一种高纯度头孢呋辛酸的制备方法

本发明公开了一种用于合成二代头孢抗生素
的中间体——高纯度头孢呋辛酸的制备方法，即：以 7－氨基头孢烷酸
（7－ACA）为原料，与二氯乙酸在 7 位进行 N－酰
化反应，然后在低氯下，用氢氧化钠水溶液将 3 位
乙酰基水解后结晶、过滤、干燥得到中间体 3－去
甲酰氨基头孢呋辛（DCC），定量加入到四氢呋喃
溶剂中，滴加氯磺酸异氯酸酯进行羧酸酰化
反应生成氯磺酰化头孢呋辛酸，再加入纯化水水解制
得头孢呋辛酸反应液。加入碳酸氢钠成盐后，用二
氯甲烷、乙酸乙酯和四氢呋喃三元复合萃取剂，除
去反应液中的副产物内酯及其他不皂化物杂
质，分出后，水相加盐酸酸化，再加三元复合萃取
剂萃取分出头孢呋辛酸，除去水溶性杂质，有机相
经过蒸发后结晶，过滤、干燥制得纯度 ≧ 99% 高
纯度头孢呋辛酸。
1. 一种高纯度孢酚辛酸的制备方法，其方法包括以下步骤：
（1）采用7-氨基头孢烷酸作为起始原料，与呋喃乙酰氯在7位进行N-酰化反应，然后
在-20℃～-60℃低温下，用水浸出溶液将3位乙酰基水解后结晶、过滤、干燥得到中间
体3-去甲酰氨基头孢烷酸；
（2）在四氢呋喃溶剂中加入上述（1）中的3-去甲酰氨基头孢烷酸，降温至-30℃～-80℃，滴加氯磺酰异氰酸酯进行亲核加成反应生成氯磺酰化头孢烷酸，氯磺酰异氰酸酯的量是3-去甲酰氨基头孢烷酸量的0.1～1倍，再加入纯化水水解制得头
孢烷酸反应液；
（3）将上述（2）中的头孢烷酸反应液加入碳酸氢钠溶液调pH＝5.0～8反应成盐
后，加入二氯甲烷和乙酸乙酯，与反应液中的四氢呋喃形成三元复合溶剂，其中四氢呋喃：
二氯甲烷：乙酸乙酯＝2～5：2～4：1～3，分层，除去反应液中的副反应产物内酯及
其他不皂化物杂质，水相中加入浓度为16～31%盐酸酸化，控制pH＝1.0～4.0，再加入
三元复合溶剂分层，其中四氢呋喃：二氯甲烷：乙酸乙酯＝2～4：4～6：1～3，水溶
性杂质溶在水相中除去水溶性杂质，有机相经过蒸发后结晶、过滤、干燥制得高纯度孢酚辛
酸白色结晶粉末。
2. 根据权利要求1所述的一种高纯度孢酚辛酸的制备方法，其特征在于：该制备方法
制得的高纯度孢酚辛酸的结构式和分子式如下：

结构式

分子式
C_{16}H_{14}N_{4}O_{8}S_{2}
3. 根据权利要求1所述的一种高纯度孢酚辛酸的制备方法，其特征在于：该制备方法
的合成路线是：
4. 根据权利要求1所述的一种高纯头孢呋辛酸的制备方法，其特征在于：步骤（3）所述三元复合萃取剂中四氢呋喃所占比例为20～50％；步骤（3）所述三元复合萃取剂中乙酸乙酯所占比例为10～30％；步骤（3）所述三元复合萃取剂中二氯甲烷所占比例为20～60％。

5. 根据权利要求1所述的一种高纯头孢呋辛酸的制备方法，其特征在于：步骤（3）所述碳酸氢钠的用量为3-去甲酰氨基头孢呋辛酸重量的0.5～1.5倍，在反应过程中控制溶液pH在5.0～8.0之间。

6. 根据权利要求1所述的一种高纯头孢呋辛酸的制备方法，其特征在于：步骤（3）所述16～31％盐酸用量为3-去甲酰氨基头孢呋辛酸重量0.2～1.0倍，在酸化过程中控制溶液pH在1.0～4.0之间。
一种高纯度头孢呋辛酸的制备方法

技术领域
[0001] 本发明涉及一种合成第二代头孢抗菌素头孢呋辛酯、头孢呋辛钠的中间体的制备方法，更具体地说是涉及一种高纯度头孢呋辛酸的制备方法。

背景技术
[0002] 头孢呋辛酸是合成第二代头孢抗菌素头孢呋辛酯、头孢呋辛钠的中间体。头孢呋辛类抗生素具有广谱抗菌作用，适用范围广，可用于敏感菌所致的呼吸道感染、耳鼻喉科感染、泌尿系统感染、皮肤和软组织感染、骨和关节感染、淋病、包括败血症及脑膜等其他感染，是第二代头孢抗菌素的领军品种。头孢呋辛酸是头孢呋辛类抗生素不可替代的中间体。

