

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
10 November 2005 (10.11.2005)

PCT

(10) International Publication Number
WO 2005/106251 A1

(51) International Patent Classification⁷: **F04B 43/12**

(21) International Application Number:
PCT/IB2005/051372

(22) International Filing Date: 27 April 2005 (27.04.2005)

(25) Filing Language: English

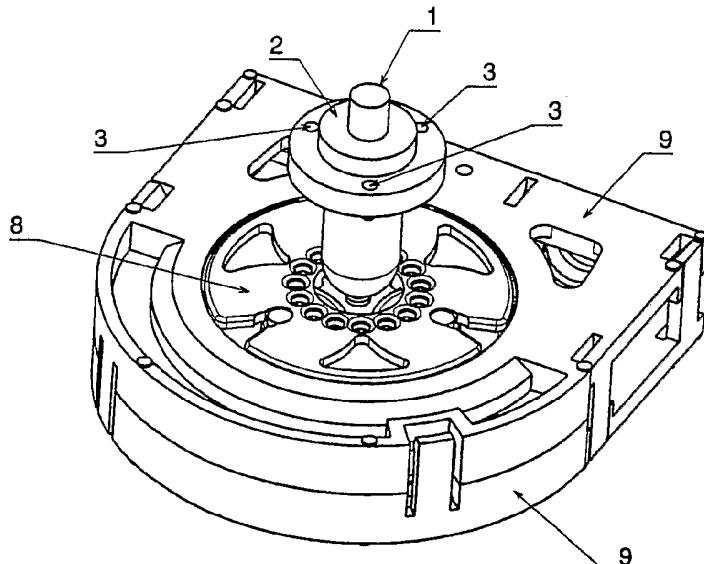
(26) Publication Language: English

(30) Priority Data:
04405275.1 30 April 2004 (30.04.2004) EP

(71) Applicant (for all designated States except US): **DEBIOTECH S.A. [CH/CH]**; Av. de Sévelin 28, CH-1004 Lausanne (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **NEFTEL, Frédéric [FR/CH]**; c/o DEBIOTECH S.A., Av. de Sévelin 28, CH-1004 Lausanne (CH). **JUNOD, Florent [CH/CH]**; c/o DEBIOTECH S.A., Av. de Sévelin 28, CH-1004 Lausanne (CH).


(74) Agent: **ROLAND, André**; c/o ANDRE ROLAND S.A., Avenue Tissot 15, P.O. Box 1255, CH-1001 Lausanne (CH).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PERISTALTIC PUMPING SYSTEM

WO 2005/106251 A1

(57) **Abstract:** Peristaltic pumping system comprising a flexible tube, a substantially cylindrical rotating roller unit (8,11) containing a series of rollers (11) which are freely rotating around their axes and freely moving along a radial segment, holding means (8) for commonly holding the rollers (11), a central spreader element (5) for pushing the rollers (11) against the flexible tube and a driving unit (1,2) comprising a driving coupling element (1), characterized by the fact that said holding means (8) is made of at least one planar element (8) having retaining and guiding means for rollers (11), said planar element (8) being furthermore adapted to be directly coupled to said coupling element (1,2) in such a way that rollers (11) are driven through said planar element (8).

Published:

— *with international search report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

5

Peristaltic pumping system

The invention relates to peristaltic pumping systems comprising a flexible tube, a series of rollers adapted to compress the flexible tube in a peristaltic way, a driving unit and a housing which comprises a preferable cylindrical raceway for 10 receiving the flexible tube.

A peristaltic pump unit of this kind is disclosed for instance in US 5 044 902. This unit discloses the use of a central shaft which is in direct contact with the rollers. The shaft has two functions, namely, driving the rollers during use and pushing them against the flexible tube when the shaft is inserted into the system. 15 This unit shows however some disadvantages. For instance, it wears rapidly and frequently blocks due to the opposite rotation direction of adjacent rollers.

