] Once both snap buttons 27, 37 are pressed onto their respective binding posts 26, 27, the left front strap 21 and right front strap 31 thereby form respective left and right loops 22, 32 through which a wearer of the can holder 1
inserts his/her belt. The left belt retainer 20 is constructed and functions identically to the right belt retainer 30, and further manifests the same relationship of the components of the left upper fastening system 13.

[0052] FIG. 5 depicts a three-dimensional view of the bottom support 50. The bottom support 50 is seen to comprise a primarily rectangular panel having a left bend 54 and a right bend 55, both bends 54, 55 causing the formation of a right tab 53, a center tab 51, and a left tab 52. Further, the center tab 51 is characterized by a protruding section of material bent orthogonally to the center tab 51 which material forms a bottom tab 58. The bottom tab 58 functions to accommodate and provide support for the bottom surface of a can, bottle, spay can, or other similarly-sized container inserted into the cylinder 2. The bottom tab 58 is intentionally designed to provide open areas at the bottom of the cylinder 2. The open areas allow a user's finger or fingers to be inserted into the open areas and prod a temporarily stored container upward for ease of removal from the cylinder 2.

[0053] Again, viewing FIG. 1, it is seen that the bottom support 50 is fastened to the can holder 1 by a third fastening system 15 and a fourth fastening system 16. The third and fourth fastening systems 15, 16 each comprise a tubular rivet 17. The tubular rivet 17 is simultaneously fastened through the first hole 56 (not shown) of the bottom support 50 and a corresponding hole in the left lower flare 5. Likewise a tubular rivet 17 is simultaneously fastened through the second hole 57 (not shown) of the bottom support 50 and a corresponding hole in the right lower flare 6.

[0054] FIG. 6 illustrates an upper support 40, which is essentially of rectangular shape, having three continuous surfaces formed by two bends perpendicular to the long edge of the rectangle: a left bend 44 and a right bend 45. Each of the two bends 44, 45 is at a respective angle of approximately twenty degrees, thereby causing the formation of three surfaces: a mid tab 41, a left tab 42, and a right tab 43. A first hole 46 is centered proximate the outer end of the left tab 42, while a second hole 47 is centered proximate the outer end of the right tab 43. FIG. 7 depicts an edgewise view of the upper support 40.

[0055] FIG. 9 presents a plan view of the can holder 1, showing the circumferential perimeter of the cylinder 2 and the upper support 40, being superimposed over the lower support 50. The bottom tab 58 of the lower support 50 protrudes through the longitudinal channel 9 into the open area of the can holder 1. Tubular rivets 17 are shown, which provide fastening of the upper support 40 onto the left upper left flare 3 right upper right flare 4.

[0056] Illustrating other details of the inventive concept, FIG. 10 shows a side view and a front view of the binding posts 26, 36 used. FIG. 11 depicts a side view and top view common to both of the left and right snap buttons 27, 37, respectively. FIG. 12 shows the general structure of tubular rivets 17 utilized in the inventive concept. FIG. 13 depicts a top view of both of the left and right Phillips-head screw posts 28, 38, a cutaway view of the screw posts 28, 38, illustrating the internal threading, and aside view of the exterior of the screw posts 28, 38. FIG. 14 illustrates the Phillips-head machine screw 29, 39, utilized in the upper left and upper right fastening systems 13, 14 of the can holder.

[0057] While preferred embodiments of the present inventive concept have been shown and disclosed herein, it will be obvious to those persons skilled in the art that such embodiments are presented by way of example only, and not as a limitation to the scope of the inventive concept. Numerous variations, chorales, and substitutions may occur or be suggested to those skilled in the art without departing from the intent, scope, and totality of this inventive concept. Such variations, changes, and substitutions may involve other features which are already known per se and which may be used instead in combination with, or in addition to features already disclosed herein. Accordingly, it is intended that this inventive concept be inclusive of such variations, changes, and substitutions, and by no means limited by the scope of the claims presented herein.