制备头孢呋辛酸的方法有两种，一种是以 7-氨基头孢烷酸（7-ACA）为起始原料合成头孢呋辛酸，另一种是以 3-去乙酰头孢烷酸（D-7-ACA）为起始原料制备头孢呋辛酸；综合国内发表的文献，以 7-ACA 为起始原料合成头孢呋辛酸的制备方法分二步进行：

第一步是先在干燥的二氧甲烷体系中将呋喃酸成环酰氯，然后和溶解后的 7-ACA 进行 N-酰化反应，再用水解酶或碱性水溶液将 3 位的乙酰基水解掉，最后用盐酸结晶析出 DCC；

第二步是 DCC 和氯磺酰异氰酸酯在四氢呋喃或乙腈、碳酸二甲酯等溶剂中进行亲核加成得到氯磺酰化头孢呋辛；水解后得到头孢呋辛酸，在水相中将产品结晶，得到的产品纯度为 90.96%。

上述工艺第一步 DCC 合成过程中，产生副产物内酯，经液相色谱检测含量在 3.2 3.8%，制备过程中这些内酯一直存在到最终产品中。

[0006]

(DCC) (内酯)

[0007] 第二步结晶过程中在水相中进行，不能够有效的除去副反应物内酯及有机不皂化物，影响产品的纯度和稳定性。同时由于产品在水相中结晶、过滤的滤饼中水含量超过 50%，干燥温度高、时间长，导致产品纯度低、颜色深、稳定性差。

发明内容
[0008] 本发明的目的是克服已有制备头孢呋辛酸技术存在的不足，在制备工艺中采用有效提纯技术，即在水解得到头孢呋辛酸溶液，用药酸氢钠中和，使头孢呋辛酸成为水溶性钠盐，然后加入二氯甲烷、乙酸乙酯，使之与溶液中的四氢呋喃形成三元复合溶剂，使副反应产物内酯、有机不皂化物溶解在三元复合溶剂中，分层后再向头孢呋辛钠所在水相中加入盐酸酸化，再经过三元复合溶剂剂二次萃取，除去水溶性杂质，使头孢呋辛酸溶解在复合溶剂中，经蒸馏、结晶、干燥制得纯度≥ 99%的头孢呋辛酸产品。
本发明是通过以下技术方案实现的：

该高纯度胞嘧啶酸的制备方法包括如下步骤：

（1）采用7-氨基头孢匹酮酸为起始原料，与乙酰乙酸酯在7位进行N-酰化反应，然后在-20℃～-60℃低温下，用氢氧化钠水溶液将3位乙酰基水解后结晶、过滤、干燥得到中间体3-去甲酰氨基头孢匹酮酸；

（2）在四氢呋喃溶剂中加入上述（1）中的3-去甲酰氨基头孢匹酮酸，降温至-30℃～-80℃，滴加氯磺酰氨氮酸酯进行亲核加成反应生成氯磺酰化头孢匹酮酸酯，滴加氯磺酰氨氮酸酯的量是3-去甲酰氨基头孢匹酮酸量的0.1～1倍，再加入氢化钠水解制得头孢匹酮酸反应液；

（3）将上述（2）中的头孢匹酮酸反应液加入碳酸氢钠溶液调PH=5.0～8反应成盐后，加入氯甲烷和乙酸乙酯，与反应液中的四氢呋喃形成三元复合溶剂，其中四氢呋喃：氯甲烷：乙酸乙酯=2～5：2～4：1～3，分层，除去反应液中的副反应产物内酯及其他不皂化物杂质，水相中加入浓度为16～31%盐酸酸化，控制PH=1.0～4.0，再加入三元复合溶剂分层，其中四氢呋喃：氯甲烷：乙酸乙酯=2～4：4～6：1～3，水溶性杂质溶解在水相中除去水溶性杂质，有机相经过蒸馏后结晶、过滤、干燥制得高纯度胞嘧啶酸白色结晶型粉末。

本发明产品高纯度胞嘧啶酸的结构式和分子式如下：

产品结构式：

\[\text{C}_{16}H_{18}N_{6}O_{5}S \]