One object of the invention is to provide a peristaltic pumping system of the type defined above, which is of a simple and robust construction and which allows an 20 efficient pumping over prolonged period of time.

The peristaltic pumping system according to the invention comprises a flexible tube, a substantially cylindrical rotating roller unit containing a series of rollers which are freely rotating around their axes and freely moving along a radial 25 segment, holding means for commonly holding the rollers, a central spreader element for pushing the rollers against the flexible tube and a driving unit comprising a driving coupling element, characterized by the fact that said holding means is made of at least one planar element having retaining and guiding means along such radial segment for rollers, said planar element being furthermore 30 adapted to be directly coupled to said coupling element in such a way that rollers are driven through said planar element.

When the roller unit and the housing are separated from the driving unit, the rollers are brought back to the center under the pressure of the tube at rest, this tube remaining open, which makes possible an easy and complete sterilization.

5 The housing has preferably an internal groove with a concave cross-section into which is housed the flexible tube, while the rollers are externally barrel-shaped, with a convex curvature combined with the concave curvature of the groove of the housing, to rest against the flexible tube; such a housing with a concave internal profile allows a self-centering of the tube and the rollers.

10

The tubular rollers are generally made of a flexible plastic material. Their shape is not limited to shape indicated previously. They may be cylindrical or conical. They may also be of a flexible material to improve the elastic functioning of the peristaltic pumping system.

15

The driving unit preferably comprises a driving shaft provided with a support containing pins which are adapted to cooperate with holes in the planar element of the roller unit.

Preferably the spreader is loosely mounted on an extension of the driving shaft to

20 avoid any friction with the rollers during use.

The invention consists, besides the arrangements explained above, in a number of other arrangements which will be more explicitly explained below with respect to the particular embodiments described with reference to the attached drawings,

25 but which are in no way restrictive.

FIG. 1 of these drawings is a perspective view of a roller unit according to the invention.

30 FIG. 2 is an enlarged view of a portion of the roller unit of fig. 1.

FIG. 3 shows a peristaltic pump unit according to the invention including the roller unit, the housing, the driving shaft and the spreader.

35 FIG. 4 represents the roller unit of fig. 1 containing the spreader.

5 FIG. 5 is a longitudinal cross-section of the roller unit with the spreader-shaft arrangement in a non-active position.

FIG. 6 is a longitudinal cross-section of the roller unit with the spreader-shaft arrangement in an active position.

10 FIG. 7 is an enlarged view of a disc portion.

With reference to the drawings, a peristaltic pump system can be seen on figure 15 3, comprising a housing 9 containing a raceway 10 for receiving a flexible tube (not shown), forming the body of the pump. The tube is interposed between the housing walls and a roller unit 8,11 capable of co-operating with a support 2 fixed to a driving shaft 1 which is, in turn, driven by an electric motor (not shown).

Figure 3 and 5 represents a non-active position where the driving shaft 1 has not 20 penetrated the roller unit 8,11.

The roller unit 8,11 is made of three rollers 11 held between two separator discs 8, the rollers 11 are commonly retained and guided through their axis ends 12 to the separator discs 8. At least one separator disc 8 contains a plurality of receiving means 13 which are adapted to receive the pins 3 of the driving support 25 2.

The driving shaft distal end extends from the driving support 2 and is covered by a sheath 5 freely rotating around the driving shaft 1. The sheath 5 is sufficiently large in order to act as a spreader which pushes the rollers 11 against the flexible tube when the shaft distal end penetrates the roller unit 8,11 (see figures 4 and 6).

30

When the housing 9 and the roller unit 8,11 are stored separately from the driving unit 1,2, the rollers 11 are brought back to the center under the pressure of the tube at rest, as can be seen in Figure 1, this tube remaining open until stabilization of the rollers in a perpendicular position of reciprocal support. This

5 allows to avoid a plastic deformation of the walls of the tube during storage, which could occur if the tube were stored in compressed condition and thereby induce a change in peristaltic performance during use (in particular with regard to flow rate and accuracy).

