发明名称
一种人工影响天气探测作业综合系统

摘要
本发明公开了一种人工影响天气探测作业综合系统，包括指挥控制中心、无人机系统与无人直升机系统。指挥控制中心根据遥感气象数据确定可能降雨的云层的预估位置，并通知无人机系统按照地面站子系统提供的作业区域建议的飞行路径飞行至各作业区域，将探测数据传输到地面站子系统，地面站子系统根据专家辅助决策系统提供的辅助决策信息控制无人机系统飞行到云层的最佳降雨位置后点燃催化银条，本发明利用无人机系统与有人机形成有效的搭配和补充，在对有人机作业有切实危险的区域，采用无人机系统进行催化作业，显著提高了投入产出比。
1. 一种人工影响天气探测作业综合系统，其特征在于：包括指挥控制中心，无人机子系统，与无人机子系统一一对应配置的地面站点系统，以及专家辅助决策子系统，指挥控制中心与各地面站点系统通讯连接，各地面站点系统和与各自相对应的无人机子系统通讯连接，专家辅助决策子系统与指挥控制中心通讯连接；定义人工影响天气探测作业综合系统包括 n 个无人机子系统，分别为第一至第 n 无人机子系统，其中，与第 N 无人机子系统相对应的地面站点系统为第 N 地面站点系统，其中，n 为大于等于 1 的自然数，N 的取值为从 1 至 n 的所有自然数；指挥控制中心、无人机子系统、地面站点系统和专家辅助决策子系统间的关系为：

步骤 1：指挥控制中心根据遥感气象数据确定可能降雨的云层的预估位置，规划第 N 无人机子系统进行近距离探测的目标区域；

步骤 2：指挥控制中心与第 N 地面站点系统进行通讯，将第 N 无人机子系统作业的区域以指令代号的形式发送给第 N 地面站点系统；

步骤 3：第 N 地面站点系统在接收到作业区域的指令代号后，规划第 N 无人机子系统的飞行路径，并控制第 N 无人机子系统自动起飞；

步骤 4：第 N 无人机子系统按照第 N 地面站点系统确定的飞行路径飞行至各作业区域，将所携带的探测传感器单元采集到的近距探测数据实时传输给第 N 地面站点系统 3，第 N 地面站点系统再将近距探测数据通过指挥控制中心传输给专家辅助决策子系统；

步骤 5：专家辅助决策子系统融合遥感气象数据和所述近距探测数据，对是否进行增雨作业以及如何进行增雨作业给出辅助决策信息，并将辅助决策信息发送至指挥控制中心；

步骤 6：指挥控制中心将辅助决策信息发送给第 N 地面站点系统，第 N 地面站点系统根据专家辅助决策子系统提供的辅助决策信息控制第 N 无人机子系统 2 飞行到云层的最佳催雨位置后点燃碘化银焰条，进行增雨作业。

2. 根据权利要求 1 所述的人工影响天气探测作业综合系统，其特征在于：指挥控制中心具有用于将探测获得的气象环境数据导入气象分析专用计算机的通信数据输出接口。

3. 根据权利要求 1 所述的人工影响天气探测作业综合系统，其特征在于：当第 N 无人机子系统在执行探测、作业任务时，如果数据链突然中断，第 N 无人机子系统的无人机将自动按照第 N 地面站点系统确定的飞行路径返回；当第 N 无人机子系统的无人机的发动机突然熄火时，第 N 无人机子系统的无人机先滑翔，再打开降落伞。
说明 书

一种人工影响天气探测作业综合系统

技术领域
[0001] 本发明属于人工影响天气作业技术领域，特别涉及一种人工影响天气探测作业综合系统。

背景技术
[0002] 人工影响天气的手段多种多样，传统的催化作业手段包括地面的人工燃烧硫化银、利用大气上升气流进行催化、发射火箭弹释放硫化银催化剂进行催化；有人机实施硫化银烟流燃烧播撒催化等。这些手段均存在一定的问题，地面燃烧硫化银烟流存在效率低、准确性低的问题；火箭弹存在精度有限、有一定风险性等问题；以有人机为载体进行催化作业也存在恶劣气象条件下飞行危险性等问题。而近几年，随着无人机技术的飞速发展，系统可靠性、自主飞行能力得到了很大的提升，从而使用无人机系统用于人工影响天气作业变得可能。