What is claimed:

1. A device for the friction-enhanced carriage and/or intermittent holtering of a can or other cylindrical object having liquid contents, said device attachable over the top edge of the trousers belt of a user, the device comprising a primarily longitudinal, hollow cylinder, its axis being oriented vertically and having an open top, an open bottom, and having an open longitudinal channel, the channel having a width equal to approximately twenty-five percent (25.0%) of the circumference of said cylinder, said channel further forming an arcuate left flare-out running the length of the cylinder wall and an arcuate right flare-out parallel to said left flare-out and running the length of the cylinder, the left flare-out further comprising a left upper flare and a left lower flare and the right flare-out having a right upper flare and a right lower flare; a circular aperture proximate the end of each the upper and lower left flare-outs and a circular aperture proximate the end of each the upper and lower right flare-outs:

an upper support comprising a rectangular panel where, proximate one end of said panel a transverse bend forms, at an approximately twenty degree angle, a left tab, and proximate the opposite end of said panel, a transverse bend forms, at an approximately twenty degree angle, a right tab, further having an aperture proximate the outer edge of said left tab and an aperture proximate the outer edge of said right tab;

a bottom support comprising a rectangular panel having a left bend and a right bend, said bends forming a left tab with a hole therein, a center tab, and a right tab with a hole therein, and further comprising a bottom tab formed by a protruding section of said center tab bent orthogonally to said center tab; wherein said upper support is permanently fastened to the left upper flare and the right upper flare of said cylinder by means of permanent attachment of a tubular rivet through the respective holes and apertures; and

said bottom support is permanently fastened to the left lower flare and the right lower flare of said cylinder by means of permanent attachment of a tubular rivet through the respective holes and apertures: and

a means of attaching said hollow cylinder to the trousers belt of a user.

2. A device for the friction-enhanced carriage and/or intermittent holtering of a can or other cylindrical object having liquid contents, said device attachable over the top edge of the trousers belt of a user, the device comprising a primarily longitudinal, hollow cylinder, its axis being oriented vertically and having an open top, an open bottom, and having an open longitudinal channel, the channel having a width equal to approximately twenty-five percent (25.0%) of the circumference of said cylinder, said channel further forming an arcuate left flare-out running the length of the cylinder wall and an arcuate right flare-out parallel to said left flare-out and running the length of the cylinder, the left flare-out further comprising a left upper flare and a left lower flare and the right flare-out having a right upper flare and a right lower flare; a circular aperture proximate the end of each the upper and lower left flare-outs and a circular aperture proximate the end of each the upper and lower right flare-outs:

an upper support comprising a rectangular panel where, proximate one end of said panel a transverse bend forms, at an approximately twenty degree angle, a left tab, and proximate the opposite end of said panel, a transverse bend forms, at an approximately twenty degree angle, a right tab, further having an aperture proximate the outer edge of said left tab and an aperture proximate the outer edge of said right tab;

a bottom support comprising a rectangular panel having a left bend and a right bend, said bends forming a left tab with a hole therein, a center tab, and a right tab with a hole therein, and further comprising a bottom tab formed by a protruding section of said center tab bent orthogonally to said center tab; wherein said upper support is permanently fastened to the left upper flare and the right upper flare of said cylinder by means of permanent attachment of a tubular rivet through the respective holes and apertures; and

said bottom support is permanently fastened to the left lower flare and the right lower flare of said cylinder by means of permanent attachment of a tubular rivet through the respective holes and apertures: and

a means of attaching said hollow cylinder to the trousers belt of a user.
five percent (25.0%) of the circumference of said cylinder, said channel further forming an arcuate left flare-out running the length of the cylinder wall and an arcuate right flare-out parallel to said left flare-out and running the length of the cylinder, the left flare-out further comprising a left upper flare and a left lower flare and the right flare-out having a right upper flare and a right lower flare;

a circular aperture proximate the end of each the upper and lower left flare-outs and a circular aperture proximate the end of each the upper and lower right flare-outs;

an upper support comprising a rectangular panel where, proximate one end of said panel a transverse bend forms, at an approximately twenty degree angle, a left tab, and proximate the opposite end of said panel, a transverse bend forms, at an approximately twenty degree angle, a right tab, further having a hole proximate the outer edge of said left tab and a hole proximate the outer edge of said right tab;

