PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

(11) International Publication Number:

WO 00/50993

GOGF 9/52 A2 . i
(43) International Publication Date: 31 August 2000 (31.08.00)
(21) International Application Number: PCT/US00/04882 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
(22) International Filing Date: 24 February 2000 (24.02.00) ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
(30) Priority Data: SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
60/121,957 25 February 1999 (25.02.99) UsS US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
09/511,644 22 February 2000 (22.02.00) US LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,

(71) Applicant (for all designated States except US): SUN MI-
CROSYSTEMS, INC. [US/US]; 901 San Antonio Road,
M/S PALO1-521, Palo Alto, CA 94303 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ZHANG, Hong [CN/US];
1321 Marshall Street, #117, Redwood City, CA 94063
(US). LIANG, Sheng [CN/US]; 10440 Oakville Avenue,
Cupertino, CA 95014 (US). BAK, Lars [DK/US};, 3782
Corina Way, Palo Alto, CA 94303 (US).

(74) Agent: FERRAZANO, Michael, J.; Beyer Weaver Thomas
& Nguyen, LLP, P.O. Box 130, Mountain View, CA
94042-0130 (US).

AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, F], FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: MONITOR CONVERSION IN A MULTI-THREADED COMPUTER SYSTEM

(57) Abstract

Methods and apparatus for converting a lightweight monitor to a heavyweight monitor are disclosed. According to one aspect of the
present invention, a computer-implemented method for converting a lightweight monitor to a heavyweight monitor when an object that is
owned by a second thread is unavailable to a first thread includes creating a new heavyweight monitor and setting the ownership of the
new heavyweight monitor to the second thread. The first thread then enters the newly created heavyweight monitor without being forced

to spin lock until the object is released by the second object.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/50993 PCT/US00/04882

Monitor Conversion in a Multi-Threaded Computer System
BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates generally to methods and apparatus for converting a lightweight
monitor to a heavyweight monitor in an object-based computing system. More particularly,
the invention relates to methods and apparatus for atomically converting a lightweight monitor

associated with a contended object to a corresponding heavyweight monitor in an object-based

computing system.

Related Art

Within an object-based environment, threads are often used to satisfy requests for
services. A thread may be thought of as a “sketch pad” of storage resources, and is essentially
a single sequential flow of control within a computer program. In general, a thread, or a
“thread of control,” is a sequence of central processing unit (CPU) instructions or
programming language statements that may be independently executed. Each thread has its
own execution stack on which method activations reside. As will be appreciated by those
skilled in the art, when a method is activated with respect to a thread, an activation is “pushed”
on the execution stack of the thread. When the method returns, or is deactivated, the activation
is “popped” from the execution stack. Since an activation of one method may activate another
method, an execution stack operates in a first-in-last-out manner.

During the execution of an object-based program, a thread may attempt to execute
operations that involve multiple objects. On the other hand, multiple threads may attempt to
execute operations that involve a single object. Frequently, only one thread is allowed to
invoke one of some number of operations, i.e., synchronized operations, that involve a
particular object at any given time. That is, only one thread may be allowed to execute a
synchronized operation on a particular object at one time. A synchronized operation, e.g., a
synchronized method, is block-structured in that it requires that the thread invoking the method
to first synchronize with the object that the method is invoked on, and desynchronize with that
object when the method returns. Synchronizing a thread with an object generally entails
controlling access to the object using a synchronization construct before invoking the method.

Synchronization constructs such as locks, mutexes, semaphores, and monitors may be

used to control access to shared resources during periods in which allowing a thread to operate

10

15

20

25

30

WO 00/50993 PCT/US00/04882
on shared resources would be inappropriate. By way of example, in order to prevent more than
one thread from operating on an object at any particular time, objects are often provided with
locks. The locks are arranged such that only the thread that has possession of the lock for an
object is permitted to execute a method on that object.

Typically, a thread is permitted to execute a synchronized operation on an object if it
successfully acquires the lock on the object. While one thread holds the lock on an object,
other threads may be allowed to attempt to execute additional synchronization operations on
the object, and may execute non-synchronized operations on the object. Thread
synchronization is a process by which threads may interact to check the status of objects,
whether the objects are locked or unlocked, while allowing only the thread which holds an
object lock to execute synchronized operations on the locked object. Thread synchronization
also enables threads to obtain and remove object locks.

When threads are synchronized, in order to make certain that only the thread that
possesses an object lock is allowed to operate on a locked object, synchronization constructs
are generally provided. One such synchronization construct is known in the art as the monitor.
Typically, monitors are implemented using low-level synchronization primitives such as
mutexes and the like. Even though programs may perform monitor operations on any object, it
is generally too space inefficient to include a monitor implementation for every object. One
such synchronization construct is referred to as a monitor. Generally, a monitor is arranged
such that only the thread that owns the monitor associated with an object is permitted to
execute a synchronized operation on that object. Monitors may be either lightweight or
heavyweight. Typically, lightweight monitors are preferable for objects that are not subject to
contention, whereas heavyweight monitors are preferably used to handle contended monitor
operations.