发明内容
[0003] 本发明的目的在于针对上述问题，提供一种以无人机为实施终端的人工影响天气探测作业综合系统，该系统将遥感气象数据与近距探测数据相结合，通过指挥控制中心确定人工增雨实施策略，并指挥无人机进行催雨作业。
[0004] 本发明采用的技术方案为：一种人工影响天气探测作业综合系统，包括指挥控制中心，无人机子系统，与无人机子系统一一对应配置的地面站子系统，以及专家辅助决策子系统。指挥控制中心与各地面站子系统通讯连接，各地面站子系统和与各自相对应的无人机子系统通讯连接，专家辅助决策子系统与指挥控制中心通讯连接。定义人工影响天气探测作业综合系统包括 n 个无人机子系统，分别为第一至第 n 无人机子系统，其中，与第 N 无人机子系统相对应的地面站子系统为第 N 地面站子系统，其中，n 为大于等于 1 的自然数，N 的取值为从 1 至 n 的所有自然数；
[0005] 指挥控制中心、无人机子系统、地面站子系统和专家辅助决策子系统间的关系为：
[0006] 步骤 1：指挥控制中心根据遥感气象数据确定可能降雨的云层的预估位置，规划第 N 无人机子系统近距探测的目标区域；
[0007] 步骤 2：指挥控制中心与第 N 地面站子系统通讯，将第 N 无人机子系统作业的区域以指令代码的形式发送给第 N 地面站子系统；
[0008] 步骤 3：第 N 地面站子系统在接收到作业区域的指令代码后，规划第 N 无人机子系统的飞行路径，并控制第 N 无人机子系统自动起飞；
[0009] 步骤 4：第 N 无人机子系统按照第 N 地面站子系统确定的飞行路径飞行至各作业区域，将所携带的探测传感器单元采集到的近距探测数据实时传输给第 N 地面站子系统 3，第 N 地面站子系统再将近距探测数据通过指挥控制中心传输给专家辅助决策子系统；
[0010] 步骤 5：专家辅助决策子系统融合遥感气象数据和上述近距探测数据，对是否进
行增雨作业以及如何进行增雨作业给出辅助决策信息，并将辅助决策信息发送给指挥控制中心；

【0011】步骤6：指挥控制中心将辅助决策信息发送给第N地面站子系统，第N地面站子系统根据专家辅助决策子系统提供的辅助决策信息控制第N无人机子系统2飞行到云层的最佳催雨位置后点燃碘化银焰条，进行增雨作业。

【0012】其中，指挥控制中心具有用于将探测获得的气象环境数据导入气象分析专用计算机的通用数据导出接口。

【0013】其中，当第N无人机子系统在执行探测、作业任务时，如果数据链突然中断，第N无人机子系统的无人机将自动按照第N地面站子系统确定的飞行路径返回；当第N无人机子系统的无人机的发动机突然熄火时，第N无人机子系统的无人机先滑翔，再打开降落伞。

【0014】本发明的有益效果为：本发明的人工影响天气探测作业综合系统利用无人机子系统与有人机形成有效的搭配和补充，在对有人机作业有切实危险的区域，采用无人机子系统进行催化作业，既避免了人员的危险，又可以深入到云层中，实施更加有效的近距离探测和实施催化作业，显著提高了投入产出比；另外，本发明的人工影响天气探测作业综合系统作为人工影响天气的新型信息化设备，集探测、辅助决策、指挥、作业等功能于一体，具有作业灵活、操作简便、无人人员安全隐患等优点。

附图说明

【0015】图1为根据本发明的人工影响天气探测作业综合系统的一种实施结构的组成示意图。

具体实施方式

【0016】以下结合附图对本发明进行说明：

【0017】如图1所示，本发明的人工影响天气探测作业综合系统包括指挥控制中心1，无人机子系统2，与无人机子系统2一一对应配置的地面站子系统3，以及专家辅助决策子系统4，指挥控制中心1与各地面站子系统3通讯连接，各地面站子系统3与各自相对应的无人机子系统2通讯连接，专家辅助决策子系统4与指挥控制中心通讯连接。其中，本发明的人工影响天气探测作业综合系统包括n个无人机子系统2，分别为第一至第n无人机子系统，其中，与第n无人机子系统2相对应的地面站子系统3为第n地面站子系统，其中，n为大于等于1的自然数，n的取值为从1至n的所有自然数。