a bottom support comprising a rectangular panel having a left bend and a right bend, said bends forming a left tab with a hole therein, a center tab, and a right tab with a hole therein, and further comprising a bottom tab formed by a protruding section of said center tab bent orthogonally to said center tab; wherein

said upper support is permanently fastened to the left upper flare and the right upper flare of said cylinder by means of permanent machining of a tubular rivet connected through the left and right circular apertures and the left and right holes of said upper support; and

said bottom support is permanently fastened to the left lower flare and the right lower flare of said cylinder by means of permanent machining of a tubular rivet connected through the left and right lower circular apertures of said left and right lower flare-outs and the respective holes of said bottom support; and

a means of temporarily fastening said hollow cylinder to the belt of a user, comprising

a left elastomeric strap having a first half and a second half, with a hole centered proximate the end of the first half said hole having a snap button affixed thereto, and at least one lower hole proximate the end of the second half of said strap;

a right elastomeric strap having a first half and a second half, with a hole centered proximate the end of the first half, said hole further having a snap button affixed thereto, and at least one lower hole proximate the end of the second half of said strap;

a Phillips-head screw post having internal machine threads inserted through the lower hole of said left elastomeric strap, through the tubular rivet connecting said upper support to said upper left flare, a binding post placed over the shaft of the screw post; a Phillips-head machine screw threaded corresponding to said screw post inserted through the binding post and rotated into the threads of said Phillips-head screw post;

a Phillips-head screw post, binding post and Phillips-head machine screw arranged in a like manner through said tubular rivet connecting said upper support to said upper right flare; whereby a user, by means of pressing the mouth of each the left and right snap buttons against the respective left

and right binding posts, thereby forms two secure looped connections through which the user’s belt is inserted.

3. A device for the friction-enhanced carriage and/or intermittent holstering of a can or other cylindrical object having liquid contents, said device attachable over the top edge of the trousers or onto the belt of a user, the device comprising

a primarily longitudinal, hollow cylinder, its axis being oriented vertically and having an open top, an open bottom, and having an open longitudinal channel, the channel having a width equal to approximately twenty-five percent (25.0%) of the circumference of said cylinder, said channel further arcuate forming a left flare-out of a longitudinal section of material parallel to the cylinder wall and arcuate forming a right flare-out of a second longitudinal section of material also parallel to the wall of the cylinder, the left flare-out further comprising a left upper flare and a left lower flare and the right flare-out having a right upper flare and a right lower flare;

a circular aperture proximate the end of the upper and lower left flare-outs and a circular aperture proximate the end of the upper and lower right flare-outs;

an upper support comprising a rectangular panel where, proximate one end of said panel a first transverse bend forms, at an approximately twenty degree angle, a left tab and proximate the opposite end of said panel, a second transverse bend forms, at an approximately twenty degree angle, a right tab, further having an aperture proximate the outer edge of each of said left tab and said right tab, and further having two threaded holes equidistant and symmetrically spaced between said two transverse bends;

a bottom support comprising a rectangular panel having a left bend and a right bend forming a left tab, a center tab, and a right tab, and further comprising a bottom tab formed by a protruding section of said center tab bent orthogonally to said center tab; wherein

said upper support is permanently fastened to the left lower flare and the right lower flare of said cylinder by means of permanent machining of a tubular rivet through the respective apertures in the left and right tabs: and

said bottom support is permanently fastened to the left lower flare and the right lower flare of said cylinder by means of permanent machining of a tubular rivet through the respective holes and apertures; and

a means of temporarily fastening said hollow cylinder to the belt or clothing of a user, comprising

a belt clip comprising a vertically-oriented, rectangular panel bent in an irregular manner such as to form, from its upper end to its lower end, a vertical upper brace having two holes symmetrically spaced horizontally corresponding to the two threaded holes in said upper support an angled retainer adjoining a vertical retainer, adjoining a hook, which hook is bent in an arcuate manner thereby forming a lower brace, whereby

said belt clip is fastened to the upper support by means of two machine screws and in such manner, allows the inside of the vertical retainer and hook of said belt clip to encompass the belt or trousers of a user.

* * * * *