One particular implementation of a lightweight monitor is described in “Thin
Locks: Featherweight Synchronization for Java” by David F. Bacon et al. (1998), 258-268
which is incorporated by reference in its entirety. As described, the lightweight monitor is
formed of bits reserved in the object header that identifies which thread, in the form of a thread
ID, owns the lightweight monitor and therefore has locked the associated object. Typically.
lightweight monitors are used for objects that are not subject to contention, i.e.; do not have
wait, notify, or notifyALL operations performed upon them. Figure 1A illustrates an object
header 100 and an associated lightweight monitor 102. The lightweight monitor 102 includes
a thread identifier field (also referred to as an owner field) 104 containing the thread ID of the
thread that owns the lightweight monitor 102. The lightweight monitor 102 also includes a

2

10

15

20

25

30

WO 00/50993 PCT/US00/04882
recursion counter 106 indicating the number of times that the current thread has re-entered the
lightweight monitor. The lightweight monitor 102 also includes a heavyweight monitor flag
108 used to identify the lightweight monitor 102 as a lightweight monitor when the
heavyweight monitor flag is set to “0”.

In the situation where the owner field 104 is zero, the lightweight monitor 102 is
unowned and therefor unlocked. If, however, the owner field 104 contains a thread ID
representative of the current thread that owns the lightweight monitor 102.

In order to enter a lightweight monitor, a thread 110 typically performs a compare and
swap operation on the object header 100 that contains the lightweight monitor 102. In a
compare and swap operation, the new value of the compare and swap operator is the thread ID
associated with the thread 110 and the comperand of the compare and swap operator is zero.
With this arrangement, if the compare and swap operation is successful, then the thread ID,
recursion counter, and all flags (such as the heavyweight monitor flag 108) in the lightweight
monitor 102 had been all been initially zero indicating that the lightweight monitor 102 was
un-owned and, therefor, un-locked. After the successful completion of the compare and swap
operation, the owner field 104 now contains the thread ID associated with the thread 110
indicating that the thread 110 owns the lightweight monitor 102 and has therefor locked the
lightweight monitor 102.

In those cases where a thread is re-entering a monitor that it already owns (i.e.; the
thread is re-entrant), the re-entering thread must first increment the recursion counter 106
without causing an overflow condition. In those situations where a re-entering thread does
cause an overflow condition, the re-entering thread must convert the lightweight monitor 102
into a heavyweight monitor 114 that is built upon a system monitor 116. It should be noted
that, by design, only the current owner of the system monitor 116 is capable of converting the
lightweight monitor 102 to the heavyweight monitor 114. Typically, this conversion is
accomplished by performing a compare and swap operation on the object header 100 with the
new value of the compare and swap operator being a heavyweight monitor pointer
corresponding to the newly created heavyweight monitor 114. In this way, after the successful
compare and swap operation, the object header 100 contains the heavyweight monitor pointer.

The heavyweight monitor 114 includes a recursion counter field 118 that is updated
every time a particular thread re-enters the system monitor 116. The heavyweight monitor 114
also includes a heavyweight monitor owner field 120. The system monitor 116 includes a
system monitor owner field 122 indicative of the current owner of the system monitor 116.

The system monitor 116 is also arranged to perform particular thread operations, such as enter,

~
J

10

15

20

25

30

WO 00/50993 PCT/US00/04882
exit, wait, and notify. Since the current owner (i.e.; thread 110) of the lightweight monitor 102
is the only thread capable of converting the lightweight monitor 102 to the heavyweight
monitor 114,. the owner of the heavyweight monitor 114 and the embedded system monitor
116 must be the same, i.e., thread 110.

Referring now to Figure 1B, assume that a second thread 124 attempts to enter the
lightweight monitor 102 that is currently owned by the thread 110. As before, the thread 124
will attempt to enter the lightweight monitor 102 by performing a compare and swap
operation. In this case, however, the compare and swap operation will fail since the owner
field 104 contains the thread ID corresponding to the thread 110 indicating that it owns the
lightweight monitor 102. At this point, there is contention for ownership of the lightweight
monitor 102 between the thread 124 and the thread 110. Since only the thread 110 (as owner
of the system monitor 116) can convert the lightweight monitor 102 to the heavyweight
monitor 114, the thread 124 enters a spin-lock loop until the lightweight monitor 102 is
released by the thread 110. By spin lock loop, it is meant that the thread 124 enters a wait
queue until such time as the thread 110 unlocks the lightweight monitor 102. As well known
in the art, spin locking in general is undesirable due in part to its inefficient use of system
resources. Spin locking is especially inefficient in those cases where the lightweight monitor
102 is locked for a long period of time causing other threads waiting for the lightweight
monitor 102 to spin lock. In addition, “starving” lower priority threads is a distinct possibility
in those situations where higher priority threads and lower priority threads are both spin locked
on the lightweight monitor 102.

Therefore, what is desired is an efficient method and apparatus for resolving monitor

contention in an object-based system.

SUMMARY OF THE INVENTION

Broadly speaking, the invention relates to an improved method, apparatus and
computer system for efficiently converting a lightweight monitor associated with a contended
object into a heavyweight monitor. According to one aspect of the invention, for a first thread
to execute a synchronous operation on an object owned by a second thread, the first thread
creates a new heavyweight monitor and sets the second thread as owner of the newly created
heavyweight monitor. The first thread then enters the heavyweight monitor. In this manner,
the first thread is not required to spin lock until such time as the second thread unlocks the

object.