10 The tube can be kept in position by two welded stop rings foreseen for being clamped into accurate recesses under the pressure of a supporting collar integral with the cover of the cartridge.

When manufactured in series, this tube is mounted very quickly into the cartridge.

15

The peristaltic pump unit operates as follows :

The housing **9** and the roller unit **8,11** are first placed on the driving unit **1,2** (see fig. 4 and 6) . By this movement, the central shaft distal end, together with the sheath **5**, pushes the rollers **11** against the tube and, in addition, the pins **3** 20 engage the receiving means **13** of the discs **8**. The coupling of said pin **3** in the receiving means can be self-aligned by having receiving means which are close to each other with a taper at the periphery to guide the pin into said receiving, said pin having a conical end.

25 Alternatively, the coupling can also be obtained by pins being placed on the disc **8** and the receiving means being placed on the driving unit **2**.

The pumping action is obtained when the motor is started to rotate, driving the discs **8** and the rollers **11**.

30 Alternatively, the driving of the disc **8** can also be obtained by a gear coupling on the periphery of such planar disc.

When the roller unit **8,11** and the housing **9** are separated from the driving unit **1,2** the rollers **11** are brought back to the centre under the pressure of the tube at rest, this tube remaining open.

5 In an alternative embodiment (not shown) the rollers are not able to return to the center position once they have been pushed by the central shaft and sheath 5 against the flexible tube. In such a case, once the central shaft has been removed the peristaltic system remains occlusive, such as to prevent free-flow after use. This can, for example, be obtained by having a cliquing position 14 on the 10 separator discs at the position of the roller axis ends on the radial segment 15 of the separator discs so that the roller axis end has to pass such click 14 when the central shaft is inserted, but cannot return afterwards when the central shaft is removed.

15 Alternatively, this can also be obtained by having the sheath 5 remaining inside the roller unit 8,9 after the shaft is removed.

5

Claims

1. Peristaltic pumping system comprising a flexible tube, a substantially cylindrical rotating roller unit (8,11) containing a series of rollers (11) which are freely rotating around their axes and freely moving along a radial segment (15), holding means (8) for commonly holding the rollers (11), a central spreader element (5) for pushing the rollers (11) against the flexible tube and a driving unit (1,2) comprising a driving coupling element (1), characterized by the fact that said holding means (8) is made of at least one planar element (8) having retaining and guiding means for rollers (11), said planar element (8) being furthermore adapted to be directly coupled to said coupling element (1,2) in such a way that rollers (11) are driven through said planar element (8).
10
2. Peristaltic pumping system according to claim 1 wherein said holding means is made of two parallel planar elements (8), the rollers (11) being situated between said planar elements (8).
20
3. Peristaltic pumping system according to claim 1 or 2 wherein said spreader element (5) is freely mounted on the distal end of the driving shaft (1).
4. Peristaltic pumping system according to claim 1, 2 or 3 wherein said driving coupling element is directly fixed around the basis of the central spreader element to be coupled to the planar element by underneath.
25
5. Peristaltic pumping system according to claim 4, wherein the driving coupling element comprises centering means adapted to allow a self centering of the driving coupling element.
- 30 6. Peristaltic pumping system according to claim 1, 2, 3, 4 or 5 wherein said planar element(s) (8) contain(s) a series of holes (13) situated along a circle which is coaxial with respect to the rotating axis of the roller unit (8,11) and wherein said driving unit (1,2) contains at least one pin (3) adapted to be received in one of said holes (13), the pin (3)-hole(13)

5 combination allowing the fixation of the planar element (8) to the driving unit (1,2).

10 7. Peristaltic pumping system according to claim 6 wherein said holes (13) are adjacent along the circle, allowing thereby always a fixation (automatic alignment) of the planar element (8) to the driving unit (1,2) when both elements are approached.

8. Peristaltic pumping system according to claim 1, 2 or 3 wherein said driving coupling element (1,2) is directly fixed around the periphery of the planar element (8).