本发明产品高纯度胞嘧啶酸的合成路线是：
[0021] 本发明优选的技术方案为：步骤 (3) 所述三元复合萃取剂中四氢呋喃、乙酸乙酯、二氯甲烷体积百分数：

[0022] 步骤 (3) 所述三元复合萃取剂中四氢呋喃所占比例为 20-50%；
[0023] 步骤 (3) 所述三元复合萃取剂中乙酸乙酯所占比例为 10-30%；
[0024] 步骤 (3) 所述三元复合萃取剂中二氯甲烷所占比例为 20-60%；
[0025] 步骤 (3) 所述碳酸氢钠的用量为中间产品 (DCC) 重量的 0.5~1.5 倍，在反应过程中控制溶液 PH 在 5.0~8 之间。
[0026] 步骤 (3) 所述 16~31%盐酸用量为中间产品 (DCC) 重量 0.2~1.0 倍，在酸化过程中控制溶液 PH 在 1.0~4.0 之间。

[0027] 本发明的积极效果是：
[0028] (1)、产品纯度高，达到 99%以上；
[0029] (2)、产品收率高，达到 91%以上；
[0030] (3)、产品干燥时间短，温度低，能耗少；
[0031] (4)、产品白色结晶型粉末，稳定性好；
[0032] (5)、溶剂可以回收循环使用。

[0033] 本发明的主要技术特点是制备过程中通过三元复合溶剂两次萃取除杂的提纯技术，最终制得的头孢呋辛钠产品纯度可达到 99%以上，产品稳定性好，保质期为半年，满足制药要求。

具体实施方式
[0034] 实施例 1：
[0035] (1)、3-去甲酰氨基头孢呋辛 (DCC) 的制备：
在反应瓶中加入纯化水 380ml，7-ACA 200g，用 15% 的氢氧化钠 200ml 搅拌溶解，然后将配制好的含量为 12% 的 1500g 水溶乙酰氯二氯甲烷溶液加入上述溶液中，控制反应温度 0 ～ 15℃，搅拌反应 2 小时，并在反应的过程中保持溶液的 PH = 5.5 ～ 7.5。反应结束后静置 10 ～ 30 分钟，分出水相，有机相用 50ml 纯化水萃取两次，合并水相，加入甲醇 80ml，降温至 -25 ～ -30℃，加入 15%（质量）的氢氧化钠 200g，搅拌反应 30 分钟后，加入冰醋酸 80ml，然后用 25% 的盐酸调节 PH 至 1.0 ～ 2.0，搅拌 15 分钟后过滤，滤饼 DCC 用 180ml 纯化水洗涤，40℃真空干燥至水份小于 2.0%，得 DCC 干品 263g，含量 95.23%，收率 93.86%。

（2）头孢呋辛酯的制备：
在干燥的反应瓶中加入四氢呋喃 400ml，DCC（3- 去甲酰氨基头孢呋辛）100g，降温至 -35℃ ～ -55℃ 后快速加入 CSI（氯磺酰异氰酸酯）120g，保持 -25 ～ -30℃，反应 25 分钟加入纯化水 200ml，升温至 30 ～ 35℃反应 30 分钟制得头孢呋辛磷酸反应液，在 10 ～ 15 分钟内加入碳酸氢钠溶液，调 PH = 5.5，滴加乙酸乙酯 100ml，二氯甲烷 200ml，搅拌 10 ～ 30 分钟，静置分层，水相中加入 31% 盐酸调 PH = 2.0，滴加 360ml 已降温至 5℃ 以下的三元复合溶剂（四氢呋喃：二氯甲烷：乙酸乙酯 = 2 ： 5 ： 3 体积比），保持温度 5 ～ 10℃，搅拌结晶 2 小时，真空抽滤，滤饼在 40℃下真空干燥 2 小时，得头孢呋辛酯 101.45g，纯度 99.21%，水分 0.13%，收率 91.16%。

实施例 2
头孢呋辛酯的制备：
3- 去甲酰氨基头孢呋辛（DCC）的制备同实施例 1，按照实施例 1 中（1）制备 DCC 100g 加入四氢呋喃 300ml 溶解，按实施例 1 中（2）的方法制得头孢呋辛磷酸反应液，加入乙酸乙酯 220ml，二氯甲烷 360ml，然后加入碳酸氢钠溶液，调 PH = 7.5，搅拌 10 分钟，静置分层，有机相中萃取出内酯和不皂化物，在水相中加入三元复合溶剂 660ml，再加入 31% 盐酸调 PH = 2.0，静置 25 分后分液，有机相进行真空蒸馏，当溶液馏出液为 300ml 时停止蒸馏，降温至 5 ～ 10℃，搅拌 2 小时。真空抽滤，滤饼在 40℃下真空干燥 2 小时，得 102.18g，纯度 99.31%，水分 0.08%，收率 91.82%。