10

15

20

25

WO 00/50993 PCT/US00/04882

The invention can be implemented in numerous ways, including as a method, a
computer system, and an apparatus. Several embodiments of the invention are discussed
below. Methods and apparatus are disclosed. According to one aspect of the present
invention, a computer-implemented method for converting a lightweight monitor to a
heavyweight monitor when an object owned by a second thread is unavailable to a first thread
includes determining ownership of the object associated with the lightweight monitor. If it is
determined that the second thread owns the object, the first thread creates a new heavyweight
monitor. The first thread then sets second thread as the owner of the newly created
heavyweight monitor. The first thread then enters the newly created heavyweight monitor.

According to yet another aspect of the present invention, a computer system includes a
memory and a plurality of threads. The computer system also includes a processor coupled to
the memory and an object that includes an object header, the object header being arranged to
contain a lightweight monitor that includes information relating to the ownership of object. A
first thread selected from the plurality of threads that has locked the object as indicated by a
first thread ID included in the lightweight monitor; and a second thread selected from the
plurality of threads, the second thread being arranged to convert the lightweight monitor to a
corresponding heavyweight monitor owned by the first thread when the object is not available
to the second thread.

According to still another aspect of the invention, a computer program product for
converting a lightweight monitor into a heavy weight monitor when a first thread attempts to
execute a synchronous operation on an object having an object header containing the
lightweight monitor is disclosed. The computer program product includes computer code that
determines ownership of the object, that creates a heavyweight monitor when it is determined
that the object is owned by a second thread, that sets ownership of the heavyweight monitor to
the second thread; and computer code that causes the first thread to enter the heavyweight
monitor; and a computer readable medium that stores the computer codes.

These and other advantages of the present invention will become apparent upon reading

the following detailed descriptions and studying the various figures of the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
The invention, together with further advantages thereof, may best be understood by

reference to the following description taken in conjunction with the accompanying drawings in
which:

10

15

20

25

30

WO 00/50993 PCT/US00/04882

Figure 1A is an illustration of a conventional conversion of a lightweight monitor to a
heavyweight monitor.

Figure 1B is an illustration of a contended lightweight monitor.

Figure 2 is a flowchart detailing a process for a thread obtaining ownership of an object
in accordance with an embodiment of the invention.

Figure 3A is an illustration of a heavyweight monitor implemented in accordance with
an embodiment of the invention.

Figure 3B is an illustration of the heavyweight monitor of Figure 3A formed by
converting a lightweight monitor.

Figure 4 is a flowchart detailing one implementation of the process of Figure 2.

Figure 5 is a flowchart detailing a monitor enter operation in accordance with an
embodiment of the invention.

Figure 6 illustrates a relationship between the monitor enter function and various other
monitor functions in accordance with an embodiment of the invention.

Figure 7 is a flowchart detailing a check owner operation in accordance with an
embodiment of the invention.

Figure 8 is a flowchart detailing a monitor wait operation 800 in accordance with an
embodiment of the invention.

Figure 9 is a flowchart detailing an exit function in accordance with an embodiment of
the invention.

Figure 10 is a flowchart detailing a notify (or notifyALL) function in accordance with
an embodiment of the invention.

Figure 11 illustrates a typical, general-purpose computer system suitable for

implementing the present invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

In a multi-threaded, object-based computing system, objects are typically provided with
synchronization constructs to make it possible to prevent more than one thread from operating
on an object at any particular time.

In one described embodiment of the present invention, a system that widely uses
lightweight monitors is contemplated. When a first thread attempts to enter a lightweight
monitor that is already owned by a second thread, the first thread creates a heavyweight

monitor setting the second thread as the owner of the newly created heavyweight monitor. The

10

15

20

25

30

WO 00/50993 PCT/US00/04882
first thread then enters the newly created heavyweight monitor. In this way, the first thread
does not wait until the second thread releases the lightweight monitor.

Figure 2 is a flowchart detailing a process 200 for a first thread obtaining ownership of
an object in accordance with an embodiment of the invention. The process 200 begins at 202
by a determination of whether or not the object is currently owned. In the described
embodiment, the object header includes a lightweight monitor having an owner field and a
heavyweight monitor flag. If the owner field is zero, then the object is un-owned, otherwise,
the object is owned by the thread whose thread ID is contained in the owner field. Ifitis
determined that the object is not owned, then the requesting thread takes ownership of the
object by inputting its own thread ID into the owner field of the lightweight monitor associated
with the object at 204,

If, however, it is determined at 202 that the object is owned, then the contents of the
object’s header is evaluated at 206. If the object header contains a lightweight monitor whose
owner field contains the thread ID of the first thread, then the first thread currently owns the
lightweight monitor associated with the object. The first thread is, in this case, what is referred
to as re-entrant. By re-entrant it is meant that as the current owner of the object, the first thread
is attempting to re-enter the lightweight monitor associated with the object. Such situations
occur when, for example, a thread releases an object and then re-acquires the object by re-
entering the associated lightweight monitor some time later. Once it is determined that the first
thread is the current thread, the first thread re-enters the lightweight monitor at 208 by
incrementing the recursion counter included in the lightweight monitor.