15 9. Peristaltic pumping system according to any of the previous claims comprising clicking means (14) adapted to maintain the rollers against the flexible tube when the central shaft is withdrawn.

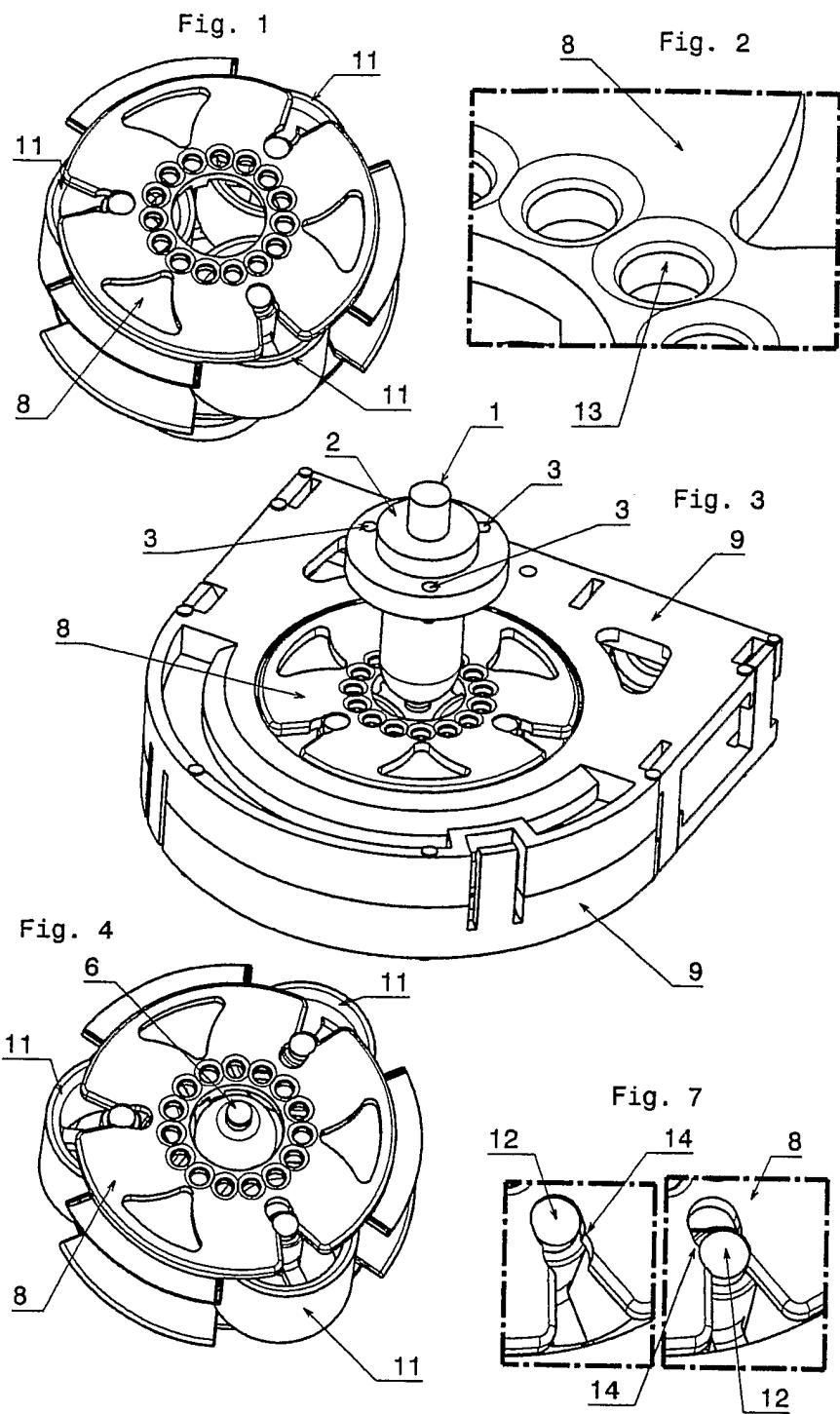


Fig. 5

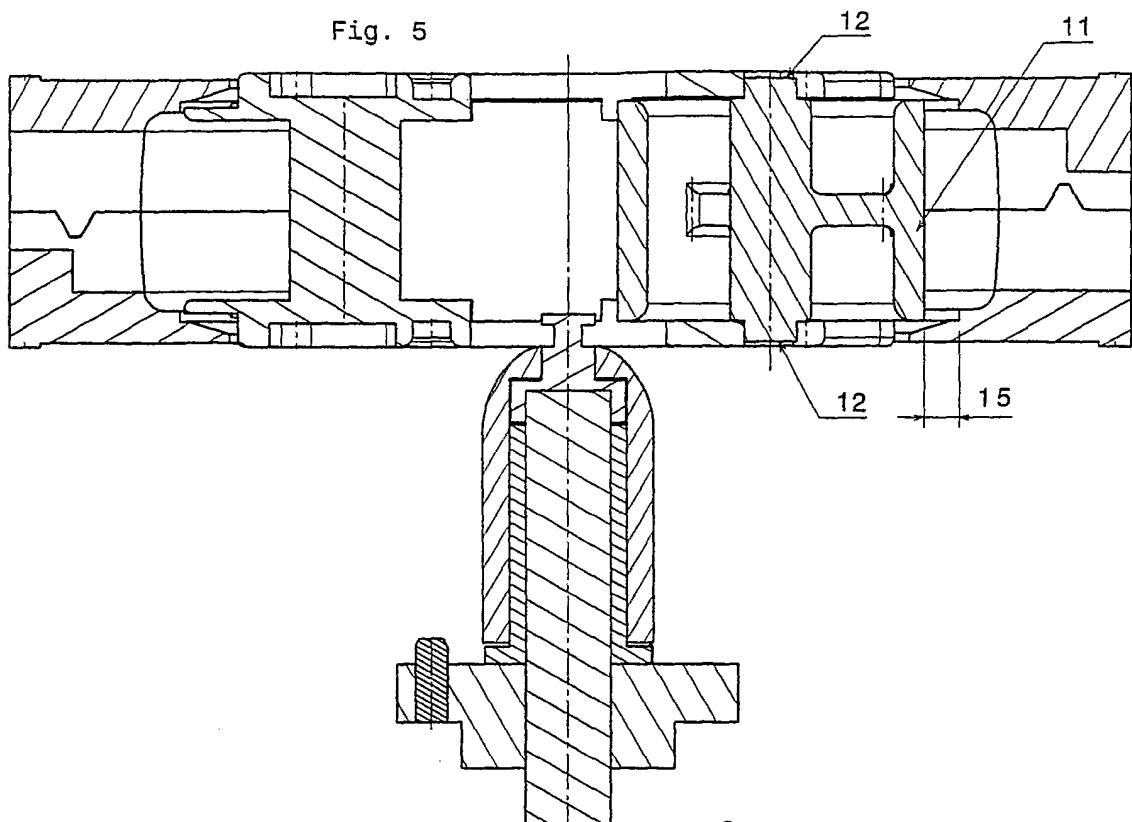
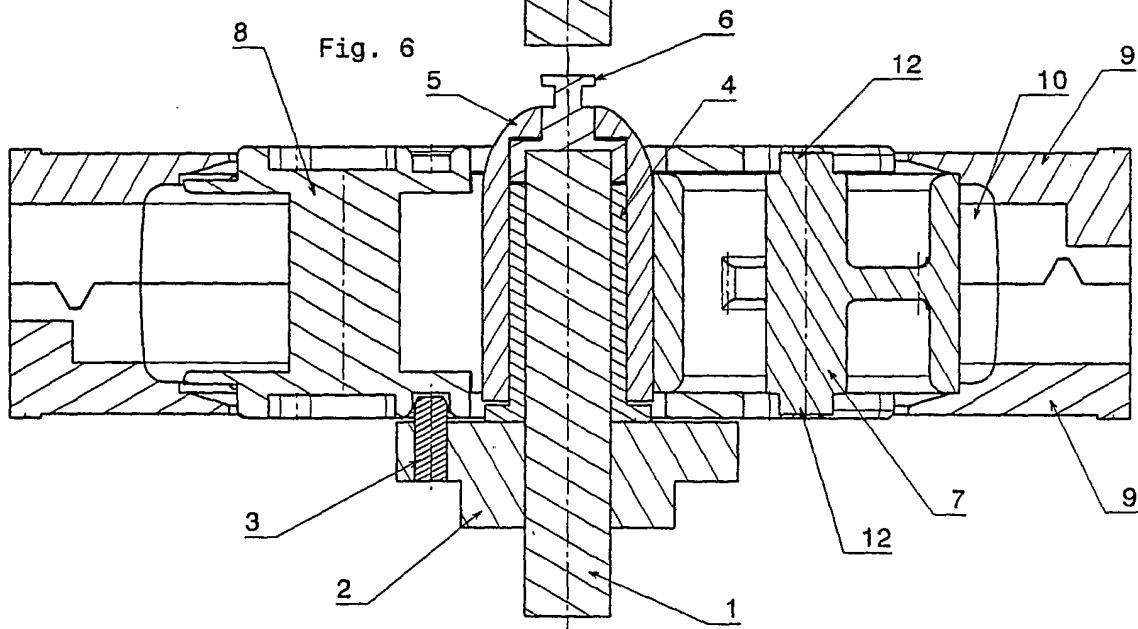