【0018】各子系统功能如下：

【0019】指挥控制中心1根据遥感气象数据确定可能降雨的云层的预估位置，规划无人机子系统2进行近距探测的目标区域，融合各无人机子系统2实时传输回来的近距探测数据，确定是否进行催雨作业以及如何进行催雨作业；此外，指挥控制中心1的人机交互界面上还可实时显示各遥感设备、机载传感器采集的气象信息及环境信息，各无人机子系统2飞行的路径等。指挥控制中心1具有通用数据导出接口，可将探测获得的气象/环境数据导入气象分析专用计算机，便于气象专家进行分析和存档。

【0020】第n无人机子系统2可包括多种型号的固定翼无人机，第n无人机子系统2的无人机可自主飞行至6000米的高空，通过所携带的包括激光云粒子探测器、湿度传感器、温
度传感器，视觉传感器以及压力传感器的探测传感器单元对其周围环境进行实时探测并将近距探测数据传输到第N地面站子系统3，在得到第N地面站子系统3的点火指令后，点燃所携带的碘化银焰条，进行增雨作业；当无人机在执行探测、作业任务时，如果数据链突然中断，无人机将自动按照原路径返回；当无人机发动机突然熄火时，无人机先滑翔，再打开降落伞。

[0021] 第N地面站子系统3用于控制第N无人机子系统2的起降、巡飞模式和飞行轨迹，显示第N无人机子系统的探测传感器单元实时回传的近距探测数据，并实时与指挥控制中心1和第N无人机子系统2进行通信。

[0022] 专家辅助决策子系统4融合遥感气象数据以及近距探测数据，根据气象专家经验库以及贝吉隆效应等气象理论，采用模糊逻辑推理方法，对是否进行催雨作业以及如何进行催雨作业给出参考辅助决策。

[0023] 人工影响天气探测作业综合指挥系统的第N无人机子系统的作业流程如下；

[0024] 步骤1：指挥控制中心1根据遥感气象数据确定可能降雨的云层的预估区域，规划第N无人机子系统2的近距探测的目标区域；

[0025] 步骤2：指挥控制中心1与第N地面站子系统3进行通信，将第N无人机子系统2作业的区域以指令代码的形式发送给第N地面站子系统3；

[0026] 步骤3：第N地面站子系统3在接收到作业区域的指令代码后，规划第N无人机子系统2的飞行路径，并控制第N无人机子系统2自动起飞；

[0027] 步骤4：第N无人机子系统2按照第N无人机子系统中确定的飞行路径进行作业，将所携带的探测传感器单元采集到的近距探测数据实时传输给第N地面站子系统3，第N地面站子系统3再将近距探测数据通过指挥控制中心1传输给专家辅助决策子系统4；

[0028] 步骤5：专家辅助决策子系统4融合遥感气象数据和所述近距探测数据，对是否进行增雨作业以及如何进行增雨作业给出辅助决策信息，并将辅助决策信息发送给指挥控制中心1；

[0029] 步骤6：指挥控制中心1将辅助决策信息发送给第N地面站子系统，第N地面站子系统根据专家辅助决策子系统4提供的辅助决策信息控制第N无人机子系统2飞行到云层的最佳催雨位置后点燃碘化银焰条，进行增雨作业。

[0030] 与现有的相关技术和设备相比，本发明的优点在于：集探测、辅助决策、指挥、作业等功能于一体，具有作业灵活、操作简便、无人员安全隐患等优点，可以大面积推广应用于人工影响天气工程。

[0031] 以上所述仅为本发明较佳的实施方式，并非用来限定本发明的实施范围，但凡在本发明的保护范围内所做的等效变化及修饰，皆应认为落入了本发明的保护范围内。
图 1