If, however, it is determined at 206 that the object header contains a heavyweight
monitor pointer corresponding to a heavyweight monitor, then the first thread enters the
corresponding heavyweight monitor at 210.

If, however, it is determined at 206 that the object header contains a thread ID
corresponding to a second thread that is different from the first thread, then the lightweight
monitor is owned by the second thread. In this situation, there is contention between the first
thread and the second thread for ownership of the object. In order to resolve contention
between these two threads in accordance with an embodiment of the invention, the first thread
creates a new heavyweight monitor setting the owner of the newly created heavyweight
monitor as the second thread at 212. In this way. the first thread can then enter the newly
created heavyweight monitor at 210 without waiting until the second thread releases the

lightweight monitor associated with the object. In this way, the contention between the first

10

15

20

25

30

WO 00/50993 PCT/US00/04882
thread and the second thread for ownership of the object is resolved without the necessity for
the first thread to, for example, spin lock until the lightweight monitor is released.

It should be noted, however, that in order for the first thread to create a heavyweight
monitor, it must first own the system monitor embedded in the newly created heavyweight
monitor. By setting the owner of the newly created heavyweight monitor as the second thread.
however, a potential conflict is created since the thread performing the lightweight to
heavyweight monitor conversion in not necessarily the owner of the lightweight monitor. By
way of example, if the first thread converts a lightweight monitor to a heavyweight monitor
owned by the second thread, then the system monitor is owned by the first thread and the
heavyweight monitor is owned by the second thread. This conflict is resolved with the
introduction of a lienholder field and lienholder recursion field that is included in the newly
created heavyweight monitor at 212. In the described embodiment, the lienholder field
identifies the second thread as owner of the lightweight monitor that was converted to the
heavyweight monitor.

Figure 3A illustrates a heavyweight monitor 300 in accordance with an embodiment of
the invention. The heavyweight monitor 300 is built upon a system monitor 302 that includes
a system monitor owner field 304. The heavyweight monitor includes an owner field 306 and
a recursion counter field 308. In the described embodiment, the heavyweight monitor 200 also
includes a lienholder field 310 and a lienholder recursion field 312. The lienholder field 310
and the lienholder recursion field 312 are used to temporarily hold the owner and the recursion
count of the lightweight monitor from which the heavyweight monitor has been converted.

By way of example, Figure 3B illustrates the heavyweight monitor 300 if created by
the first thread at block 212 of Figure 2. Since the first thread owns the system monitor 302,
the system monitor owner field 304 contains the thread ID of the first thread while the thread
ID of the second thread is contained in the heavyweight monitor owner field 306. Since the
second thread owned the lightweight monitor from which was formed the heavyweight
monitor 300, the true owner of the heavyweight monitor 300 is the second thread and not the
first thread. In a preferred embodiment, the lienholder field 310 contains the thread ID of the
second thread thereby preserving the identity of true owner of the heavyweight monitor 300.

Figure 4 is a process 400 for a first thread to obtain ownership of an object in
accordance with an embodiment of the invention. It should be noted that the process 400 is
only one possible embodiment of the process 200 and, as such, begins at 402 by the first thread
determining if the object is owned. In the described embodiment, ownership of the object is

determined by performing an atomic compare and swap operation with the lightweight monitor

8

10

15

20

25

30

WO 00/50993 PCT/US00/04882
that is included in the object header. As noted above, since the atomic compare and swap
operator includes a comperand value of “0”, a successful compare and swap operation
indicates that the object is un-owned and all data fields contained within the lightweight
monitor are “0”.

If, at 404, the atomic compare and swap operation was determined to be successful,
then the object was un-owned and is now owned by the first thread. However, if the atomic
compare and swap operation was not successful, then at least one field in the lightweight
monitor was not zero. In this case, the object header is evaluated at 406 to determine why the
compare and swap operation failed.

If, at 406, it was determined that the object header contains a lightweight monitor that
contains the thread ID of the first thread, then the first thread is the current owner of the
lightweight monitor and is thereby considered to be re-entrant. In this case, a determination at
408 is made whether or not incrementing the recursion counter included in the lightweight
monitor would result in an overflow condition. If, incrementing the recursion counter would
not result in an overflow condition, then the recursion counter in the lightweight monitor is
appropriately incremented at 410. Once the recursion counter is appropriately incremented,
the first thread re-enters the lightweight monitor by, in one embodiment, performing an atomic
compare and swap of the incremented recursion counter with the object header at 412.

Returning to 408, if it is determined that incrementing the recursion counter would
result in an overflow condition, then the first thread creates a new heavyweight monitor at 414,

Returning to 406, if it is determined that the object header contains a lightweight
monitor that is currently owned by a second thread, different from the first, then the first thread
creates a heavyweight monitor at 414. At 416, the lienholder is set to the current owner of the
lightweight monitor (i.e., the second thread) and the lienholder recursion counter to the current
recursion counter. An atomic compare and swap operation is then performed at 418. In this
way, the heavyweight monitor pointer corresponding to the newly created heavyweight
monitor is inserted into the object header. If at 420 it was determined that the atomic compare
and swap operation was not successful, then the newly created heavyweight monitor is deleted
at 422 and a new heavyweight monitor is created at 414. The atomic compare and swap can
fail, for example, if a third thread takes ownership of the heavyweight monitor before the
atomic compare and swap takes place.