Fig. 6

INTERNATIONAL SEARCH REPORT

International Application No
PCT/IB2005/051372

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 F04B43/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 F04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^o	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 044 902 A (MALBEC EDOUARD) 3 September 1991 (1991-09-03) cited in the application the whole document -----	1
A	US 5 927 956 A (FOX BRIAN J ET AL) 27 July 1999 (1999-07-27) column 2, line 28 - column 3, line 5 -----	1
A	US 4 573 887 A (SMITH JO DEE J) 4 March 1986 (1986-03-04) column 1, line 5 - line 39 -----	1
A	US 4 909 713 A (FINSTERWALD P MICHAEL ET AL) 20 March 1990 (1990-03-20) column 1, line 20 - line 49 -----	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

^o Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

20 July 2005

Date of mailing of the international search report

01/08/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Fistas, N

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/IB2005/051372

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 5044902	A	03-09-1991		FR 2644212 A1 AT 100903 T AU 627282 B2 AU 5120690 A BR 9005772 A CA 2011988 A1 CN 1045634 A ,B DD 294065 A5 DE 69006239 D1 DE 69006239 T2 DK 388269 T3 EP 0388269 A1 ES 2048451 T3 WO 9010792 A1 IE 64115 B1 IL 93713 A JP 2091564 C JP 3031593 A JP 7122434 B KR 148344 B1 NZ 232882 A PT 93423 A ,B SU 1836587 A3 ZA 9001920 A		14-09-1990 15-02-1994 20-08-1992 13-09-1990 06-08-1991 13-09-1990 26-09-1990 19-09-1991 10-03-1994 14-07-1994 28-02-1994 19-09-1990 16-03-1994 20-09-1990 12-07-1995 18-08-1993 18-09-1996 12-02-1991 25-12-1995 20-03-1999 25-11-1992 31-10-1991 23-08-1993 28-12-1990
US 5927956	A	27-07-1999		NONE		
US 4573887	A	04-03-1986		NONE		
US 4909713	A	20-03-1990		CA 1297341 C DE 3708517 A1 FR 2598468 A1 GB 2190145 A ,B JP 2537512 B2 JP 62261684 A JP 2772268 B2 JP 8082286 A		17-03-1992 12-11-1987 13-11-1987 11-11-1987 25-09-1996 13-11-1987 02-07-1998 26-03-1996