If, however, the atomic compare and swap succeeds, then at 424 the first thread enters
the system monitor embedded in the heavyweight monitor corresponding to the heavyweight

monitor pointed contained within the object header. At this point, the first thread has

9

10

15

20

25

30

WO 00/50993 PCT/US00/04882
successfully entered the system monitor of the heavyweight monitor corresponding to the
heavyweight monitor pointer contained in the object header. However, it is now necessary to
assure that the system monitor owner and the heavyweight monitor owner is one and the same.

Figure 5 is a flowchart detailing a process 500 for a thread entering a heavyweight
monitor in accordance with an embodiment of the invention. It should be noted that the
process 500 is one implementation of the entering 424 of the process 400. More particularly,
the process 500 begins at 502 where a determination is made whether or not a lienholder
exists. In one embodiment, the determination of whether or not a lienholder exists is
accomplished by determining if the lienholder field contains a non-zero value. If the
lienholder field is “0”, then there is no lienholder, otherwise, the lienholder is the thread
pointed to by the thread ID contained in the lienholder field. If there is no lienholder (i.e.,
lienholder field is zero), then the owner field of the heavyweight monitor is set to the current
thread ID and the heavyweight recursion counter is set to the current recursion counter
incremented by one at 504. The recursion counter is incremented to compensate for re-
entering the system monitor.

If, however, if it was determined at 502 that there is a lienholder, then a determination
is made at 506 whether or not the lienholder is the current thread. In one embodiment, the
lienholder identification is accomplished by reading the contents of the lienholder field and
determining the thread ID contained therein. If the current thread is not the lienholder thread,
it must yield the monitor ownership to the lienholder thread by calling a system wait at 508.
The current thread will be woken up by the lienholder thread after the lienholder thread regains
monitor ownership.

If, at 5006, the current thread is determined to be the lienholder, then at 510 the
heavyweight monitor is updated. In one embodiment, the heavyweight monitor is updated by
re-setting the current lienholder field to “0”. The updating of the heavyweight monitor also
includes setting the owner field of the heavyweight monitor to the thread ID corresponding to
the current thread. In the described embodiment. the lienholder recursion field is incremented
by 1 to account for the current monitor enter operation. The heavyweight monitor recursion
field is then set to the value of the incremented lienholder recursion field after which the
incremented lienholder recursion field is reset to zero. After the heavyweight monitor has been
updated, the system monitor broadcasts a notifyALL at 512. The notifyALL wakes up the
threads contained in the wait queue at 508, which are then queued for further processing by

returning to 502.

10

10

15

20

25

30

WO 00/50993 PCT/US00/04882

Figure 6 illustrates a relationship 600 between the enter monitor function 500 and
various other monitor functions in accordance with an embodiment of the invention. In the
described embodiment, a check owner function 602 makes sure that the current thread owns
the heavyweight monitor. If the check owner function 602 determines that the current thread
does not own the heavyweight monitor, then an error message is called, otherwise, the check
owner function has succeeded and control is passed to a selected monitor function. Such
monitor functions include a wait at 604, an exit at 606, and a notify (or notifyALL) at 608.

Figure 7 is a flowchart detailing a check owner operation 700 in accordance with an
embodiment of the invention. It should be noted that the check owner function 700 is one
possible embodiment of the check owner function 602. More particularly, the check owner
function 700 begins at 702 by determining if the current thread owns the heavyweight monitor.
If the current thread does own the heavyweight monitor, then the heavyweight monitor owner
has been verified. If, however, the current thread does not own the heavyweight monitor. then
it is determined at 704 if the current thread is the lienholder. If the current thread is not the
lienholder, then an error message is passed, otherwise, the current thread enters the
heavyweight monitor at 706. It should be noted that, in one embodiment, the entering 706 is
implemented as the entering 424. Once the current thread has successfully entered the
heavyweight monitor, the recursion counter is decremented to account for the entering 706. At
this point, the ownership of the heavyweight monitor is verified.

Figure 8 is a flowchart detailing a monitor wait operation 800 in accordance with an
embodiment of the invention. The monitor wait operation 800 is one possible embodiment of
the monitor wait operation 604. It should be noted that the monitor wait operation 800 begins
only after the check owner function at 602 has succeeded. More particularly, the monitor wait
operation 800 begins at 802 by saving the current owner and current recursion count. Once
saved, the owner and the recursion count are set to zero at 804 establishing the monitor as
being un-owned Once the monitor has been un-owned, a system monitor wait is called at 806
which causes the heavyweight monitor to be released. Once the system monitor wait has been
completed by issuance of a notify or notifyALL, for example, the identity of the current owner
of the heavyweight monitor is re-established at 808. In one embodiment, identity is re-
established by retrieving the current owner and current recursions saved at 802 and inputting to
the current owner field and current recursion field, respectively, of the heavyweight monitor.

Figure 9 is a flowchart detailing an exit function 900 in accordance with an
embodiment of the invention. It should be noted that the exit function 900 is one possible

embodiment of the exit function 606. More particularly, the exit function 900 begins at 902 by

11

10

15

20

25

WO 00/50993 PCT/US00/04882
determining if the current thread is the owner of the heavyweight monitor. If it is determined
that the current thread is the owner of the heavyweight monitor, then it is determined at 904 is
the recursion level is 1. If the recursion level is 1, then owner field is set to “0”, the recursion
count is set to “0” and the system monitor is exited at 906. If, however, at 904 it was
determined that the recursion count was not “1”, then the recursion counter is decremented and
the system monitor is exited at 908. In either case, the exit function has been successful.

Returning to 902, if the current thread is not the heavyweight monitor owner, then a
determination is made at 910 if the current heavyweight monitor owner is the lienholder. If
not, an error message is called. In one embodiment, an exit has been called without a
corresponding enter operation which is impermissible. If, however, the current heavyweight
monitor owner is the lienholder, then the lienholder thread enters the heavyweight monitor at
912. In the described embodiment, the entering 912 is implemented as the entering 414. Once
the lienholder thread has successfully entered the heavyweight monitor, the recursion counter
is decremented in order to compensate for the entering at 912. At this point, the exit function
has succeeded.

Figure 10 is a flowchart detailing a notify (or notifyALL) function 1000 in accordance
with an embodiment of the invention. The notify (or notifyALL) function 1000 is one possible
embodiment of the notify (or notifyALL) function 608. It should be noted that the notify (or
notifyALL) function 1000 begins only after the check owner function at 602 has succeeded.
More particularly, the notify (or notifyALL) function 1000 begins at 1002 calling a notify (or
notifyALL) on the system monitor.

Figure 11 illustrates a typical, general-purpose computer system 1100 suitable for
implementing the present invention. The computer system 1100 includes any number of
processors 1102 (also referred to as central processing units, or CPUs) that are coupled to
memory devices including primary storage devices 1104 (typically a read only memory, or
ROM) and primary storage devices 1106 (typically a random access memory, or RAM).

Computer system 1100 or, more specifically, CPUs 1102, may be arranged to support a
virtual machine, as will be appreciated by those skilled in the art. One example of a virtual
machine that is supported on computer system 1100 will be described below with reference to
Figure 7. As is well known in the art, ROM acts to transfer data and instructions uni-
directionally to the CPUs 1102, while RAM is used typically to transfer data and instructions
in a bi-directional manner. CPUs 1102 may generally include any number of processors. Both
primary storage devices 1104, 1106 may include any suitable computer-readable media. A

secondary storage medium 1108, which is typically a mass memory device, is also coupled bi-

12

10

15

20

25

30

WO 00/50993 PCT/US00/04882
directionally to CPUs 1102 and provides additional data storage capacity. The mass memory
device 1108 is a computer-readable medium that may be used to store programs including
computer code, data, and the like. Typically, mass memory device 1108 is a storage medium
such as a hard disk or a tape which generally slower than primary storage devices 1104, 1106.
Mass memory storage device 1108 may take the form of a magnetic or paper tape reader or
some other well-known device. It will be appreciated that the information retained within the
mass memory device 1108, may, in appropriate cases, be incorporated in standard fashion as
part of RAM 1106 as virtual memory. A specific primary storage device 1104 such as a CD-
ROM may also pass data uni-directionally to the CPUs 1102.

CPUs 1102 are also coupled to one or more input/output devices 1110 that may
include, but are not limited to, devices such as video monitors, track balls, mice, keyboards,
microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers,
tablets, styluses, voice or handwriting recognizers, or other well-known input devices such as,
of course, other computers. Finally, CPUs 1102 optionally may be coupled to a computer or
telecommunications network, e.g., an internet network or an intranet network, using a network
connection as shown generally at 1112. With such a network connection, it is contemplated
that the CPUs 1102 might receive information from the network, or might output information
to the network in the course of performing the above-described method steps. Such
information, which is often represented as a sequence of instructions to be executed using
CPUs 1102, may be received from and outputted to the network, for example, in the form of a
computer data signal embodied in a carrier wave. The above-described devices and materials
will be familiar to those of skill in the computer hardware and software arts.

Although only a few embodiments of the present invention have been described, it
should be understood that the present invention may be embodied in many other specific forms
without departing from the spirit or the scope of the present invention. By way of example,
steps involved with locking an object and unlocking an object may be reordered. Steps may
also be removed or added without departing from the spirit or the scope of the present
invention.

Although the methods of converting a lightweight monitor to a heavyweight monitor in
accordance with the present invention are particularly suitable for implementation with respect
to a Java™ based environment, the methods may generally be applied in any suitable object-
based environment. In particular, the methods are suitable for use in platform-independent
object-based environments. It should be appreciated that the methods may also be

implemented in some distributed object-oriented systems.

13

10

15

WO 00/50993 PCT/US00/04882

Monitors have been described as being bits that identify whether an object is locked,
unlocked, or busy. It should be noted that the number of bits associated with a monitor are
generally be widely varied. In addition, it should be appreciated that the status of an object
may be identified using mechanisms other than a monitor. By way of example, the object may
include a pointer to a list that identifies the status of the object.

While the present invention has been described as being used with a computer system
that has an associated virtual machine, it should be appreciated that the present invention may
generally be implemented on any suitable object-oriented computer system. Specifically, the
methods of locking an unlocking an object in accordance with the present invention may
generally be implemented in any multi-threaded, object-oriented system without departing
from the spirit or the scope of the present invention. Therefore, the present examples are to be
considered as illustrative and not restrictive, and the invention is not to be limited to the details
given herein, but may be modified within the scope of the appended claims along with their

full scope of equivalents.

14

10

15

20

25

30

WO 00/50993 PCT/US00/04882
IN THE CLAIMS:

1. A computer implemented method for converting a lightweight monitor into a
heavy weight monitor in a multi-threaded computer system, comprising:
creating a heavyweight monitor by a first thread when the first thread is contending
for ownership of a lightweight monitor owned by a second thread;
naming the second thread as owner of the heavyweight monitor; and

entering the heavyweight monitor by the first thread.

2. A method as recited in claim 1, wherein the determining ownership further includes:

performing an atomic compare and swap operation between the first thread and the object

header; and

determining if the compare and swap operation was successful.

3. A method as recited in claim 2, wherein when it is determined that the operation was

not successful, then determining the contents of the object header.

4. A method as recited in claim 3, wherein when it is determined that the object header
contains a second thread ID corresponding to the second thread, then creating a new

heavyweight monitor, and setting the new heavyweight monitor owner to the second thread.

5. A method as recited in claim 4, wherein the setting the new heavyweight monitor
owner further includes:
performing an atomic compare and swap operation between the object header and a

heavyweight monitor pointer associated with the new heavyweight monitor.

6. A method as recited in claim 3, wherein when it is determined that the object header

contains a heavyweight monitor pointer, then

the first thread entering the heavyweight monitor corresponding to heavyweight pointer

contained in the object header.

15

10

15

20

25

30

WO 00/50993 PCT/US00/04882
7. A method as recited in claim 3, wherein when it is determined that the object header

contains a first thread ID corresponding to the first thread, then

determining if incrementing the recursion counter included in the lightweight monitor will

cause an overflow condition.

8. A method as recited in claim 7, wherein when it is determined that incrementing the
recursion counter will not cause the overflow condition, then

m) re-entering the lightweight monitor by the first thread.

9. A method as recited in claim 7, wherein when it is determined that incrementing the
recursion counter will cause an overflow condition, then

n) inflating the lightweight monitor to a corresponding heavyweight monitor.

10. A computer program product for converting a lightweight monitor into a heavy weight
monitor when a first thread attempts to execute a synchronous operation on an object
associated with the lightweight monitor, the object having an object header containing the
lightweight monitor, comprising:

computer code that determines ownership of the object;

computer code that creates a heavyweight monitor when it is determined that the object

is owned by a second thread;
computer code that sets ownership of the heavyweight monitor to the second thread;
computer code that causes the first thread to enter the heavyweight monitor; and

a computer readable medium that stores the computer codes.

11. A computer program product according to claim 10 wherein the computer readable

medium is a data signal embodied in a carrier wave.
12. A computer program product according to claim 10 further including computer code

that performs an atomic compare and swap operation between the first thread and the object

header and determines if the compare and swap operation was successful.

16

10

15

20

25

WO 00/50993 PCT/US00/04882
13. A computer program product according to claim 12 wherein when the compare and
swap operation was successful, computer code that determines the contents of the object

header.

14. A computer program product according to claim 13, wherein when it is determined that
the object header contains a second thread ID corresponding to the second thread, then
computer code that,

creates a new heavyweight monitor,

sets the new heavyweight monitor owner to the second thread, and

performs an atomic compare and swap operation between the object header and a heavyweight

monitor pointer associated with the new heavyweight monitor.

15. A computer system including a memory which includes a plurality of threads, each of
the plurality of threads, the computer system comprising:

a processor coupled to the memory; and

an object including an object header, the object header being arranged to contain a
lightweight monitor which includes information relating to the ownership of object,
a first thread selected from the plurality of threads that has locked the object as indicated by a
first thread ID included in the lightweight monitor; and

a second thread selected from the plurality of threads, the second thread being arranged
to convert the lightweight monitor to a corresponding heavyweight monitor owned by the first

thread when the object is not available to the second thread.

16. A computer system as recited in claim 15 wherein the lightweight monitor includes a

recursion counter indicative of the number of times the object has been re-entered.

17. A computer system as recited in claim 16, wherein the object header includes a

heavyweight monitor pointer that points to the heavyweight monitor associated with the object.

17

WO 00/50993

thread 110

B

112

thread ID

compare/swap

owner
field
104

recursion
counter
106

hvywt
flag
108

object header
100

120

"thread ID
for thread
110"

recursion
counter
118

L

| “thread ID
‘ for thread

110"

system monitor

116

FIGURE

1A

PCT/US00/04882

lightweight
monitor
102

<~
heavyweight
monitor
114

WO 00/50993

2/12

thread 124

B

thread ID

compare/swap

104

/

"thread ID| recursion
for thread| counter
110" 106

hvywt
flag
108

object header
100

FIGURE 1B

PCT/US00/04882

lightweight
monitor
102

WO 00/50993

202

current owner is
first thread

ZOGW

3/12

PCT/US00/04882

204
W

is object

owned
no

first thread enters

lightweight monitor

6

determine

current owner is
second thread

210

contents of object
header

208v l__‘

first thread
re-enters lightweight
monitor

} <

212 /1

first thread creates HWM
with second thread as
owner

first thread enters
heavyweight |«

monitor

FIGURE 2

WO 00/50993

HEAVYWEIGHT
MONITOR

300

HEAVYWEIGHT
MONITOR

300

4/12

PCT/US00/04882

OWNER
FIELD
306

RECURSION
COUNTER
308

OWNER
FIELD
302

SYSTEM
MONITOR
302

LIENHOLDER
310

LIENHOLDER
RECURSION COUNTER
312

FIGURE
3A

"second thread
IDII

306

RECURSION
COUNTER
308

"first thread 1D"
304

SYSTEM
MONITOR
302

LIENHOLDER
310

"second thread
IDH

LIENHOLDER
RECURSION COUNTER
312

FIGURE
3B

PCT/US00/04882

WO 00/50993

5/12

444

\/l\
Joyuow

MH pajealo
Aimau ays|ap

¢inyssaoons
dems pue
aledwoo ojwoje

sah

0cv

lopesy joalqo
ul Jsjutod Jojuow pAH

ALY

Jajulod Jo)uow pAH pajeald
Aimau yum Jepeay 10aiqo jo dems
pue aiedwod ojwole wiopad

0} Bujpuodsalioo jojuow |

lapesy jo08lqo
Y}IM J8JUN0D UoISINdDl
psjuswaioul jo dems pue
aledwod oiwoje wiopad

MH Ul pappaquis Jojiuow
waj)sAs sisjus pealy)

N\ vy

%

19JUN0d UOISINDaI JUBLIND Joi0d 0
0} 18JUN0d uoIsINoBIUBl Jos NI Jojuow JyBlemAnesy
18UMO JuBiINd 0] Jepjoyusl| }os .
{ 90%F \4
y| JONUOW MH | Jepeay 1o8lqo
MaU 8)eao pealy} puUodas | 4O SJUBJUOD BuIWISIEP peaiy; 111
vLY N\ S| JBUMO Jua.LInd S| JBUMO JuaLINd
asoym NAAT 3sSOUM INATT
éInjsssoons dems 204
sok pue asedwos owoje
lspeay j08(qo ypm
20v" M dems pue aiedwod ojwoje swiouad pealy; isily
¥ 3dNOl4

ﬁ

Jajunoo
uoisinoal
Juawiaioul

1y M

¢191unoo uoIsINoal
MO|JUSAO pealy)
bunsjua-ai ssop

80¥

ooy

PCT/US00/04882

WO 00/50993

6/12

¥0G

N_‘m,/\ TIvANI0U Sanssi

» dois

Jojuow wajsAs

1

G IHNOI

.0, = UOISINoal Japjoyusl| }osal
| + UOISINOal Jap|oyual| = p|al} uoisinoal }os
dl pesaiy) Jualino = pjal} JSUMO 18s

.0. = PIdY 1apjoyual] JuslIno }os

©om\/\

| + UOISINDaI JUS.IND 0} JSJUNOD UOISINOal }9S
dl pealy) JUsLINd 0} JBUMO }8s

sak

¢lapjoyuay| sy
pealiy} jusalind ayj si

(Z1G wouy Ajnou 1o} yem)
Jojiuow walsAs uo jiem

/\)wom

¢lapjoyuai| e 219y} si

20§

Jojuow
wajsAs Iajua

009

PCT/US00/04882

WO 00/50993

7112

(Mv)Aou \/w\o@

A

}Ixa ém

Hem

009

\/Wow

Jolie

A

ou

%EBM JBUMO

soA

oow\/\

Jojuow
yblamAneay isjus

¢09
\/\

g ainbi4

WO 00/50993 PCT/US00/04882

8/12

is current thread
heavyweight
monitor owner
?

yes

702

is current

heavyweight
704 monitor owner a
0 lienholder

error

?

yes
\ 4

enter

heavyweight — _ 70g
monitor

Y
decrement

recursion _708

counter

owner
verified

FIGURE 7

WO 00/50993

PCT/US00/04882

9/12

save current owner

and T \.802

current recursion count

y

set ower and recursion

field to "0" ~ \-804

\ 4

call system monitor wait 806

y

re-establish identity of
heavyweight monitor 808

FIGURE 8

PCT/US00/04882

WO 00/50993

10/12

Jojuow
wid)sAs uo JIxa
Jajunod uoisinoal
JuswiaIo8p

» dojs

lojuow waysAs 1xa
Ia2junoo
UoISINOal JuaWalosp

3

6 34dNSOld

Jojuow

906 WybremAneay sajue

_~Cl6

é
Iapjoyuay|
B JSUMO Jojluowl
WbiamAneay

Joyuow
waj}sAs uo }xa
.0, = UOISinoal }os

w y

806

.0, = JBUMO }os

Jualiinod si

¢
ou il = Jaumo Jojuowl
|9A8] UOISIND3I SI ybiamAneay
pEaIY} JUSLIND SI
v06

lolla

_— 016

c06

006

WO 00/50993 PCT/US00/04882

11/12

owner

. error
verifed?

broadcast notifyALL on /\
system monitor 1002

FIGURE 10

WO 00/50993 PCT/US00/04882

12/12

17O

1110

primary storage
secondary 1106
N processors
storage
N
1102

1108 ROM
1104

/ network

1112

1100

FIGURE 11

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

